
Send Orders for Reprints to reprints@benthamscience.ae

147

The Open Public Health Journal, 2018, 11, 147-161

RESEARCH ARTICLE Adolescent BMI: The Importance of Intrinsic and Extrinsic Factors

Molly Jacobs^{*}

Department of Health Sciences Information and Management, College of Allied Health Science, East Carolina University, 600 Moye Blvd. Mail Stop 668, Health Sciences Building 4340E, Greenville, NC 27834, USA

Received: December 11, 2017 Revised: April 5, 2018 Accepted: April 13, 2018

Abstract: *Objectives:*

Research shows that weight trends in adolescence persist into adulthood, but do the same factors contribute to weight in adolescence as in adulthood? Are extrinsic factors presumably more important than intrinsic characteristics? This study identifies the correlation between BMI and various intrinsic and extrinsic factors and evaluates their relative importance in BMI development. It compares the primary determinants for adolescents (12-20 years old) and adults (21+ years old).

Methods:

Using 15 years of panel data, generalized linear models, we assessed the impact of extrinsic-environmental, biological, geographic and household-and intrinsic-sexual activity, substance use, desire to lose weight, *etc.*-characteristics on adolescent and adult BMI. Multinomial logit models tested the contribution of these characteristics to weight categories.

Results:

Race and age were the most significant BMI correlates at all ages. This remains true for weight classification as well. For young adolescents, intrinsic factors are highly deterministic, while extrinsic factors play no role. As adolescents age into adults, intrinsic factors continue to be deterministic, while extrinsic covariates also emerge as deterministic. Intrinsic determinates of significance include age of first sexual encounter, tobacco experimentation, perspective on general health, and desire to lose weight (or stay the same weight).

Conclusion:

While biological/genetic attributes are the largest determinants of BMI at every age, intrinsic factors play a larger role in adolescent BMI development than adults. As individuals age, intrinsic determinants remain important, but extrinsic characteristics contribute significantly to weight classification. Thus, the weight determinants differ between adolescents and adults suggesting different methods of policy intervention be used for adolescents and adults.

Keywords: Obesity, Adolescence, BMI, Mother, Intrinsic factors, Extrinsic factors, Multinomial logit models.

1. INTRODUCTION

Research shows that weight trends associated with Body Mass Index (BMI) perpetuate throughout life-overweight children become overweight adults-leading to high percentages of overweight individuals at all ages. Despite the persistence of high percentages of overweight individuals, research has not yet identified the cause of unhealthy weight in adolescence. A variety of social, environmental, and genetic factors have been linked to overweight, but no study has identified how/ways adolescent and adult weight development differs [1]. This study focuses on identifying whether

^{*} Address correspondence to this author at the Department of Health Sciences Information and Management, College of Allied Health Science, East Carolina University, 600 Moye Blvd. Mail Stop 668, Health Sciences Building 4340E, Greenville, NC 27834, USA; Tel: 252-744-6182; E-mail: Jacobsm17@ecu.edu

intrinsic, extrinsic, or both types of factors significantly correlate with Body Mass Index (BMI) and whether these relationships change as adolescents age.

This paper assesses the intrinsic and extrinsic determinants of BMI using a 15-year panel (duration 1997 to 2011) from the National Longitudinal Survey of Youth 1997 (NLSY97). The analysis questions the relative strength of these relationships, how they vary over time, and it consists of three stages. First, analysis of covariance (ANCOVA) tests the strength of the relationship between BMI and selected intrinsic factors. Second, multilevel Generalized Linear Models (GLM) evaluate the relationship between adolescents age 12 to 20, and adults age 21 to 32 using BMI [1] and intrinsic and extrinsic covariates. Finally, multinomial logit regressions test the relationship between weight category (normal weight, overweight, obese) and the intrinsic/extrinsic factors.

Section I discusses what is known about BMI. Section II includes a description of the data and estimation methodology. Section III presents the estimation results from all three analyses. Results are discussed in Section IV, and Section V briefly concludes the primary findings.

1.1. Evidence from Related Literature

Previous research has explored the relationship between adolescent BMI and parental behavior, household circumstances, and inherited attribute [2]. As this analysis shows, BMI growth rates vary significantly by genetic and environmental characteristics, but racial and ethnic growth trajectories show significant heterogeneity-both before and after achievement of full growth [3, 4]. Freedman, Khan, and Sedula [5] showed black youth to have the highest BMI growth, but Markowitz and Cosminsky [6] find the highest rates of obesity among Hispanic [7]. The data used in this analysis finds that Hispanics are the heaviest group among males, but blacks are the heaviest among females. Considerable race, sex, and age differences have been shown to exist between overweight individuals and socioeconomic status, but these disparities have weakened over time [8].

Economists found that household characteristics impact BMI through food availability, income expenditure on food, and behavior [9]. Participation in food programs, nutrient intake, and income varies by household, and each of these factors impact weight [10]. Higher weights have been found among rural and southern residents, but they vary by race [11]. While moving to an urban area often results in weight loss, individuals with high BMIs are unlikely to move to, or live within, these areas [12]. Environmental effects are generally small, but neighborhood characteristics can minorly impact a child's weight [13].Food prices at the local level could impact adolescent weight by altering the household budget constraint [14, 15].

Consistent with the findings in this study, research shows that maternal employment is positively related to childhood weight [16 - 19] as is maternal education [2, 3, 20, 21]. Overweight mothers increased the probability of adolescents being overweight-as did parents having low-levels of education [9]. Parents who perceive their neighborhood to be unsafe typically restrict their children's outdoor activities; and this correlation directly impacts BMI trajectories of adolescents [22].

While much research has been done to study the impact of observable factors, few researchers have explored unobservable, intrinsic characteristics. Meta *et al.* [23] explored the relationship between self-motivation, exercise motivation, and eating self-regulation, and they found that increased self-determination and exercise motivation lead to eating self-regulation and weight control within women. Individuals who managed their weight successfully were more likely to limit consumption of beverages sweetened with sugar, to decrease sedentary activity, to increase physical activity, and to increase their commitment to healthy lifestyle behaviors [24 - 26]. Adolescents who successfully lost weight were more likely to strictly control their eating and to monitor their weight [26, 27].

Other behavioral studies show high correlations between sexual activity and weight and body perception [28, 29]. Cigarette smoking is often an indicator of risk aversion, health habits and personal awareness adults, smoking is correlated with a greater risk of obesity, but few studies assess the impact of cigarette smoking on adolescents [30]. An individual's expressed desire to lose or gain weight is neither correlated with behavior nor with unhealthy weight [31]; yet associations vary in relation to gender. There is, however, a strong relationship between an individual's perception of his or her health and clinically-measured health indicators. Some research shows health perception to be a predictor of behavioral and physical outcomes [32, 33]

Qualitative studies addressing the issue of adolescent weight found that motivational factors for weight loss/management were intrinsic (*e.g.*, desire for better health, desire to improve self-worth, desire for the approval of peers) rather than extrinsic [34, 35]. Support from parents has proven to be critical in personal health particularly among

Adolescent BMI: The Importance

minority groups [36 - 38], but results vary by gender.

