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Abstract 

We critically review the methodological practices of two research programs which are jointly 
called ‘neuroeconomics’. We defend the first of these, termed ‘neurocellular economics’ 
(NE) by Ross (2008), from an attack on its relevance by Gul and Pesendorfer (2008) (GP).  
This attack arbitrarily singles out some but not all processing variables as unimportant to 
economics, is insensitive to the realities of empirical theory testing, and ignores the central 
importance to economics of ‘ecological rationality’ (Smith 2007).  GP ironically share this 
last attitude with advocates of ‘behavioral economics in the scanner’ (BES), the other, and 
better known, branch of neuroeconomics. We consider grounds for skepticism about the 
accomplishments of this research program to date, based on its methodological 
individualism, its ad hoc econometrics, its tolerance for invalid reverse inference, and its 
inattention to the difficulties involved in extracting temporally lagged data if people’s 
anticipation of reward causes pre-emptive blood flow. 

Keywords: neuroeconomics, Gul and Pesendorfer, ecological rationality, neurocellular 
economics, MacGyver econometrics, reverse inference, pre-emptive blood flow 

JEL codes: A12, B41, C51, C81, C91, D03, D87 

Neuroeconomics has arisen quickly as a subfield within economics, but does not exhibit a 
unified methodology. The general distinction we find most useful is between what Ross 
(2008) calls “neurocellular economics” (NE) and “behavioral economics in the scanner” 
(BES). We organize our critical assessment below in terms of these methodologies. Although 
we are generally skeptical about BES, our identification of problems with NE that need 
more attention are intended constructively. 

1. The Methodological Backlash Against Neuroeconomics 

Starting about 1870, a dominant methodological trend in economic theory was the 
progressive severance of direct psychological commitments. This process involved three 
principal milestones: 

 The generalization of all forms of value by reference to an abstract concept of utility. 
 The recognition that convexity of demand need not be grounded in a psychological 

principle of diminishing marginal satisfaction, but could be derived from anodyne 
assumptions about substitutability and budget constraints. 
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 The popularity of revealed preference theory, which is ironically about the elimination 
of preferences, conceived as latent states of mind, in favor of attention to the logical 
consistency of observable choices. 

In light of this history, it would be surprising if most economists were prepared to 
incautiously swallow the suggestion that we can do better economics by examining people’s 
brains. And so it is not surprising that the appearance of several brash and sometimes 
messianic1 research programs trading under the banner of “neuroeconomics” has begun to 
provoke a backlash. Harrison (2008) and Bernheim (2009) both concede possible, albeit 
modest, potential contributions that brain studies could offer to economics. Gul and 
Pesendorfer (2008) (GP) concede nothing at all; they thereby usefully define an extreme limit 
point with respect to the economist’s assessment of neuroeconomics, against which less 
uncompromising positions can be efficiently developed. We confine attention here to 
selected aspects of GP’s critique that set up general points we make later. 

According to GP, psychological hypotheses and empirical findings might usefully “inspire” 
economists’ hypotheses, but economic models should include only variables that condition 
what an agent chooses and none that condition how an agent chooses. This is because the task 
of positive economics is to predict choices as functions of changes in incentives and 
opportunity sets. GP do not derive this claim from transcendental insight into the true 
domain of economics. Rather, they believe it to be a sociological fact that most economists 
are not professionally concerned with variables for psychological processes, and will 
continue to maintain this attitude because the generalizations they seek about the influences 
of incentives and opportunities on choices are not sensitive to differences in such variables. 

GP presumably do not think that choices are structureless Sartrean actes. They no doubt 
suppose that they are computational processes of some sort, conditioned on underlying 
valuations (which may themselves have resulted from prior choices). Their claim is that the 
economist does and should leave the processing details inside black boxes. This implies the 
view that a model that relates valuations and opportunities to outputs of choice processes is 
a description of a class of computations in reduced form. Harrison (2008) points out that 
GP’s examples imply a suggestion that all economic models should be exclusively given in 
reduced form, and should never be structural. This, he observes, is something one could 
only imagine at great theoretical distance from the actual testing of models against empirical 
evidence, particularly experimental evidence. As the cost of computing power has fallen, 
structural models have become increasingly common in all areas of economics except the 
most airless reaches of theory; this has in turn driven a surge of innovation in econometric 
techniques. An argument based on economists’ practice rather than on dogma about its 
‘rightful’ domain cannot ignore this. Economics departments certainly don’t let their 
graduate students ignore it. 

