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Characterizing Risk Attitudes of Industrial Managers

by

Glenn W. Harrison†, Sebastian Moritz‡ and Richard Pibernik‡

January 2010

Abstract. We study the risk attitudes of an important segment of the economy:
managers. We conduct artefactual field experiments with 130 managers from 12
industrial companies. Our analysis is particularly careful to evaluate alternative
models of decision-making under risk. In general, we find that the managers in our
sample are moderately risk averse. Assuming a standard EUT model they exhibit
similar risk attitudes as other sample populations. However, we find some
differences within our sample. Superiors exhibit a higher level of risk aversion than
team members that work for them in their department. Comparing purchasing
managers with a random sample of non-purchasing managers from different
corporate functions such as controlling, sales, engineering and so on, we cannot
conclude that they differ from each other. We show that alternative theories of risky
behavior provide complementary information on the risk attitude of industrial
managers. While an expected utility theory model only characterizes managers as
globally risk averse, we learn from a prospect theory model that the managers in our
sample are only risk averse for a certain range of payoffs. For other payoffs, they
even exhibit risk-seeking behavior. The reference point that determines which
outcomes are to be viewed as losses and which as gains is not that induced by the
task frame. We show that subjects had implicit expectations about their earning in
the experiment, and used these expectations to evaluate the lotteries presented to
them. Remarkably, the managers in our sample did not weigh probabilities and they
did not exhibit a hypothetical bias in their decisions.
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1. Introduction

Experimental procedures to elicit risk preferences have been applied to study risk attitudes

of subjects in laboratory environments and in the field. The main focus of the laboratory studies

have been university students, but many of the field experiments have started to consider the

attitudes of target populations. We provide a comprehensive characterization of the risk attitudes of

actual industrial managers. We use data obtained from an artefactual field experiment involving 130

managers from 12 industrial companies in Germany,  Austria and Switzerland. The risk attitudes of

industrial managers are of particular interest because they routinely make risk management decisions

that involve significant stakes.

Industrial managers represent a relatively homogenous group of subjects. Middle and upper

management are predominantly male and have degrees in engineering or business administration.

Moreover, industrial managers are a self-selected group of individuals with similar professional

interests in specific managerial tasks, and routinely face situations in which they have to decide over

risky prospects. For instance, a large fraction of the managers in our sample are industrial purchasing

managers. Typically, purchasing managers have to assess suppliers based on a trade-off between

purchasing price, product quality and the potential risks of supplier failure. Their company’s

exposure to supply risks is determined in large measure by their choices over the number of

suppliers to work with, particular sourcing regions, and purchasing volumes for individual suppliers.

These characteristics of industrial managers prompt the question whether this group exhibits the

same level of risk aversion as other subject groups. Our first research questions are therefore what

risk attitudes industrial managers exhibit in an artefactual field experiment, and whether those risk

attitudes differ from other subjects.

Even within a group of managers, we may anticipate different latent decision making

processes depending on managers’ corporate functions and their specific positions in a company’s

hierarchy. For example, managers that have chosen to work in the area of operations or accounting

are perhaps more exposed to decision making problems under risk and are more focused on
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quantitative and analytical approaches than managers in the marketing or sales departments. Thus,

even within a single company, one might find a strong self-selection, and it is not obvious whether

the risk attitudes of managers vary across different corporate functions. It is also conceivable that

risk attitudes differ depending on the hierarchical level of the manager. For example, subjects that

belong to upper management are more often confronted with decisions under risk that involve

larger stakes. In our sample we have a significant number of purchasing managers and randomly

picked managers from other departments that are on a similar hierarchical level. We analyze whether

purchasing managers and other managers exhibit different risk attitudes. In addition, for the group

of purchasing managers we obtained data from both superiors and team members and analyzed

potential differences in their risk attitudes. The composition of our sample thus allows us to ask if

the risk attitudes of superiors differ from the risk attitudes of team members, and whether the 

risk attitudes of industrial managers vary across different corporate functions.

A final characteristic of managers is that a myriad of decision models and tools have been

developed to support their day-to-day decision making. However, most of these tools make

restrictive assumptions about the risk attitudes of the decision makers they are designed to support.

For example, decision models often assume, implicitly or explicitly, that decision makers are risk

neutral. Yet Kliger and Levy (2009) show, for example, that it is not appropriate to characterize

financial investors as risk neutral. Once we recognize that managers are not risk neutral, hoiwever,

there are many alternative ways to structurally model decision making behavior. Popular decision

making theories in this context are Expected Utility Theory (EUT), Rank-dependent Utility Theory

(RDU) and Prospect Theory (PT). However, these competing decision theories often result in

different model specifications and may lead to contradicting recommendations. Since limited

empirical evidence exists that could guide researchers when developing decision models for the use

of industrial managers, it is not surprising that one finds proponents of each theory in the literature.

For example, in the field of operations and inventory management, Eeckhoudt et al. (1995) and

Agrawal and Seshadri (2000) both utilize an EUT model. By contrast, when analyzing their



1 The Six Sigma methodology is used by companies to identify and remove causes of defects and errors in
manufacturing and business processes to get as close as possible to "zero defects". To achieve Six Sigma quality, a pro-
cess must produce no more than 3.4 defects per million outputs (e.g. parts). The Six Sigma methodology uses, for ex-
ample, statistical methods like decision trees, regression and correlation analyses and analysis of variance (ANOVA)

2 Scenario planning is a management tool to deal with uncertain changes in the market conditions (e.g. new
regulations, behaviors of competitors, new innovations and so on ). In the scenario planning process managers consider
different scenarios of plausible futures and aim to make management decisions that are sound for all plausible futures.
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experimental data in a supply chain context, Schweitzer and Cachon (2000) primarily employ a PT

model. Therefore, we aim to analyze and contrast different decision theories under risk.

Looking at a specific decision theory such as RDU or PT, it is not obvious that we should

find similar structural results for industrial managers as for other subjects as students, workers or

broader population samples. For example, researchers found out that some subjects transform

objective probabilities presented to them in experiments into subjective decision weights (e.g.

Bleichrodt and Pinto, 2000). Such subjects tend to over-weight or under-weight probabilities

depending on the rank of the prize. Given that most industrial managers have an engineering or

business background, they most likely have a sound education in statistics and are familiar with the

concept of probabilities. Moreover, they are also used to work with probabilities in their day-to-day

business. Popular management concepts like Six Sigma1 heavily rely on statistical concepts and

(objective) probabilities. Therefore, it is not clear that managers also weigh probabilities in the same

manner as students (Bleichrodt and Pinto, 2002) or people in developing countries that are less

familiar with the concept and assessment of probabilities (Harrison et al., 2009). This leads us to ask

what insights on the risk attitudes of industrial managers can we get from characterizing their

behavior using the decision theories EUT, RDU and PT? 

In the past researchers have gained structural insights on the decision making of managers

by considering hypothetical questions. However, it is not obvious that these structural insights are

reliable measures of motivated behavior: there is considerable evidence of differences in behavior

under risk when one considers hypothetical choices (e.g. Holt and Laury, 2002/2005). However,

unlike other groups of subjects, managers  are used to working with hypothetical scenarios.

Management tools such as Scenario Planning2 are very common (van Notten, 2006). The managers
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who use such tools are arguably familiar with the  evaluation of different hypothetical situations.

Thus it might not be appropriate to assume that managers are subject to the same decision bias. This

leads us to our final research question: do industrial managers exhibit differences in behavior in

hypothetical and real settings?

