

Software Technology Maturation and Software Security

by

Trina Kay Locklear

July 2019

Director of Thesis: Dr. Nasseh Tabrizi, PhD

Major Department: Software Engineering

Abstract: Software technology maturation, also referred to as technology transfer, is as difficult

as it is rare, mostly because of the time scale involved. Software maturation is defined as the

process of taking a piece of technology from conception to popularization. Frequently, software

engineers and developers tend to oversimplify the problems of technology transfer. They attribute

problems to management pressures that complicate the use of software-engineering practices.

However, a good understanding of the processes and problems is necessary to effectively tackle

the technology-transfer problem. Without that understanding, the transfer of inappropriate

technology to an organization without the maturity to understand and absorb it is likely to do harm,

rather than to bring benefits. This research aims to answer two research questions regarding the

technology maturation. Namely, is Redwine and Riddle’s “Software Technology Maturation”

study the accepted and gold standard within the software engineering discipline for assessing the

maturation of software technology? Secondly, can the software technology maturation study be

applied to other areas of software technology? The purpose of this research is to answer these

questions of interest which will serve as the basis for the second implementation; applying the

Redwine and Riddle criteria to the comparatively young discipline of software security. The

primary goal for the second implementation is to explore and extend the second research question

and demonstrate the maturity phases for the field of software security.

Software Technology Maturation and Software Security

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Trina Kay Locklear

July 2019

Copyright Trina Kay Locklear, 2019

Software Technology Maturation and Software Security

by

Trina Kay Locklear

APPROVED BY:

DIRECTOR OF THESIS: __

Nasseh Tabrizi, PhD

COMMITTEE MEMBER: ___

Mark Hills, PhD

COMMITTEE MEMBER: ___

Sergey Vilkomir, PhD

CHAIR OF DEPARTMENT ___

OF COMPUTER SCIENCE Venkat Gudivada, PhD

DEAN OF THE ___

GRADUATE SCHOOL Paul J. Gemperline, PhD

TABLE OF CONTENTS
LIST OF TABLES…………………………………………………………………………………………………...vi
LIST OF FIGURES…………………………………………………………………………………………………vii

TABLE OF CONTENTS …………………………………………………………………………………………...iv

CHAPTER 1 .. 1
INTRODUCTION .. 1

RESEARCH CONTRIBUTION ... 2
CHAPTER 2 .. 3
RELATED WORK ... 3

2.1 SOFTWARE TECHNOLOGY MATURATION MODEL ... 3
2.2 SOFTWARE SECURITY MATURATION MODEL RELATED WORK .. 8

CHAPTER 3 .. 10
METHODOLOGY ... 10

3.1 BACKGROUND: THE REDWINE AND RIDDLE STUDY .. 11
3.2 Four Types of Technologies .. 12
3.3 The Six Phases .. 12
3.4 Technology Observations .. 16
3.5 Factors of Maturation .. 17
3.6 Redwine and Riddle’s Key Conclusions .. 20

CHAPTER 4 .. 22
IMPLEMENTATON .. 22

4.1 FINDINGS .. 29
4.1.1 Date .. 29
4.1.2 Primary Treatment - 4 subcategories: Application, Direct Reference, Indirect Reference, and Error ... 30
4.1.3 Opinion Category - 2 subcategories: Affirm or Oppose ... 31
4.1.4 Primary Source - 2 Subcategories: Yes or No .. 32
4.1.5 Alternate Source ... 33
4.1.6 Applications of Redwine and Riddle’s Six Phase Criteria to Other Software Technologies 34

CHAPTER 5 .. 43
SOFTWARE SECURITY INTRODUCTION ... 43

5.1 BACKGROUND AND HISTORY: SOFTWARE SECURITY FOUNDATION AND ROOTS ... 43
CHAPTER 6 .. 48
SOFTWARE SECURITY METHODOLOGY .. 48
CHAPTER 7 .. 49
SOFTWARE SECURITY IMPLEMENTATION .. 49

7.1 REDWINE AND RIDDLE MATURATION PHASES FOR SOFTWARE SECURITY. .. 51
CHAPTER 8 .. 53
FUTURE WORK AND CONCLUSION .. 53

8.1 REDWINE AND RIDDLE’S SOFTWARE TECHNOLOGY MATURATION .. 53
8.2 SOFTWARE SECURITY MATURATION .. 55

BIBLIOGRAPHY ... 57

LIST OF TABLES

TABLE 1. ASSESSMENT AND EVALUATION OF ARTICLES THAT CITE REDWINE AND RIDDLE'S STUDY.

 ... 23
TABLE 2. MATURITY LEVEL OF STUDIES FOR MULTI-AGENT RESEARCH TECHNOLOGY [58]. 38
TABLE 3. CATEGORIZED SOFTWARE SECURITY PUBLICATIONS WITH HIGHEST CITATION COUNT. ... 49

 LIST OF FIGURES

FIGURE 1. BRETAM MODEL. THE Y-AXIS INDICATES ZERO KNOWLEDGE TO COMPLETE

KNOWLEDGE [105]. .. 5
FIGURE 2. ROLES AND PATTERNS IN HOW TECHNOLOGY IS ADOPTED [107]. 6
FIGURE 3. STEPS FROM IDEA TO STANDARD PRACTICE. PFLEEGER'S MODEL FOR SUCCESSFUL

TRANSFER [1]. .. 8
FIGURE 4. THE SIX PHASES OF THE SOFTWARE TECHNOLOGY MATURATION PROCESS [2]. 13
FIGURE 5. YEARLY MATURATION TIME POINTS [2]. .. 16
FIGURE 6. BAR CHART OF THE RESULTS FOR THE DATE CATEGORY. .. 30
FIGURE 7. PIE CHART OF THE RESULTS FOR THE PRIMARY TREATMENT CATEGORY. 31
FIGURE 8. PIE CHART OF THE RESULTS FOR THE OPINION CATEGORY. .. 32
FIGURE 9. PIE CHART OF THE RESULTS FOR THE PRIMARY CATEGORY. ... 33
FIGURE 10. PIE CHART OF THE RESULTS FOR THE ALTERNATE SOURCE CATEGORY. 34
FIGURE 11. GRAPHICAL DEPICTION OF THE ADVANCEMENT TO MATURITY OF SOFTWARE

ARCHITECTURE [12]. ... 35
FIGURE 12. A CORRELATION OF HUMAN DEVELOPMENT AND MATURATION PHASES [25]. 36
FIGURE 13. BAR GRAPH OF THE MATURITY MODEL IN ARCHITECTURE EVOLUTION AND SOFTWARE

EVOLVABILITY [51]. ... 37
FIGURE 14. MATURITY PHASE AND THE NUMBER OF ARTICLES IN SYSTEM-OF-SYSTEMS

TECHNOLOGY [35]. ... 38
FIGURE 15. THE 20-YEAR PROGRESSION TO MATURITY FOR ROBOTIC SYSTEMS [55]. 40
FIGURE 16. THE SELF-ADAPTION SYSTEMS PROGRESSION TO MATURITY [83]. 41
FIGURE 17. MATURITY OF SOFTWARE PROJECT MANAGEMENT [11]. .. 42

CHAPTER 1

INTRODUCTION

Software engineering was first introduced at a NATO conference in 1968. Since that time, it has

come a long way [1]. The same can be said for software technology maturation. Software

technology maturation, also referred to as technology transfer, is as difficult as it is rare, mostly

because of the time scale involved [6]. Defined as the process of taking a piece of technology

from conception to widespread use [2], technology maturation was the impetus for the planning of

the Department of Defense Software Initiative. It was also the cause of concern at the 1984 IEEE

Workshop on Software Technology Transfer. Furthermore, it was the motivation for the United

States Defense Departments 1984 establishment of the Software Engineering Institute (SEI) [3]

[4], because during this time, it was well-known that incipient software technology was not

coming to market fast enough to equal the expansive, complex and sizeable defense software

systems. Regardless of the bottlenecks in order to remain competitive, time-to-market was

imperative then and still is today [4]. Noted most recently in the emerging cybersecurity

community, the demands of software marketing tend to dominate most correctness concerns [5].

Software engineers and developers tend to oversimplify the problems of technology transfer. They

attribute problems to management pressures that complicate the use of software-engineering

practices. However, a good understanding of the processes and problems is necessary to

effectively tackle the technology-transfer problem [3]. Without that understanding, the transfer of

inappropriate technology to an organization without the maturity to understand and absorb it is

likely to do harm, rather than to bring benefits [7].

2

There has been limited success in technology transfer as some new ideas take hold immediately,

but more times than none, a novel, proven idea takes many years to become accepted as standard

practice [1]. Yet, it is this process of software maturation, to full propagation, that is at the heart

of this study. This research aims to answer three research questions regarding the technology

maturation. Namely,

• RQ1: Is Redwine and Riddle’s “Software Technology Maturation” study the accepted

gold standard within the software engineering discipline for assessing the maturation of

software technology?

• RQ2: Can the software technology maturation model be applied to current areas of

software technology?

The purpose of this research is to answer these questions of interest which will serve as the basis

for the second implementation; applying the Redwine and Riddle maturation phases to the

comparatively young discipline of software security.

Research Contribution

This study features two original research contributions: a current synthesis of literature concerning

the treatment of Redwine and Riddle’s proposed study of software technology maturity in peer

reviewed articles, as well as an application of Redwine and Riddle’s maturation phases to the

discipline of software security.

CHAPTER 2

RELATED WORK

2.1 Software Technology Maturation Model

The Redwine and Riddle maturation model of 1985 is one of the first [1] models describing the

software technology maturation process. Currently, “Software Technology Maturation” by

Redwine and Riddle is one of the most cited models regarding technology maturation as well

(ACM - 57 cite count, Google Scholar - 242 cite count). However, there are other works, with

slight variations, that also articulate maturation, which others refer to commonly as technology

transfer or technology infusion. Below are a few existing literatures, in chronological order, that

are related to software technology maturation.

• Raghavan, Chand (1989) - Raghavan and Chand refer to technology maturation or

transfer as diffusion, ‘the process of transferring technology from those who develop it to

those who apply it.’ They propose a less linear alternative life cycle than Redwine and

Riddle. Direct supports of the E. Rogers framework, Raghavan and Chand conduct and

informal case studies trying to specialize Roger’s framework. Their conclusions, detailed

as practitioner’s problems, and communication problems are similar to the findings of

Redwine and Riddles study regarding critical factors, inhibitors, and facilitators. (IEEE -

36 cite count, Google Scholar - 94 cite count) [3].

• Malcolm (1991) - In 1991, J. N. Buxton and R. Malcolm authored “Software Technology

Transfer.” in which a generic model for technology transfer is proposed. Unlike Redwine

and Riddle, who studied various technologies, Buxton and Malcolm demonstrate industrial

4

circumstances regarding the transfer process due to their stance that phases in an industrial

setting is different. However, like Redwine and Riddle’s inhibitors, Buxton and Malcolm

discuss in detail the barriers to innovation. Buxton and Malcolm’s phases, known as phases

in innovation, are research, evaluation of technical feasibility, evaluation of economic

feasibility, adoption, maturation, and old age. Their community roles of technology

transfer are supplier, gatekeeper, top management, middle management, and educators.

While Redwine and Riddle do mention various roles in the maturation process, Buxton and

Malcolm specify in-depth the duties and responsibilities of each role within the technology

transfer process. (IEEE - 6 cite count, Google Scholar - 32 cite count.) [7].

• Gaines (1991) - Brian Gaines proposes the BRETAM model. As shown in Figure 1 below,

his phases, which he refers to as learning curves are: breakthrough (inventor makes a

breakthrough), replicator (work is replicated at research institutions worldwide), empiricist

(empirical design rules), theory (model the basis of success and failure and develop

theories), automation (theoretical models make it possible to automate data gathering and

analysis with the manufacturing processes), maturity (after automation, focus is placed on

cost reduction and quality improvements in the mature technology). This model is used to

account for past events as well as forecast future trends. His framework is based on logical

progression of developments. (Google Scholar - 60 cite count) [105].

5

Figure 1. BRETAM model. The y-axis indicates zero knowledge to complete knowledge [105].

• Zelkowitz (1995) - Zelkowitz evaluated engineering technology transfer at the National

Aeronautics and Space Administration, NASA. In contrast to Redwine and Riddle,

Zelkowitz’s approach was to focus on specific problems faced by NASA and how new

technologies addressed these issues. Also, Zelkowitz was clear to distinguish between

technology transfer and infusion. For Zelkowitz, technology transfer was the insertion of

new technology into an organization previously performing assignments and infusion was

incorporation of new technology that had previously used nothing similar to the new

technology. Zelkowitz also makes the distinction between a technology producer versus a

consumer. Zelkowitz identifies 5 models to encourage transfer of technology: people-

mover model, communication model, on-the-shelf model, vendor model and finally a

rule model. Like Redwine and Riddle, Zelkowitz describes mechanisms that encourage

technology transfer but in NASA. (Google Scholar - 12 cite count) [106].