Much research has explored adolescent and adult BMI, but little research has directly questioned how the BMI correlates change as individuals age. Adult overweight and obesity has been associated with major technological, life style, eating, and activity characteristics [16, 39, 40], but strong relationships were not found among children and youth and lifestyle factors. Skipping breakfast is associated with health-compromising behaviors in both adults and adolescents [41], but shared household(s) was not controlled.

This study differs from previous analyses in several ways. First, it includes key intrinsic and extrinsic covariates in a single, large-scale, analysis. Second, it utilizes a nationally representative sample of longitudinal data for all covariates including observations for gender, race, and ethnicity. Third, it tests for differences within adolescent and adult BMI determination, and it evaluates how the strength of the covariate relationships varies with age.

2. MATERIALS AND METHODS

BMI is highly correlated with body fat and can be used to classify individuals as underweight, healthy weight, at risk of being overweight, or overweight using a nationally accepted rubric [42]. Among adults, BMI appears to be a satisfactory measure of body fat [43] especially if comparing across race and ethnicity [44]. Among adolescents, the CDC child and adolescent BMI thresholds are used to categorize individuals by weight status. Thresholds, expressed as percentiles, are designed to capture the category the individual would be in upon reaching young adulthood (if staying within the same BMI percentile).

For adolescents under 20, normal or healthy weight status is based on BMI between the 5th and 85th percentile. After age 20, BMI is interpreted using standard weight status categories, and normal weight equals BMI between 18.5 and 24.9. The standard weight status categories associated with BMI ranges for adults are shown in the following Table 1 along with the adolescent percentiles.

Weight Status Category	Adolescent Percentile Range	Adult BMI Values
Age	3-19 years	20+ years
Underweight	Less than the 5 th percentile	Below 18.5
Normal or Healthy Weight	5 th percentile to less than the 85 th percentile	18.5 to 24.9
Overweight	85 th to less than the 95 th percentile	25.0 - 29.9
Obese	Equal to or greater than the 95 th percentile	30.0 and Above

Table 1. The standard weight status categories associated with BMI ranges for adults.

Fig. (1) shows average BMI for male and female racial and ethnic subgroups by age (measured in months. In the NLSY97, gender is self-assigned by respondents as either "male" or "female" in the first year of the survey assignment remains unchanged The two black lines represent the 5th and 85th percentiles for ages below 20 and BMI 18.5 and 24.9 for ages 20 and above. Therefore, the lines are parallel after age 20. The lines are disjointed due to changes in the way the CDC defines healthy weight for adolescents' and adults' BMI. Minority groups have higher BMI at all ages. Hispanic males and black females display higher BMI levels and steeper growth (Fig. **2**) consistent with other studies [45, 46]. The proportion of underweight has also decreased among all groups, but BMI levels remain persistently high.

To maintain a balanced panel, the sample used in all three analyses only includes respondents with a BMI value in each year of the panel. While measurement and misspecification error is a concern in self-reported data, the data was cleaned to remove errant, inconsistent, and illogical values of height and weight. If BMI values were missing due to omitted height, height was imputed from nearby observations. Full height is achieved at relatively early ages; thus, imputations were unlikely to bias the sample which consisted of 4,205 individuals. Means are listed in Table **2**. Minimum BMI is 12.5-underweight-and maximum BMI value is 55-overweight or obese-with an average of 25 and 26 for men and women respectively. BMI increases with growth and weight gain; however, rates differ by race and gender [47].

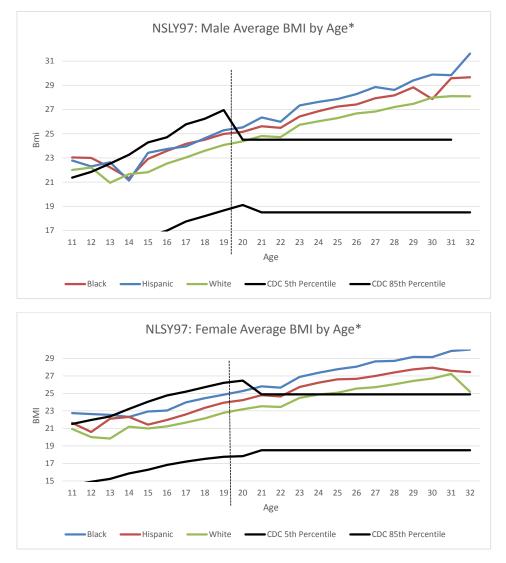


Fig. (1). Average BMI by Age and Gender.

*=Prior to age 20, the CDC defines "normal" BMI as BMI between the 5th and 85th percentiles. These values represent the BMI at each percentage. After age 20, BMI between 18.5 and 24.9 is considered normal weight.

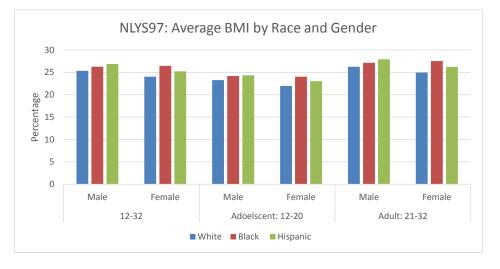


Fig. (2). Average BMI by Race and Gender.