In Section 2 we describe the design of our experiment and the basic procedures used for

eliciting risk preferences. Section 3 outlines the three popular decision theories under risk mentioned

above, and the estimation procedures we use to infer subjects’ risk attitudes from binary lottery

choices. Section 4 gives the results of our analysis: we describe the risk attitudes of the managers in

our sample and address each of the research questions posed above. In Section 5 we relate our

results to the literature. Section 6 summarizes our results.

2. Experimental Design

2.1 Sample

Our sample consists of 130 managers from 12 industrial companies in Germany, Austria and

Switzerland. The companies have an average turnover of EUR 11.2 billion per annum, ranging from

a minimum of EUR 100 million to a maximum of EUR 60 billion. They represent a wide range of

industries, including aviation, power generation, mechanical engineering, aerospace, logistics and

construction.

Subjects were aged between 20 and 64, with an average age of 39.3. Approximately 70%

were male. Some 72% had an undergraduate or post-graduate degree, most commonly in business or

engineering; the remaining 28% had only undergone professional training. The managers fulfilled

different functions in their companies, as shown in Table 1.
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Table 1. Corporate functions of recruited managers

Function Number of managers Function Number of managers

Strategic Purchasing 92 Information Technology 4

Corporate Strategy 6 Human Resources 4

Marketing & Sales 6 Finance & Controlling 4

General Management 6 Service & Support 3

Engineering/R&D 4 Administration 1

Table 1 shows that 92 of the 130 subjects were strategic purchasing managers, while 38 were

non-purchasing managers working in other functions. Of the 92 purchasing managers, 80 were team

members or team leaders, and we refer to this group as buyers. The remaining 12 purchasing

managers were their superiors, and we refer to them as such. At least 4 purchasing managers (3 buyers

and their superior) from each company participated in the experiment. The managers in the sample

had substantial professional experience: on average they had worked in industry for 18 years.

2.2 Conduct of sessions

The experiment was conducted in 25 sessions that took place at the companies’ premises,

using a printed questionnaire. Sessions involved no more than eight subjects and were held in a

suitable meeting room. At the beginning of each session, an experimenter gave a short introduction

informing subjects of the general purpose of the study. Subjects then picked a questionnaire on a

random basis, so that we allocated them to the different treatments and task orders.

The questionnaire reproduced in the Appendix contained all the instructions required by

participants. No additional verbal instructions were provided unless there were specific questions.

The first part of each questionnaire asked for demographic data (e.g., age, marital status, education,

income), job-specific information (e.g., department, position, experience) and details of the company

(e.g., industry, turnover). The following two parts of the questionnaire presented the decision tasks.

In addition to the task used to generate the results presented here, we asked subjects to complete



3 Task A was similar to the task that we present in this paper but the subjects did not bear the consequences of
their decisions themselves. In Task B subjects made similar decisions as in Task A but in a supply chain context.    
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two complementary tasks (henceforth Task A and Task B, not discussed here3). Subjects were asked

to leave the room when they had completed all three parts of the questionnaire. Cash payments were

privately made in a separate room. The average earnings across all sessions was EUR 31 per subject,

and the average duration of the experiment was 60 minutes.

2.3 Basic elicitation procedure

We employed a Random Lottery Pair (RLP) design following Hey and Orme (1994), to elicit

participants’ risk preferences. Harrison and Rutström (2008) review different elicitation procedures,

and argue that this design makes very few assumptions about behavior and framing effects. We

simply asked subjects to make direct preference choices over 30 pairs of lotteries. To create

incentives for truthful responses, one of the choices was chosen at random for payout at the end of

the experiment. Each of the 30 choices was made between two lotteries, called Lottery A and

Lottery B. The two lotteries were presented to the subjects as pie charts. The pie charts showed the

lottery prizes and the corresponding probabilities. Our study framed the potential outcomes of the

lotteries as losses. Subjects received an initial endowment of EUR 40 from which they had to pay for

any losses incurred during the experiment. 

Figure 1 gives an example of a binary choice in this loss frame. In this instance, subjects can

lose EUR 7, 14 or 20 of their endowment in Lottery A with probabilities of 0.70, 0.15 and 0.15,

respectively. In Lottery B they can lose EUR 7 or 14 with probabilities of 0.30 and 0.70, respectively.

Each individual lottery was generated by choosing two or three different prizes from a set of six

fixed prizes: EUR 0, -7, -14, -20, -28 and -40. All lotteries are defined in an appendix.
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We choose to work with a loss frame and an initial endowment because this setting is a more

natural representation of the field context in which most managers in our sample make decisions

over uncertain prospects. The majority of our managers are purchasing managers that will typically

work with a purchasing budget. Their decisions in terms of selecting and contracting suppliers

determine how much of this budget is actually spent. If, for example, a purchasing manager decides

to contract the one supplier that offers the lowest purchasing price, he might save some money

compared to his purchasing budget. However, his company might be exposed to greater risk in case

of delivery failures of this suppliers. If he contracts more than one supplier for the same input

material (so-called multiple sourcing), he might spend more of his purchasing budget as he cannot

fully leverage economies of scale but he reduces at the same time his companies’ exposure to

disruption to supply.

We informed subjects that one of their 30 choices would be chosen randomly for payout,

and this was done by throwing a thirty-sided die. The subject’s preferences over that pair of lotteries

Fig 1. Sample display shown to subjects 
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were applied and a 100-sided die was thrown to play out the selected lottery for actual payment. The

resulting loss of between EUR 0 and 40 was then deducted from the initial endowment of EUR 40.

Although we cannot use the responses to the RLP design to directly elicit risk attitudes from

subjects’ choices, we can use it to estimate utility functionals over lotteries for individuals, as

explained later.

 

2.4 Tasks and treatments

In our experiment we varied the tasks and treatments for different groups of participants.

This was done with two main objectives. First, we sought answers to the research questions posed in

Section 1. Second, we wanted to control for the treatment effects previously identified in similar

experimental settings. Figure 2 provides an overview of the individual tasks and treatments.

The non-purchasing managers and superiors performed the task outlined above with real

payments. In the case of buyers, however, we introduced two modifications. First, we conducted the

experiment with both real and hypothetical payments. Second, we varied the order of the tasks.

Real and hypothetical payments. Holt and Laury (2002, 2005) provide strong evidence that

subjects are significantly less risk averse when they are confronted with hypothetical payoffs than if

real payments are involved. To explore this bias, we conducted the experiment with both real and

hypothetical payments for buyers. In each session, approximately half of the subjects did the

experiment with real payments and half did the experiment with hypothetical payments. Subjects

were randomly assigned to one of the two groups at the beginning of each session. Subjects who

performed the experiment with real payments received an initial endowment of EUR 40; any

amount that they lost in the experiment was ultimately deducted from that EUR 40. Subjects who

performed the experiment with hypothetical payments received a hypothetical endowment of EUR

40 and did not win or lose any real money. However, they received a fixed payment of EUR 20 for

participating in the experiment.
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Table 2. Different task orders used in the experiment

Order 1. Task 2. Task 3. Task

       1 Task studied here Complementary task A Complementary task B

       2 Complementary task A Task studied here Complementary task B

       3 Complementary task B Task studied here Complementary task A

       4 Complementary task B Complementary task A Task studied here

SUBJECTS All managers
(n=130)

Non-
purchasing
managers
(n=38) 

Purchasing managers
(n=92) 

Superiors
(n=12)

2. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
task B

1. Task
Task 
with real 
payments
(30 choices)

n=11

1. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
Task B

2. Task
Task 
with real 
payments
(30 choices)

n=11

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Comple-
mentary 
decision 
Task A