6

• Rogers (1995) - Sociologist and management scientists have studied technology transfer

and diffusion extensively and Everett Roger’s framework is their primary literature of

study. His framework has had great success and was widely accepted because it

successfully predicted and explained the diffusion process for a broad variety of

innovations. Unlike Redwine and Riddle focus of technologies, Rogers’ study of

technology transfer is based extensively on the study of agricultural innovations and

organizations; including those not related to software. In Figure 2, Rogers phases or

elements are innovation, the communication process, the adoption process and the social

system. Rogers notes distinct patterns and speed with how technology is adopted. His

distinctions are innovators, early adopters, early majority, late majority and laggards with

the first adaptors being the innovators.

Figure 2. Roles and patterns in how technology is adopted [107].

7

Rogers explains in depth various characteristics of each grouping. Rogers’ model

correlates loosely to Zelkowitz in that different adopters use different styles. However,

several of Rogers guidelines overlap with Redwine and Riddles inhibitors and facilitators.

(Google Scholar - 20 cite count) [107].

• Pfleeger (1999) - In Pfleeger’s model, she uses the terms, technology transfer and

technology infusion interchangeably unlike Zelkowitz who distinguishes technology

transfer from infusion. Pfleeger’s work focuses on suggesting ways to help practitioners

and researchers understand how to shorten the time between innovation and effective.

Pfleeger is very precise, a noted criticism of Redwine and Riddle, with her definition of a

technology. Pfleeger initially highlights that Redwine and Riddle included processes,

standards and products as technology while she defines technology as any method,

technique, tool, procedure or paradigm used in software development or maintenance.

Pfleeger utilizes Redwine and Riddles model, along with Rogers and Zelkowitz for how

successful technology transfer might be attempted by development organizations by

identifying five key activities. In Figure 3, Pfleeger’s first activity is technology creation.

8

Figure 3. Steps from idea to standard practice. Pfleeger's model for successful transfer [1].

After the technology is created and found, the next step is preliminary investigation to

determine whether there is evidence that a technology will work in practice. Evidenced it

can work, the next step is more thorough evaluation of the body of evidence. With

compelling evidence combined with commercially viable support the final step is

promoting adoption with those who are likely to benefit from using the technology. (ACM

- 35 cite count, Google Scholar - 139 cite count) [1].

2.2 Software Security Maturation Model Related Work

There does exist two studies that feature an in-depth study of the maturity of a software technology.

These studies are previously discussed in the applications section from the previous

9

implementation. In 2006, Shaw and Clements research and complete a maturation model for the

discipline of software architecture. Their maturation model for software architecture demonstrates

full maturity as well as an addition of a foundations phase [12]. The second maturation model is

featured in a 2016 article surrounding human-centric design of information systems. In “The

Impact of Human-Centric Design on the Adoption of Information Systems: A Case Study of the

Spreadsheet,” Scaffidi does not provide a graphical depiction of his case study of the spreadsheet.

However, Scaffidi does discuss at depth numerous acme and milestones that signify the

progression through phases to maturation. Scaffidi demonstrates each maturation point as

illustrated in the original Redwine and Riddle study but the spreadsheet technology [81]. For

example, for Basic Research, Scaffidi begins this phase with the highlighting Richard Mattessich

as the inventor of the spreadsheet tool for budgetary resources. Furthermore, for the Enhancement

and Exploration phase, Scaffidi points out that the first customer-oriented spreadsheet was created

by Software Arts in 1979 which signifies the ‘usable capability’ feature applicable to that phase.

Lastly, to show propagation, Scaffidi discusses patents as well as the 1989 statistic that 10% of

American that used computers at work also used spreadsheets [81]. The third maturation model

details the progression to maturity of the field of self-adaption from a 2017 publication, “Software

Engineering of Self-Adaptive Systems: An Organised Tour and Future Challenges,” D. Weyns

implores a familiar graphical representation similar to the Shaw and Clements in the following

diagram. For a diagram, please refer to the application section of the previous implementation.

CHAPTER 3

METHODOLOGY

The first research activity was to search and review the primary focus of this review, “Software

Technology Maturation” by Redwine and Riddle. The second research activity was an intentional

decision to include only those articles that cited the Redwine and Riddle study. There were two

reasons for this approach. First, this approach renders the research repeatable [8]. Secondly, this

approach features an unbiased [8] population of articles that cite the Redwine and Riddle maturity

model and therefore provides a viewpoint of the authors utilization of the Redwine and Riddle

model.

The most effective and efficient approach to researching the reputation of a model within the

software engineering community is to research others treatment of the model. The inclusion

criteria are a reference and citation to Redwine and Riddle’s, “Software Technology Maturation”

study. The exclusion criteria are no reference and no citation to Redwine and Riddle’s, “Software

Technology Maturation.” It should be noted that some articles were not accessible or were

duplicates and thus were not evaluated. However, these articles were included but were

categorized as Errors. The searched databases include the ACM DL, IEEE Explore, Elsevier,

Springer, Google Scholar, and ProQuest. Content published in scholarly journals, books, articles,

workshops, and conference proceedings were included. Dissertations and thesis publications as

well as self-published works were not included in this study.

11

3.1 Background: The Redwine and Riddle Study

In order to understand how others utilize and view Redwine and Riddle’s maturity model, a

thorough understanding of the original publication on software technology maturation seems

logically consistent. In 1985, two ‘well-known’ computer scientists, Samuel T. Redwine Jr. at the

Government’s Institute for Defense Analysis and William E. Riddle at Software Design and

Analysis, Inc., was curious about the length of time it took for newly formed ideas to become

commonplace. Out of their ‘curiosity’ through ‘rigorous’ analysis, Redwine and Riddle published

“Software Technology Maturation” [9]. The study researches the case studies of 17 software

technologies in order to uncover similar characteristics of the maturation process. In the study,

Redwine and Riddle define technology maturation as the process of taking a part of technology

from conception to widespread use among professionals. Notably, the study prefaces that the

amount of time necessary for technology maturation was longer than initially presumed. The

primary interest of the report is in learning what could be done to speed up the maturation process

in regard to attaining widespread use. (This aspect is probably due to their work with the defense

arena and the issues previously stated surrounding inadequate technology propagation at the time.)

The main subject of the study is maturation facilitators and inhibitors.

In the article, Redwine and Riddle describe technology transition as certain actions taken by a

technology improvement program that move a part of technology to commercial use. These

actions consist of packaging, intentional inclusion into influential arenas, and marketing and

distribution. It is important to note that Redwine and Riddle differentiate technology maturation

as the overarching process of technology development followed by technology transition.

12

3.2 Four Types of Technologies

To assist them in the study of technology maturation, Redwine and Riddle review and analyze

fourteen case studies performed by experts in their respective fields. The case studies are divided

into four types and feature the following technologies:

• Major Technology Areas - knowledge-based systems, metrics, software engineering

principles, compiler construction and formal verification.

• Technology Concepts - abstract data types (ADT) and structured programming.

• Methodology Technology - DOD-STD-SDS (Department of Defense Software

Development Standard) - DOD software lifecycle model; AFR (Air Force Regulation) 800-

14, software development/acquisition standards, and the SCR (Navy’s Software Cost

Reduction program) methodology.

• Consolidated Technology - cost models, automated software environments, Unix,

Smalltalk-80, Software Requirements Engineering Methodology (SREM).

3.3 The Six Phases

In order to compare the case studies, the authors create a basic ordinal scale. As a key feature of

the study, the scale describes the six main phases of software technology maturation by stationing

time points that differentiate progression between the phases. The six phases are: Basic Research,

Concept Formulation, Development and Extension, Internal Enhancement and Exploration,

External Enhancement and Exploration, and Popularization. The authors make note that

technology transition begins at time phase 2, Internal Enhancement and Exploration, which

impacts technology maturation. The chart shown in Figure 4 is the depiction of the forward

progressional ordinal scale of phases and the milestones and features between each phase.

13

Figure 4. The six phases of the software technology maturation process [2].

• Phase 1 is Basic Research. This phase which includes the investigation of ideas and

concepts. The technology moves from Phase 1 to Phase 2 when there appears to be a key

idea foundational to the technology or a clear statement of the problem.

• Phase 2 is Concept Formulation. Phase 2 is signified by an informal discussion of ideas or

publication of a solution to portions of the problem. As stated previously, technology

transition begins in Phase 2. Progression to Phase 3 begins with a clear solution presented

in a paper or a demonstration.

14

• Phase 3 is Development and Extension. This phase involves a trial or initial use of the

technology or clarification of the main primary ideas. Phase 3 may also include an

expansion of the basic approach to an overall solution as a whole. A clear indication of

advancement to Phase 4 is when operational functionalities are made available.

• Phase 4 is entitled Internal Enhancement and Exploration. Five activities indicate Phase 4.

The approach to the solution is expanded into other domains, the technology is used to

solve real world problems, the technology is stabilized and parted, training materials are

created, and original results show value.

• Phase 5 is approached when the technology is used outside of the development group.

Phase 5 is External Enhancement and Exploration. Phase five constitutes the same

activities are the previous phase but by a broader group. If the technology demonstrates

considerable evidence of value and validity, the technology is approaching the final phase.

• Phase 6 is Popularization. The technology looks production-quality, is commercialized

and marketed, or the technology is widespread to a group of users. When dissemination

has reached 40% and 70% of the users within the community these percentages represent

milestones of the final phase.

The second key feature of the Redwine and Riddle study are time points. Each time a technology

reached one of the six phases, Redwine and Riddle listed the year and the correlating event or

activity. Figure 5 shows these significant time points for each technology, by phase, year, and

event or activity.

15

16

Figure 5. Yearly maturation time points [2].

Software Engineering, Compiler Construction, Structural Programming, AFR 800-14, Smalltalk-

80 and Unix are all fully mature. Each technology progress to the final phase of popularization.

Software Engineering achieved Phase 6 in 1983, Compiler Construction in 1975, Structural

Programming in 1976, AFR 80-14 in 1975, Smalltalk-80 in 1983 and Unix in 1982. At the time

of this publication in 1985, Verification, Abstract Data Types (ADT), Methodology, SREM and

Cost Models were in Phase 5, External Enhancement and Exploration, of the maturity model.

Knowledge Based Systems were the only technology in Phase 4. Metrics and DOD-STD-SOS

were in Phase 3, Development and Extension.

3.4 Technology Observations

17

The study’s general observations were that time varied in how long it took for a technology to

mature from the second phase of Concept Formulation to the last phase of Popularization. Of the

four types of technologies, the authors noted the following observations:

• Major Technology Area - maturation needed an extensive amount of time for two reasons.

Due to this type’s vast nature, specific parts of technology are wanted before a general

advancement can occur in the area as a whole. Secondly, also, several major technologies

were influenced by external forces.

• Technology Concepts - maturation occurred rather rapidly but not beyond the technical

communities as fast as other technology based on them. This is anticipated as ideas can

mature pretty quickly but it requires a specific technique, possibly supported by tools, for

the majority of the technical community to use them.

• Methodology Technology - because this type concerns rules and guidelines governing

other technology for the creation and evolution of software systems, several events must

occur before this type can transition into popularization or widespread use. The reasons

being that the core technology must first mature and secondly, the actual rules and

guidelines must be developed.

• Consolidated Technology - this type is similar to the previous. Many things must come to

fruition before a technology can fully mature. The Enhancement and Exploration phases

for this type take longer than the Methodology Technology type probably because of the

need to construct the adhesive that connects the pieces of technology together.

3.5 Factors of Maturation

18

Critical Factors
In the study, Redwine and Riddle admit that there are not enough case studies to determine the

nominal case for technology maturation. Furthermore, the authors state it would be difficult if not

impossible to predict the maturation time line for a technology by researching the time lines of

other technologies. However, the case studies do suggest there are factors that can obstruct or

assist the maturation of technology. In some cases, failure was shown when the following factors

were not present. These factors are known as critical factors. These factors are critically necessary

and trying to move toward widespread use is virtually pointless unless these factors are present.

• Conceptual Integrity - the technology must be thoroughly developed.

• Clear Recognition of Need - the technology must fulfil a clearly defined and well-

recognized need.

• Tuneability - the technology must be pliable to the specific practices of a variety of user

groups.

• Prior Positive Experience - readily available reports of previously positive experiences.

• Management Commitment - as stated, management must be committed and actively work

to the introduction of new technology.

• Training - training on how to use the technology must be provided and the training should

include numerous examples.