In fact, GP allow that economic models should include variables that constrain opportunity 
sets, such as interest rates. An interest rate is a kind of processing state variable, describing 

                                                       
1 Witness the readiness of some neuroeconomists to blithely draw revolutionary conclusions 
from small neuroimaging studies. For example, Knutson et al (2007) consider fMRI data 
from 26 subjects choosing purchases, and on this basis announce that economists have been 
mistaken in modeling consumers as minimizing opportunity costs. 
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trajectories of expected future transactions, but which aggregates the choices of many agents. 
What GP consider alien to economics about neural (and other psychological) processing 
states, therefore, must not be that they are processing states, but that they are internal to the 
agent. The black box that the economist is specially forbidden to open is in fact the skull 
cavity. 

Proposed as a general principle, this is a mere prejudice. In particular, it offers no sound 
basis for denying the validity of the NE branch of neuroeconomics. This program is 
identified with Glimcher (2003) and colleagues, and uses the technical resources of economic 
theory to understand the mechanisms by which brains comparatively evaluate alternative 
possible states that share no common dimensions describable in terms of sensory modalities 
or neurochemical response profiles. Glimcher (2009) calls this “subjective value,” though we 
suggest that “value in the brain” would invite fewer misinterpretations. The program’s 
viability and potential importance rest on an empirical hypothesis that dopamine signals in 
the ventral striatum and medial prefrontal cortex constitute a “common currency” of reward 
that has many properties in common with the mainstream economist’s concept of utility. If 
this hypothesis is correct, then neuroscientists might usefully exploit a century’s progress by 
economists in studying utility to model valuation in the brain. 

We see no reason why any economist, however sure they might be that psychological 
variables aren’t relevant to studying the traditional domain of economics, should resent the 
borrowing of economic theory to model other domains. No one, for example, argues for 
baning ecologists from using cost-benefit analysis. Of course, one might follow up this point 
by asking why, if economic theory should turn out to be the main modeling technology for 
the neural reward circuit, this shouldn’t lead us to say that the domain of economics had 
been widened.2 But this “issue” looks entirely semantic.  

A different way in which some theorists have aimed to carry economics “inside” the 
individual was pioneered by Strotz (1955-56), Schelling (1978, 1980, 1984) and Ainslie 
(1992), and has been refined in contributions by Benabou and Tirole (2004), Benhabib and 
Bisin (2004) and Fudenberg and Levine (2006). All of this work involves explaining 
behavioral patterns in individual people as equilibria of games amongst sub-personal agents, 
which might or might not be identified with functional modules of brains, such as those 
suggested by McClure et al (2004). Gul and Pesendorfer (2001) develop the details of a 
modeling framework that is explicitly intended to capture the main phenomena which 
interest the “multiple self” tradition (procrastination, addiction, and other forms of 
intertemporal irresolution) without positing any sub-personal agents. Thus, whatever view 
one might take of the comparative merits of these approaches, one cannot in this instance 
accuse GP of resting their negative case on arbitrary restrictiveness about what economists 
should and shouldn’t get up to. Note that Glimcher (2009) also explicitly rejects multiple-
selves models, at least insofar as the sub-personal selves in question are identified with neural 
modules. 

We refrain from declaring for one of the dogs in this fight. Empirical data on the dynamics 
of intertemporal consumption are not yet sufficiently rich to favor any one model over its 
alternatives. Instead, we note an irony in this debate: the fact that GP make a methodological 

                                                       
2 This is the attitude of Ross (2005), Ross et al (2008), and Caplin and Dean (2008). 
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fetish out of choice at the level of the individual personal agent renders them bedfellows of 
precisely the BES school of neureoconomics they attack. BES consists in repeating protocols 
that putatively demonstrate human “irrationality” under neuroimaging, and trying to show 
how “anomalies” in rational choice have their origins and explanations in framing effects 
that result from the computational processing architecture of the brain. These behavioral 
economists strike the attitude of rebels against “mainstream” or  “neoclassical” economics 
and revealed preference analysis, and promote neuroeconomics as a core part of the 
alternative program. Camerer, Loewenstein and Prelec (2005) provide a useful survey of 
work in this area, unfortunately presented as if it constituted the whole of neuroeconomics.  