2. Task
Task 
with real 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Task 
with real 
payments
(30 choices)

2. Task
Comple-
mentary 
decision 
Task A

n=10 n=10

2. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
task B

1. Task
Task with 
hypothetical 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
Task B

2. Task
Task with 
hypothetical 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Comple-
mentary 
decision 
Task A

2. Task
Task with 
hypothetical 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Task with 
hypothetical 
payments
(30 choices)

2. Task
Comple-
mentary 
decision 
Task A

n=9 n=10 n=10 n=9

Buyers
(n=80)

1. Task
Decision 
task 
with real 
payments
(30 choices)

1. Task
Decision 
task with 
real 
payments
(30 choices)

TASKS

SUBJECTS All managers
(n=130)

Non-
purchasing
managers
(n=38) 

Purchasing managers
(n=92) 

Superiors
(n=12)

2. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
task B

1. Task
Task 
with real 
payments
(30 choices)

n=11

1. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
Task B

2. Task
Task 
with real 
payments
(30 choices)

n=11

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Comple-
mentary 
decision 
Task A

2. Task
Task 
with real 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Task 
with real 
payments
(30 choices)

2. Task
Comple-
mentary 
decision 
Task A

n=10 n=10

2. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
task B

1. Task
Task with 
hypothetical 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
task A

3. Task
Comple-
mentary 
decision 
Task B

2. Task
Task with 
hypothetical 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Comple-
mentary 
decision 
Task A

2. Task
Task with 
hypothetical 
payments
(30 choices)

1. Task
Comple-
mentary 
decision 
Task B

3. Task
Task with 
hypothetical 
payments
(30 choices)

2. Task
Comple-
mentary 
decision 
Task A

n=9 n=10 n=10 n=9

Buyers
(n=80)

1. Task
Decision 
task 
with real 
payments
(30 choices)

1. Task
Decision 
task with 
real 
payments
(30 choices)

TASKS

Figure 2: Experimental Design
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 Task order. Each buyer had to complete three separate tasks: the task detailed above and

Tasks A and B (that are not detailed here). Harrison et al. (2005) and Holt and Laury (2005)

demonstrate that an “order effect” may occur. This effect relates to the sequence in which subjects

complete different tasks. To control for this potential effect, we had different groups of subjects

complete the different tasks in different orders, as shown in Table 2. We randomly assigned buyers

to one of the four groups, ensuring that all groups were of equal size. Superiors and non-purchasing

managers only completed one task, so there was no need to control for any potential order effect

with these groups.

3. Estimation Procedure

3.1 Expected Utility Theory

We first present the standard EUT model that has been widely used in the economic

literature. Let the utility function be the constant relative risk aversion (CRRA) specification

U(e,z) = (e+z)1-r/(1-r) (1)

for r…1, where r is the CRRA coefficient, e the initial endowment, and z the lottery prize. With this

functional form r=0 denotes risk-neutral behavior, r>0 denotes risk aversion, and r<0 denotes risk-

loving behavior. Probabilities for each outcome zj, pj , are those that are induced by the experimenter,

so expected utility is simply the probability-weighted utility of each outcome in each lottery. The

expected utility, EU, of lottery i that consists of m different prizes is

EUi = 3j=1,m [ pj  × U(zj ,r) ]. (2)

We use the index LEU to denote the difference between the expected utility of Lottery A, denoted

by EUA, and Lottery B, denoted by EUB:

LEU = (EUB ! EUA)/: (3)

The : in equation (3) is a structural noise parameter initially proposed by Fechner (1860) and

popularized by Hey and Orme (1994). It allows subjects to make some errors from the perspective

of a deterministic EUT model. A thorough review of different error specifications and their
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implications is provided by Wilcox (2008). The latent index defined by (3) can be linked to the

choices of subjects using a cumulative normal distribution function M(LEU). This probit function

translates any argument into a number between 0 and 1. Thus the index LEU is linked to choices by

specifying that Lottery B is chosen when M(LEU)>1/2.

The likelihood of the observed responses, conditional on the EUT and CRRA specifications

being true, depends only on the estimate of r, : and the observed choices. The conditional log-

likelihood is

ln LEUT(r, :, y, X)  =  3i=1,n [(ln M(LEU)×I(yi = 1)) + (ln (1!M(LEU))×I(yi = !1))] (4)

where I(@) is the indicator function and yi =1 (!1) denotes that Lottery B (Lottery A) is chosen in

task i. The vector X captures individual characteristics of subjects. The parameter r is assumed to be

a linear function of the individual characteristics in X. As an example, X might contain information

on the marital status of subjects, which are coded as a binary variable MARRIED that has a value of

1 if the subject is married, and 0 otherwise. In this example, the model extends to r = r0 + r1 ×

MARRIED, where r0 and r1 are now the parameters to be estimated compared to earlier prior model,

where r = r0 was assumed and only r0 estimated. 

3.2 Rank-Dependent Utility Theory

One route of departure from EUT has been to allow preferences to depend on the rank of

the final outcome by means of probability weighting. The idea that one could use non-linear

transformations of probabilities when weighting lottery outcomes rather than non-linear

transformations of lottery outcomes into utility is presented most clearly by Yaari (1987). To

illustrate this, he assumes a linear utility function - in effect, ruling out any risk aversion or

risk-seeking attitude from the shape of the utility function per se. Instead, a concave probability

weighting function would imply a risk-seeking attitude and a convex probability weighting function

would imply risk aversion. Thus subjects’ risk aversion can be induced by the curvature of the utility

function, probability weighting, or a combination of both.
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Let the utility function be the CRRA specification, as before. The rank-dependent utility,

RDU, of lottery i that consists of m different prizes is

RDUi = 3j=1,m [ wj × U(zj ,r)] (4)

where the decision weights are given by wj = T(pj+...+pm,() ! T(pj+1+...+pm,() for j=1,...,m-1, and wj =

T(pj,() for j=m. The subscript j indicates outcomes ranked from the worst (j=1) to the best (j=m),

and T(p,() represents some probability weighing function. One popular weighting function is

proposed by Tversky and Kahneman (1992). It is assumed to have well-behaved endpoints, such

that T(0,()=0 and T(1,()=1, and imply weights 

T(p,()=p( / (p(+(1-p)())( (5)

for 0<p<1. The monotonic function T(p,() transforms an objective probability, p, into a “weight”

that is applied when evaluating a lottery. Assuming (<1 leads to the typical inverse S-shaped

probability weighting function, which puts higher weights on lower probabilities and lower weights

on larger probabilities. An alternative probability weighting function that we will also use for our

subsequent analysis is the power-specification given by T(p,()=p(. Note that in the context of RDU,

we refer to rank-dependent probability weighting simply as probability weighting.

The remainder of the econometric specification is the same as for EUT: the latent index is

denoted by LRDU = (RDUB ! RDUA)/: and the probit function is given by M(LRDU). The

conditional log-likelihood is

ln LRDU(r , (, :, y, X)  =  3i=1,n [(ln M(LRDU)×I(yi = 1)) + (ln (1!M(LRDU))×I(yi = !1))] (6)

where I(@) is the indicator function and yi =1 (!1) denotes that Lottery B (Lottery A) is chosen in

task i. The parameters to be estimated in an RDU model are r , ( and the noise parameter :.

3.3 Prospect Theory

Another popular alternative to EUT is the Prospect Theory (PT) initially developed by

Kahneman and Tversky (1979). The original PT differs from EUT in three ways: (a) it allows for

subjective probability weighting; (b) it allows for a reference point that determines which outcomes
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are to be viewed as losses and which as gains; and (c) it allows for loss aversion - the notion that the

disutility of losses weighs more heavily than the utility of comparable gains.