Gender	Variable	Ν	Mean	Std Dev	Min	Max
	BMI _t	29,786	25.83	5.21	14.1	54.8
	Age _t	29,786	272.64	51.95	146	387
	Black	29,786	0.22	0.41	0	1
	Hispanic	29,786	0.19	0.39	0	1
	Household Size,	29,783	3.51	1.67	1	19
	Poverty/Income Ratio _t	21,341	380.97	376.92	0	3227
	Urban,	29,786	0.75	0.44	0	1
	Northeast ₁₉₉₇	29,786	0.16	0.37	0	1
	South	29,786	0.36	0.48	0	1
	Age Sexual Activity,	19,194	15.82	2.69	5	24
Male	General Health Score,	29,780	1.98	0.91	1	5
	Years Smoking _t	25,860	2.19	2.68	0	11
	Stay Same _t	22,912	0.34	0.47	0	1
	Lose Weight,	29,620	0.30	0.46	0	1
	Eating Disorder,	20,527	0.05	0.21	0	1
	Mothers Education Less than High School ₁₉₉₇	27,738	0.19	0.39	0	1
	Mothers Education High School ₁₉₉₇	27,738	0.36	0.48	0	1
	Underweight,	793	2.66	-	-	-
	Normal Weight,	14,233	47.78	-	-	-
	Overweight,	9,198	30.88	-	-	-
	Obese _t	5,562	18.67	-	-	-
	BMI _t	27,830	24.86	5.72	12.5	54.9
	Age _t	27,830	271.81	52.10	147	385
	Black	27,830	0.25	0.43	0	1
	Hispanic	27,830	0.19	0.39	0	1
	Household Size,	27,829	3.64	1.72	1	15
	Poverty/Income Ratio _t	19,950	348.02	359.69	0	3227
	Urban,	27,830	0.77	0.42	0	1
	Northeast ₁₉₉₇	27,830	0.16	0.36	0	1
	South	27,830	0.38	0.49	0	1
	Age Sexual Activity,	16,870	16.34	2.12	5	24
Female	General Health Score,	27,827	2.17	0.93	1	5
	Years Smoking,	23,433	1.88	2.52	0	11
	Stay Same _t	22,531	0.26	0.44	0	1
	Lose Weight,	27,755	0.54	0.50	0	1
	Eating Disorder t	18,523	0.06	0.24	0	1
	Mothers Education Less than High School ₁₉₉₇	26,393	0.20	0.40	0	1
	Mothers Education High School ₁₉₉₇	26,393	0.34	0.47	0	1
	Underweight	1,559	5.60	-	-	-
	Normal Weight	15983	57.43	-	-	-
	Overweight	5,657	23,199	-	-	-
	Obese	4,631	16.64	-	-	-

Table 2. Covariate Means and Simple Statistics by Gender: NLSY97 1997-2011.

Table **2** also includes mean statistics of intrinsic and extrinsic characteristics. Average respondent age (measured in months) is 272 months (22 years). Ages ranged from 146 to 204 months (12 to 17 years) in 1997 and 300 to 387 months (25 to 32 years) in 2011. Average age is 272 months (22 years). Average household size is 3.5 persons, but it decreases with age. Roughly 75 percent of the sample resides in an urban area, compared to 80 percent of the US population [48]. Dummy variables, northeast and south, control for regional differences, and the income/poverty ratio accounts for income level. Ratios below 1 indicate an income below poverty, while ratios of one or greater indicate income at least at

the poverty level. The average ratio in the sample is between five and six-above poverty level. Maternal education is translated into two dummy variables: less than high school and high school completion. Less than 20 percent of mothers have less than a high school education, while 35 percent have completed high school.

Five intrinsic characteristics are used in the analysis-age of first sexual activity, number of years since first tobacco use, desired weight change action, and general health perception. The average age of the first sexual encounter is slightly under 16 years for males and slightly over 16 years for females. The indicatory for tobacco use measures the number of years since the respondent first used tobacco. Responses range from 0 to 11 years with an average between two and three years-implying that most respondents first tried tobacco in their mid to late teens. The NLSY97 captures desired weight action using a respondent selection of 1- Lose Weight, 2- Gain Weight, 3- Stay the same weight, and 4-Not Trying to Do Anything about My Weight. Analysis uses two dummy variables: lose weight and stay the same weight. Thirty percent of males want to maintain weight, and 30 percent hope to lose weight. Over half of females want to lose weight, and 25 percent want to maintain their current weight. Finally, perception of respondents' health is measured using five descriptive options: 1- Excellent, 2- Very Good, 3- Good, 4- Fair, and 5- Poor. Average male and female response was two-indicating very good health.

These data are analyzed with three different statistical techniques-ANCOVA, GLM, and Hierarchical logistic regressions-each was performed separately for men and women.

3. RESULTS

Data came from the first 15 rounds of the NLSY97-a longitudinal panel that follows a sample of 8,984 American youth from 1997 to 2011. After 2011, the survey became biennial. While 2013 and 2015 are available, the sample focused only on those consecutive survey years.

BMI-the dependent variable-was calculated from self-reported height and weight. To calculate BMI, respondents needed a height and weight value. To maintain a panel balance, respondents without a BMI in each year were removed. Remaining data was cleaned using a series of flags to indicate errant, inconsistent, or illogical height and weight values. If height was missing, it was imputed from nearby observations whenever possible. Since full height is likely achieved early in the sample for most respondents, imputations did not likely bias data. Summing the flags, and removing errant values, left 4,205 respondents.

3.1. Stage I Analysis of Covariance (ANCOVA)

First, analysis of covariance (ANCOVA) examined the relationship between intrinsic factor covariates and BMI. ANCOVA gauged the association between BMI and intrinsic factors while accounting for variation in other respondent traits. Age of first sexual experience, general health, desire to lose weight, desire to stay the same weight, and number of years since first experimenting with cigarettes varied positively as BMI increased (Table 3). Most intrinsic factors had significant p-values for adolescents and adults (except for eating disorder).

	NLSY97: Intrinsic Factor ANCOVA by Gender							
			Male		_			
Age	12	-32	12	2-20	21	-32		
-	Chi-Square	Pr > ChiSq	Chi-Square	Pr > ChiSq	Chi-Square	Pr > ChiSq		
-	16239.56	<.0001	193.97	<.0001	15365.81	<.0001		
Effect	F Value	Pr > F	F Value	Pr > F	F Value	Pr > F		
Age (months)	659.5	<.0001	25.53	<.0001	533.78	<.0001		
Age Sex	7.61	0.0059	6.39	0.0118	8.36	0.0039		
General Health Score	19.31	<.0001	1.53	0.2171	25	<.0001		
Years Smoking	16.09	<.0001	15.78	<.0001	12.49	0.0004		
Eating Disorder	0.06	0.8124	0.05	0.8241	0	0.959		
Lose Weight	677.45	<.0001	170.29	<.0001	681.47	<.0001		
Stay the Same Weight	162.34	<.0001	38.11	<.0001	166.42	<.0001		

Table 3. Intrinsic Factor ANCOVA.

Adolescent BMI: The Importance

		1	Female				
Age	12-32		12	-20	21-32		
-	Chi-Square	Pr > ChiSq	Chi-Square	Pr > ChiSq	Chi-Square	Pr > ChiSq	
-	16513.59	<.0001	592.51	<.0001	15565.5	<.0001	
Effect	F Value	Pr > F	F Value	Pr > F	F Value	Pr > F	
Age (months)	686.51	<.0001	30.76	<.0001	579.92	<.0001	
Age Sex	7.56	0.006	1.01	0.3143	6.95	0.0085	
General Health Score	42.88	<.0001	8.98	0.0028	40.97	<.0001	
Years Smoking	6.82	0.0091	1.58	0.2099	4.87	0.0274	
Eating Disorder	0.48	0.4868	0.04	0.8408	0.64	0.4249	
Lose Weight	757.35	<.0001	121.44	<.0001	725.05	<.0001	
Stay the Same Weight	254.33	<.0001	30.53	<.0001	252.09	<.0001	
		Dependent	Variable: lnBMI _t				

(Table 3) contd.....

