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Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes
(T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that
could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping
was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory sub-
sets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the
frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhib-
ited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas
receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching.
These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic varia-
tions may correlate with differences in B cell selection in individual T1D patients.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

T1D is an autoimmune disease that targets the insulin-producing
beta cells in the pancreas. It affects approximately 1 in 300 people in
the United States by 18 years of age. Epidemiologic studies show that
the incidence of T1D has been increasing by 2–5% worldwide for un-
known reasons [1]. B lymphocytes (B cells) appear to contribute to the
pathogenesis of T1D. B cells are needed for the initiation of insulitis
and act as critical antigen presenting cells in the initiation of T cell-me-
diated autoimmune diabetes in the nonobese diabetic mouse model
(NOD) [2–6]. In addition, a lack of B cells prevents insulitis [7] and B
cell depletion ameliorates T1D in mice [2,8]. Furthermore, a seminal
study in humans demonstrated that therapy with the B cell depleting
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cells, MN; Mean fluorescence
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antibody, rituximab (anti-CD20), slowed T1D disease after onset, but
did not alleviate disease progression long-term [9,10].

In contrast to murine studies, the published literature on B cells in
humans with T1D is sparse. An early study reported increased
CD5+CD19+B cells in pediatric new onset T1D patients relative to pa-
tients with established disease for N30 days or healthy controls [11]. In-
creases in CD5+ B cells have also been in observed in other disease
states, including autoimmune disease [12]. In addition to B1-like B
cells in humans [13], CD5 can also be expressed on transitional B cells
[14] and pre-naïve B cells [15]. To fully distinguish B1-like B cells from
these other cell subsets requires more in-depth flow cytometric analy-
sis. In another study, B cell subsets were analyzed from cryopreserved
peripheral blood mononuclear cells in healthy controls, adults with
long standing T1D, new onset T1D patients, and age-matched unaffect-
ed siblings of other T1D patients [16]. No statistically significant differ-
ences were observed in the percentages of any of the B cell subsets.
However, cryopreservation can induce significant changes in several
critical B cell subsetting markers, including CD27 and CD38 [17].

Deng and colleagues used fresh blood [18] and larger patient cohorts
to study circulating B lymphocyte subsets. They found that T1D patients
had decreased percentages of B10 B cells (which they defined as
CD19+CD5+CD1dhi) and follicular B cells (CD19+, CD23+, CD21-),
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Clinical and demographic features of study subjects. Data are represented as numbers.
Numbers are shownwith mean± standard deviation. Percentages are given in parenthe-
ses. Other=mixed race. T1D= type 1 diabetes. NA=not applicable. HbA1c=hemoglo-
bin A1C.

Controls (n = 16) T1D (n = 16)

Female (%) 15 (94) 9 (56)
Male (%) 1 (6) 7 (44)
Age (years) 31.75 ± 8.17 34.75 ± 13.13
Age at diagnosis (years) NA 15.50 ± 10.43
Duration of diabetes (years) NA 19.25 ± 10.99
Caucasian (%) 9 (56) 13 (81)
African American (%) 4 (25) 1 (6)
Asian (%) 2 (13) 1 (6)
Hispanic (%) 1 (6) 0 (0)
Other (%) 0 (0) 1 (6)
HbA1c (%) NA 7.10 ± 0.97
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and an increased percentage of marginal zone-like B cells (CD19+,
CD21+, CD23-) compared to healthy controls. They also extended
their analysis to patients with latent autoimmune diabetes and type 2
diabetes, and reported a negative association between the proportion
of B10 cells andHbA1c levels. However, some of themarkers used to de-
fine B cell subsets did not yield well-resolved populations. For example,
marginal zone B cells in humans are typically also defined with CD27
expression [19]; the use of CD21 and CD23, based largely upon an anal-
ogywithmurine B cell subsets (discussed in [20]), may not be sufficient.

Taken together, the previous analyses of circulating B cell subsets
provide an unclear and inconsistent picture. In some patient groups,
an increased frequency of CD5+ B cells is observed, but is unclear if
the CD5+ B cells represent an autoimmune-prone B1-like population
or enhanced production of early-stage B cells, as frequencies of CD5+
transitional cells are elevated in early childhood [21]. Other studies ei-
ther failed to show differences between T1D subjects and controls, or
showed differences, using limited subsetting schema [16,18]. Despite
their technical limitations, the preceding data point to potential correla-
tions between T1Dand alterations in the peripheral B cell compartment.
These data suggest that further evaluation of circulating B cell subsets is
warranted.