In the original PT w(p)=T(p), so the transformed probabilities are used directly to evaluate

the prospective utility, PU, for lottery i that consists of m different prizes:

PUi = 3j=1,m [ T(pj,() × U(zj ,r)] (7)

To be able to identify outcomes as gains or losses, and hence correctly evaluate utility, a

reference point is needed. We denote this reference point by P. Assuming a CRRA specification as

before, the utility over gains (z $ P) is defined as 

U(z,") = z" (8)

and the utility over losses (z < P) is defined as

U(z,$,8) = !8[(!z)$] (9)

where 8 is the loss aversion parameter. 8 is usually presumed to be greater than one; however, for

the purposes of our analysis, we assume that 8 is unconstrained. 

The remainder of the econometric specification is as for EUT: the latent index is denoted by

LPU = (PUB ! PUA)/: and the probit function is given by M(LPU). The conditional log-likelihood

function is

ln LPT(", $, 8, (, :, y, X)  = 3i=1,n [(ln M(LPU)×I(yi = 1)) + (ln (1!M(LPU))×I(yi = !1))] (10)

and the parameters to be estimated are ", $, 8, ( and :.

One empirical challenges when using PT is to determine the correct reference point, since

this reference point determines which outcomes are to be viewed as losses and which as gains. If the

reference point is not correct, the estimated degree of loss aversion and risk aversion will not be

reliable. Although Kahneman and Tversky (1979) emphasized the subjectivity and contextual nature

of the reference point, most researchers still use the reference point that is induced by the task

frame. Harrison and Rutström (2008) point out that this problem is less severe in the laboratory,

where one can frame tasks to try to induce a certain frame. But more serious issues may arise in the

field. We therefore follow the approach proposed by Harrison and Rutström (2008, pp. 95-98) and
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infer an implicit reference point from the lottery choices made by the subjects in our experiment.

More formally, we determine the implicit reference point by solving

P = argmax [   max   ln LPT (", $, (, 8, :|J)]
         J               ", $, (, 8, :           

In order to obtain P in our analysis, we simply trace the log-likelihood value for potential reference 

points J 0{0,40} and choose the reference point that yields the maximum log-likelihood value. 

4. Results

We first show how EUT, RDU and PT provide complementary information about risk

attitudes. Following the research questions posed in Section 1, we present for each theory a

characterization of buyers which is then compared with those of superiors and non-purchasing

managers. We begin by describing our results for a basic EUT model with CRRA. This gives us a

global characterization of subjects’ risk attitudes. We then provide estimates for the structural

parameters of the RDU and PT models and show how these results allow for a more detailed

decomposition of the possible sources of risk-averse or risk-seeking behavior. In the RDU model we

allow preferences to depend on the rank of the final outcome by means of probability weighting.

Probability weighting transforms objective probabilities into subjective decision weights. We

decompose subjects’ risk attitudes and provide estimates for both the curvature of the utility

function (captured by the parameter r) and the rank-dependent probability weighting function. From

this first analysis we want to assess to which extent the managers’ risk attitude can be attributed to

probability weighting. We then extend our analysis to account for the main characteristics of

Prospect Theory: (1) a subjective reference point, which defines what subjects view as gains and

what as losses, (2) different utility functions in the gain and loss domain, and (3) loss aversion, the

notion that the disutility of losses may weigh more heavily than the utility of comparable gains.

In addition, we provide insights into two important effects that have previously been

observed in lottery experiments, the hypothetical payment bias and the task order effect, to answer

our last research question.
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4.1 EUT: A global characterization of managers’ risk attitudes

Table 3 gives the estimation results for the EUT model with a CRRA utility specification. We

first discuss the estimates obtained for buyers and then those obtained for superiors and non-

purchasing managers.

On the assumption that an EUT model and a CRRA utility function are appropriate for

characterizing the behavior of the managers in our sample, we find that buyers exhibit moderate risk

aversion. The corresponding CRRA coefficient r for the group of buyers is estimated at 0.30 (p-value

<0.01). Comparing this result with our estimate of the CRRA coefficient for superiors yields an

interesting result: with r=0.62, superiors exhibit a significantly higher level of risk aversion.

Table 3 EUT model with a CRRA utility specification

Subjects Parameter Estimate p-value Standard
error

Lower 95%
confidence

interval

Upper 95%
confidence

interval
Buyers r 295 2 97 105 485
(n=42) : 156 0 20 117 195
Superiors r 624 0 154 322 925
(n=12) : 150 0 38 77 225
Non-purchasing r 397 0 62 275 519
managers (n=38) : 105 0 11 82 129

For non-purchasing managers, we estimate the CRRA coefficient r at 0.40 (standard error of

0.06). This level is moderately higher than our estimate for buyers (r=0.30) and lower than our

estimate for superiors.

Overall, the EUT specification indicates moderate risk aversion for all types of managers in

our global task domain of EUR 0 to 40. This finding is consistent with the estimates reported by

Holt and Laury (2002, 2005) and Harrison et al. (2005) for American college students. Harrison et. al

(2007, 2009) also found moderate risk aversion when analyzing larger population samples from

industrialized and developing countries. We obtain robust estimates of r across the different groups

that are each significant at the 1% level. This is an interesting result, as the CRRA specification
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imposes a rigid functional form with only one parameter to be estimated. In the subsequent analysis

we use more flexible utility specifications so as to obtain a more detailed characterization of the

different sources of subjects’ risk attitudes.

Some researchers find evidence of non-constant relative risk aversion (e.g. Holt and Laury,

2002; Harrison et al., 2005). Using an EUT model with an Expo-Power specification that is able to

capture increasing or decreasing relative risk aversion, we do not find non-constant relative risk

aversion when correcting for treatment effects. This finding is consistent with Harrison et al. (2007),

for example, who report that CRRA is an appropriate assumption for characterizing the Danish

population in their task domain. However, it may also be that we do find constant relative risk

aversion because we did not scale up our payoffs by a factor of 20, 50 or even 90, as Holt and Laury

(2002) did, for instance. Thus the only conclusion we can draw is that subjects exhibit constant

relative risk aversion in our specific task domain.

4.2 RDU: The Impact of Probability Weighting and Rank-Dependence

We now present the results of our estimations of a RDU model based on the lottery choices

of subjects in the sample. Our aim is to determine whether the moderate risk aversion that we found

based on the EUT specification can partly be attributed to probability weighting. The two

parameters to be estimated are r (for the curvature of the utility function) and ( (for the probability

weighting function). Table 4 summarizes our results.

Table 4 RDU model with a CRRA utility specification

Subjects Parameter Estimate p-value Standard
error

Lower 95%
confidence

interval

Upper 95%
confidence

interval
Buyers r 266 6 96 78 454
(n=42) ( 972 737 82 811 1133

: 157 0 19 120 195
Superiors r 631 0 180 279 983
(n=12) ( 1009 951 143 728  1289

: 150 0 38 75 225
Non-purchasing r 347 0 67 216 479
managers (n=38) ( 947 353 57 836 1058

: 107 0  11 85 130
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For the group of buyers we find no evidence of probability weighting. The corresponding

estimate of ( is 0.97 (p-value=0.73== on the null hypothesis that (=1) and we cannot conclude that

subjects transform objective probabilities into subjective decision weights. Moreover, the CRRA

coefficient is very close to the estimate in the EUT model.

For other types of managers we find virtually the same results. The data does not provide

support for probability weighting, and CRRA coefficients for both superiors and non-purchasing

managers are very close to those obtained in the EUT model.