3.2. Stage II GLM: Adolescent, Adult Comparison

The second stage of analysis employed Generalized Linear Models (GLM) to simultaneously evaluate all extrinsic and intrinsic attributes. GLM was a flexible generalization of ordinary linear regression that allowed for random effects, fixed effects, and error distributions other than normal. In accordance with the American Academy of Pediatrics, separate models were run for adolescents-those age 12 to 20-and adults-those age was 21 to 32 [49 - 52] (Table 4).

Other researchers have shown that parental influences play a role in weight development among adolescents, but gender differences skew their relative importance [53] found. Separate age regressions (Tables **5** and **6**) explore differences in BMI determinants among adolescent and adults. The age effect is large and positive for the younger age groups, but it decreases for adults-suggesting that BMI increases faster in adolescence than adulthood. No extrinsic characteristics significantly impact adolescent BMI. Age of first sexual experience and years since first tobacco use are negatively related to BMI-the longer adolescents refrain from sex or smoking, the lower their BMI. Desire to lose or maintain current weight are positive-indicating that adolescents with higher BMI report a desire to lose or maintain weight.

NLSY	Y97: BMI Regression for Ado	lescents by Gender						
-	Male	•	Female Ages 12-20					
-	Ages 12	-20						
-		Model Fit						
AIC	-444.69	-	-418.14	-				
Gen. Chi ²	1.83	-	1.43	-				
Ν	9012	-	8579	-				
	Results	-		•				
Variable	Parameter	Std Err	Parameter	Std Err				
Intercept	2.84***	0.217	2.54***	0.198				
Age _t	0.0024***	0.001	0.0019***	0.001				
Black	0.0064	0.020	0.11***	0.021				
Hispanic	0.02	0.022	0.024	0.023				
Household Size,	-0.003	0.004	-0.0011	0.004				
Poverty/Income Ratio _t	-0.0058	0.007	-0.00158	0.005				
Urban,	-0.0016	0.016	-0.0089	0.017				
Northeast	0.011	0.020	0.013	0.023				
South _t	-0.0026	0.017	0.019	0.018				
Age Sex _t	-0.012***	0.004	-0.0051	0.004				
General Health _t	-0.0099	0.007	0.021***	0.007				
Years Smoking	-0.024***	0.006	-0.002	0.007				
Stay Same Weight,	0.088***	0.016	0.11**	0.026				
Lose Weight,	0.208***	0.016	0.24***	0.027				
Eating Disorder,	-0.034	0.049	0.026	0.030				

Table 4. Results by Gender Ages 12-20.

154 The Open Public Health Journal, 2018, Volume 11

(Table 4) contd.

NLSY97:	BMI Regression for Adol	escents by Gender		
-	Male		Fema	le
-	Ages 12-2	20	Ages 12	-20
Mother's Education Less than HS _t	-0.015	0.020	0.036	0.023
Mother's Education HS _t	Mother's Education HS _t -0.033*		0.025	0.018
	Dependent Variable: In	BMI _t		
Source: NLSY 1997		-	-	-
Statistica	l Significance: * (0.10), **	(0.05), *** (0.01)		

Table 5. Results by Gender Ages 21-32.

-					
	Male		Female		
-	Ages 21-		-	ges 21-32	
-		Mode			
AIC	-19504.7	-	-15740.1	-	
Gen. Chi ²	29.94	-	37.53	-	
N	8760	-	8190	-	
	Results			_	
Variable	Parameter	Std Err	Parameter	Std Err	
Intercept	2.972***	0.028	2.789***	0.038	
Age _t	0.0009***	0.000	0.00099***	0.000	
Black	0.020*	0.010	0.102***	0.012	
Hispanic	0.035***	0.011	0.032**	0.013	
Household Size,	0.0016***	0.001	0.0023***	0.001	
Poverty/Income Ratio _t	-0.00066	0.001	-0.0007	0.001	
Urban,	0.00045	0.002	0.0053*	0.003	
Northeast	0.0022	0.006	0.0047	0.007	
South	0.012***	0.004	-0.0002	0.005	
Age Sex _t	-0.0022	0.002	-0.003	0.002	
General Health,	0.0064***	0.001	0.0089***	0.001	
Years Smoking _t	-0.0022***	0.001	0.00025	0.001	
Stay Same Weight,	0.034***	0.003	0.081***	0.006	
Lose Weight,	0.085***	0.003	0.150***	0.006	
Eating Disorder,	0.011	0.009	0.0047	0.011	
Mother's Education Less than HS _t	0.015	0.012	0.043***	0.014	
Mother's Education HS _t	0.016*	0.009	0.018*	0.011	
	Dependent Variable:	InBMI _t			
Source: NLSY 1997		-	-	-	

These intrinsic characteristics remain significant for adults, but several extrinsic characteristics emerge as significant as well. In addition to race/ethnicity and age, the covariates for household size, southern residence, urban housing, and low maternal education are all positively associated with BMI. The emergence of these extrinsic factors, in addition to intrinsic factors, suggests different processes involved in adolescent and adult BMI determination compared to adolescent BMI. Adult BMI is determined by a large number of internal, external, and environmental factors, while adolescent BMI is only determined by a small number of covariates.

3.3. Stage III Multinomial Logit: Adolescent, Adult Comparison

Finally, the third stage estimates hierarchical logistic regressions for adolescents and adults. These models evaluate the relative importance of intrinsic and extrinsic characteristics on weight category determinations: underweight, normal weight, overweight, and obese. The logit analysis uses weight category as the dependent variable and estimates reflect likelihood relative to normal weight. Results are listed in Table 6.