We share the skepticism of GP about BES. But we believe that a stubborn refusal to think 
about the processes that support relationships among incentives, opportunities and choices 
is a self-defeating way of promoting this skepticism. It concedes to the advocate of BES that 
what economics is fundamentally about are individual people arriving at and applying 
valuations all by themselves. This ignores what Smith (2007) refers to as the ecological nature of 
economic rationality. Ecological rationality emphasizes the extent to which people 
approximate consistent, “old-fashioned” economic rationality, not because of computational 
marvels they achieve with their raw brains, but by means of what the philosopher Clark 
(1997), following Hutchins (1995), calls cognitive “scaffolding.” This consists of external 
structures in the environment that encode culturally accumulated information and constrain 
and channel behavior. Economists are familiar with social scaffolding under the label of 
“institutions.” 

Our point here is not that economists have been citing Clark or Hutchins, or generally 
appreciate the full power of their conceptual contributions. Philosophers might have been 
expected to notice the connection, but we speculate that they have largely missed it because 
economists’ examples of institutions are typically official entities with proper names, such as 
the Federal Reserve, or explicit legal structures, rather than the ubiquitous and informal 
guideposts to cultural practice and coordination that Clark and Hutchins emphasize. 
However, we can see no conceptual distance at all between scaffolding and Smith’s 
‘ecological rationality’; Wilcox (2008) makes the same point. 

Ecological rationality is at the centre of some of the most discussed and cited recent work in 
applied economics. For example, Gode and Sunder (1993) model the behavior of simulated 
agents with “zero intelligence” that simply follow the rules of a double auction experiment 
subject to budget constraints. That is, sellers do not offer to sell for more than their marginal 
cost, and buyers do not offer to buy for more than their maximum willingness to pay; 
otherwise, they bid randomly, constrained in the other direction only by some reasonable 
upper bound or by zero. The efficiency of these simulated markets parallels that achieved by 
human subjects, suggesting that the efficiency of the outcomes results from the ecological 
rationality of the institutional rules, rather than relying on deliberatively and individually 
rational agents. Sunder (2003) discusses generalizations of this striking result, and a broader 
range of applications in economics.  

To illustrate the contrast between ecological and naively individualistic rationality, imagine an 
investor deciding how often she should churn her portfolio. One might first imagine her 
modeling the financial market, including a representative agent with rational expectations. 
This agent gathers time-indexed data on prices and returns, and calculates an average churn 
rate, variance and signal-response rule from which to construct a policy that maximizes her 
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expected lifetime earnings. Though this is how economists might aim to discover the 
investor’s policy, they know this does not describe the approach of the actual, typical person. 
What she does instead is exploit the fact that she operates within a network of public, 
normative signals. The transaction fees charged by licensed brokers vary within narrow 
ranges. These ranges systematically co-vary with volatility in asset prices, dividend rates, and 
opportunity costs of investments in the assets in which the brokers traffic. Our agent might, 
in ignorance, begin by suffering abuse at the hands of her broker and churning too much. 
Fortunately, her environment is likely to be full of signals, including institutionally encoded 
second-order signals about the relative reliability of various first-order signals, that provide 
her with a good chance of discovering this. She might over-react and for a time churn too 
little. But she also may have access to signals about the earnings of other people whose 
situations are similar to hers. If they consistently do better than she does, it may occur to her 
that when her new broker tells her that she is holding assets for too long, this one might not 
be trying to exploit her. Ultimately, our agent’s behavioral transaction rate might range close 
to what the economist formally modeling her situation would recommend. 