To summarize, our estimates of ( do not provide any evidence in favor of probability

weighting. This finding is interesting because the conventional assumption, supported by a

substantial amount of evidence (reviewed by Bleichrodt and Pinto, 2000; Gonzalez and Wu, 1999), is

that 0<(<1. This implies over-weighting of small probabilities and under-weighting of large

probabilities. One explanation might be that our industrial managers are more familiar with the

concept and assessment of probabilities than other subjects such as students or subjects in

experiments conducted in developing countries. Explicitly trading off the probabilities and outcomes

of various uncertain prospects is a typical component of managerial decision making. For example,

the purchasing managers in our sample have to deal with supplier failures on a day-to-day basis. As a

result, they are arguably familiar with assigning probabilities to different uncertain events such as

delivery failure by suppliers, and so perhaps they are less tempted to subjectively over-weight or

under-weight low or high probabilities. 

We also tested our results using a power-specification of the probability weighting function,

instead of the probability weighting function proposed by Tversky and Kahneman (1992). The

estimates for ( did not statistically differ from 1 at standard levels. We therefore conclude that the

risk aversion cannot be attributed to probability weighting in an RDU model. We find no structural

differences between the results for the RDU model and those for the EUT model. 
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4.3 PT: The Impact of Sign-Dependent Preferences

Prospect Theory allows for an even richer decomposition of individuals’ risk attitudes than

EUT or RDU. Our aim here is to determine whether the industrial managers in our sample exhibit

(1) sign-dependent preferences leading to different utility functions for gains or losses; and (2) loss

aversion, implying that the disutility of losses weighs more heavily than the utility of comparable

gains. The four structural parameters estimated here are the reference point P, " for the curvature of

the utility function in the gain and loss domain, ( for the probability weighting function, and 8 for

the degree of loss aversion.

We first estimate the core parameters for buyers. We determine the reference point using the

procedure described earlier. Instead of simply using the reference point induced by the task frame

(i.e. the initial endowment of EUR 40), we evaluate different possible reference points ranging from

Fig. 3 Tracing the log-likelihood value and parameter estimates for reference 

points between EUR 5 and 25
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EUR 5 to 25 in increments of EUR 1. We trace the maximum log-likelihood value for each of these

alternative reference points and use the reference point that yields the highest log-likelihood value

for our subsequent analyses. Figure 3 illustrates the results obtained from this procedure. The top

left-hand panel traces the log-likelihood value as the reference point is increased, reaching a

maximum at EUR 13. Thus the data favors a reference point of EUR 13. This finding suggests that

buyers in our sample implicitly assumed that they would earn EUR 13 in the experiment.

Consequently, it appears that they interpreted payoffs of more than EUR 13 as gains, and payoffs of

less than EUR 13 as losses. 

Using this reference point we can decompose the risk attitude of buyers by estimating the

probability weighting function, the curvature parameter of the utility function in the gain domain

(for outcomes of EUR 13 or more) and the loss domain (for outcomes less than EUR 13), and the

loss aversion coefficient. Table 5 gives an overview of the estimates obtained for the PT model.

 

Table 5 PT model with a CRRA utility specification (assuming "=$)

Subjects Reference
point

Parameter Estimate p-value Standard
error

Lower 95%
confidence

interval

Upper 95%
confidence

interval
Buyers 13 EUR " = $ -279 28 127 -529 -31
(n=42) 8 1960 0 380 1216 2704

( 1045 695 115 819 1271
: 7692 3 2606 2585 12799

Superiors 13 EUR " = $ -276 242 236 -739 186
(n=12) 8 2876 192 1439 54 5696

( 985 953 251 493 1478
: 10838 149 7513 55  5697

Non-purchasing 13 EUR " = $ -231 42 114 -454 -8
managers 8 2072 0 253 1576 2569
(n=38) ( 995 932 62 873 1117

: 4876 2 1543 1851 7901

Assuming a reference point of EUR 13, we obtain for " and $ a value of -0.28 (p-value 0.03)

if we assume that " = $. In contrast to the results obtained from the EUT model, we now observe

slight risk-seeking behavior in the gain domain above EUR 13, but risk-averse behavior persists in
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the loss domain below the reference point. In addition, we find clear evidence of loss aversion. The

disutility of losses weighs almost twice as much as the utility of comparable gains: the loss aversion

parameter 8 is estimated at 1.96 (with a standard error of 0.38). The results indicate that purchasing

managers experience a significant disutility from winning less money than they implicitly expected

Comparing these results with our initial estimates, obtained from the EUT specification,

leads to some interesting insights. The results from the EUT specification indicated that purchasing

managers are risk averse in the global domain of payoffs ranging from EUR 0 to 40. However, the

results from the PT model suggest that purchasing managers are only risk averse within the loss

domain; in the gain domain, they are moderately risk-loving.

Comparing buyers and their superiors, we find the same reference point of EUR 13 for both

groups. However, we cannot draw comparable conclusions for the other model parameters: we

cannot reject the hypothesis that " equals 0, and that 8 and ( are each equal to 1. This is most likely

due to the small sample size: there were only 12 superiors in the sample. Comparing buyers and non-

purchasing managers, we find virtually the same results for both groups. For non-purchasing

managers, we estimate a reference point of EUR 13, slight risk-seeking behavior in the gain domain

("=-0.23, p-value=0.04) above EUR 13, risk-averse behavior below EUR 13, significant loss

aversion (8=2.01, p-value=<0.01) and no probability weighting ((=1.00, p-value=0.93 on the null

hypothesis that (=1).

In summary, the reference point is estimated at EUR 13 for all types of managers. All our

results indicate slight risk-seeking behavior in the gain domain and risk-averse behavior in the loss

domain. The loss aversion coefficient 8 ranges from 2.0 to 2.9, depending on the specific type of

manager, with superiors exhibiting the greatest degree of loss aversion. A consistent result across all

types of managers is the absence of probability weighting. Thus PT provides interesting

complementary information to the EUT model, which only characterizes managers as globally risk

averse. 
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It is difficult to compare our findings with those of prior research. The main reason is that

we did not use the experimenter-induced reference point of EUR 40 as normally assumed, but

determined the reference point that subjects implicitly used when evaluating different lotteries. Our

results suggest that subjects had implicit expectations about their earnings, and that they used these

expectations to determine which outcomes should be viewed as losses and which as gains.

Using the endogenous reference point of EUR 13, we find an inverse S-shaped utility

function as shown in Figure 4 for buyers, convex in the gain domain and concave in the loss

domain. This result is not in line with the conventional assumption of most PT analysts who assume

an S-shaped utility function implying risk averse behavior in the gain domain and risk seeking

behavior in the loss domain. If, however, we simply use the experimenter-induced reference point of

EUR 40, we estimate " at 0.19 (p-value=0.09) for our group of buyers. This estimate would imply

the typical S-shaped utility function. However, the data obtained from our experiments does not

support a reference point of EUR 40, despite the loss frame used in our experiment.

Fig 4. Inverse S-shaped utility function estimated for buyer

using a reference point of EUR 13 ("=$=-0.28, 8=1.96)
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The degree of loss aversion may appear to be a confirmation of the argument made by some

PT analysts that 8.2, but it is important to note that 8 clearly depends on the assumed reference

point, as one can see in Figure 3. Over the range of different reference points that we analyzed, the

degree of loss aversion varies between 1 and 10.

In our previous analysis we imposed "=$, so that the curvature of the utility function was

the same in the gain and the loss domain. Köbberling and Wakker (2005) point out that this

assumption is needed to identify the degree of loss aversion if one uses CRRA functional forms and

does not want to make the strong assumption that utility is measurable only on a ratio scale. Despite

this theoretical constraint, we want to assess whether this assumption has an impact on the structural

insights gained from our previous results, we now relax this constraint and obtain separate estimates

for " and $.