Multinomial Log	git: Weight	Category Estin	nates by A	ge and Gende	er		
-			Male			Female	
<u> </u>		Ages 12-20 Ages 12-20					
			0	Mod	el Fit	0	
Criterion		Intercept Only	Intercept a		Intercept Only	Intercept a	nd Covariates
AIC		6342.626	5102.27		5765.216	-	10.782
-2 Log L		6336.63	50	00.27	5759.216	47	08.782
- -		Chi-Square	Pr >	· ChiSq	Chi-Square	Pr >	· ChiSq
Likelihood Ratio		1050.4337		0001	-		-
		Results					
Variable		Estimate	Std Err	Pr > ChiSq	Estimate	Std Err	Pr > ChiSq
	Under	-3.8352	2.9542	1.6855	0.9407	2.02	0.2169
Intercept	Over	-4.6207***	0.9344	24.4537	-6.3905***	1.0861	34.6191
	Obese	1	1.3802	56.6693	-23.6786	241.7	0.0096
	Under	-0.0114	0.0108	1.1136	-0.00874	0.00758	1.3282
Age	Over	0.0148***	0.00326	20.5721	0.0112***	0.00349	10.2212
	Obese	1	0.00447	21.5431	0.0242***	0.00433	31.1976
	Under		0.3818	1.5454	-1.4563***	0.338	18.5639
Black	Over	0.1905	0.1307	2.1257	0.757***	0.1448	27.3139
	Obese		0.1814	9.0958	1.5201***	0.1683	81.6024
	Under		0.5165	0.4886	-1.4062*	0.4174	11.3506
Hispanic	Over	0.0847	0.1391	0.3704	-0.0621	0.1496	0.1721
mspune	Obese		0.1865	0.0321	0.379**	0.175	4.6901
	Under		0.1065	4.5317	-0.0138	0.066	0.0439
Household Size,	Over	-0.0337	0.0301	1.2532	0.00961	0.0326	0.0868
	Obese		0.04	2.3661	0.06	0.0328	2.3921
	Under	1	0.1438	0.3411	-0.0962	0.0947	1.0305
Poverty/Income Ratio	Over	0.0287	0.0442	0.422	-0.0682	0.0463	2.1713
	Obese		0.0622	1.1594	-0.0807	0.0568	2.0151
	Under		0.0022	12.7182	0.3978	0.3036	1.7163
Urban,	Over	-0.2033*	0.1133	3.2206	-0.1793	0.1261	2.0202
crouit	Obese		0.1155	4.973	-0.1645	0.1201	1.0957
	Under		0.5521	0.0001	-0.0703	0.3231	0.0473
Northeast	Over	0.1209	0.1357	0.7942	0.1994	0.1543	1.67
Tornousit	Obese	1	0.2031	3.0226	-0.0454	0.206	0.0486
	Under	1	0.3577	4.1117	0.1936	0.2589	0.5588
South,	Over	-0.0977	0.1082	0.8159	0.00591	0.1196	0.0024
South	Obese		0.1032	0.485	0.2083	0.1130	2.1232
	Under		0.0794	10.0765	0.0678	0.0661	1.0523
Age Sex,	Over	-0.0497***	0.0205	5.9106	-0.0332	0.0273	1.4847
ngo boxt	Obese		0.0203	4.7014	-0.0851**	0.0273	7.1124
	Under		0.0284	0.447	0.1748	0.1214	2.0737
General Health,	Over	0.0673	0.1009	1.4992	0.1748	0.0584	20.5614
General Treatin _t	Obese		0.0732	14.2925	0.6545***	0.0683	91.8812
	Under		0.10732	2.288	-0.1924**	0.0908	4.4894
Years Smoking,	Over	-0.1278***	0.0322	15.7156	-0.1924	0.0369	5.785
i cuis omoking _t	Obese	-0.1278***	0.0322	40.9897	0.0275	0.0309	0.4083
	Under	-2.7077***	0.6036	20.1261	-2.1557***	0.043	63.3712
Stay Same Weight,	Over	1.3328***	0.1214	120.5813	1.4004***	0.2708	8.4689
Stay Same weight					13.0705		0.0029
	Obese Under		0.5165	41.7145 6.785	-4.1514***	241.7 0.3909	112.7952
Lose Weight,		2.7017***	0.7355		3.1936***	0.3909	
	Over		0.1363	392.8267			46.057
	Obese	6.047***	0.514	138.4273	16.0169	241.7	0.0044

156 The Open Public Health Journal, 2018, Volume 11

Multinomial Log	git: Weight	Category Estin	nates by A	ge and Gende	er		
-		Male			Female		
	Under	0.5649	0.6712	0.7084	0.6163*	0.3611	2.9131
Eating Disorder,	Over	-0.3835	0.2963	1.6754	-0.6031**	0.2518	5.737
	Obese	-0.3346	0.4197	0.6354	0.1904	0.2381	0.6393
	Under	0.2867	0.4071	0.4959	0.2031	0.3554	0.3266
Mother's Education Less than HS _t	Over	0.1784	0.1365	1.7078	0.32**	0.161	3.9476
	Obese	0.5073***	0.1857	7.4638	0.6169*	0.1831	11.3557
	Under	-0.2784*	0.3646	0.583	0.1659	0.2624	0.4001
Mother's Education HS _t	Over	0.0418	0.1077	0.1507	0.3781***	0.1163	10.5709
	Obese	0.3534*	0.1484	5.6705	0.2704**	0.1445	3.5047
-			Ages 21-32			Ages 2132	
-				Mod	el Fit		
Criterion		Intercept Only	Intercept a	nd Covariates	Intercept Only	Intercept a	nd Covariate
AIC		13930.1	10	868.6	13090.505	10	643.3
-2 Log L		13924.1	10	766.6	13084.505	10	541.3
-		Chi-Square	Pr >	• ChiSq	Chi-Square	Pr >	• ChiSq
Likelihood Ratio		3157.5016	<.	0001	2543.1765	<	0001
		Results		-			-
Variable		Estimate	Std Err	Pr > ChiSq	Chi-Square	-	Pr > ChiSc
	Under	-4.7046*	2.4852	3.5836	-2.1641	1.7735	1.4889
Intercept	Over	-3.6836***	0.5554	43.9922	-7.0743***	0.6726	110.6288
	Obese	-8.8757***	0.7326	146.7752	-9.1216***	0.861	112.2483
	Under	0.00031	0.00683	0.0021	0.000947	0.00464	0.0417
Age _t	Over	0.00569***	0.00148	14.8516	0.00609***	0.00149	16.7313
	Obese	0.0119***	0.00178	44.5584	0.0063***	0.00162	15.1989
	Under	-0.5226	0.422	1.5338	-1.2774***	0.3186	16.0758
Black	Over	0.4099***	0.0983	17.3809	1.001***	0.1063	88.6017
	Obese	0.6889***	0.1211	32.3716	1.4663***	0.1114	173.2655
	Under	-0.5491	0.5182	1.1226	-0.3487	0.3581	0.9479
Hispanic	Over	0.4018***	0.1004	16.0021	0.1093	0.1001	1.1933
	Obese	0.2496**	0.1223	4.1634	0.0453	0.1084	0.1747
	Under	0.0316	0.1083	0.0854	0.0479	0.0708	0.4587
Household Size,	Over	0.042*	0.0242	3.0137	0.0727**	0.0251	8.3979
	Obese	0.0917***	0.0285	10.3734	0.1389***	0.0262	28.1078
	Under	-0.0738	0.158	0.2182	0.1178	0.1064	1.2247
Poverty/Income Ratio _t	Over	0.1058***	0.0367	8.3129	-0.101***	0.0388	6.7868
	Obese	0.056	0.0454	1.5211	-0.1586***	0.0419	14.3262
	Under	-0.0983	0.3466	0.0804	0.1953	0.2822	0.4791
Urban _t	Over	-0.0829	0.0845	0.9621	0.092	0.0878	1.0989
	Obese	-0.258*	0.1045	6.099	0.023	0.0951	0.0585
	Under	-12.3565	154.8	0.0064	-0.2392	0.3242	0.5443
Northeast	Over	-0.0794	0.1053	0.568	0.00136	0.1043	0.0002
	Obese		0.1273	0.3034	-0.1765	0.1177	2.2479
	Under		0.3331	0.2257	0.0621	0.2529	0.0603
South _t	Over	-0.2435**	0.079	9.5065	0.0958	0.0816	1.3786
	Obese	-0.2477**	0.0968	6.5407	0.1637*	0.0881	3.4513
	Under		0.0663	3.7357	0.0609	0.0544	1.2514
Age Sex _t	Over	-0.0347***	0.0136	6.481	0.0273	0.0167	2.6697
č .	Obese	-0.0585***	0.0165	12.5977	-0.0272	0.0176	2.3817
	Under	0.3624*	0.1721	4.4342	0.0178	0.1157	0.0237
General Health,	Over	0.1187***	0.0413	8.248	0.2682***	0.0421	40.5659
	Obese	0.5829***	0.0498	136.8514	0.715***	0.045	252.0977