Inhibiting Factors
There are also factors that can obstruct or inhibit the technology maturation process. These factors

slow down the maturation process versus forcing the process to a total standstill. These factors

are:

• Internal Transfer - additional time to spread a technology throughout an organization.

19

• High Cost - the monetary or time costs to comprehend the technology must be reasonable.

• Contracting Disincentives - acquisition and contracting practices can slow the propagation

of technology.

• Psychological Hurdles - many practitioners feel threatened by changing processes they

have been capably performing for years.

• Easily Modified Technology - if a technology is easily modified, its introduction will be

slowed down because it will be altered.

Facilitating Factors
Technology will propagate quickly when the previous inhibiting factors are nonexistent.

Conversely, there are several factors that can accelerate the spread of technology. These factors

are:

• Prior Success - a good history of success for the technology’s creators will make it easy to

sell and others will seek out a technology when they recognize an expert’s new

developments.

• Incentives - contracts can stipulate that a new technology be used.

• Technically Astute Managers - adoption of a new technology moved quicker when

decision-makers were knowledgeable in modern software technology.

• Readily Available Help - well-versed staff can assist in explaining and selling the new

technology.

• Latent Demand - if there is a recognizable crucial need, then the technology adoption is

virtually instantaneous.

20

• Simplicity - although technology can be complex, adoption will move more surely and

smoothly if the moments of it that are available for use easy to understand and minimally

disruptive in practice.

• Incremental Extensions to Current Technology - technology that is an incremental

enhancement of previous technology will be adopted fairly quickly.

3.6 Redwine and Riddle’s Key Conclusions

In the study, Redwine and Riddle demonstrate:

• that it takes on the order of 15 to 20 years to mature a technology to widespread use to the

technical community as a whole;

• the lengthiest scenario required 23 years to go from basic research to popularization;

• the shortest scenario required 11 years;

• the overall average 17 years;

• it took 7.5 years to go from a developed technology to popularization [10]. The study also

suggested that the least amount of time needed for Phase 4, Internal Enhancement and

Exploration was 3 years, and the average was between the low of 3.8 years and the high of

5 years.

Technology will not transition into widespread use without a recognized need, receptive

community, believable demonstrations of cost/benefit, clearly defined attention and support, and

an articulate advocate. The best process for technology transition is incremental expansion in

small steps with trial use and the careful collecting of empirical evidence regarding the

technology’s value. Technology transition is inhibited by making small, simple mistakes that were

corrected once identified. Case studies also demonstrated that technology transition is assisted by

21

actions that improve the context in which the technology is taking place. There are several factors

that can affect the speed at which technology matures and disseminates. Regardless of not

providing the basic context or making mistakes, technology will take a lengthy time to mature.

The degree to which the maturation can be accelerated appears limited, but there are numerous

actions related to context that can be used to speed up technology maturation.

CHAPTER 4

IMPLEMENTATON

The articles that cite “Software Technology Maturation” by Redwine and Riddle are listed in Table

1. Each article was reviewed and evaluated based upon a series of questions. These questions

served as the points of interest. The five points of interest make up the five main categories. The

five categories are: Year (of publication), Primary Category, Opinion, Primary Source, and

Alternative Source. Year (of publication) is tracked to determine the relevance of the study.

Publication dates signify when the model is cited and incorporated into publications among

authors. Primary Category demonstrates how the model was utilized in the article. Primary

Category is divided into four subcategories: Application, Direct Reference, Indirect Reference, or

Error. The Opinion category tracks the treatment of the model by the author in the article. The

Primary Source category demonstrates how significant the model is in the article. The Alternative

Source category demonstrates if the author proposed an alternative model. Each article was

reviewed and categorized as shown in the following table. The results of each articles evaluation

are summarized into the following table.

Number - The ID number of the article.

Year - Publication date of the article.

Hypertext - Link to article.

Title - Tile of the article.

Primary Treatment - How is the Redwine and Riddle study used in the article? (Options are:)

23

• App - Applied the Redwine and Riddle model to a technology.

• Direct - Direct reference to the authors name or the study’s content.

• Indirect - Indirect reference to the study’s content.

• Error - Error regarding the article. The article was a duplicate or is not accessible.

Opinion - Did the author(s) affirm or oppose the Redwine and Riddle study? (Options are:)

• Affirm - Affirmed the study directly or indirectly regarding technology maturation.

• Oppose - Opposed the study directly or indirectly regarding technology maturation.

Primary Source - Did the author(s) use the Redwine and Riddle study as the primary source

regarding technology maturation? (Options are:)

• Yes

• No

Alternative Source - Did the author(s) utilize an alternative process for technology maturation?

(Options are:)

• Yes

• No

Table 1. Assessment and evaluation of articles that cite Redwine and Riddle's study.

Number Year Title Primary Treatment Opinion Primary

Source

Alternative

Source

 App Direct Indirec

t

Error Affir

m

Oppose Yes No Yes No

1 1989 “Editor’s Corner: How
About Next Year? A
Look at a Study of
Technology Maturation”
[9]

 • • • •

2 2019 “Software Project
Management in High
Maturity: Systematic
Literature Mapping” [11]

• • • • •

3 2006 “The Golden Age of
Software Architecture”
[12]

• • • • •

24

4 2000 “Marketing Technology
to Software Practitioners”
[13[

 • •

•
 • •

5 2005 “An Empirical Study of
Programming Language
Trends” [14]

 • • • •

6 2000 “Software Engineering:
A Roadmap” [15]

 • • • •

7 2014 “Ready-Set-Transfer:
Exploring the Technology
Transfer Readiness of
Academic Research
Projects” [16]

 • • • •

8 2002 “Software Engineering.
Technology Watch” [17]

 • • • •

9 2006 “Intelligent Decision
Support for Road
Mapping a Technology
Transfer Case Study with
Seimens Corporate
Technology” [18]

 • • • •

10 1987 “An Experiment in
Technology Transfer:
PAISLey Specification of
Requirements for an
Undersea Lightwave
Cable System” [19]

 • • • •

11 2018 “From Craft to Science:
The Road Ahead for
Empirical Software
Engineering Research”
[20]

 • • •
•

12 2014 “Bridging the Gap: SE
Technology Transfer into
Practice: Study Design
and Preliminary Results”
[21]

 • • • •

13 1994 “Key Lessons in
Achieving Widespread
Inspection Use” [22]

 • • • •

14 2006 “Co-Evolutionary
Service-Oriented Model
of Technology Transfer in
Software Engineering”
[23]

 • • • •

15 1989 “Diffusing Software
Engineering Methods” [3]

 • • • •

16 2015 “Patterns of Cooperative
Technology Development
and Transfer for
Engineering in the Large”
[24]

 • • • •

17 2012 “Infusing Scientific
Foundations into
Enterprise
Interoperability” [25]

• • • • •

18 2003 “Experimental Validation
of New Software
Technology” [26]

•

No Access

19 2006 “Software Architecture at
a Large Financial Firm”
[27]

 • • • •

20 2002 “Requirements
Researchers: Do We
Practice What We
Preach?” [28]

 • • • •

25

21 2018 “Generality vs.
Reusability in
Architecture-Based Self-
Adaption: The Case for
Self-Adaptive
Microservices” [29]

 • • • •

22 2009 “Experiences in
Developing and Applying
a Software Engineering
Testbed” [30]

 • • • •

23 2010 “Confronting the Myth of
Rapid Obsolescence in
Computing Research”
[31]

 • • • •

24 2003 “Writing Good Software
Engineering Research
Papers: Minitutorial”
[32]

 • • • •

25 1990 “Lessons from the Design
of the Eiffel Libraries”
[33]

 • • • •

26 1986 “Software Engineering:
An Emerging Discipline”
[34]

•

No Access

27 2013 “A Systematic Review of
System-of-Systems
Architecture Research”
[35]

• • • • •

28 2002 “Software Engineering
Technology Watch” [36]

•

Duplicate

29 2011 “A Quantitative Model
for Software Engineering
Trends” [37]

 • • • •

30 2007 “An Empirical Study of
Slice-Based Cohesion and
Coupling Metrics” [38]

 • • • •

31 2017 “Programming Language
Adoption as an
Epidemiological
Phenomenon” [39]

 • • • •

32 2002 “Software Engineering
Technology Watch” [40]

•

Duplicate

33 2013 “Empirical Studies for
Innovation
Dissemination: Ten
Years of Experience” [41]

 • • • •

34 1986 “The Department of
Defense Software
Initiative - A Status
Report” [42]

 • • • •

35 2003 “Influences on the Design
of Exception Handling
ACM SIGSOFT Project
on the Impact of Software
Engineering Research on
Programming Language
Design” [43]

 • •

 • •

36 2003 “Influences on the Design
of Exception Handling
ACM SIGSOFT Project
on the Impact of Software

•

Duplicate

26

Engineering Research on
Programming Language
Design” [44]

37 2003 “External Experiments:
A Workable Paradigm of
Collaboration Between
Industry and Academia”
[45]

•

No Access

38 2009 “Software Engineering
Technology Innovation -
Turning Research Results
into Industrial Success”
[46]

 • • • •

39 2007 “Debugging Aspect-
Enabled Programs” [47]

 • • • •

40 2002 “Business Process
Reengineering and
Workflow Automation:
A Technology Transfer
Experience” [48]

 • • • •

41 2009 “Evaluating Legacy
System Migration
Technologies Through
Empirical Studies” [49]

 • • • •

42 2012 “An Industrial Case Study
of Performance and Cost
Design Space
Exploration” [50]

 • • • • •

43 2012 “A Systematic Review of
Software Architecture
Evolution Research” [51]

• • • • •

44 2011 “Impact of Software
Resource Estimation
Research on Practice: A
Preliminary Report on
Achievements, Synergies,
and Challenges” [52]

 • • • •

45 2016 “How Do Free/Open
Source Developers Pick
Their Tools? A Delphi
Study of the Debian
Project” [53]

 • • • •

46 2008 “Developing Legacy
System Migration
Methods and Tools for
Technology Transfer”
[54]

•

No Access

47 2016 “Software Architecture
for Robotic Systems” [55]

• • • • •

48 2001 “The Coming-of-Age of
Software Architecture
Research” [56]

• • • • •

49 2011 “A Method for Evaluating
Rigor and Industrial
Relevance of Technology
Evaluations” [57]

 • • • •

50 2015 “A Systematic Review of
Argumentation
Techniques for Multi-
Agent Systems Research”
[58]

• • • • •

51 2008 “Design Rationale:
Researching Under
Uncertainty”[59]

 • • • •

52 1988 “Mapping the Design
Information
Representation Terrain”
[60]

 • • • •

27

53 2005 “The Impact of Software
Engineering Research on
Modern Programming
Languages” [61]

 • • • •

54 2007 “The Impact of Research
on Middleware
Technology” [62]

 • • • •

55 2007 “The Impact of Research
on Middleware
Technology” [63]

•

Duplicate

56 2008 “The Impact of Research
on the Development of
Middleware Technology”
[64]

•

Duplicate

57 2007 “Research Directions in
Requirements
Engineering” [65]

 • • • •

58 2009 “Routinizing the offshore
choice: applying
diffusion of innovation to
the case of EDS” [66]

 • • • •

59 2018 “Mapping the values of
IoT” [67]

 • • • •

60 2009 “Technology Transfer
decision support in
requirements engineering
research: a systematic
review of REj” [68]

 • • • •

61 2011 “An Analysis and Survey
of the Development of
Mutation Testing” [69]

 • • • •

62 1999 “Understanding and
improving technology
transfer in software
engineering” [1]

 • • • •

63 2004 “Capture-recapture in
software inspections after
10 years research-theory
evaluation and
application” [70]

 • • • •

64 2004 “A framework for
classifying and
comparing software
architecture evaluation
methods” [71]

 • • • •

65 2002 “What makes good
research in software
engineering?” [72]

 • • • •

66

1997 “Maintenance of COTS-
intensive software
systems” [73]

•

No Access

67 2005 “Design Considerations
for Information Systems
to Support Critical
Infrastructure
Management” [74]

 • • • •

68 1988 “The role of measurement
in software engineering”
[75]

 • • • •

69 1994 “Inspecting module
interface specifications”
[76]

•

No Access

70 1996 “Software engineering
technology infusion
within NASA” [77]

 • • • •

28

71 2018 “Continuous and
collaborative technology
transfer: Software
engineering research with
real-time industry
impact” [78]

 • • • •

72 2003 “Can We Influence
Students’ Attitudes About
Inspections? Can We
Measure a Change in
Attitude?” [79]

 • • • •

73 2000 “The impact: project:
determining the impact of
software engineering
research upon practice” -
Impact Project
Whitepaper [80]