We therefore revisited the definition of peripheral B cell subsets in
T1D subjects using 11-color B cell subsetting panels that provide a
more nuanced evaluation of subsets and their maturation process. By
defining these subsetsmore thoroughly, we hope to gain better insights
into how B cell maturation is altered in T1D. We also included a basic
analysis of T lymphocytes and natural killer cells (NK) to determine if
any T1D subjects with B cell abnormalities also had unusual T cell or
NK cell phenotypes.

2. Materials and methods

2.1. Subjects

The Institutional Review Board at The University of Pennsylvania ap-
proved this study, and all subjects providedwritten informed consent to
participate. Subjects were recruited from the Rodebaugh Diabetes Cen-
ter and an outpatient clinic at the Hospital of the University of Pennsyl-
vania. A total of 16 adult patients with established T1D and 16
nondiabetic control subjects were included in the final analysis. The pa-
tients and controls were studied at a single study visit using the same
flow cytometry panels contemporaneously over a 10-month period.
The control group of subjects was previously also used as healthy con-
trols in two separate unrelated studies; one previous study evaluated
B cell subsets and antibody repertoire in patients with systemic lupus
erythematous [22], while the other previous study examined the vari-
ability of circulating lymphocytes in adults over time [23]. The diagnosis
for T1D was established by clinical characteristics including initial pre-
sentation, laboratory values such as reduced C-peptide and insulin-de-
pendence. The demographic and clinical characteristics of the patients
and controls are provided in Table 1.

2.2. Flow cytometry

Peripheral bloodwas collected in K2EDTA tubes and processedwith-
in 24 h of collection for flow cytometry using the techniques described
in [24]. Typically samples were drawn in the morning and processed
and stained on the same day for flow cytometry (a detailed procedure
for staining and flow cytometry is provided in [23]). Samples were ana-
lyzed by multicolor immunophenotyping using the antibody panels
listed in Supplementary Table S1. The same lot numbers of antibodies
used throughout the study. Data were acquired on an LSR flow
cytometer (BD Biosciences, Franklin Lakes, NJ) in the Penn Flow Cytom-
etry Shared Resource. Cytometer settings were standardized between
runs using cytometer set-up and tracking beads (BD CST) and CVs in
each of the detectors. PMT voltages were adjusted accordingly and
baselines were re-established with new bead lots. Total event counts
typically ranged from 500,000 to 1million per tube. Data were analyzed
with FlowJo v9.4.10 software (Treestar Inc., Ashland, OR). Gating
schemes for T cell, NK cell and B cell subsets are shown in Supplemen-
tary Figs. S1a and S1b. The B cell subsets were defined as: transitional
B cells, TR (CD27−, CD38++), mature naive B cells, MN (CD27−,
CD38+),mature activated B cells, MA (CD27+, CD38+), plasmablasts,
PB (CD27++, CD38++) and resting memory B cells, RM (CD27+,
CD38−). Individual B cell subsets were further evaluated for IgM,
CD10, CD138, CD21, CD23, CD95 (FasR), and CD267 (TACI) expression.
In parallel, blood samples were drawn and processed for absolute lym-
phocyte counts by Coulter counting (complete blood count with elec-
tronic differential) at the William Pepper laboratory in the Hospital of
the University of Pennsylvania.

2.3. Statistical analyses

The Mann Whitney test was used for the comparisons of values be-
tween groups for all data. To test for correlations between B cell subset
fractions and subject age, body mass index or length of disease, Spear-
man correlations were used. Significance for all statistical tests was set
at p ≤ 0.05.