-			Male			Female	
	Under	-0.1237*	0.0574	4.6461	-0.0667	0.0412	2.6252
Years Smoking,	Over	-0.041***	0.0115	12.6499	0.0213*	0.0127	2.8208
	Obese	-0.0954***	0.0141	45.5112	0.033***	0.0137	5.7993
	Under	-2.8231***	0.6061	21.694	-3.3665***	0.2943	130.879
Stay Same Weight,	Over	1.5282***	0.0952	257.4656	1.925***	0.3583	28.859
	Obese	3.0937***	0.2918	112.3833	2.6788***	0.6054	19.581
	Under	-2.7625***	1.0201	7.3328	-4.9968***	0.4073	150.540
Lose Weight,	Over	3.0787***	0.1097	787.6142	3.8651***	0.3538	119.317
	Obese	6.087***	0.2932	430.9459	5.7169***	0.5966	91.836
	Under	-1.1278	1.0384	1.1796	1.0863***	0.3419	10.095
Eating Disorder,	Over	-0.032	0.1637	0.0382	-0.255*	0.154	2.740
	Obese	-0.4061*	0.2084	3.7967	-0.2312	0.1627	2.0192
	Under	0.7915**	0.4057	3.8061	-0.7077*	0.3631	3.797
Mother's Education Less than HS_t	Over	0.5222***	0.1067	23.9636	0.2091*	0.1123	3.466
	Obese	0.5441***	0.1313	17.1747	0.5909***	0.1151	26.33
	Under	-0.3318	0.395	0.7056	-0.1701	0.2577	0.435
Mother's Education HS _t	Over	0.1274	0.0783	2.645	0.3247***	0.081	16.059
	Obese	0.3706***	0.0954	15.1043	0.1873**	0.0897	4.3664
Dependent Variable: We	ight Category	underweight,	normal we	ight, overweig	ht, obese)		
	Reference	group: Normal	Weight				
	Sou	rce: NLSY 199	7				
Statistic	cal Significan	ce: * (0.10), **	(0.05), ***	(0.01)			

(Table 6) contd.....

Since the normal weight category was chosen as the reference category, the models reflect categories of underweight relative to normal weight, overweight relative to normal weight, and obese relative to normal weight. Therefore, each estimate must be considered in terms of both the parameter it corresponds to and the model to which it belongs. The standard interpretation of the multinomial logit is that, for a unit change in the predictor variable, the logit of outcome relative to the referent group is expected to change by its respective parameter estimate-given the other variables in the model are held constant. If age increases by one month, the probably that a male age 12-20 is underweight decreases by -0.0114 *ceteris parabis* relative to normal weight.

4. DISCUSSION

It is important to consider the nature of the data when reviewing the results. BMI is based on self-reported height and weight data. Self-reported height and weight data are consistently over- and under-estimated, respectively. With this in mind, the interpretation of multinomial estimates is not entirely intuitive, but the significance pattern of the multinomial logit resembles that of the GLM specification. Age and race/ethnicity are highly correlated with adolescent weight category-with lower probabilities that minority races appear in lower weight status categories. Intrinsic characteristics such as general health perception, years since first tobacco use, age at first sexual encounter, and desire to maintain or lose weight are highly correlated with weight categories. Interestingly, desire to maintain or lose weight are associated with lower probabilities of being underweight and higher probabilities of being overweight and obese. This indicates that respondents were aware of their weight and desired to attain a healthier body size. Finally, obese respondents had lower probabilities of favorable general health score (as would be expected).

While the intrinsic factors remain significant among adults, extrinsic characteristics, including household size, region of residence, income to poverty ratio, and maternal education, appear significant. Overweight and obese respondents are more likely to have large households and lower income ratio than those of normal weight. Higher probabilities of low level(s) of maternal education exist for overweight/obese adults. While having had an eating disorder was insignificant in earlier GLM models, logit estimates for both adolescent and adult females reflect significantly higher probabilities of underweight respondents with eating disorders and significantly lower probabilities of overweight respondents with eating disorder histories. These results appear substantial and significant for both age categories.

CONCLUSION

Using 15 years of data from NLSY97, longitudinal analysis assesses the impact of extrinsic-environmental, biological, geographic, and household-and intrinsic-sexual activity, substance use, desire to lose weight, *etc.*-characteristics on BMI. GLMs including fixed and random effects assess the relationship between these factors and BMI separately for both adolescents and adults. Results suggest that race and age are the largest BMI correlates at all ages. Multinomial logit models show that intrinsic factors are highly correlated with adolescent weight category. Overweight and obese respondents are more likely to express desire to lose weight than normal weight adolescents are, but underweight females are more likely to have suffered from an eating disorder than their normal weight counterparts. These intrinsic attributes, along with several household and geographic characteristics, determine adult weight categories.

Intrinsic factors are the most deterministic for adolescent BMI. Age of first sexual encounter, tobacco experimentation, perspective on general health, and weight-related desires to lose or stay the same weight are highly correlated with adolescent BMI and weight classification. As respondents become adults, intrinsic factors remain important, but several extrinsic characteristics also appear significant.