 • N/A N/A • •

74 2016 “The impact of human-
centric design on the
adoption of information
systems: A case study of
the spreadsheet” [81]

• • • • •

75 1995 “Software Engineering
Technology Transfer:
Understanding the
Process” [82]

 • • • •

76 2017 “Engineering of self-
adaptive systems: an
organized tour” [83]

• • • • •

77 2008 “Improving Situational
Ontologies to Support
Adaptive Crisis
Management Knowledge
Architecture” [84]

 • • • •

78 1995 “Bottlenecks in the
Transfer of Software
Engineering Technology:
Lessons Learned from a
Consortium Failure” [85]

 • • • •

79 2016 “Technology Transfer
Concepts” [86]

 • • • •

80 2017 “Center for High Integrity
Software System
Assurance” [87]

 • • • •

81 2010 “CS in CSCL” [88] • • • •

82 2003 “PRISM: A Systematic
Approach to Planning
Technology Transfer
Campaigns” [89]

 • • • •

83 2008 Software engineering:
principles and practice
[90]

 • • • •

84 2011 “Considerations for a
Generalized Reuse
Framework for System
Development” [91]

 • • • •

85

2012 “Systems Engineering
Perspectives on
Technology Readiness
Assessments in Software-
Intensive System
Development” [92]

•

No Access

86 2003 “Experimental Validation
of New Software
Technology” [93]

•

No Access

87 2013 “What Industry Needs
from Architectural

 • • • •

29

Languages: A Survey”
[94]

88

2007 “Monitoring knowledge:
A text-based approach”
[95]

•

No Access

89 2013 “On The Scientific
Maturity of Digital
Forensics Research” [96]

 • • • •

90

2018 “Approaches, success
factors, and barriers for
technology transfer in
software engineering -
Results of a systematic
literature review” [97]

•

No Access

91 1996 “Formal Methods Are a
Surrogate for a More
Serious Software
Concern” [98]

 • • • •

92

1995 “Advances in Computers
- Case Adoption: A
Process, Not an Event”
[99]

•

No Access

.

4.1 Findings
After a thorough search, the total number of publications which cite the Redwine and Riddle study

are 92. In total, 76 articles were reviewed and evaluated. The results for each category are

discussed and depicted by a graphical representation to demonstrate the outcomes.

4.1.1 Date

In Figure 6, from 1986 - 1989 there were 6 articles. From 1990 - 1999 there were 7 articles. From

2000 - 2009 there were 33 articles. From 2010 - 2019 there were 30 articles.

30

Figure 6. Bar chart of the results for the Date category.

4.1.2 Primary Treatment - 4 subcategories: Application, Direct Reference,
Indirect Reference, and Error

During the evaluation process, 16 of the articles are categorized as an Error. Of those nine Error

articles, 5 are specified as Duplicate. In several instances, the same article was published in

different publications. These articles are categorized as Error Duplicate. The remaining 11 articles

are not accessible. These articles are categorized as Error - No Access. In Figure 7, these articles

account for approximately 17% (17.39%) of the total number of articles. Error articles are numbers

18, 26, 28, 32, 36, 37, 46, 55, 56, 66, 69, 85, 86, 88, 90, 92.

There 10 articles are categorized as an Application. The Application subcategory refer to those

articles which apply the Redwine and Riddle phase criteria to a specific software technology. In

Figure 7, Application articles are significant as these articles demonstrate the findings for the

second implementation in this study. These articles account for approximately 13% (13.15%) of

the total number of articles. All Application articles are also Direct Reference articles. Application

articles are numbers 2, 3, 17, 27, 43, 47, 48, 50, 74, and 76.

31

As shown in Figure 7 below, Direct Reference is the largest subcategory of the Primary Treatment

category. The Direct Reference subcategory are the articles which directly cite the authors names

or the study’s contents. There are 65 Direct Reference articles. In Figure 7, Direct Reference

articles account for approximately 86% (85.52%) of the total number of articles. Direct Reference

articles are numbers 1 - 4, 7 - 12, 14 - 17, 21 - 23, 25, 27, 29, 31, 33 - 35, 38, 40 - 41, 43, 45, 47 -

54, 57 - 62, 64 - 65, 67 - 68, 70 - 84, 87, 89, and 91.

The Indirect Reference subcategory represent the articles which indirectly cite the study’s contents.

In Figure 7, there are 11 indirect articles. These articles account for approximately 14% (14.47%)

of the total number of articles. Indirect Reference articles are numbers 3, 4, 5, 6, 13, 19, 20, 24,

30, 39, 42, 44, and 63.

Figure 7. Pie chart of the results for the Primary Treatment category.

4.1.3 Opinion Category - 2 subcategories: Affirm or Oppose

32

There are 63 articles subcategorized as Affirm. The Affirm subcategory refers to those articles

which affirm or agreed with the contents of the Redwine and Riddle study. These articles account

for approximately 83% (82.89%) of the evaluated articles.

In Figure 8 below, the Oppose subcategory are the articles which directly oppose or counter the

Redwine and Riddle study’s contents. There are 12 articles which oppose the Redwine and Riddle

study. Oppose articles account for approximately 16% (15.78%) of the evaluated articles.

Special Note: There is one article that neither affirms or oppose the Redwine and Riddle study.

This article is a whitepaper for the Impact Project with results to come. The results would affirm

or oppose the Redwine and Riddle study.

Figure 8. Pie chart of the results for the Opinion category.

4.1.4 Primary Source - 2 Subcategories: Yes or No

33

There are 52 articles subcategorized as Primary - Yes. The Primary subcategory refer to those

articles which used the Redwine and Riddle study as their primary source regarding software

technology maturation. These articles account for approximately 68% (68.42%) of the evaluated

articles.

The Primary - No subcategory are the articles which did not use the Redwine and Riddle study as

their primary source regarding software technology maturation. As shown in Figure 9, there are

24 Primary - No articles. Primary - No articles accounted for approximately 32% (31.57%) of the

evaluated articles.

Figure 9. Pie chart of the results for the Primary category.

4.1.5 Alternate Source

There are 23 articles subcategorized as Alternate - Yes. The Alternate - Yes subcategory refer to

those articles which use an alternate source instead of or in addition to the Redwine and Riddle

34

study regarding software technology maturation. Alternate - Yes articles account for

approximately 30% (30.26%) of the evaluated articles.

The Alternate - No subcategory are the articles which did not use an alternate source regarding

software technology maturation. As seen in Figure 10 below, there are 53 Alternate - No articles.

Alternate - No Direct articles account for approximately 70% (69.73%) of the evaluated articles.

Figure 10. Pie chart of the results for the Alternate source category.

4.1.6 Applications of Redwine and Riddle’s Six Phase Criteria to Other Software
Technologies

The results addressed in this section of the implementation comes by determining if an author

applied the six phases (maturation model) featured in the Redwine and Riddle study to another

form of software technology. This designation is included via the previously discussed evaluation

process. As noted in the assessment, there are 10 articles which feature applications of Redwine

35

and Riddle’s six phase criteria to other software technologies. These ‘Application’ articles are

reviewed in order by date of publication.

In 2001, Mary Shaw applied the maturity model to the discipline of software architecture in two

articles. The first application article, #48, entitled “The Coming of Age of Software Architecture”

Shaw addresses each of the six phases of software technology maturity and discusses in great

length each phase as it relates to software architecture. Then in 2006, the follow-up article, #3,

entitled, “The Golden Age of Software Architecture,” provides an elegantly revamped graphic of

the original time points diagram by year, phase and event as depicted below in Figure 11.

Figure 11. Graphical depiction of the advancement to maturity of software architecture [12].

36

In “The Golden Age of Software Architecture,” Shaw and Clements chart portrays the six phases

original to the Redwine and Riddle study. Shaw and Clements admit to expanding the model as

they tracked the progression to maturity in software architecture. The authors include a

foundational phase at the beginning of their maturation model [12].

In 2012, # 17, Lampathaki, Koussouris, Agostinho, Jardim-Goncalves, Charalabidis, and Psarras

discuss each of the six phases specifically to their action plan: software engineering regarding

Enterprise Interoperability (EI) technology in a third article. The purpose of the article is to

establish a science baseline and provide an overview of the main events that will eventually define

Interoperability as a scientific discipline. However, in their study the authors correlate the human

development lifecycle to the scientific domains development as evidenced in Figure 12.

Figure 12. A correlation of human development and maturation phases [25].

In a fourth article, # 43, regarding the field of architecture evolution and software evolvability,

Breivold, Crnkovic, and Larsson depict the maturity model in the following bar diagram. Each of

37

the six phases are represented on the y-axis. The x-axis represents the number of number of studies

identified in each phase from the 82 independently reviewed studies, see Figure 13.

Figure 13. Bar graph of the maturity model in architecture evolution and software evolvability [51].

In this 2012 study, 7 articles are identified in the basic research phase which represent 8.5% of the

82 studies. Concept formulation has 42 articles which represent 51.2%, Development and

Extension has 25 articles representing 30.5%, Internal has 1 which account for 1.2%, External has

2 which doubles internal at 2.4%, and Popularization has 5 articles, representing 6.2% [51].

The next article, # 27, Klein and van Vliet in “A Systematic Review of System-of-Systems

Architecture Research” apply the maturity model to the system-of-systems technology architecture

discipline as depicted in the following chart. Similarly, the authors track the number of articles

38

identified for each phase of the Redwine and Riddle maturity model [35] as shown in Figure 14

below.

Figure 14. Maturity phase and the number of articles in system-of-systems technology [35].

Klein and van Vliet note that the system-of-systems technology field is approximately 14 years

into the maturation process from the date of their publication. The authors also comment that

when compared to other software technologies, the system-of-systems architecture technology

field is maturing rather slowly as of 2013 [35].

The sixth application article features a partial application. The phases of the software technology

maturation model are partially applied in the article, “A Systematic Review of Augmentation

Techniques for Multi-Agent Systems Research” by Carrera and Iglesias in 2015. The following

Table 2 depicts the partial application.

Table 2. Maturity level of studies for multi-agent research technology [58].

39

The authors note an increase in studies that present results from a prototype. Furthermore, it is

possible to say that the solutions that apply the technology to problems will be offered in the future.

This implies an early placement of augmentation technology into Phase 4.

A seventh application highlights a different interpretation on the depiction of the Redwine and

Riddle maturation model. Instead of addressing each of the six phases individually, Ahmad &

Babar show the yearly progression to maturity for robotic systems in Figure 15.

40

Figure 15. The 20-year progression to maturity for robotic systems [55].

Figure 15 demonstrates that early research on the architectural solutions of robotic systems began

in the 1990’s. However, the maturation and bulk of the state-of-the-research is only apparent in

the last decade. These results demonstrate an approximate 20-year maturation timeline which

aligns with the Redwine and Riddle study [55].

The eighth application featured in a 2016 article surrounds human-centric design of information

systems. In “The Impact of Human-Centric Design on the Adoption of Information Systems: A

Case Study of the Spreadsheet,” Scaffidi does not provide a graphical depiction of his case study

of the spreadsheet. However, Scaffidi does discuss at depth numerous acme and milestones that

signify the progression of phases to maturation. Scaffidi demonstrates each maturation point as

illustrated in the original Redwine and Riddle study but the spreadsheet technology [81]. For

example, for Basic Research, Scaffidi begins this phase with the highlighting Richard Mattessich

as the inventor of the spreadsheet tool for budgetary resources. Furthermore, for the Enhancement

and Exploration phase, Scaffidi points out that the first customer-oriented spreadsheet was created

by Software Arts in 1979 which signifies the ‘usable capability’ feature applicable to that phase.

Lastly, to show propagation, Scaffidi discusses patents as well as the 1989 statistic that 10% of

American that used computers at work also used spreadsheets [81].

The ninth article details the progression to maturity of the field of self-adaption from a 2017

publication, “Software Engineering of Self-Adaptive Systems: An Organised Tour and Future

Challenges,” D. Weyns implores a familiar graphical representation similar to the Shaw &

Clements in Figure 16 below.

41

Figure 16. The self-adaption systems progression to maturity [83].

The tenth and final application article to feature an application maturity model is demonstrated in

the article, “Software Project Management in High Maturity: Systematic Literature Mapping” by

Cerdeiral and Santos. The following pie chart demonstrates the specific phase of software

technology maturation for the selected papers within the study. Papers were categorized into four

of Redwine and Riddle’s six phases of the maturation process.

42

Figure 17. Maturity of software project management [11].

Four of the original six phases represented in this study in Figure 17 above are Concept

Formulation, Development and Extension, Internal Enhancement and Exploration and Eternal

Enhancement and Exploration. A significant percentage of papers provides evidence of their

adoption thereby falling into the External Enhancement and Exploration phase. The largest

amount of papers fell into the Development and Extension phase.