3. Results

3.1. General analysis of lymphocyte subsets

Weevaluated thematuration of peripheral blood B cells aswell as NK
cells and CD4+ and CD8+ T cells in 16 adult patients with T1D and 16
non-diabetic control subjects using multicolor immunophenotyping.
Our analysis focused mainly on the B lymphocyte compartment with 4
out of the 6 tubes tailored to more B specific markers, in addition to a
T cell tube and a NK cell tube (panels are defined in Supplementary
Table S1). The percentages of different major lymphocyte subsets ana-
lyzed in controls and T1D subjects are included in Table 2. The B cell
analysis revealed no statistically significant differences in the percent-
ages of CD19+, CD10+ CD27-, transitional (TR), mature naïve (MN),
mature activated (MA), resting memory (RM) or plasmablast subsets
between controls and T1D subjects. However there was a reduced rela-
tive frequency of CD24++CD38++B cells in T1D; these cells may cor-
respond to a regulatory B cell population [25–27]. The analysis of CD3+
positive lymphocytes (T cells) demonstrated no statistically significant
differences in CD4+ or CD8+ subsets between controls and T1D sub-
jects. The non-B, non-T cell (CD3- CD19-) analysis revealed statistically
significant differences in CD16+ CD56- and CD16- CD56+ presumed
NK cells, with T1D subjects having higher percentages of both NK sub-
sets. Using absolute cell counts (Supplementary Table S2), controls had
a statistically significant increase in mature activated (MA; CD27+,
CD38+) B cells compared to T1D subjects. T1D subjects also had
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increased absolute counts of NK cells. Supplementary Table S3 provides
the percentage and absolute cell count data for all subsets evaluated in
all control subjects, and Supplementary Table S4 has the percentage
and absolute cell count data for all subsets evaluated in all T1D subjects.

3.2. Multiple phenotypic abnormalities in B cell subsets in T1D

Based upon previous studies and mouse models of T1D [2–11], we
hypothesized that T1D patients would harbor peripheral B cell subset
differences compared to healthy controls. Consistent with this hypoth-
esis, we observed several immunophenotypic differences between
T1D subjects and controls. To reveal these differences, we began by an-
alyzing the B cell subsets themselves and then characterizing additional
phenotypicmarkerswithin each of the subsets. CirculatingB cell subsets
in humans can be classified into TR, MN, MA, and RM subsets on the
basis of CD27 and CD38 expression (see Materials and methods and
Fig. 1a, and our previous use of this subsetting scheme to define B cell
subsets in humans [23]). Based upon patterns of autoreconstitution fol-
lowing rituximab therapy and/or myeloablative chemotherapy, we
know that TR cells are thefirst B cells to emigrate from the bonemarrow
following primary maturation, and enter the circulation [24,28–31].
Within the circulation, additional B cell subsets include MN, MA, RM,
plasmablasts and anergic-enriched cells [32,33]. Starting with these
subsets as a developmental framework, we next analyzed the progres-
sion of different B cell maturation antigens in each of the subsets. Fig.
1b shows the progression of TACI (CD267), FasR (CD95) and IgM ex-
pression with maturation from TR to RM B cell subsets. The proportion
of TACI and FasR-expressing cells increases with maturation. In parallel,
the proportion of IgM-expressing cells decreases, consistent with class
switching to different antibody heavy chain isotypes.

With this developmental framework, we used 11-color
immunophenotypic panels (Supplementary Table S1) to characterize
B cell maturation in detail in T1D vs. control subjects. Individual subsets
for peripheral blood B cells were further evaluated for TACI, FasR and
IgM expression. Several statistically significant differences were ob-
served among the B cell subsets between T1D subjects and control sub-
jects (summarized in Table 3). There was a decreased percentage of
Table 2
Lymphocyte subset fractions. Lymphoid subsets are given as mean percentages
± standard deviation of the parent population (denoted in bold font). The asterisk (*) in-
dicates a statistically significant difference between T1D and control subjects, p-value
b0.05 (MannWhitney test). Trans= transitional. MN=mature naïve. MA=mature ac-
tivated. RM = resting memory. PB = plasmablasts. Please see Fig. 1a for definitions of
Trans, MA, MN, RM and PB, based on CD38 vs. CD27 staining.