We can imagine a psychologist studying the investor in detail over the course of years and 
predicting her specific behavior more exactly than is possible using the economist’s “as if” 
approach. If all investors were psychologically identical this might be considered grounds for 
disinvesting in economists and using the savings to train more psychologists. But there are 
persuasive grounds for thinking that psychological variance among people is such as to 
defeat this argument. Each member of a set of investors might use an idiosyncratic learning 
path and idiosyncratic representations to infer what counts as the same thing at a sufficiently 
abstract scale of description – namely, the approximately optimal churn rate for a broad 
range of asset classes and market parameters. In that case, the economists will be in a far 
stronger position to predict out of sample, and to offer aggregate-scale predictions, than any 
of the psychologists who have more exact models of types of processing used by 
individuals.3 

The moral of this simple – indeed, simplistic – example can easily be taken too far, however. 
GP write as if we know, in advance of all empirical work, that psychological variation among 
individuals learning a given economic relationship will have a known distribution, for which 
we can exactly control in a reduced-form model. This is very often false, in which event 
work of psychologists or sociologists or neuroscientists might provide relevant evidence in 
any given case. More importantly, our access to evidence might be limited in such a way that 
our most practical procedure is to include parameters in our models that allow the data to 
help us sort a population into sub-populations, each of whose members converge on an 
economically distinct solution.  

Consider, as a real instead of stylized example, the very phenomenon that has motivated the 
arguments between multiple-self and single-self models of intertemporal consumption, 
namely, intertemporal discounting. Begin by imagining two limiting cases. In Case 1 each 

                                                       
3 We are not suggesting here that psychologists aren’t interested in properties shared across 
individuals. The point is merely that classifying phenomena by reference to processing 
variables will generally produce a different partitioning of states and events than classifying 
them by reference to economic response functions, and in the particular case we are 
imagining the psychologist’s partition will be of finer grain than the economist’s. 
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agent draws a discounting function from a random distribution of mathematically possible 
forms, but all agents are financially punished by their market institutions to the extent that 
they depart from exponential discounting at a common rate x. Psychologically, these agents 
are perfectly idiosyncratic. In Case 2 all agents discount identically, but in a way that causes 
them all to manifest systematic intertemporal preference reversals. GP write as if Case 1 
were standard. Here, so far as economic prediction is concerned, psychological processing 
variables are pure noise. Advocates of BES prefer a methodology that assumes Case 2 to be 
the norm. These agents evidently face some barrier against learning to create institutional 
scaffolding that could help them to act more consistently. Perhaps it is their recalcitrant 
brains that get in their way. 

Recent empirical work has shed considerable light on reality with respect to this example. 
Hypotheses resembling both limiting case have been cleanly rejected. When we study 
discounting behavior, or any choice process, we have to worry about whether any given 
agent uses more than one model or ‘data generating process’ in different domains (Harrison 
and Rutström (2009); Coller et al. (2009)). When we model any behavioral function in 
economics we have to account systematically for the individual heterogeneity that we expect 
a priori from preferences, but which demand formal econometric methods and large sample 
sizes (Harrison at al. (2002); Harrison and Rutström (2008)). We have learned that 
discounting in real populations is better described by structural models which allow 
representation of heterogeneity with respect to curvature of utility functions and with respect 
to discount rates, than by models that impose a common reduced functional form on 
everyone. And we also know that exponential discounting usually predominates over 
hyperbolic discounting, contrary to a common dogma of behavioral economics  (Andersen 
et al. (2008)). 

Thus the most empirically robust and informative models of discounting and related 
behaviors include some processing variables, but only as many as are needed to allow us to 
estimate a limited set of parameters from data. The process of discovery of these models is 
economics, not psychology, because it does not discriminate between different hypotheses 
that would be of major concern to a psychologist. Do majorities of human populations 
converge on exponential discounting because their brains are naturally disposed to it, or 
because the social ecologies in which they are immersed train them to do so and induce 
them to collectively build institutional scaffolding that helps them to keep on track?  

Notice that if one were doing psychology, and were investigating the question just posed, one 
thing one might want to do is wrench subjects out of their scaffolded environments. One way 
to do this would involve putting them in strange laboratories performing socially novel tasks; 
or, possibly, to disorient them still more, by making them lie down with their heads in 
magnets. We could then see if they discounted in ways their public norms would deem 
confused. There is a non-arbitrary reason to say one is doing psychology rather than 
economics here: in the context of their natural, culturally-evolved, economies, most of the 
subjects will not behave this way. This points to a respect in which economics is not merely 
methodologically autonomous with respect to neuroscience: economic regularities, understood 
as ecological properties of a certain kind, can causally dominate neural processing properties 
that would prevail in a brain forced to fend for itself. 
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2. The Empirical Methodology of Neuroeconomics 

One of the basic historical divides between psychologists and economists has been the 
reluctance of the latter to embrace latent variables in their modeling. In discussions by both 
psychologists and economists,  along with philosophers, of methodologies for modeling 
choices of individuals, it is often taken for granted that the only grounds for abstemiousness 
must be residual behaviorism on the part of the economists. We think that a judicious dash 
of behaviorism is well advised (Ross (2005)), but let us put that aside here. Even economists 
who are convinced by the fashionable claim that behaviorism is a wholly pernicious doctrine 
should recognize that introducing latent variables must necessarily involve them in an issue 
around the nature of  ‘constructs’ which their usual methods allow them to avoid. 