CHAPTER 5

SOFTWARE SECURITY INTRODUCTION

Since the late ’90s, computer security has evolved toward software security, also known as

application security. A simple definition for software security is the idea of engineering software

so that it continues to function correctly under malicious attack [6]. Software security is not

security software and does not include firewalls, intrusion detection, encryption, or protecting the

environment within which the software operates. The reasons for software insecurity can vary form

complexity, flawed specification, flawed specifications, poor implementation of software

interfaces, not thinking like an attacker, zero or minimal consideration for security during each

phase of the SDLC or an inadequate knowledge of secure coding practices [100]. This is

significant because all new software can be assumed to have errors [101. As a result, the discipline

of software security is imperative. Although as a discipline software security is comparatively

young to other disciplines, much progress has been made on ways to integrate security best

practices into the software development life cycle [6]. The primary goal of this implementation is

to extend the second research question and demonstrate the state of maturity for the field of

software security.

5.1 Background and History: Software Security Foundation and Roots

Gary McGraw, a founding father of software security, stated that the taxonomy of software

security came from computer security [6]. No better demonstration of this fact exists than the

computer security seminal papers listed on the CSRC - NIST website. These 16 seminal papers

44

are from 1970 - 1985. The names and authors of the papers along with the keywords are listed

below for comparison. The keywords illustrate the computer security roots of the discipline

software security.

i. James P. Anderson, Computer Security Technology Planning Study Volume II, ESD- TR-

73-51, Vol. II, Electronic Systems Division, Air Force Systems Command, Hanscom Field,

Bedford, MA 01730 (Oct. 1972). Keywords - security kernel, reference monitor, Trojan

horse, penetration, disclosure.

ii. James P. Anderson, Computer Security Threat Monitoring and Surveillance, James P.

Anderson Co, Fort Washington, PA (1980). Keywords - audit, log, surveillance,

monitoring, variation, intrusion detection.

iii. David E. Bell and Leonard J. LaPadula, Secure Computer System: Unified Exposition and

MULTICS Interpretation, MTR-2997 Rev. 1, The MITRE Corporation, Bedford, MA

01730 (Mar. 1976); also, ESD-TR-75-306, rev. 1, Electronic Systems Division, Air Force

Systems Command, Hanscom Field, Bedford, MA 01731.

Keywords - security policy, model simple security condition, star property, asterisk-

property, mathematical model, secure computer system, security, trusted subject.

iv. Richard Bisbey II and Dennis Hollingworth, Protection Analysis: Final Report, ISI/SR-

78-13, University of Southern California/Information Sciences Institute, Marina Del Rey,

CA 96291 (May 1978). Keywords - vulnerability, penetration, access control, error

analysis, error-driven evaluation, error type, operating system security, protection

evaluation, protection policy, software security.

v. Department of Defense, Trusted Computer System Evaluation Criteria, DoD 5200.28-

STD, National Computer Security Center, Ft. Meade, MD 20755 (Dec. 1985). Also known

45

as the “Orange Book.” Keywords - standard, trusted system, evaluation, Orange Book,

protection, class, security requirement.

vi. Ford Aerospace and Communications Corporation, Secure Minicomputer Operating

System (KSOS) Executive Summary: Phase I: Design of the Department of Defense

Kernelized Secure Operating System, WDL-781, Palo Alto, CA 94303 (Mar. 1978).

Keywords - trusted system, UNIX, formal specification, multilevel, security kernel,

KSOS.

vii. Paul A. Karger and Roger R. Schell, MULTICS Security Evaluation, Volume II:

Vulnerability Analysis, ESD-TR-74-193, Vol. II, Electronic Systems Division, Air Force

Systems Command, Hanscom Field, Bedford, MA 01731 (June 1974). Keywords - access

control, multi-level system, operating system vulnerability, privacy, monitor, secure

computer system, security kernel, penetration, security testing, segmentation.

viii. Theodore Linden, Operating System Structures to Support Security and Reliable Software

NBS Technical Note 919, Institute for Computer Sciences and Technology, National

Bureau of Standards, Department of Commerce, Washington DC 20234 (Aug. 1976).

Keywords - capability, capability-based addressing, extended-type objects, operating

system structures, protection, reliable software, reliability, security, small protection

domains, types.

ix. Philip A. Myers, Subversion: The Neglected Aspect of Computer Security, Master Thesis,

Naval Postgraduate School, Monterey CA 93940 (June 1980). Keywords - subversion,

protection policy, trap door, Trojan horse, penetration, access control, evaluation criteria,

protection system, leakage of data, security kernel.

46

x. James P. Anderson, Computer Security Technology Planning Study Volume II, ESD- TR-

73-51, Vol. II, Electronic Systems Division, Air Force Systems Command, Hanscom Field,

Bedford, MA 01730 (Oct. 1972). Keywords - trusted system, formal specification, security

kernel, PSOS, provably secure.

xi. Grace H. Nibaldi, Proposed Technical Evaluation Criteria for Trusted Computer Systems,

M79-225, The MITRE Corporation, Bedford, MA 01730 (Oct. 1979). Keywords - formal

verification, classification, secure computer system, trusted computing base, evaluation

criteria, evaluation process, policy, mechanism, assurance, level.

xii. J. M. Schacht, Jobstream Separator System Design, MTR-3022 Vol. 1, The MITRE

Corporation, Bedford, MA 01730 (May 1975). Keywords - job stream separator,

jobstream, isolation, security level, add on, reference monitor.

xiii. Roger R. Schell, Peter J. Downey, and Gerald J. Popek, Preliminary Notes on the Design

of Secure Military Computer Systems, MCI-73-1, The MITRE Corporation, Bedford, MA

01730 (Jan. 1973). Keywords - secure computer system, secure model, secure design.

xiv. W. L. Schiller, The Design and Specification of a Security Kernel for the PDP- 11/45,

MTR-2934, The MITRE Corporation, Bedford, MA 01730 (Mar. 1975). Keywords -

security kernel, secure computer system, specification, model.

xv. Willis H. Ware, Security Controls for Computer Systems (U): Report of Defense Science

Board Task Force on Computer Security, The RAND Corporation, Santa Monica, CA

(Feb. 1970). Keywords - secure computing, trap door, Trojan horse, penetration,

disclosure, physical security.

xvi. Jerold Whitmore, Andre Bensoussan, Paul Green, Douglas Hunt, Andrew Kobziar, and

Jerry Stern, Design for MULTICS Security Enhancements, ESD-TR-74-176, Electronic

47

Systems Division, Air Force Systems Command, Hanscom Field, Bedford, MA 01731

(Dec. 1973). Keywords - MULTICS, containment, access control, operating system

secure computing [102].

Further sources also illustrate software security’s succession from computer security such as

Saltzer-Schroeder’s, Security Principles in 1975 [104]. This work features ten basic formulated

security principles. Another source is Matt Curtin’s book on “developing trust.” Various articles

at the beginning of the software security discuss trust. Microsoft’s Trustworthy Computing

Initiative spurred on by Bill Gates infamous memo that too denotes trust. NSA’s Principles of

Secure Design in 1993 and Generally Accepted Systems Security Principles (GASSP) are featured

throughout software security as confidentiality, integrity, and availability are features attributes

noted in Bill Gates’ memo in January 2002. Finally, the International Information Security

Foundation (I2SF) of 1997 is significant as well [103].

Viewing the seminal publications of computer security assists with the dubious task of trying to

differentiate computer security history and software security beginnings. The historical works of

computer security also serve as part of the ‘foundations’ phase for software security progression

to maturation. Although Redwine and Riddle do not feature a foundational phase in their

maturation model others have [12]. The remaining portion of this study will extend the second

research question with an implementation of the Redwine and Riddle maturation model for the

field/discipline of software security.

CHAPTER 6

SOFTWARE SECURITY METHODOLOGY

A proven technique to see a fields growth is to examine the rate at which earlier works were a

basis for successor works, or in other words, the most cited articles [12]. To determine this

phenomenon within the field of software security, an advanced search on Google Scholar was

completed. The keyword search included: “SOFTWARE SECURITY” OR “SECURITY

DEVELOPMENT LIFECYCLE” OR “SECURE CODE” in the title of the publication. Only

articles with these exact keywords in the titles were included in this search in order to keep the

results manageable. However, this approach does introduce threats to validity. Older publications

have more time to accumulate citations and vice versa for newer more recent publications. Also,

publications without the keyword search are not included and may have more citations that those

publications listed. However, the number of articles had to be limited to a reasonable number. The

second threat to validation is that the following table lists only the 50 most cited publications from

1990 - 2019. Each publication is categorized according to the Redwine and Riddle software

maturation phases.

CHAPTER 7

SOFTWARE SECURITY IMPLEMENTATION

A total of 50 publications were reviewed. The following Table 3 features an ID number, article

title, publication name/type, publication year, citation count and phase. This information is

demonstrated for replication purposes. Each publication is categorized according to the Redwine

and Riddle software maturation phases.

Table 3. Categorized software security publications with highest citation count.

No. Title Publication Year Cited
by

Phase

1 Software Security [104] IEEE Security & Privacy 2004 513 CONCEPT
FORMULATION

2 Software Security: Building Security In [105] Book 2006 966 INTERNAL
ENHANCEMENT &
EXPLORATION

3 Milk or wine: does software security improve
with age? [106]

USENIX Security Symposium 2006 184 DEVELOPMENT &
EXTENSION

4 Secure software development by example [107] IEEE Security & Privacy 2005 103 DEVELOPMENT &
EXTENSION

5 Knowledge of software security [108] IEEE Security & Privacy 2005 78 DEVELOPMENT &
EXTENSION

6 Secure software architectures [109] IEEE Symposium on Security &
Privacy

1997 82 BASIC RESEARCH

7 Secure software updates: disappointments and
new challenges [110]

HotSec 2006 109 DEVELOPMENT &
EXTENSION

8 Is complexity really the enemy of software
security [111]

Proceedings of the 4th workshop on
Quality of protection

2008 103 INTERNAL
ENHANCEMENT &
EXPLORATION

9 Secure software installation on smartphones [112] IEEE Security & Privacy 2010 87 INTERNAL
ENHANCEMENT &
EXPLORATION

10 The art of software security testing: identifying
software security flaws [113]

Book 2006 84 INTERNAL
ENHANCEMENT &
EXPLORATION

11 A methodology for Secure Software Design [114] Software Engineering Research and
Practice

2004 76 CONCEPT
FORMULATION

12 Processes for producing secure software [115] IEEE Security & Privacy 2004 71 INTERNAL
ENHANCEMENT &
EXPLORATION

13 Threat-driven modeling and verification of secure
software using aspect-oriented Petri nets [116]

IEEE Transactions on Software
Engineering

2006 154 INTERNAL
ENHANCEMENT &
EXPLORATION

14 Software Security Engineering [117] Book 2008 158 INTERNAL
ENHANCEMENT &
EXPLORATION

15 Software Security and Privacy Risks in Mobile E-
Commerce [118]

ACM 2001 360 BASIC RESEARCH

50

16 Software Security Testing [119] IEEE Security & Privacy 2004 189 DEVELOMENT
EXTENSION

17 Raksha: a flexible information flow architecture
for software security [120]

ACM SIGARCH Computer
Architecture News

2007 336 DEVELOPMENT &
EXTENSION

18 Seven pernicious kingdoms: A Taxonomy of
software security errors [121]

IEEE Security & Privacy 2005 233 DEVELOPMENT &
EXTENSION

19 19 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them [122]