Subset Controls T1D p-Value

Lymphocytes
CD19+ 11.97 ± 5.93 10.09 ± 5.77 0.3962
CD3+ 71.53 ± 9.26 73.48 ± 7.97 0.596

B cells (CD19+)
CD10+ CD 27- 6.24 ± 4.00 5.43 ± 4.22 0.3659
Trans 5.25 ± 1.88 6.76 ± 3.12 0.2099
MN 68.68 ± 12.64 70.53 ± 9.49 0.7804
MA 18.82 ± 9.81 13.41 ± 5.66 0.0996
RM 4.41 ± 3.76 5.46 ± 6.05 0.8672
PB 0.61 ± 0.72 0.47 ± 0.28 0.6352
CD24+, CD38++ 2.67 ± 1.15 1.54 ± 0.85 *0.0045

T cells (CD3+)
CD4+ 62.39 ± 10.15 66.64 ± 8.60 0.4909
CD8+ 31.52 ± 9.29 28.94 ± 8.02 0.9932
CD4+/CD8+ 0.83 ± 0.89 0.48 ± 0.22 0.2425
CD4−/CD8- 5.26 ± 2.71 3.92 ± 1.00 0.2661

NK cells (CD3- CD19-)
CD56+ 38.53 ± 18.46 50.21 ± 18.19 0.0865
CD56- 41.54 ± 19.34 46.43 ± 17.94 0.423
CD16+/CD56+ 36.43 ± 18.43 38.54 ± 16.66 0.724
CD16+/CD56- 5.10 ± 2.33 7.89 ± 3.23 *0.0066
CD16−/CD56+ 2.10 ± 0.64 3.78 ± 1.59 *0.0007
FasR positive MN and MA B cells in T1D subjects versus controls (Fig.
2). Additionally, there was a decreased fraction of B cells that were dou-
ble positive for TACI and FasR in MN, MA and RM B cells in T1D subjects
(Fig. 2). This consistent pattern of decreased TACI and FasR positive cells
through different stages of peripheral B cell maturation is depicted with
a string plot in Fig. 3. Using 60% TACI+FasR+ as the bottom of the nor-
mal range in RM cells in Fig. 3, one can see that 7 out of the 16 T1D sub-
jects have values below 60%. Several of these same T1D subjects also
have lower TACI+FasR+ B cell fractions in the MA subset. In the RM
subset, there were also fewer class-switched (IgM-) TACI+ B cells in
seven T1D patients (Fig. S2 and Fig. S3). When CD27 vs. IgM were
used instead of CD27 vs. CD38 to subset the B cells, TACI and FasR differ-
ences between T1D and controls were similar, with most of the differ-
ences occurring in the mature B cell subsets (Fig. S4). When we
computed the mean fluorescence intensities (MFIs) among positively
staining cells in each B cell subset, there were no significant differences
in the MFIs in TACI or FasR between T1D subjects and controls (Supple-
mentary Table S5), suggesting that there are nomajor differences in cell
surface antigen levels.

The fractions of the B cell subsets that differed significantly between
T1D subjects and controls did not correlatewith age, length of disease or
the body mass index in the T1D subjects (Fig. S5). We wondered if a
composite score of B cell subset abnormality would be more likely to
correlate with these T1D subject characteristics. To test this idea we
took the ten B cell subsets (and sub-subsets) that differed significantly
between T1D subjects and controls and created a confidence interval
(+/− 2 S.D.) for each subset's percentage representation, based upon
the healthy control subject data (Table 3). Next, we arbitrarily assigned
one point for each subject for each value that was outside of these con-
fidence intervals. Then we summed the points for all ten subsets and
plotted the sum (score) for each T1D subject versus the age, length of
disease and body mass index (Fig. S6). No significant correlation was
observed for any of these comparisons. Based upon this analysis, we
conclude that age, length of disease and body mass index do not sepa-
rate T1D patients who have B cell subset abnormalities from those
who lack them.

4. Discussion

As B cells mature, they acquire surface TACI and FasR expression and
undergo class switching from IgM to other heavy chain isotypes. In our
flow cytometric analysis of circulating B cells, T1D subjects had fewer
TACI and/or FasR expressing cells than control subjects. Some mature
B cell subsets also had fewer class-switched B cells. These differences
are present in multiple mature B cell subsets, as summarized in Fig. 4.
Taking all of these findings together, we propose that peripheral B cell
maturation is disrupted in up to 50% of patients with longstanding T1D.