The issue in question is the distinction between ‘reflective’ and ‘formative’ constructs. The 
former are diagnosed or indicated by sets of observable markers which are each supposed to 
perfectly reflect a single underlying latent variable. Such constructs are based on factor 
analysis, used to discover high-loading items and reject low-loading ones, rather than on 
structural modeling. Formative constructs, by contrast, have the logical character of 
dependent variables in economic models. That is, they summarize the interactions of a range 
of independent (perhaps causally linked) variables. Consider, for example, the construct 
‘addiction’. A reflective version of this construct would include behavioural tendencies, each 
of which is taken to indicate the underlying latent condition. In classifying addicts, it is 
inappropriate to sum the items in the reflective construct, since displaying more reflective 
items is not associated with being more severely addicted. By contrast, a formative 
‘addiction’ construct would list variables that are taken to structurally constitute addiction. 
Structural, possibly causal, relationships among these variables are expected to track the 
extent to which a person is addicted. In the context of research on pathological gambling, 
which is methodologically representative of much psychological work on clinical conditions, 
Schellinck and Schrans (2008) complain of a pervasive confusion between reflective and 
formative constructs, with the former often being borrowed from diagnostic practice when it 
is the latter that are needed for scientific discovery because they are the basic coin of new 
generalizations. 

This issue doesn’t arise for economists, for two reasons. First, their unobservable 
explanatory variables are often axiomatized by reference to behavioral conditions. Caplin 
(2008) has drawn attention to the potential value of this for neuroeconomics, and Caplin and 
Dean (2008) have begun to do something about it. More prosaically, however, the use of 
standard econometric techniques forces economists to work as if all of their lists of 
independent variables are formative constructs, because distinct variables in models must 
not, for the sake of statistical testing, be perfectly correlated with one another. This tends to 
have the effect of making it hard to find models that both fit wide ranges of data and are 
econometrically tractable. Though this has sometimes been a subject for complaint, we think 
it has had a salutary influence on economics. For one thing, it has forced a steady 
improvement in the depth and sophistication of econometric techniques and theory. This is 
a good reason why neuroeconomists should wish to remain economists. 

They cannot have it both ways, however. If maintenance of modeling discipline 
recommends the economists’ club when key target variables are unobservable as, we will 
argue, they are in neuroeconomics (fMRI nothwithstanding), then econometric restrictions 
must be treated seriously. We do not generally find this in BES, however, and we have an 
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hypothesis as to why not: fMRI data are frequently treated as if they were first-order 
observations rather than products of chains of statistical inference. We illustrate this general 
point with three types of methodological problems that have arisen in recent empirical 
neuroscience and neuroeconomics. 

 2.1 Data Versus Estimates 

The unit of neuroeconomic analysis is a spatial location in the brain emitting signals per unit 
of time. So in a neuroeconomist’s typical fMRI data set a few brains contribute many 
observations at each point in time, and in a time-series.  Therefore, statistical issues arise 
both for inferences about single brains, and for inferences about pooled samples of brains. 
To understand the significance of the former, one need only review the typical list of 
estimation methods employed; for example, see Rabe-Hesketh et al (1997, pp. 217-226). The 
inferential problem here is simply that point estimates from one stage are taken as data in the 
next stage, and then there is a long chain of such inferences. The implication is that the 
standard errors of estimates at later stages tend to overstate the precision of estimations, and 
later estimates may be completely inconsistent.4 This is compounded by the inferential can of 
worms involved in pooling across brains. There are many different ways to normalize brains, 
as one can imagine and hope, and these matter for inference.5  

The end result is that the statistical modeling of neural data is a sequential mixture of 
limited-information likelihood methods, frequently cobbled together by ad hoc  methods: 
“MacGyver econometrics,” to borrow the label of Harrison (2008). Recognizing this fact is 
not meant as a way of invalidating the clinical or research goals of such exercises, but as a 
reminder of the extremely limited extent to which modeling and estimation errors are likely 
to be correctly propagated throughout the chains of inferences based on fMRI data. The end 
result is often a statistical test in which left hand side and right hand side variables are 
themselves estimates, often from a long chain of estimates, and are treated as if they are first-
order data. This encourages significant understatement of standard errors on estimates of 
effects, implying significant overstatement of statistically significant differential activation. 