Results indicate that BMI correlates differ for adolescents and adults-suggesting that the BMI development process changes with age. While BMI is only influenced by a small number of factors for youth/adolescents, adult BMI is more complex, and it is influenced by a variety of household, environmental, demographic, and personal characteristics. These results imply that adolescents and adults would require different treatments for being overweight-therefore explaining why conventional policy interventions aimed at high BMI groups have been unsuccessful. More effective programs targeting adolescents should focus on internal, less tangible, characteristics.

FUNDING DISCLOSURE

The author reports no monetary interests in the publication of this manuscript. No external funding was used in the research contained herein.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for the studies that are bases of this research.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The author certifies that he/she has NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

- Wyatt SB, Winters KP, Dubbert PM. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 2006; 331(4): 166-74.
 [http://dx.doi.org/10.1097/0000441-200604000-00002] [PMID: 16617231]
- Golan M, Crow S. Parents are key players in the prevention and treatment of weight-related problems. Nutr Rev 2004; 62(1): 39-50. [http://dx.doi.org/10.1111/j.1753-4887.2004.tb00005.x] [PMID: 14995056]
- Kline B, Tobias J. Explaining trends in body mass index using demographic counter factuals. Econom Rev 2014; 33(1-4): 172-96. [http://dx.doi.org/10.1080/07474938.2013.807155]

Adolescent BMI: The Importance

- [4] Nonnemaker JM, Morgan-Lopez AA, Pais JM, Finkelstein EA. Youth BMI trajectories: Evidence from the NLSY97. Obesity (Silver Spring) 2009; 17(6): 1274-80.
 [PMID: 19584884]
- [5] Freedman DS, Khan LK, Serdula MK, Ogden CL, Dietz WH. Racial and ethnic differences in secular trends for childhood BMI, weight, and height. Obesity (Silver Spring) 2006; 14(2): 301-8. [http://dx.doi.org/10.1038/oby.2006.39] [PMID: 16571857]
- [6] Markowitz DL, Cosminsky S. Overweight and stunting in migrant Hispanic children in the USA. Econ Hum Biol 2005; 3(2): 215-40. [http://dx.doi.org/10.1016/j.ehb.2005.05.005] [PMID: 15963772]
- [7] Van Hook J, Balistreri KS. Immigrant generation, socioeconomic status, and economic development of countries of origin: A longitudinal study of body mass index among children. Soc Sci Med 2007; 65(5): 976-89.
 [http://dx.doi.org/10.1016/j.socscimed.2007.04.032] [PMID: 17570571]
- [8] Wang Y, Zhang Q. Are American children and adolescents of low socioeconomic status at increased risk of obesity? Changes in the association between overweight and family income between 1971 and 2002. Am J Clin Nutr 2006; 84(4): 707-16. [http://dx.doi.org/10.1093/ajcn/84.4.707] [PMID: 17023695]
- [9] Corral I, Landrine H, Zhao L. Residential segregation and obesity among a national sample of Hispanic adults. J Health Psychol 2014; 19(4): 503-8.

[http://dx.doi.org/10.1177/1359105312474912] [PMID: 23460679]

- [10] Jacobs Starkey L, Gray-Donald K, Kuhnlein HV. Nutrient intake of food bank users is related to frequency of food bank use, household size, smoking, education and country of birth. J Nutr 1999; 129(4): 883-9. [http://dx.doi.org/10.1093/jn/129.4.883] [PMID: 10203565]
- [11] Jackson JE, Doescher MP, Jerant AF, Hart LG. A national study of obesity prevalence and trends by type of rural county. J Rural Health 2005; 21(2): 140-8.

[http://dx.doi.org/10.1111/j.1748-0361.2005.tb00074.x] [PMID: 15859051]

- [12] Plantinga A, Bernell S. The association between urban sprawl and obesity: Is it a two-way street? J Reg Sci 2007; 47(5): 857-79. [http://dx.doi.org/10.1111/j.1467-9787.2007.00533.x]
- [13] Sen B, Memmeneyer S, Gary L. The Relationship Between Neighborhood Quality and Obesity Among Children 2009. [http://dx.doi.org/10.3386/w14985]
- Powell LM, Chriqui J, Chaloupka FJ. Associations between state-level soda taxes and adolescent body mass index. J Adolesc Health 2009; 45(3)(Suppl.): S57-63.
 [http://dx.doi.org/10.1016/j.jadohealth.2009.03.003] [PMID: 19699437]
- [15] Cawley J. An economic framework for understanding physical activity and eating behaviors. Am J Prev Med 2004; 27(3)(Suppl.): 117-25. [http://dx.doi.org/10.1016/j.amepre.2004.06.012] [PMID: 15450622]
- [16] Anderson P, Butcher K, Levine P. Federal Reserve Bank of Chicago 2003; 3: 30-48.
- Classen T, Hokayem C. Childhood influences on youth obesity. Econ Hum Biol 2005; 3(2): 165-87.
 [http://dx.doi.org/10.1016/j.ehb.2005.05.008] [PMID: 15994141]
- [18] Cawley J, Liu F. Maternal employment and childhood obesity: A search for mechanisms in time use data 2007. [http://dx.doi.org/10.3386/w13600]
- [19] Ruhm CJ. Maternal employment and adolescent development. Labour Econ 2008; 15(5): 958-83.
 [http://dx.doi.org/10.1016/j.labeco.2007.07.008] [PMID: 19830269]
- [20] Fertig A, Glomm G, Tchernis R. The connection between maternal employment and childhood obesity: Inspecting the mechanisms. Rev Econ Househ 2009; 7: 227-55. [http://dx.doi.org/10.1007/s11150-009-9052-y]
- [21] Nayga R, Rodolfo M. Schooling, health knowledge and obesity. J Appl Eco 2000; 32(7): 815-22.
- [22] Cecil-Karb R, Grogan-Kaylor A. Childhood body mass index in community context: Neighborhood safety, television viewing, and growth trajectories of BMI. Health Soc Work 2009; 34(3): 169-77. [http://dx.doi.org/10.1093/hsw/34.3.169] [PMID: 19728476]
- [23] Mata J, Silva MN, Vieira PN, et al. Motivational "spill-over" during weight control: increased self-determination and exercise intrinsic motivation predict eating self-regulation. Health Psychol 2009; 28(6): 709-16. [http://dx.doi.org/10.1037/a0016764] [PMID: 19916639]
- Boutelle KN, Hannan PJ, Neumark-Sztainer D, Himes JH. Identification and correlates of weight loss in adolescents in a national sample. Obesity (Silver Spring) 2007; 15(2): 473-82.
 [http://dx.doi.org/10.1038/oby.2007.501] [PMID: 17299121]
- [25] Boutelle KN, Libbey H, Neumark-Sztainer D, Story M. Weight control strategies of overweight adolescents who successfully lost weight. J Am Diet Assoc 2009; 109(12): 2029-35. [http://dx.doi.org/10.1016/j.jada.2009.09.012] [PMID: 19942020]