It is unclear why these B cell phenotypic abnormalities exist in T1D.
They may be due to a developmental abnormality early in B cell devel-
opment that persists through maturation, extending into the MN, MA
and RM pools. However, if it were a selection defect, one might expect
alterations in the B cell compartment size. Yet such alterations are min-
imal because absolute B cell counts, including the B cell subset counts,
for the most part do not differ significantly between T1D and controls.
Only the fractions of B cells expressing one or more of these maturation
antigens within individual B cell subsets is altered. It is noteworthy that
several of the significantly different B cell subsets demonstrated differ-
ences in FasR expression. In some subsets defined by both FasR and
TACI, the abnormality could be due to a dominant effect in FasR. Howev-
er, there are also FasR-independent differences, such as the reduced fre-
quency of TACI + IgM- resting memory B cells in T1D subjects
compared to controls. Given that there are changes in TACI, FasR and
IgM (and combinations thereof), we favor the idea that there is a
more general form of dysregulation as B cells mature in T1D.

Another non-mutually exclusive explanation for altered B cell sub-
sets in T1D is that at each developmental stage TACI and FasR are



Fig. 1. a. Peripheral B cell subset scheme. Subsets were analyzed using multicolor immunophenotyping with cell surface markers that are associated with different stages of B cell
development defined as: Transitional (Trans; IgM+, CD27-, CD38++, subset CD10+), Mature naive (MN; CD27-, CD38+, IgM+), Mature Activated (MA; CD27+, CD38+),
Plasmablasts (PB; CD27++, CD38++, CD20dim, CD138+), and Resting memory (RM; CD27+, CD38-). Number within each gate is % of parent (CD19+ lymphocytes). b. 4-color
immunophenotyping progression of Fas, TACI and IgM. B cell peripheral maturation progression show from more naïve Trans B cells to more mature RM B cells. Subsets were first
analyzed using multicolor immunophenotyping of cell surface markers that are associated with different stages of B cell development for Trans, MN, MA and RM cells. B cell subsets
are based upon CD38 vs. CD27 staining: Trans (CD27-, CD38++), MA (CD27+, CD38+), MN (CD27-, CD38+), RM (CD27+, CD38-), and PB (CD27++, CD38++). The subsets were
further studied with FasR, TACI, and IgM. The plots show increasing proportions of cells expressing FasR and TACI with maturation along with the decreased fractions of mature cells
expressing IgM. Trans = transitional. MN= mature naïve. MA = mature activated. RM= resting memory. FasR = CD95. TACI = CD 267.
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Table 3
Lymphocyte subset fractions that differ between T1D and control subjects. Data are repre-
sented asmean percentages± standard deviation.MN=mature naïve. MA=mature ac-
tivated. RM = resting memory. Please see Fig. 1a for definitions of MA, MN and RM.

Subset Controls T1D p-Value

MN CD95+ 5.80 ± 2.78 2.68 ± 1.92 0.0007
MN CD267-CD95+ 1.55 ± 1.26 0.46 ± 0.31 0.0009
MN CD267+CD95+ 4.25 ± 2.24 2.22 ± 1.78 0.0041
MA CD95+ 40.08 ± 11.20 30.93 ± 10.43 0.0352
MA CD267+CD95+ 36.35 ± 9.46 26.49 ± 9.63 0.0017
MA CD267- CD95- 4.73 ± 3.48 9.92 ± 8.03 0.0416
MA CD267- IgM+ 1.63 ± 1.55 4.86 ± 5.22 0.0132
RM CD267+CD95+ 76.01 ± 5.88 59.21 ± 19.91 0.0281
RM CD267+IgM- 87.71 ± 6.03 69.96 ± 21.98 0.0378
CD24+, CD38++ 2.67 ± 1.15 1.54 ± 0.85 0.0045
CD16+CD56- 5.10 ± 2.33 7.89 ± 3.23 0.0066
CD16-CD56+ 2.10 ± 0.64 3.78 ± 1.59 0.0007

340 P. Hanley et al. / Clinical Immunology 183 (2017) 336–343
differentially regulated in T1D compared to controls. However, T1D B
cells that expressed TACI and/or FasR did so with similar staining inten-
sity to B cells in control subjects. Nevertheless, there could be alterations
in signaling pathways that could contribute to increased B cell activa-
tion, clonal expansion or survival without directly affecting TACI or
FasR expression. It is also possible that the most robust differences in
thesemarkers or signaling pathways occurred in B cells that were coun-
ter-selected and are no longer available for analysis. Yet another possi-
bility is that there is an independent disruption in tolerance and
selection at multiple stages of peripheral B cell maturation in T1D.
This possibility is unappealing because it is not parsimonious, but indi-
viduals with autoimmune conditions may have several immunologic
perturbations that act in concert to yield a similar appearing end-state
of autoimmunity.