Table 6 PT model with a CRRA utility specification ("…$)

Subjects Reference
point

Parameter Estimate p-value Standard
error

Lower 95%
confidence

interval

Upper 95%
confidence

interval
Buyers 13 EUR " -279 28 127 -529 -31
(n=42) $ -638 0 139 -911 -365

8 104 695 115 819  1271
( 100 922 62 875 1115
: 7692 0 2606  2584 12799

Table 6 gives the corresponding parameter estimates for buyers. For ", we obtain the same

estimate as before. However, $ now decreases to -0.64. To interpret this decrease, we must

simultaneously look at the estimate of 8, as $ and 8 together determine risk aversion in the loss

domain. We find that the additional risk aversion reflected by the increase in $ is accompanied by a

lower value for 8; the loss aversion parameter decreases from 1.96 to 1.00. Thus our qualitative

result is similar to our earlier finding assuming "=$: risk-loving behavior in the gain domain and

risk-averse behavior in the loss domain. We observe the same structural results for superiors and

non-purchasing managers.
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4.4 Treatment Effects and Biases

We now turn our attention to the treatment effects previously reported for lottery choice

experiments. Harrison et. al (2005) and Holt and Laury (2005) provide strong evidence for an order

effect. Holt and Laury (2002) show that a hypothetical payment bias is likely to occur if lottery

choice experiments do not involve real monetary outcomes. Our experimental design allows us to

control for both effects.

Order effects. We controlled for a potential order effect by including a covariate first. This

covariate captures the potential effect that occurs if the decision task is completed first. It thus

indicates whether subjects make different choices at the beginning of the experiment and at the end.

We found positive values for the treatment variable, which indicates that the task order had an effect

on the risk attitudes of our subjects. However, none of the estimates of the covariate first were

statistically significant at standard levels. To provide a more extensive test for order effects we

conducted a pooled analysis that jointly estimated choices involving real and hypothetical payments,

as well as choices across all buyers and superiors. Table 7 provides the estimates obtained from this

analysis for an EUT, RDU and PT model.

For the EUT model we find a significant order effect on the CRRA coefficient. The

oefficient r is estimated at 0.21 (p-value=0.06) and the order effect captured by the variable first is

estimated at 0.25 (p-value=0.04). This implies that if we assume that all purchasing managers

completed the lottery choice task first, the CRRA coefficient r increases by 0.25 to 0.46. If we

assume that they completed the task second or third in order, the estimate of r remains at its initial

estimate of 0.21. Thus purchasing managers appear to be more cautious at the beginning of the

experiment than at the end. This shows us that the task order does indeed have an impact on the risk

attitude of our subjects, although it was not statistically significant in the previous estimations for

different groups of subjects.

In the RDU model we also find evidence of an order effect if we conduct a pooled analysis.

Interestingly, it appears that whether subjects are risk neutral or risk averse depends on the task
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order. Looking at tasks completed at a later stage of the experiment, we cannot reject the hypothesis

that purchasing managers are risk neutral. The CRRA coefficient is estimated at 0.19, however, with

a p-value of 0.12. Looking instead at choices made at the beginning of the experiment, we find

moderate risk aversion. Despite finding evidence of an order effect on r, we do not find any

indication of an order effect on (.

Table 7. Order effect and hypothetical bias 

Subjects Reference
point

Parameter Estimate p-value Standard
error

Lower 95%
confidence

interval

Upper 95%
confidence

interval
EUT model and CRRA specification
Purchasing -- r 212 60 113 -9 433
managers first 254 38 123 137 495
(n=92) hypothetical -178 131 118 -409 53

: 156 0 14 128 184
RDU model and CRRA specification
Purchasing -- r 189 117 121 -47 425
managers first 259 40 126 12 506
(n=92) hypothetical -180 135 120 -417 56

( 980 705 55 871 1088
: 157 0 14 130 185

PT model and CRRA specification
Purchasing 13 EUR " = $ -306 1 93 -488 -124
managers first 94 179 70 -43 231
(n=92) hypothetical -30 675 71 -168 109

8 1841 0 312 1230 2453
first 580 104 357 -120 1280

hypothetical -447 170 325 -1084 191
( 105 431 72 915 1199
: 7601 0 1507 4648 10555

Since we found no evidence of probability weighting, one might expect to see the same

estimate for the CRRA coefficient in the EUT and RDU model. However, the introduction of

probability weighting prevents a statistically significant estimate for the CRRA coefficient: ( still

explains some of the observed choices, although it is indistinguishable from 1 at the 10% level. 

In the PT model we also find support for an order effect. The task order does not impact the

curvature of the utility function, but it does impact the estimates of the loss-aversion parameter: loss

aversion increases from 1.84 to 2.42, and this increase is statistically significant at the 10% level. Thus
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subjects appear to have experienced a greater disutility from not meeting their expectations in terms of

earnings at the beginning of experiment than at the end.

Our findings underline the importance of controlling for task order when subjects complete

different decision tasks in the same experiment. However, our qualitative results differ from those of

Harrison et al. (2005) and Holt and Laury (2005). While they report that later tasks in an experiment

are likely to cause higher relative risk aversion, we find the opposite. In our experiment subjects

tended to be more risk averse at the beginning of the experiment than at the end. Although this

order effect was not prevalent in our analysis of different sub-samples, we were able to collect

evidence of such an order effect by utilizing a pooled analysis. If the order effect had emerged in our

analysis earlier (see Tables 3 to 6), we would have needed to adjust the estimates for buyers before

comparing their risk attitudes with those of superiors and non-purchasing managers.

Hypothetical bias. The magnitude of a potential hypothetical bias, as reported by Holt and

Laury (2002, 2005), is also of interest. We want to assess whether purchasing managers are biased

when they face hypothetical economic consequences rather than real payoffs. We capture this

potential bias by means of the binary treatment variable hypothetical, as shown in Table 7.

Unlike earlier research, we do not find any salient hypothetical bias. In all models (EUT,

RDU and PT), the treatment variable hypothetical is not statistically significant at the 10% level. This is

a surprising finding that might relate to the professional background of our subjects. Since most

subjects are purchasing managers with substantial professional experience, it might be that they are

accustomed to working with hypothetical scenarios. In the supplier selection process, for example, it

is common to work with different (hypothetical) scenarios of potential supplier failures. In addition,

van Notten (2006) reports that many companies have even institutionalized the use of tools like

scenario planning, which force managers to deal with hypothetical events and force them to evaluate

their probabilities and potential consequences. Being more accustomed to the evaluation of

hypothetical settings could potentially explain the difference between our results and those reported

by Holt and Laury (2002, 2005) for American college students.
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4.5 Characteristics Variables

Prior research findings suggest that individual characteristics such as age, sex and education

may have an impact on a subject’s risk aversion (e.g., Jianakoplos and Bernasek, 1998; Harrison et al.,

2007). In the context of industrial managers it is also interesting to explore whether company-

specific or job-related characteristics have an effect on the subjects’ risk attitudes. For example, we

could hypothesize that managers in different industries have varying risk attitudes and that income as

well as performance-related salaries impact their decisions under risk. We use the demographic, job-

specific and company-specific information that we collected in the first part of the questionnaire to

investigate these potential effects. We choose to present the results of our analysis for purchasing

managers, since we collected more information from this group of managers than from non-

purchasing managers (including details of experience in purchasing, number of suppliers and number

of supplier failures in the last 12 months). We also focus on choices involving real payments. The

Appendix provides an additional analysis for all managers, albeit with fewer characteristics. 