Consider an example of this problem from Glimcher, Kable and Louie (2007). In one 
instance a correlation is calculated that refers to an econometrically estimated discounted 
utility function from standard behavioral data. The parameters of this function have standard 
errors when estimated. But when used to predict activity of the brain, when used as a right-
hand-side correlate, the standard errors disappear: 

These individually measured indifference curves permitted us, for each 
subject, to model the discounted utility of each delayed option presented to 
our subjects in the brain scanner. With this behavioral measurement in hand, 
we could then ask whether any activity in the brain of these subjects was 
correlated with the discounted utility of an option under consideration. We 
found that, in each of our subjects, the activity of the brain in three areas 
typically associated with option valuation [...] showed a clear correlation with 
this behaviorally derived function. Put another way, brain activity measured 

                                                       
4 This point has been made in the neuroscience literature by Vul, Harris, Winkielman and 
Pashler (2009), and in a critique of the neuroeconomics literature by Harrison (2008). 
5  Harrison (2008, p.  312ff) provides references to the literature. 
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in [three areas] … had many of the properties of that subject’s discounted 
utility function (p. 143).  

We flag this problem precisely because we are partial to the authors’ underlying algorithmic 
hypotheses about discounting behavior. It is most important to be critical of stories one 
finds most plausible, since others can be counted on for the rest.  

2.2 Reverse inference 

The other general problem is related, and is known in the literature as the reverse inference 
problem. This arises when activations in regions of the brain are presumed to identify the 
activation of a (labelled) cognitive process. Poldrack (2006) explains the process well, and 
provides some well-cited illustrations of the extent of the problem. 

There is much debate in neuroscience about the selectivity of cognitive processes. 
D’Esposito et al (1998) give an early discussion of the reverse inference problem in this 
context. They “conclude that human lateral prefontal cortex supports processes in addition 
to working memory. Thus, reverse inference of the form ‘if prefontal cortex is active, 
working memory is engaged’ is not supported” (p. 274). Claims of this sort are subject to 
debate and, of course, refinement through different designs, instrumentation and methods of 
statistical inference. It is not hard to find such debates in neuroscience, but they tend to be 
glossed in the very neuroeconomics work that should be using the sophisticated modelling 
strategies of economics to develop tests of them. 

Kahneman (2009, pp. 523-524) provides insight into the tendency in the neuroeconomics 
literature to avoid discussing awkward statistical issues, such as those posed by the reverse 
inference problem. He reflects on the problem that researchers face, in exactly the way that 
is relevant for the accumulation of knowledge in this area, when one must evaluate a favored 
story: 

High correlations between well-identified psychological and neural measures 
are the exception, not the norm. In most experiments … the correspondence 
between psychological terms and neural measures is more equivocal, and the 
interpretation of imaging results is tricky. Poldrack […] has drawn attention 
to the problem of "reverse inference," which arises when people infer a 
specific a psychological process from activity in a particular region -- for 
example, when activity in dorsal striatum is interpreted as an indication that 
people enjoy punishing strangers who have behaved unfairly […]. There is 
indeed a problem, because activity in dorsal striatum is not perfectly 
correlated with enjoyment: many other circumstances produce activity in that 
region, and there is no assurance that it will be active whenever the individual 
experiences pleasure. In spite of this difficulty, the result and its proposed 
interpretation is just what a general psychologist (not a neuroscience 
specialist) would order. It is surprising but plausible, and it drives thinking in 
new directions. The more difficult test, for a general psychologist, is to 
remember that the new idea is still a hypothesis which has passed only a 
rather low standard of proof. I know the test is difficult, because I fail it: I 
believe the interpretation, and do not label it with an asterisk when I think 
about it. And I will be sorry if it is disproved, but will have no difficulty in 
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accepting its demise -- it would join a long list of defunct once-cherished 
ideas.  