Genetic factors may contribute to abnormal B cell developmental in
T1D. An intriguing example is PTPN22, which is often referred to as
Fig. 2. B cell subsets for TACI and FasR. Shown are the percentages of TACI+, FasR+, or doubly
subjects. Please see Fig. 1a for B cell subset scheme and definitions ofMA,MNandRMbased on C
p-value that is b0.01 and (*) a p-value that is b0.05. T1D= type 1 diabetes. MN= mature na
Lymphocyte tyrosine phosphatase (Lyp). Healthy carriers of the
Lyp620W mutation harbor increased frequencies of autoimmune ma-
ture naïve B cells [34]. Mutations of PTPN22 such as Lyp620Ware highly
associated with several autoimmune diseases including T1D [35,36]. In
a previous study, subjects with Lyp620W exhibited blunted BCR signal-
ing in B cells and reduced apoptosis among transitional and anergic B
cells. It is tempting to speculate that altered BCR signaling contributes
to reduced expression of maturation and response-associated cell sur-
face antigens such as FasR and TACI.

While shared genetic factors such as PTPN22 can contribute to dis-
ease risk in T1D, the phenotypic abnormalities we observed may also
have functional consequences in and of themselves. The proportion of
FasR-expressing cells was decreased in some B cell subsets in T1D, and
also in combination with TACI in other B cell subsets. FasR is involved
in apoptosis [37] and has been shown to be critical for clonal deletion
in mice [38,39]. Yet paradoxically, in mice, FasR appears to contribute
to the development of insulitis as NOD mice that are deficient in either
Fas ligand (FasL) (gld/gld) or FasR (lpr/lpr) have much less severe dis-
ease [40]. FasL or FasR deficient mice appear to have an expansion of
IL-10 expressing CD5+ B cells with regulatory properties [41]. In
humans, the best-characterized disease with known Fas mutations is
autoimmune lymphoproliferative syndrome [42], in which polyreactive
and somatically mutated antibody-expressing memory B cells accumu-
late [37]. Given the complex landscape of potential central [22,43] and
peripheral B cell and T cell tolerance defects in T1D [4], and the com-
plexity of FasR itself, it is possible that alterations in FasR expression
or its regulation could impact both forms of tolerance.

Abnormal TACI signaling has also been linked to autoimmune dis-
ease [44–46], contributing to B cell activation abnormalities in patients
with common variable immunodeficiency [47,48]. NODmice exhibit in-
creased TACI expression compared to B6 mice and this increase is ac-
companied by plasma cell differentiation and class switching to IgG
and IgA [49]. In contrast, our analysis of human T1D subjects reveals a
positive TACI+ and FasR+ cells in the MN, MA and RM B cell subsets for control and T1D
D38 vs. CD27 staining. Three asterisks (***) indicate a p-value that is b0.001; (**) indicate a
ïve. MA = mature activated. RM = resting memory. TACI = CD267. FasR = CD95.



Fig. 3. String plot of B cells positive for both FasR and TACI. String plot depicting TACI and FasR expression in B cells. Columns indicate B cell subsets ordered from leastmature TR cells (left)
to more mature RM cells (right). Percentages of doubly positive TACI+ and FasR+ cells in the TR, MN, MA and RM B cell subsets for control and T1D subjects. Please see Fig. 1a for B cell
subset scheme and definitions of TR, MA, MN and RM based on CD38 vs. CD27 staining. One asterisk (*) indicates a statistically significant difference between this population in T1D
subjects compared to control subjects, p b 0.05. T1D = type 1 diabetes. TR = transitional. MN = mature naïve. MA = mature activated. RM = resting memory. TACI = CD267.
FasR = CD95.
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lower proportion of TACI-expressing mature B cells. The difference in
these results could reflect anatomic compartment differences (most of
the mouse work sampled splenic B cells) or differences between NOD
and human T1D. TACI can also be a negative regulator of immune re-
sponses, inhibiting B cell expansion [50–52]. TACI deficiency in mice
and humans can cause hypogammaglobulinemia, reduced immune re-
sponses to encapsulated bacteria and influenza [53–55], and, in some
cases, increased evidence of autoimmunity accompanied by lympho-
proliferation [51,56]. Curiously, humans with TACI deficiency, while
sometimes having immunodeficiency, can also mount robust antibody
responses [57]. It will be interesting to determine in future studies if
clonal expansion of memory B cells is increased in T1D. TACI also influ-
ences differentiation of B cells into plasma cells [53,57–59] and induces
IgG and IgA class switch recombination [60–62]. Varying and inconsis-
tent global alterations of IgG or IgA antibodies have been reported in
T1D patients [63–68]. T1D-associated autoantibodies that aremeasured
clinically are comprised of IgG, whereas IgA autoantibodies have not
been well described [69,70].