Table 8. Marginal effects of characteristics variables (purchasing managers)

Subjects Parameter Description Estimate p-value Standard
error

Lower/upper
95% confidence

interval
Purchasing first Task done first in order 520 78 295 -57 1097
managers german Nationality is German 93 735 275 -446 632
(n=54) female Gender is female 322 330 331 -326 969

age_20_35 Age between 20 and 35 507 133 338 -155 1170
age_36_50 Age between 36 and 50 606 43 300 18 1194
age_51_65 Age between 51 and 65 330 327 337 -330 991
married Marital status is married 288 249 250 -202 778
household Household size -125 858 697 -1491 1242
business Business education -247 153 173 -586 91
low_income Household income <45.000 EUR 260 412 318 -362 884
experience Total professional experience 1625 8 609 432 2818
experience_pur Experience in purchasing -7 506 10 -28 14
team_member No supervisory tasks 55 832 258 -450 560
bonus Performance-related salary -188 343 198 -577 201
many_suppliers In charge of >30 suppliers 329 233 276 -212 870
failure Supplier failure in last 12 months -95 753 302 -687 497
aerospace Industry is Aerospace 756 2 241 283 1228
turnover Turnover of company -32 913 288 -596 533

Notes: Log-likelihood value is -956.00173. A Wald test for null hypothesis that all coefficients are zero has a P2 value of
97.38 with 18 degrees of freedom, implying a p-value less than 0.001.
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We mainly used binary variables in our analysis. Only the variables household, experience and

experience_pur are normalized to lie in the unit interval. Accordingly, we interpret the coefficient on

these three variables as reflecting the effect of being e.g. the most experienced subject.

Marginal effects. Apart from the task order, we identify three additional characteristics

correlated with variation in risk attitudes across subjects. As shown in Table 8, middle-aged

purchasing managers (those aged between 36 and 50) are more risk averse than older or younger

purchasing managers. Professional experience also has a statistically significant impact on risk

attitude: more experienced managers are more risk averse than less experienced managers. A further

interesting finding is that purchasing managers in the aerospace industry tend to be more risk averse

than those in other industries. This could be driven by the very restrictive safety regulations and risk

precautions that apply in the aerospace industry.

Table 9. Total effects of characteristics variables (purchasing managers)

Subjects Parameter Description Estimate p-value Standard
error

Lower/upper
95% confidence

interval
Purchasing first Task done first in order 296 81 169 -36 628
managers german Nationality is German 129 425 162 -188 446
(n=54) female Gender is female 18 912 168 -310 347

age_20_35 Age between 20 and 35 -133 424 166 -458 193
age_36_50 Age between 36 and 50 15 928 162 -302 331
age_51_65 Age between 51 and 65 177 269 161 -137 493
married Marital status is married 227 91 135 -37 491
household Household size 275 314 273 -260 810
business Business education -105 497 155 -409 198
low_income Household income <45.000 EUR 118 444 154 -184 420
experience Total professional experience 470 91 279 -76 1017
experience_pur Experience in purchasing 2 847 9 -16 19
team_member No supervisory tasks -158 324 160 -473 156
bonus Performance-related salary -179 237 152 -476 118
many_suppliers In charge of >30 suppliers 312 157 220 -120 744
failure Supplier failure in last 12 months -108 500 160 -422 206
aerospace Industry is Aerospace 286 99 173 -53 626
turnover Turnover of company 68 749 214 -350 487

Notes: Each variable os estimated in a separate model not including other characteristics variables.
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Total effects. We now consider the total effects of key characteristics. Total effects may

differ from marginal effects. For example, the men in our sample have a number of characteristics

that differ from the women apart from their gender. They tend to be older, educated to a higher

level, have a higher income and more professional experience. It is possible that the effect of sex

along with the characteristics correlated with it have a significant effect on risk attitudes. To

determine the total effects, we repeat the analysis in Table 8, but with one characteristics variable at a

time. The results are shown in Table 9.

 Two of the three significant total effects derive from the same source as the significant

marginal effects: professional experience and working in the aerospace industry. In addition, we find

a significant total effect of being married. This is probably because most of the married subjects were

aged between 36 and 50 (approximately 50% of the married purchasing managers in the sample were

aged between 36 and 50).

Our primary reason for collecting a wide range of characteristics variables was that we

expected to find significant effects from covariates such as gender, field of education, household

income, bonus payments and so on. In fact, we found very few marginal effects and very few total

significant effects. One explanation for this could be that industrial managers are a homogenous and

self-selected group of subjects. The majority of the subjects in our sample were male (~70%) and

had a business or engineering background (~90%). Roughly 60% of the managers had an annual

household income of approximately EUR 45,000 and only around 40% received a

performance-related salary (i.e., bonus payments). 

5. Related Literature

Many studies have measured the risk attitude of students or non-managerial staff. However,

we are not aware of any other artefactual field experiments investigating the risk attitude of industrial

managers. Here we review selected field and laboratory experiments that relate to our research. In

particular, we look at studies with relevance for our key results: the absence of a hypothetical
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decision bias, the absence of probability weighting, and an inverse S-shaped utility function.

5.1 Similar Studies

Work by Kliger and Levy (2009) is directly relevant to our research. They use real financial

market data (call options on the S&P500 index) to assess which model of decision making under risk

(EUT, RDU or PT) best characterizes financial investors. They reject EUT in favor of non-linear

utility models due to clear evidence of reference point-dependent preferences, non-linear weighting

of probabilities and loss aversion. Moreover, their observations are robust to different specifications

of the utility function, alternative probability weighting functions and choice of reference point.

Comparing the results of Kliger and Levy (2009) with our findings, we identify two main differences.

Firstly we cannot reject the EUT specification: We find significant parameter estimates for both

EUT and PT. Secondly our estimates, while also robust to different probability weighting functions,

are clearly not robust to choice of reference point (see Figure 3).  

5.2 Hypothetical Payment Bias

The most widely cited study that deals with hypothetical payment bias is Holt and Laury

(2002). In their study they analyze the decision making of 216 undergraduate students. They find that

their subjects were, on average, risk averse, and much more so with real payments than with

comparable hypothetical payments. Moreover, they found evidence of a scale effect: the degree of

risk aversion increases sharply with increases in the scale of real cash payoffs. Under a hypothetical

payment treatment, the degree of risk aversion did not change significantly. Even though Harrison et

al. (2005) and Holt and Laury (2005) show that the scale effect can partly be attributed to the task

order, the hypothetical decision bias persists and is statistically significant.

Our analysis, by contrast, did not reveal a hypothetical decision bias. Managers appeared to

be motivated even though they were not personally rewarded for their efforts. One possible

explanation for this could be that industrial managers have more experience than, for example,
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students in dealing with hypothetical scenarios (e.g., from potential supplier failures). Another

possibility relates to the experimental setting. The experiments were conducted at the companies’

premises and subjects were invited to participate by their superiors. They may therefore have

experienced the task as part of their day-to-day business and most carefully evaluated and completed

the decision tasks as if they were evaluating hypothetical sourcing scenarios.

   

5.3 Shape of the Utility Function and Probability Weighting Function

Tversky and Kahneman (1992) propose that the utility function and the probability

weighting function exhibit diminishing sensitivity. This leads to an S-shaped utility function, concave

for gains and convex for losses, and an inverse S-shaped probability weighting function, implying

underweighting of small probabilities and overweighting of large probabilities. 

Shape of the utility function. We first focus on the shape of the utility function in the gain and

loss domains. Substantial empirical evidence supports the assumption that subjects exhibit a concave

utility function in the gain domain (e.g., Tversky and Kahneman, 1992; Abdellaoui, 2000; Abdellaoui

et al., 2005). In the loss domain, Tversky and Kahneman (1992), Fenna and Van Assen (1998),

Abdellaoui (2000) and Etchart-Vincent (2004) found a slightly convex utility function for losses at

the aggregated level. All these researchers estimate the power coefficient of the utility function to be

approximately 0.9. If we combine the empirical findings in the gain and loss domains, we obtain the

typical S-shaped utility function often assumed by PT analysts.