Emeryville: McGraw-Hill/Osborne 2005 200 CONCEPT
FORMULATION

20 Building Secure Software: How to Avoid
Security Problems the right Way (Paperback)
[123]

Book 2001 980 CONCEPT
FORMULATION

21 Fuzzing for software security testing and quality
assurance [124]

Book 2018 273 EXTERNAL
ENHANCEMENT &
EXPLORATION

22 Low-level software security: Attacks and
defenses [126]

Foundations of security analysis
and design

2007 72 INTERNAL
ENHANCEMENT &
EXPLORATION

23 Byzantine-resilient secure software-defined
networks with multiple controllers in cloud [127]

IEEE Transactions on Cloud
Computing

2014 97 INTERNAL
ENHANCEMENT &
EXPLORATION

24 Secure code update for embedded devices via
proofs of secure erasure [128]

European Symposium on Research
in computer security

2010 86 INTERNAL
ENHANCEMENT &
EXPLORATION

25 Key Management and secure software updates in
wireless process control environments [129]

Proceedings of the first ACM
conference on wireless network
security

2008 84 DEVELOPMENT &
EXTENSION

26 On the importance of the separation-of-concerns
principles in secure software engineering [130]

Workshop on the Application of
Engineering Principles to System
Security Design

2002 95 CONCEPT
FORMULATION

27 Embedded systems security: practical methods for
safe and secure software and systems development
[131]

Book 2012 58 INTERNAL
ENHANCEMENT &
EXPLORATION

28 Let the pirate’s patch? an economic analysis of
software security patch restrictions [132]

Information systems research 2008 82 INTERNAL
ENHANCEMENT &
EXPLORATION

29 MAC and UML for secure software design [133] 2004 ACM Workshop on formal
methods in security engineering

2004 62 CONCEPT
FORMULATION

30 Improving software security with precise static
and runtime analysis [134]

Book 2006 62 INTERNAL
ENHANCEMNT &
EXPLORATION

31 The security development lifecycle [135] Book 2006 614 EXTERNAL
ENHANCEMENT &
EXPLORATION

32 The trustworthy computing security development
lifecycle [136]

20th Annual Computer Security
Applications

2004 244 DEVELOPMENT &
EXTENSION

33 Safe-ops: An approach to embedded software
security [137]

ACM 2005 57 CONCEPT
FORMULATION

34 Securing traceability of ciphertexts - towards a
secure software key escrow system [138]

International Conference on the
Theory and Application of
Cryptographic Techniques

1995 67 BASIC RESEARCH

35 Softwarepot: An encapsulated transferable file
system for secure software circulation [139]

International Symposium on
Software Security

2002 58 CONCEPT
FORMULATION

36 Towards a structured unified process for software
security [140]

2006 International Workshop on
Software Engineering for Secure
Systems

2006 49 EXTERNAL
ENHANCEMENT &
EXPLORATION

37 Secure code distribution in dynamically
programmable wireless sensor networks 141]

Proceedings of the 5th International
Conference on Information
processing in sensor networks

2006 167 DEVELOPMENT &
EXTENSION

38 Software security and SOA: danger, Will
Robinson! [142]

IEEE Security & Privacy 2006 69 INTERNAL
ENHANCEMENT &
EXPLORATION

39 Prioritizing software security fortification
throughcode-level metrics [143]

Proceedings of the 4th ACM
workshop on quality of protection

2008 77 INTERNAL
ENHANCEMENT &
EXPORATION

40 On the secure software development process:
CLASP, SDL and Touchpoints compared [144]

Information and software 2009 110 EXTERNAL
ENHANCEMENT &
EXPLORATION

51

41 Hiding program slices for software security [145] Proceedings of the International
Symposium on Code generation
and optimization: feedback
directed and runtime optimization

2003 62 DEVELOPMENT &
EXTENSION

42 Software security testing [146] IEEE Security & Privacy 2004 189 DEVELOPMENT &
EXTENSION

43 Software security checklist for the software life
cycle [147]

WET ICE 2003 85 CONCEPT
FORMULATION

44 From the Ground up: The DIMACS software
security workshop [148]

IEEE Security & Privacy 2003 89 CONCEPT
FORMULATION

45 Writing Secure Code [149] Book 2003 1143 DEVELOPMENT &
EXTENSION

46 Improving software security with a c pointer
analysis [150]

Proceedings of the 27th
International Conference on
Software Engineering

2005 87 DEVELOPMENT &
EXTENSION

47 Applying formal methods to a certifiably secure
software system [151]

IEEE Transactions on Software
Engineering

2008 100 INTERNAL
ENHANCEMENT &
EXPLORATION

48 The art of software security assessment:
identifying and preventing software vulnerabilities
[152]

Book 2006 213 INTERNAL
ENHANCEMENT &
EXPLORATION

49 Network software security and user incentives
[153]

Management Science 2006 141 INTERNAL
ENHANCEMENT &
EXPLORATION

50 Software security for open-source systems [154] IEEE Security & Privacy 2003 114 CONCEPT
FORMULATION

7.1 Redwine and Riddle maturation phases for software security.

7.1.1 Basic Research - Investigation of ideas and concepts that later prove fundamental; general

recognition of problem and discussion of its scope [2]. Time period for this phase is 1995 - 2001

as illustrated in Table 3.

7.1.2 Concept Formulation - informal circulation of ideas; convergence on a compatible set of

ideas; general publication of solutions to parts of the problem [2]. Demonstrated in Table 3, the

time period for this phase is 2001 - 2005. This phase can feature workshops, evaluations, early

formalization and classifications [12].

7.1.3 Development and Extension - trial, preliminary use of the technology; clarification of the

underlying ideas, extension of the general approach to a broader solution [2]. Table 3 portrays the

time period for this phase is 2003 - 2008. This phase can feature conferences, journals, and

taxonomies [12].

52

7.1.4 Internal Enhancement and Exploration - Major extension of general approach to other

domains; use of the technology to solve real problems; stabilization and parting of the technology;

development of training materials; derivations of results indicating value [2]. Time period for this

phase is 2006 - 2014 in Table 3. There is no officially adopted security development lifecycle

model. This phase also features books and formal analysis [12].

7.1.5 External Enhancement and Exploration - Same activities are for Enhancement and

Exploration (internal) but they are carried out by a broader group, including people outside the

development group [2]. Time period for this phase is 2006 - 2018. This phase features outside

personal security development lifecycles models, such as Microsoft’s SDL, Citigal’s Touchpoints,

and OWASP’s CLASP as shown in Table 3.

7.1.6 Popularization (Insufficient Data) - Appearance of production-quality, supported versions;

commercialization and marketing of the technology; propagation of the technology throughout

community of users - at 40% and at 70% [2]. From the publications listed, none of the titles

correlate to this phase in Table 3. However, new publications can amend this discrepancy in the

future.

CHAPTER 8

FUTURE WORK AND CONCLUSION

8.1 Redwine and Riddle’s Software Technology Maturation

Future work for assessing the significance of the Redwine and Riddle maturation model will be an

update on the number of works that cite the model in their scholarly articles. In addition, these

articles can be added to the assessment to be evaluated.

The final conclusions regarding the Redwine and Riddle study are based upon the findings of the

assessment tool and evaluation applied to each article within the implementation. To precisely

apply the findings, I revisit the initial questions of interest.

• RQ1: Is Redwine and Riddle’s “Software Technology Maturation” study the accepted

gold standard within the software engineering discipline for assessing the maturation of

software technology?

In the category of date signifying relevance, the decade with the second highest articles is the

present decade (2010 - 2019) with 30 articles. And the year isn’t over! The decade with the

highest number of articles was the previous decade (2000 - 2009) which had 33. It is obvious that

the Redwine and Riddle, “Software Technology Maturation” study has legs and is very relevant

among modern scholars. Furthermore, approximately:

• 86% of the articles referenced the study directly;

• 83% affirmed the study;

• 68% used Redwine and Riddle as the primary study and

54

• 70% of the articles did not feature an alternate study.

• Plus, the study was most cited with 292 citations on Google Scholar.

These are relatively high numbers in favor of Redwine and Riddle’s maturation model as the

primary study and gold standard for assessing software technology maturation.

• RQ2: Can the software technology maturation model be applied to current areas of

software technology?

There are 10 articles which feature applications of Redwine and Riddle’s six phase criteria to other

software technologies. These articles and the software technology are:

• Software Architecture in 2001 and 2006

• Enterprise Interoperability (EI) in 2012

• Architecture Evolution and Software Evolvability in 2012

• System-of-Systems Architecture in 2013

• Multi-Agent Systems in 2015

• Robotic Systems in 2016,

• Spreadsheet in 2016,

• Self-Adaptive Systems in 2017 and

• Software Project Management in 2019

Eight of the ten, or 80%, of the articles applied the maturation model to a software technology

from the present decade, 2010 - 2019. The two articles from 2000 - 2009 discuss software

architecture, a software technology whose maturation process reached full maturity around the

year 2000. These dates illustrate the modern applications of the maturation model by Redwine

and Riddle as well as answer affirmatively to the second research question regarding application

55

to current areas of software technology. Proven as the golden standard and applicable to modern

software technologies, the maturation model is applied to the discipline of software security.

8.2 Software Security Maturation

The inadequacies in the software security maturation model in Table 3 are areas for future research.

Redwine and Riddle articulate in their original study that a technology can take 15 - 20 years to

mature. Software security has made progress in that amount of time but has not reached full

maturity from the publications listed in the implementation table. Significant work still needs to

be completed, as noted in the final phase popularization as well as internal enhancement and

exploration in Table 3. A security development lifecycle model for the field needs to be adopted

by the software security community. In the Redwine and Riddle maturation model, he lengthiest

scenario in the original study was 23 years. This may be the trajectory for the software security

discipline. In order to properly compare the publications for software security, an updated study

should be completed.

The conclusions of the software security maturation model can be viewed as accomplishments and

shortcomings. A notable accomplishment is the software security technology extending to other

domains as noted by a few studies featured in the Internal Enhancement and Exploration phase in

Table 3. Also, the External Enhancement and Exploration phase is well represented by Microsoft’s

SDL, Citigal’s Touchpoints and OWASP’s CLASP. Finally, there appears to be a set of standards

for software security as mentioned in the only article listed in the Popularization phase.

56

The inadequacies in the software security maturation model or shortcomings appear numerous.

There are few if any classification schemes for vulnerabilities and threats for the Concept

Formulation phase in Table 3. There does appear to be a comparatively large timeframe in the

Basic Research phase of software security. As the for the Internal Enhancement and Exploration

phase, the most glaring absence; of an overall generally accepted and adopted secure software

development lifecycle from the software security community. Another notable absence is figures

that support the overall popularization of the discipline within the tech community. Both Microsoft

and Citigal boast their own popularization numbers regarding their models [6] [158] but there

appears to be insufficient evidence of popularization for the discipline.

BIBLIOGRAPHY

1. S.L. Pfleeger, “Understanding and improving technology transfer in software engineering,”

Journal of Software systems, vol. 46, (2-3), pp. 111 - 124, 1999.

2. S. T. Redwine and W. E. Riddle, “Software Technology Maturation,” Proceedings of the 8th

International Conference on Software Engineering (ICSE 85), pp. 189 - 200, 1985.

3. S.A. Raghavan, D. R. Chand, “Diffusing Software-Engineering Methods,” IEEE Software,
vol. 6, (4), pp. 81 - 90, 1989.

4. E. Lieblein, “The Department of Defense software initiative - a status report,” Communications

of the ACM, vol. 29 (8), pp. 734 - 744, 1986.

5. E. Amoroso, “Recent Progress in Software Security,” IEEE Software, vol. 35 (2), pp. 11 - 13,

2018.

6. G. McGraw, “Technology Transfer, A Software Security Marketplace Case Study,” IEEE

Software, vol. Gary McGraw, IEEE Software, vol. 28 (5), pp. 9 - 11, 2011.

7. J. N. Buxton, R. Malcolm, “Software Technology Transfer,” Software Engineering Journal,

vol. 6 (1), pp. 17, 1991.

8. B. Kitchenham, R. Pretorius, D. Budgen and O. P. Brereton, M. Turner, M. Niazi and S.

Linkman, “Systematic Literature Reviews in Software Engineering - A Tertiary Study,”
Information and Software Technology, vol. 52, (8), pp. 792 - 805, 2010.

9. R. L. Glass, “Editor’s Corner: How About Next Year? A Look at a Study of Technology

Maturation,” Journal of Systems and Software, vol. 9 (3), pp. 167 - 168, 1989.

10. S. L. Pfleeger, “Making change: understanding software technology transfer,” The Journal of

Systems & Software, vol. 47 (2), pp. 111 - 124, 1999.

11. C.T. Cerdeiral and G. Santos, “Software Project Management in High Maturity: A Systematic

Literature Mapping,” Journal of Systems and Software, vol. 148, pp. 56 - 87, 2019.

12. M. Shaw and P. Clements, “The Golden Age of Software Architecture,” IEEE Software, vol.

23 (2), pp. 31 - 39, 2006.

13. S. L. Pfleeger and W. Menezes, “Marketing Technology to Software Practicitioners,” IEEE

Software, vol.17 (1), pp. 27 - 22, 2000.

58

14. Y. Chen, R. Dios, A. Mili, L. Wu, and K. Wang, “An Empiorical Study of Programming
Language Trends,” IEEE Software, vol. 22 (3), pp. 72 - 78, 2005.

15. A. Finkelsteiin and J. Kramer, “Software Engineering: A Roadmap,” Proceedings of the

Conference on The Future of Software Engineering, pp. 3 - 22, June 4 - 11, 2000, Limerick,
Ireland.

16. J. Cleland-Huang, D. Damian, and S. Ghaisas, “Ready-Set-Transfer: Exploring the

Technology Readiness of Academic Research Projects (panel),” Companion Proceedings of
the 36 International Conference on Software Engineering, May 31 - June 7, 2014, Hyderabad,
India.