Our study has some limitations. The patients analyzed were older
and most had longstanding T1D. Therefore the abnormalities we
Fig. 4. Summary of peripheral B cell maturation abnormalities in T1D. Schematic highlighting
subsets are arranged from the least mature transitional cells (TR) on the left, followed by ma
and resting memory (RM) cells, on the right. B cell subsets are defined immunophenotypica
IgM) in T1D compared to controls are denoted by the red checked pattern. Antibodies (Ab) are
observe could be a consequence rather than a cause of their autoim-
mune disease. However, we did not observe a correlation between the
length of disease and the B cell subset abnormalities, either in isolation
or as a composite arbitrary score of overall B cell subset abnormality. In
the future it will be important to analyze new-onset or at-risk popula-
tions such as patients with one or multiple diabetes-related autoanti-
bodies to see if differences in FasR and TACI are also found in these
populations. The possibility that alterations in TACI or FasR expression
in B cells could serve as a predictive biomarker for disease development
would represent an important advance. Second, the sample size was
modest and T1D is a heterogeneous disease [71,72]. However, despite
the heterogeneity in T1D, the differences noted in our analysis
were seen in multiple B cell subsets and in multiple patients. Third,
our analysis was focused on the peripheral blood. The blood may
not accurately reflect the biology of the disease. In this connection,
a recent paper [73] describes an expansion of CD5+ FasLhi cells in
the spleens of human subjects with T1D, suggesting that in tissue-
based B cells (as in the NOD mouse studies [40,41]), FasR could be
a driver of autoimmunity by inhibiting regulatory B cells, rather
than having a suppressive role. This is very different from what we
peripheral B cell maturation in control subjects (top) and T1D subjects (bottom). B cell
ture naïve (MN) to the more mature subsets, mature activated (MA), plasmablasts (PB)
lly, as shown in Fig. 1a. Subsets with maturation antigen differences (TACI, FasR, and/or
in black and T1D-associated autoantibodies are colored in red.
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observe in the peripheral blood. The functional role of CD5+ B cells
in T1D warrants further investigation.

Despite decades of research, the most reliable predictive B cell
markers for T1D are diabetes-associated autoantibodies, which are evi-
dent after tolerance has been broken, and are not good markers of clin-
ical responses to immunologic interventions as they can vary
significantly, even without interventions [74–76]. While it is unclear
how the B cell maturation abnormalities that we have observed have
arisen in T1D, understanding their mechanistic underpinnings could
provide novel biomarkers for this disease [77]. Such biomarkers could
potentially offer earlier diagnostic markers of disease, help to better
stratify at-risk patients, and provide more specific ways to monitor re-
sponse to B cell targeted immunotherapies in clinical trials.

5. Conclusion

Subjects with longstanding T1D exhibited multiple
immunophenotypic abnormalities in circulating B cell subsets com-
pared to healthy controls. Abnormalities included decreased percent-
ages of FasR positive mature B cells, a decreased percentage of double-
expressing TACI and FasR positive mature B cells, and a decreased per-
centage of class-switched TACI positive B cells. These findings show
that some subjects with T1D have abnormal development in the TACI
and FasR activation markers as B cells mature, which may contribute
to the development or maintenance of autoimmunity. A more detailed
analysis of memory B cell subsets is warranted to better understand
the immunologic abnormalities in T1D.
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