The inverse S-shaped utility function that we found in our analysis is less common.

Nevertheless, Fenna and Van Assen (1998), Abdellaoui (2000) and Etchart-Vincent (2004) report

that 20-35% of their subjects exhibit linear and convex utility functions in the gain domain and

30-40% exhibit linear and concave utility functions in the loss domain. Abdellaoui et al. (2008)

further report concave utility in the loss domain at the aggregated level.

One possible explanation for why our results differ from the conventional S-shaped utility

function might be the endogenous reference point that we used in our analysis. Our approach is
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consistent with the theoretical framework of Schmidt et al. (2008), who argue that the reference

point might be stochastic (e.g., a lottery) rather than deterministic. The contextual nature of the

reference point was also pointed out earlier by Kahneman and Tversky (1979). Since the estimated

PT coefficients depend on the chosen reference point, it is a simple matter for us to generate an

S-shaped utility function. If, for instance, we conduct a pooled analysis and induce a reference point

of EUR 40, we obtain a concave utility function in the gain domain and a convex utility function in

the loss domain. However, this reference point of EUR 40 is clearly not favored by the data obtained

in our experiments.

Probability weighting. Most empirical research on probability weighting points to an inverse

S-shaped probability weighting function (e.g., Tversky and Kahneman, 1992; Wu and Gonzalez,

1996; Gonzalez and Wu, 1999; Bleichrodt and Pinto, 2000). Bleichrodt and Pinto (2002), for

example, analyzed the decisions made by 51 Spanish undergraduate students. They used a two-step

approach: first, they elicited utility functionals, which they then used as input to elicit probability

weights. They find strong evidence for probability weighting, concluding that it is a robust result.

The common shape of the weighting function is inverse S-shaped, with an inflection point lying

between 0.25 and 0.50, consistent with the broad range of similar studies reviewed by Bleichrodt and

Pinto (2002). For instance, Tversky and Kahneman (1992), Abdellaoui (2000) and Wu and Gonzalez

(1996), who all used the probability weighting function shown in equation (5), estimate ( as lying

between 0.6 and 0.7. In our analysis, we did not ignore probability weighting; but at the same time

we did not find any evidence in favor of it.

Other researchers who employ a similar methodology to ours also provide evidence of

probability weighting. Harrison and Rutström (2009), for example, analyze decisions made by

students and allow two competing decision theories under risk, EUT and PT, to explain the choices

observed. Estimating a so-called mixture model, they found that their sample was roughly evenly

split between those subjects best characterized by EUT and those best characterized by PT.

Interestingly, they find no evidence of probability weighting when they estimate a conditional PT
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model assuming that the whole sample is best characterized by a PT model. The estimated (

parameter is 0.91, but it is not significant at standard levels. When estimating a mixture model,

however, ( drops to 0.68 (p-value=0.047) close to the estimates reported by other researchers. This

finding may provide further guidance when it comes to interpreting our own results. If most

managers in our sample are better characterized by an EUT model than by a PT model, the results of

Harrison and Rutström (2009) would explain why we obtain highly significant estimates for the

CRRA coefficient assuming an EUT model and no probability weighting when we estimate a PT

model assuming that all managers can be characterized by a PT model.  

 

6. Conclusion

We present an artefactual field experiment to characterize risk attitudes’ of industrial

managers. We recruited 130 managers from 12 industrial companies in Germany, Austria and

Switzerland to answer six key questions:

• What risk attitudes do industrial managers exhibit in an artefactual field experiment?

• Do the risk attitudes of managers differ from those of other subjects?

• Do the risk attitudes of superiors differ from the risk attitudes of team members?

• Do the risk attitudes of industrial managers vary across different corporate functions?

• What insights on the risk attitudes of industrial managers can we get from 

characterizing their behavior using the decision theories EUT, RDU and PT?  

• Can the treatment effects identified by researchers investigating other groups of subjects 

be transferred to industrial managers? 

In general, we find that the managers in our sample are moderately risk averse. Assuming a standard

EUT model they exhibit similar risk attitudes as other sample populations. However, we find some

differences within our sample. Superiors exhibit a higher level of risk aversion than team members

that work for them in their department. Comparing purchasing managers with a random sample of

non-purchasing managers from different corporate functions such as controlling, sales, engineering

and so on, we cannot conclude that they differ from each other. 
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Comparing different decision theories under risk (EUT, RDU and PT), we show that these

theories provide complementary information on the risk attitude of industrial managers. While an

EUT model only characterizes managers as globally risk averse, we learn from a PT model that the

managers in our sample are only risk averse for a certain range of payoffs. For other payoffs, they

even exhibit risk-seeking behavior. The reference point that determines which outcomes are to be

viewed as losses and which as gains is not that induced by the task frame. We show that subjects had

implicit expectations about their earning in the experiment, and used these expectations to evaluate

the lotteries presented to them. 

We find that managers differ from other subjects, and that methodological insights gained

from student subjects cannot be readily transferred to industrial managers. The managers in our

sample did not weigh probabilities and they did not exhibit a hypothetical decision bias. One

potential explanation for this difference might be that managers are more familiar with the concept

and assessment of probabilities than other subjects as management concepts. Managers are also used

to work with hypothetical scenarios, which might explain the absence of a hypothetical decision bias.
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Appendix: Additional Results

Table A1. Marginal effects of characteristics variables (all managers)

Subjects Parameter Description Estimate p-value Standard
error

Lower/upper
95% confidence

interval
Decisions of all managers over own money with real payments (basic design)
All first Task done first in order 210  161 150 -84 504
managers german Nationality is German 189 167 137 -79 457
(n=92) female Gender is female 319 12 128 69 567

age_20_35 Age between 20 and 35 367 88 215 -54 787
age_36_50 Age between 36 and 50 321 82 185 -41 684
age_51_65 Age between 51 and 65 502 26 225 60 943
married Marital status is married 87 578 157 -220 395
household Household size -29 909 250 -518 461
business Business education -122 281 113 -342 100
low_income Household income <45.000 EUR 181 165 130 -74 436
experience Total professional experience 307 447 404 -485 1100
team_member No supervisory tasks -140 349 149 -432 153
bonus Performance-related salary -65 625 132 -324 195
aerospace Industry is Aerospace 91 493 134 -171 354

Notes: Log-likelihood value is -1604.9237. A Wald test for null hypothesis that all coefficients are zero has a P2 value of
20.90 with 14 degrees of freedom, implying a p-value of 0.10.

   

Table A2. Total effects of characteristics variables (all managers)

Subjects Parameter Description Estimate p-value Standard
error

Lower/upper
95% confidence

interval
Decisions of all managers over own money with real payments (basic design)
All first Task done first in order 194 124 126 -53 441
managers german Nationality is German 102 358 111 -115 319
(n=92) female Gender is female 107 317 107 -106 316

age_20_35 Age between 20 and 35 -46 642 99 -241 148
age_36_50 Age between 36 and 50 -13 904 103 -215 190
age_51_65 Age between 51 and 65 137 244 117 -93 367
married Marital status is married 100 298 96 -88 287
household Household size 68 696 174 -274 410
business Business education -113 246 98 -305 78
low_income Household income <45.000 EUR 87 408 105 -119 293
experience Total professional experience 166 427 209 -243 574
team_member No supervisory tasks -112 279 103 -313 90
bonus Performance-related salary -97 358 106 -304 110
aerospace Industry is Aerospace 92 403 110 -124 308

Notes: Each variable os estimated in a separate model not including other characteristics variables.
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