- Molly Jacobs
- [26] Gierut KJ, Pecora KM, Kirschenbaum DS. Highly successful weight control by formerly obese adolescents: A qualitative test of the healthy obsession model. Child Obes 2012; 8(5): 455-65. [http://dx.doi.org/10.1089/chi.2012.0101] [PMID: 23061500]
- [27] Jensen CD, Duraccio KM, Hunsaker SL, et al. A qualitative study of successful adolescent and young adult weight losers: Implications for weight control intervention. Child Obes 2014; 10(6): 482-90. [http://dx.doi.org/10.1089/chi.2014.0062] [PMID: 25369460]
- [28] Wardle J, Volz C, Golding C. Social variation in attitudes to obesity in children. Int J Obes Relat Metab Disord 1995; 19(8): 562-9. [PMID: 7489027]
- [29] Wiederman M. Women's body image self-consciousness during physical intimacy with a partner. J Sex Res 2000; 37(1): 60-8. [http://dx.doi.org/10.1080/00224490009552021]
- [30] Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 2008; 87(4): 801-9. [http://dx.doi.org/10.1093/ajcn/87.4.801] [PMID: 18400700]
- [31] Strauss R. Self-reported Weight Status and Dieting in a Cross-sectional Sample of Young Adolescents 1999. [http://dx.doi.org/10.1001/archpedi.153.7.741]
- [32] Garrity TF, Somes GW, Marx MB. Factors influencing self-assessment of health. Soc Sci Med 1978; 12(2A): 77-81.
 [PMID: 653376]
- [33] Bridges JF, Jones C. Patient-based health technology assessment: A vision of the future. Int J Technol Assess Health Care 2007; 23(1): 30-5. [http://dx.doi.org/10.1017/S0266462307051549] [PMID: 17234014]
- [34] Hinkle K, Kirschenbaum D, Pecora K, Germann J. Parents may hold the keys to success in immersion treatment of adolescent obesity. Child Fam Behav Ther 2011; 33: 278-88. [http://dx.doi.org/10.1080/07317107.2011.623085]
- [35] Kirschenbaum DS, Pecora K, Raphaeli T, Germann JN. Do as I do? Prospects for parental participation 1.5 years after immersion treatment for adolescent obesity. Clin Obes 2011; 1(2-3): 92-8. [http://dx.doi.org/10.1111/j.1758-8111.2011.00019.x] [PMID: 25585574]
- [36] St George SM, Wilson DK. A qualitative study for understanding family and peer influences on obesity-related health behaviors in lowincome African-American adolescents. Child Obes 2012; 8(5): 466-76. [http://dx.doi.org/10.1089/chi.2011.0067] [PMID: 23061501]
- [37] Wright MS, Wilson DK, Griffin S, Evans A. A qualitative study of parental modeling and social support for physical activity in underserved adolescents. Health Educ Res 2010; 25(2): 224-32. [http://dx.doi.org/10.1093/her/cyn043] [PMID: 18703530]
- [38] Evans AE, Wilson DK, Buck J, Torbett H, Williams J. Outcome expectations, barriers, and strategies for healthful eating: A perspective from adolescents from low-income families. Fam Community Health 2006; 29(1): 17-27. [http://dx.doi.org/10.1097/00003727-200601000-00004] [PMID: 16340675]
- [39] Lakdawalla D, Philipson T, Bhattacharya J. Welfare-enhancing technological change and the growth of obesity. Am Econ Rev 2005; 95(2): 253-7.

[http://dx.doi.org/10.1257/000282805774670266] [PMID: 29125263]

- [40] Strasburger VC. Children, adolescents, obesity, and the media. Pediatrics 2011; 128(1): 201-8. [http://dx.doi.org/10.1542/peds.2011-1066] [PMID: 21708800]
- [41] Keski-Rahkonen A, Kaprio J, Rissanen A, Virkkunen M, Rose RJ. Breakfast skipping and health-compromising behaviors in adolescents and adults. Eur J Clin Nutr 2003; 57(7): 842-53. [http://dx.doi.org/10.1038/sj.ejcn.1601618] [PMID: 12821884]
- [42] Flegal KM, Shepherd JA, Looker AC, et al. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr 2009; 89(2): 500-8. [http://dx.doi.org/10.3945/ajcn.2008.26847] [PMID: 19116329]
- [43] Mei Zuguo. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Amer J Clin Nutr 2002; 75.6: 978-85.
- [44] Burkhauser R, Cawley J. Beyond BMI: The value of more accurate measures of fatness and obesity in social science research. Journal of Health Economics 2008; 27.2: 519-29.
- [45] Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999-2000. JAMA 2002; 288(14): 1728-32.
 [http://dx.doi.org/10.1001/jama.288.14.1728] [PMID: 12365956]
- [46] Kumar BN, Holmboe-Ottesen G, Lien N, Wandel M. Ethnic differences in body mass index and associated factors of adolescents from minorities in Oslo, Norway: A cross-sectional study. Public Health Nutr 2004; 7(8): 999-1008. [http://dx.doi.org/10.1079/PHN2004644] [PMID: 15555201]
- [47] Gallagher D, Visser M, Sepúlveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness

across age, sex, and ethnic groups? Am J Epidemiol 1996; 143(3): 228-39. [http://dx.doi.org/10.1093/oxfordjournals.aje.a008733] [PMID: 8561156]

- [48] American Community Survey 2011-2015. Available from: https://www.census.gov/newsroom/press-releases/2016/cb16-210.html, 2017.
- [49] Jennrich RI, Schluchter MD. Unbalanced repeated-measures models with structured covariance matrices. Biometrics 1986; 42(4): 805-20. [http://dx.doi.org/10.2307/2530695] [PMID: 3814725]
- [50] Louis TA. General methods for analysing repeated measures. Stat Med 1988; 7(1-2): 29-45. [http://dx.doi.org/10.1002/sim.4780070108] [PMID: 3281207]
- [51] Crowder M, Hand D. The Analysis of Repeated Measures. Biometrics 1990; 41.
- [52] Diggle P. Analysis of Longitudinal Data. 1996.
- [53] Field AE, Camargo CA Jr, Taylor CB, Berkey CS, Roberts SB, Colditz GA. Peer, parent, and media influences on the development of weight concerns and frequent dieting among preadolescent and adolescent girls and boys. Pediatrics 2001; 107(1): 54-60. [http://dx.doi.org/10.1542/peds.107.1.54] [PMID: 11134434]

© 2018 Molly Jacobs.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.