17. R. Cowan, A. Mili, H. Ammar, A. McKendall, Jr., L. Yang, D. Chen, and T. Spender,

“Software Engineering Technology Watch,” IEEE Software, vol. 19 (4), pp. 123 - 129, 2002.

18. P. Bhawnani, G. Ruhe, F. Kudorfer, L. Meyer, “Intelligent Decision Support for Road Mapping

a Technology Transfer Case Study with Seimens Corporate Technology,” Proceedings of the
2006 International Workshop on Software Technology Transfer in Software Engineering, May
22 - 22, 2006, Shanghai, China.

19. E. F. Berliner and P. Zave, “An Experiement in Technology Transfer: PAISLey Specification

of Requiremetns for an Undersea Lightware Cable System,” Proceedings of the 9th
International Conference on Software Engineering, pp. 42 - 50, 1987, Monterey, California,
United States.

20. M. Galster, D. Weyns, A. Tang, R. Kazman, M. Mirakhorli, “From Craft to Science: The Road

Ahead For Empirical Software Engineering Research,” Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results, May 27 - June 3,
2018, Gothenburg, Sweden.

21. P. Diebold and A. Vetro, “Bridging the Gap: Software Engineering Technology Transfer Into

Practice: Study Design and Preliminary Results,” Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, September
18 - 19, 2014, Torino, Italy.

22. R. B. Grady and T. Van Slack, “Key Lessons in Achieving Widespread Inspection Use,” IEEE

Software, vol. 11 (4), pp. 46 - 57, 1994.

23. M. Aoyama, “Co-Evolutionary Service-Orientied Model of Technology Transfer in Software

Engineering,” Proceedings of the 2006 International Workshop on Software Technology
Transfer in Software Engineering, May 22 - 22, 2006, Shaghai, China.

24. C. Henrique and C. Duarte, “Patterns of Cooperative Technology Development and Transfer

for Software Engineering in the Large,” Proceedings of the Second International Workshop on
Software Engineering Research and Industrial Practice, May 16 - 24, 2015, Florence, Italy.

59

25. F. Lampathaki, S. Koussouris, C. Agostinho, R. Jardim-Goncalves, Y. Charalabidis, and J.
Psarras, “Infusing Scientific Foundations Into Enterprise Interoperability,” Computer in
Industry, vol. 63 (8), pp. 858 - 866, 2012.

26. M. V. Zelkowitz, D. R. Wallace, and D. W. Binkley, “Experimental Validation of New

Software Technology, Lecture Notes on Empirical Software Engineering, World Scientific
Publishing Co., Inc., River Edge, New Jersey, 2003.

27. G. Fairbanks, K. Bierhoff, and D. D’Souza, “Software Architecture at a Large Financial Firm,”

Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications, October 22 - 26, 2006, Portland, Oregon, USA.

28. A. M. Davis and A. M. Hickey, “Requirements Researchers: Do We Practice What We

Preach?,” Requirements Engineering, vol. 7, (2), pp. 107 - 111, 2002.

29. N. C. Mendonca, D. Garlan, B. Schmerl, and J. Camara, “Generality vs. Reusability in

Architecture-Based Self-Adaptation: The Case For Self-Adaptive Microservices,”
Proceedings of the 12th European Conference on Software Architecture: Companion
Proceedings, September 2 - 28, 2018, Madrid, Spain.

30. A. Lam and B. Boehm, “Experiences in Developing and Applying Software Engineering

Technology Testbed,” Empirical Software Engineering, vol. 14, (5), pp. 579 - 601, 2009.

31. D. I. K. Sjoberg, “Confronting the Myth of Rapid Obsolescence in Computing Research,”

Communications of the ACM, vol. 53, (9), 2010.

32. M. Shaw, “Writing Good Software Engineering Research Papers: Minitutorial,” Proceedings

of the 25th International Conference on Software Engineering, May 3 - 10, 2003, Portland,
Oregon.

33. B. Myer, “Lessons From the Design of the Eiffel Libraries,” Communications of the ACM,

vol. 33 (9), pp. 68 - 88, 1990.

34. R. Goldberg, “Software Engineering: An Emerging Discipline,” IBM Systems Journal, vol.

25 (3 - 4), pp. 334 - 353, 1986.

35. J. Klein and H. van Vliet, “A Systematic Review of System-of-Systems Architecture

Research,” Proceedings fo the 9th International ACM SIGSOFT Conference on Quality of
Software Architectures, June 17 - 21, 2013, Vancouver, British Columbia, Canada.

36. R. D. Cowan, A. McKendall, Jr., A. Mili, L. Yang, D. Chen, V. Janardhana and T. Spencer,

“Software Engineering Technology Watch,” Information Sciences - Informatics and
Compurter Science: An International Journal, vol. 140, (3), pp. 195 - 215, 2002.

37. L. B. A. Rabai, Y. Z. Bai and A. Mili, “A Quantitative Model for Software Engineering

Trends,” Information Sciences: An International Journal, vol. 181 (22), pp. 4993 - 5009, 2011.

60

38. T. M. Meyers and D. Binkley, “An Empirical Study of Slice-Based Cohesion and Coupling

Metrics,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 17,
(1), pp. 1 - 27, 2007.

39. E. Barreiros, J. Albuquerque, J. F. L. de Oliveira, H. Lins and S. Soares, “Programming

Language Adoption as an Epidemiological Phenomenon,” Proceedings of the 31st Brazilian
Symposium on Software Engineering, September 20 - 22, 2017, Fortaleza, CE, Brazil.

40. R. D. Cowan, A. Mili, H. Ammar, A. McKendall, Jr., L. Yang, D. Chen and T. Spencer,

“Software Engineering Technology Watch,” IEEE Software, vol. 19 (4), pp. 123 - 129, 2002.

41. M. T. Baldassarre, D. Caivano and G. Visaggio, “Empirical Studies For Innovation

Disseminiation: Ten Year of Experience,” Proceedings of the 17th International Conference
on Evaluation and Assessment in Software Engineering, April 14 - 16, 2013, Porto de
Galinhas, Brazil.

42. E. Lieblein, “The Department of Defense Software Initiative - A Status Report,”

Communications of the ACM, vol. 29 (8), pp. 737 - 744, 1986.

43. B. G. Ryder and M. L. Soffa, “Influences on the Design of Exception Handling: ACM

SIGSOFT Project on the Impact of Software Enginering Research on Programming Language
Design,” ACM SIGSOFT Engineering Notes, vol. 28 (4), 2003.

44. B. G. Ryder and M. L. Soffa, “Influences on the Design of Exception Handling: ACM

SIGSOFT Project on the Impact of Software Engineering Research on Programming Language
Design,” ACM SIGPLAN Notices, vol. 38 (6), 2003.

45. F. Houdek, “External Experiments: A Workable Paradigm For Collaboration Between

Industry and Academia,” Lecture Notes on Empirical Software Engineering, World Scientific
Publishing Co., Inc., River Edge, New Jersey, 2003.

46. T. Punter, R. L. Krikhaar and R. J. Bril, “Software Engineering Technology Innovation -

Turning Research Results Into Industrial Success,” Journal of System and Software, vol. 82
(6), pp. 993 - 1003, 2009.

47. M. Eaddy, A. Aho, W. Hu, P. McDonald and J. Burger, “Debugging Aspect-Enabled

Programs,” Proceedings of the 6th International Conference on Software Composition, March
24 - 25, 2007, Braga, Portugal.

48. L. Aversano, G. Canfora, A. De Lucia and P. Gallucci, “Business Process Reengineering and

Workflow Automation: A Technology Transfer Experience,” Journal of Systems and
Software, vol. 63, (1), pp. 29 - 44, 2002.

61

49. M. Colosimo, A. De Lucia, G. Scanniello and G. Tortora, “Evaluating Legacy System
Migration Technologies Through Empirical Studies,” Information and Software Technology,
vol. 51, (2), pp. 433 - 447, 2009.

50. T. de Gooijer, A. Jansen, H. Koziolek and A. Koziolek, “An Industrial Case Study of

Performance and Cost Design Space Exploration,” Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, April 22 - 25, 2012, Boston,
Massachusetts, USA.

51. H. P. Breivold, I. Crnkovic and M. Larsson, “A Systematic Review of Software Architecture

Evolution Research,” Information and Software Technology, vol. 54, (1), pp. 16 - 40, 2012.

52. B. Boehm and R. Valerdi, “Impact of Software Resource Estimation Resource on Practice: A

Preliminary Report on Achievements, Synergies, and Challenges,” Proceedings of the 33rd
International Conference on Software Engineering, May 21 - 28, 2001, Waikiki, Honolulu, HI,
USA.

53. M. F. Krafft, K. Stol and B. Fitzgerald, “How Do Free/Open Source Developers Pick Their

Tools?: A Delphi Study on the Debian Project,” Proceedings of the 38th International
Conference on Software Engineering Companion, May 14 - 22, 2016, Austin, Texas.

54. A. De Lucia, R. Francese, G. Scanniello and G. Tortora, “Developing Legacy System

Migration Methods and Tools For Technology Transfer,” Software - Practice & Experience,
vol. 38 (13), pp. 1333 - 1364, 2008.

55. A. Ahmad, and M. A. Baber, “Software Architectures For Robotic Systems,” Journal of

Systems and Software, vol. 122, pp. 16 - 39, 2016.

56. M. Shaw, “The Coming of Age of Software Architecture Research,” Proceedings of the 23rd

International Conference on Software Engineering, p. 656, May 12 - 19, 2001, Toronto,
Ontario, Canada.

57. M. Ivarsson and T. Gorschek, “A Method For Evaluating Rigor and Industrial Relevance of

Technology Evaluations,” Empirical Software Engineering, vol. 16, (3), pp. 365 - 395, 2011.

58. A. Carrera and C. A. Iglesias, “A Systematic Review of Argumentation Techniques for Multi-

Agent Systems Research,” Artificial Intelligence Review, vol. 44 (4,) pp. 509 - 535, 2015.

59. J. E. Burge, “Design Rationale: Researching Under Uncertainty,” Artificial Intelligence For

Engineering Design, Analysis and Manufacturing, vol. 22 (4), pp. 311 - 324, 2008.

60. D. E. Webster, “Mapping the Design Information Representation Terrain,” Computer, vol. 21

(12), pp. 8 - 23, 1988.

62

61. B. G. Ryder, M. L. Soffa and M. Burnett, “The Impact of Software Engineering Research on
Modern Programming Languages,” ACM Transaction on Software Engineering and
Methodology (TOSEM), vol. 14 (4), pp. 431 - 477, 2005.

62. W. Emmerich, M. Aoyama and J. Sventek, “The Impact of Research on Middleware

Technology,” ACM SIGSOFT Softwre Engineering Notes, vol. 32 (1), 2007.

63. W. Emmerich, M. Aoyama and J. Sventek, “The Impact of Research on Middleware

Technology,” ACM SIGOPS Operating Systems Review, vol. 41 (1), 2007.

64. W. Emmerich, M. Aoyama and J. Sventek, “The Impact of Research on the Development of

Middleware Technology,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 17, (4), pp. 1 - 48, 2008.

65. B. H. C. Cheng and J. M. Atlee, “Research Directional in Requirements Engineering,” 2007

Future of Software Engineering, pp. 285 - 303, May 23 - 25, 2007.

66. E. Carmel, J.Dedrick and K. Kraemer, “Routinizing the Offshore Choice: Applying Diffusion

of Innovation to the Case of EDS,” Strategic Outsourcing: An International Journal, vol. 3 (3),
pp. 223 - 239, 2009.

67. “Mapping the Values of IoT”, Information Technology Newsweekly, 2019.

68. M. Ivarsson and T. Gorschek, “Technology Transfer Decision Support in Requirements

Engineering Research: A Systematic Review of REj,” Requirements Engineering, vol. 14 (3),
2009.

69. J. Yue and M. Harman, “An Analysis and Survey of the Development of Mutation Testing,”

IEEE Transactions on Software Engineering, vol. 37 (5), pp. 649 - 678, 2011.

70. H. Petersson, T. Thelin, P. Runeson, and C. Wohlin, “Capture-recapture in Software

Inspections After 10 Years Research-Theory Evaluation and Application,” The Journal of
Systems & Software, vol. 72 (2), pp. 249 - 264, 2004.

71. M. A. Babar, L. Zhu and R. Jeffery, “A Framework for Classifying and Comparing Software

Architecture Evaluation Methods,” 2004 Austratian Software Engineering Conference
Proceedings, IEEE, pp. 309 - 318, 2004.