An example of a neuroeconomist acknowledging the importance of the problem is Phelps 
(2009, pp.245-247). She points out that the amygdala and the insular cortex, two regions 
often flagged as “proving” that emotions play a role in economic decision-making have been 
identified as playing other, arguably non-emotional roles. She correctly concludes (p. 247) 
that “[a]lthough reverse inference is a powerful technique for generating hypotheses and 
ideas that inspire additional studies or measurements, its use as a primary technique for 
determining a role for the emotions is questionable.” In light of this, we don’t quite see what 
licenses her general conclusion about the role of neuroscience in demonstrating an empirical 
role for emotions in economic decision-making: “Although emotion was considered an 
important variable in economic decision making prior to neuroeconomics  […], the recent 
growth in this field has highlighted a role for emotion in economic choice.” (p.234). We do 
not quarrel with the highly plausible conclusion. We simply can’t find new evidence for it 
coming from neuroeconomics, even in a careful survey precisely intended to summarize that 
contribution. 

The problem afflicts BES to a greater extent than it does NE, partly because the former is 
more reliant on fMRI work with humans whereas the empirical foundations of the latter lie 
in single-cell recordings in rats and monkeys. Indeed, we find a nice example of leading NE 
researchers invoking the problem against a frequently cited flagship BES result. Glimcher 
(2009, pp. 518-519) criticizes the claim of McClure et al (2004) that an identifiable part of the 
brain implements the β part of the quasi-hyperbolic discounting model and another part of 
the brain implements the δ part of that model. He initially questions the anatomical viability 
of the proposed localization of brain activity, and the lack of correspondence to well-studied 
animal data. But his most telling criticism is that two of the regions that have been identified 
as being associated with "emotional" decision-making in these particular tests, the basal 
ganglia and the medial prefrontal cortex, have also been shown by others to be associated 
with traditionally “rational” functions such as the encoding of monetary and primary 
rewards, and the expression of ordinal preference.  

2.3 Sorting Out Shadows 

Another issue of significance in recent debate over the use of fMRI imaging is the problem 
of “pre-emptive blood flow” identified by Sirotin and Das (2009) and summarized by 
Leopold (2009). The phenomenon was detected by independently and directly measuring 
blood flow and neural activity in monkeys. The inferential problem arises if there is blood 
flow activity in anticipation of some event even if the event does not occur. Some mismatch 
between blood flow and neural activity is expected, but the difference here is several orders 
of magnitude beyond the customary. One conjecture is that this is a type of “priming” 
activity in the brain, so that blood is ready and available in the expectation that it will be 
used. But since the temporal connection between stimulus and response lies at the heart of 
almost all neuroeconomic methods, this finding is extremely troublesome. It is particularly 
likely to be a problem for neuroscientific research involving humans, who can learn vast 
networks of anticipation from their cultures. 

 



11 
 

3. Conclusion 

BES-style neuroeconomics is plagued by two problems. First, it inherits from behavioural 
economics an over-emphasis on individual “inboard” choice, divorced from socially 
scaffolded context, as the basic subject matter of economics.  Second, statistical problems 
that are debated in the neuroscience literature, and which are familiar to econometricians, 
simply have to be resolved before claims of typical BES strength can be regarded as justified.  
Advocates of BES cannot simply put them to one side as “footnote qualifications” while 
they get on with telling interesting stories, a tendency we find in their literature.6 

We reject the view that neural data are irrelevant to economics as wilfully and obstructively 
isolationist. But we also reject the free-disposability view that any data is useful data until 
proven otherwise, implying that we should just collect it anyway and decide later if it was 
useful. That is a poor model for advancement of study in any field. We welcome NE as a 
potential contributor to formal modelling of the processes by which agents make economic 
decisions, though we emphasize that this project is in its infancy and depends on an 
empirical hypothesis that might turn out to be wrong – that there is a common currency of 
valuation in the brain. We advise neuroeconomists to remember that and why there is a 
border between economics and psychology, however often they commute across it.  

                                                       
6 For example, see Fox and Poldrack (2009, p.166), who mention the reverse inference 
problem developed so well by Poldrack (2006), but simply move on without a blink. 
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