72. M. Shaw, “What Makes Good Research in Software Engineering?,” International Journal on

Software Tools for Technology Transfer, vol. 4 (1), pp. 1 - 7, 2002.

73. D. Hybertson, W. Duane, A. D. Ta, and W. M. Thomas, “Maintenance of COTS-intensive

Software Systems,” Journal of Software Maintenance: Research and Pratice, vol. 9 (4), pp.
203 - 216, 1997.

63

74. “M. M Chakrabart and D. Mendonca, “Design Considerations for Information Systems to
Support Critical Infrastructure Management,” Proccedings of the Second International
ISCRAM Conference, pp. 13 - 18, 2005.

75. D. N. Card., “The Role of Measurement in Software Engineering,” Proceedings of ELECTRO

’94, IEEE, pp. 223 - 229, 1994.

76. A. Jackson and D. Hoffman, “Inspecting Module Interface Specifications,” Software Testing,

Verification and Reliability,” vol. 4 (2), pp. 101 - 117, 1994.

77. M. V. Zelkowitz, “Software Engineering Technology Infusion Within NASA,” IEEE

Transactions on Engineering Management, vol. 43 (3), pp. 250 - 261, 1996.

78. T. Mikkonen, C. Lassenius, T. Manisto, M. Oivo, J. Jarvinen, “Continuous and collaborative

technology transfer: Software engineering research with real-time industry impact,”
Information and Software Technology, vol. 95, pp. 35 - 45, 2018.

79. T. Mikkonen, C. Lassenius, T. Manisto, M. Oivo, J. Jarvinen, “Can We Influence Students’

Attitudes About Inspections? Can We Measure a Change in Attitude?,” Information and
Software Technology, vol. 95, pp. 34 - 45, 2018.

80. L. J. Osterwell, C. Ghezzi, J. Kramer, A. L. Wolf, “The impact: project: determining the

impact of software engineering research upon practice” - Impact Project Whitepaper, IEEE
Computer, vol. 41 (3), pp. 39 - 49, 2008.

81. C. Scaffidi, “The impact of human-centric design on the adoption of information systems: A

case study of the spreadsheet,” 2016 11th Iberian Conference on Information Systems and
Technologies (CISTI), pp. 1 - 7, 2016.

82. M. V. Zelkowitz, “Software Engineering Technology Transfer: Understanding the Process,”

1993. www.ntrs.nasa.gov.

83. D. Weyns, “Engineering of Self-Adaptive Systems: An Organized Tour,” IEEE 3rd

International Workshops on Foundations and Applications of Self Systems (FASW), pp. 1 -
2, 2018.

64

84. G. Berg-Cross, “Improving Situational Ontologies to Support Adaptive Crisis Management
Knowledge Architecture,” Conference on Information for Crisis, 2008.

85. H. Krasner, “Bottlenecks in the Transfer of Software Engineering Technology: Lessons

Learned from a Consortium Failure,” Proceedings of the Twenty-Eighth Annual Hawaii
International Conference on System Sciences, vol. 4, pp. 635 - 641, 1995.

86. T. Bandyszak, P. Diebold, A. Heuer, T. Kuhn, A. Vetro, T. Weyer, “Technology Transfer

Concepts,” Advanced Model-Based Engineering of Embedded System: Extensions of the SPE
2020 Methodology, 2016.

87. D. Wallace and M. Zelkowitz, “Center for High Integrity Software System Assurance,” IFAC

Proceedings Volumes, 1995, www.nist.gov.

88. J. Lonchamp, “CS in CSCL,” 13th International Conference on Interactive Computer Aided

Learning -ICL 2010, 2010.

89. B. Capps and R. E. Fairley, “PRISM: A Systematic Approach to Planning Technology Transfer

Campaigns,” PICMET 03: Portland International Conference on Management of Engineering
and Technology Technology Management for Reshaping the World, 2003, IEEE, pp. 393 -
399, 2003.

90. H. Van Vliet, H. Van Vliet and J. D. Van Vliet, Software Engineering: Principles and

Practice, vol. 13, John Wiley & Sons, Hoboken, NJ, 2008.

91. G. Wang and J. Rice, “Considerations for a Generalized Reuse Framework for System

Development,” INCOSE International Symposium, vol. 21 (1), pp. 3278 - 3294, 2011.

92. P. Hantos, “Systems Engineering Perspectives on Technology Readiness Assessments in

Software-Intensive System Development,” Journal of Aircraft, vol. 48 (3), pp. 738 - 748, 2011.

93. M. V. Zelkowitz, D. R. Wallace, and D. W. Binkley, “Experimental Validation of New

Software Technology,” Lecture Notes on Empirical Software Engineering, pp. 229- 263, 2003.

94. I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What Industry Needs from

Architectural Languages: A Survey,” IEEE Transactions on Software Engineering, vol. 39
(6), pp. 869 - 891, 2012.

95. A. C. Schierz, “Monitoring Knowledge: A Text-Based Approach Terminology,” International

Journal of Theoretical and Applied Issues in Specialized Communication, vol. 13 (2), pp. 125
- 154, 2007.

96. M. Olivier and S. Gruner, “On the Scientific Maturity of Digital Forensics Research,” IFIP

Advances in Information and Communication Technology, vol. 410, pp. 33 - 49, 2013.

65

97. J. Brings, M. Daun, S. Brinckmann, K. Keller and T. Weyer, “Approaches, Success Factors,
and Barriers for Technology Transfer in Software Engineering - Results of a Systematic
Literature Review,” Journal of Software: Evolution and Process, vol. 30 (11), 1981.

98. R. L. Glass, “Formal Methods Are a Surrogate for a More Serious Software Concern,”

Computer, vol. 29 (4), 1996.

99. J. A. Rader, “Case Adoption: A Process, Not an Event,” Advances in Computers, vol. 41, pp.

83 - 156, 1995.

100. R. C. Seacord, “Secure Coding,” 2008 Census Bureau Software Process Improvement

Conference, SEI Carnegie Mellon University, 2008.

101. W. Collins, K. Miller, B. Spielman, P. Wherry, “How Good is Good Enough? An Ethical

Analysis of Software Construction and Use,” Communications on ACM, vol. 37 (1), pp. 81 -
91, 1994.

102. https://csrc.nist.gov/CSRC/media/Publications/conference-paper/1998/10/08/proceedings-

of-the-21st-nissc-1998/documents/early-cs-papers/early-cs-papers-1970-1985.pdf

103. “Processes to Produce Secure Software” - Towards More Secure Software, Vol. 2, National

Cyber Security Summit, March 2004. The Software Process Subgroup Within the Task Force
on Security Across the Software Development Lifecycle of the Cyber Security Summit – Co-
Chaired by Sam Redwine (JMU), Geoff Shively (PivX), and Gerlinde Zibulski (SAP) –
produced this report.

104. Saltzer, J.H. and Schroeder, M. D., “The Protection of Information in Computer Systems,”

Proceedings of the IEEE, vol. 63 (9), pp. 1278 - 1308, 1975.

105. Gaines B., “Modeling and Forecasting the Information Sciences”, Elsevier Inc. vol. 57, pp.

3 - 22, 1991.

106. M. V. Zelkowitz, “Assessing Software Engineering Technology Transfer Within NASA.

NASA Technical Report NASA-RPT- 003095,” National Aeronautics and Space
Administration, Washington, DC, 1995.

107. E. M. Rogers, “Diffusion of Innovations,” 4th ed. Free Press, New York, 1995.

108. G. McGraw, “Software Security,” IEEE Security & Privacy, vol. 2 (2) pp. 80-83, 2004.

109. G. McGraw, “Software security: building security in,” vol. 1. Addison-Wesley Professional,

2006.

110. A. Ozment and S. E. Schechter, “Milk or Wine: Does Software Security Improve with Age?”

USENIX Security Symposium, pp. 93-104, 2006.

66

111. A. Apvrille and M. Pourzandi, “Secure Software Development by Example,” IEEE Security
& Privacy, vol. 3 (4), pp. 10-71, 2005.

112. S. Barnum and G. McGraw, “Knowledge for Software Security,” IEEE Security & Privacy,

vol. 3 (2), pp. 74-78, 2005.

113. M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong, “Secure Software

Architectures,” Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.
97CB36097), pp. 84-93, 1997.

114. A. Bellissimo, J. Burgess and K. Fu, “Secure Software Updates: Disappointments and New

Challenges,” HotSec, 2006.

115. Y. Shin and L. Williams, “Is Complexity Really the Enemy of Software Security?”

Proceedings of the 4th ACM Workshop on Quality of Protection, ACM, pp. 47-50, 2008.

116. D. Barrera and P. Van Oorschot, “Secure Software Installation on Smartphones. IEEE

Security & Privacy, vol. 9 (3), pp. 42-48, 2010.

117. C. Wysopal, L. Nelson, E. Dustin and D. Dai Zovi, “The Art of Software Security Testing:

Identifying Software Security Flaws,” Pearson Education, 2006.

118. E. B. Fernandez, “A Methodology for Secure Software Design, “Software Engineering

Research and Practice, pp. 130-136, 2004.

119. N. Davis, W. Humphrey and S. T. Redwine, G. Zibulski and G. McGraw, “Processes for

Producing Secure Software,” IEEE Security & Privacy, vol. 2 (3), pp. 8-25, 2004.

120. D. Xu and K. E. Nygard, “Threat-Driven Modeling and Verification of Secure Software Using

Aspect-Oriented Petri Nets,” IEEE Transactions on Software Engineering, vol. 32 (4), pp.
265-278, 2006.

121. J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw and N. R. Mead, Software security

engineering, Pearson, India; 2008.

122. A. K. Ghosh and T. M. Swaminatha, “Software Security and Privacy risks in Mobile E-

Commerce,” Communications of the ACM, vol. 44 (2), pp. 51-57, 2001.

123. B. Potter and G. McGraw, “Software Security Testing,” IEEE Security & Privacy, vol. 2 (5),

pp. 81-85, 2004.

124. M. Dalton, H. Kannan and C. Kozyrakis, “Raksha: a Flexible Information Flow Architecture

for Software Security,” ACM SIGARCH Computer Architecture News. vol. 35 (2), pp. 482-
493, 2007.

67

125. K. Tsipenyuk, B. Chess and G. McGraw, “Seven Pernicious Kingdoms: A Taxonomy of
Software Security Errors,” IEEE Security & Privacy, vol. 3 (6), pp. 81-84, 2005.

126. M. Howard, D. LeBlanc and J. Viega, “19 Deadly Sins of Software Security. Programming

Flaws and How to Fix Them,” 2005, pdf.

127. J. Viega and G. McGraw, Building Secure Software: How to Avoid Security Problems the

Right Way (Paperback), Addison-Wesley Professional, 2011.

128. A. Takanen, J. D. Demott, C. Miller and A. Kettunen, “Fuzzing for Software Security Testing

and Quality Assurance,” Artech House, 2018.

129. U. Erlingsson, “Low-Level Software Security: Attacks and Defenses,” Foundations of

Security Analysis and Design vol. IV, pp. 92-134, 2007.

130. H. Li, P. Li, S. Guo and A. Nayak, “Byzantine-Resilient Secure Software-Defined Networks

with Multiple Controllers in Cloud,” IEEE Transactions on Cloud Computing, vol. 2 (4), pp.
436-447, 2014.

131. D. Perito and G. Tsudik, “Secure Code Update for Embedded Devices Via Proofs of Secure

Erasure,” European Symposium on Research in Computer Security, pp. 643-662, 2010.

132. D. K. Nilsson, T. Roosta, U. Lindqvist and A. Valdes, “Key Management and Secure Software

Updates in Wireless Process Control Environments,” Proceedings of the First ACM
Conference on Wireless Network Security, pp. 100-108, 2008.

133. B. De Win, F. Piessens, W. Joosen and T. Verhanneman, “On the Importance of the

Separation-of-Concerns Principle in Secure Software Engineering, “Workshop on the
Application of Engineering Principles to System Security Design, pp. 1-10, 2002.

134. D. Kleidermacher and M. Kleidermacher, “Embedded Systems Security: Practical Methods

for Safe and Secure Software and Systems Development,” Elsevier; 2012.

135. T. August and T. I. Tunca, “Let the Pirates Patch? An Economic Analysis of Software

Security Patch Restrictions,” Information Systems Research, vol. 19 (1), pp. 48-70, 2008.

136. T. Doan, S. Demurjian, T. C. Ting and A. Ketterl, “MAC and UML For Secure Software

Design,” Proceedings of the 2004 ACM Workshop on Formal Methods in Security
Engineering, pp. 75-85, 2004.

137. B. Livshits, “Improving Software Security with Precise Static and Runtime Analysis,” 2006.

138. M. Howard and S. Lipner, The Security Development Lifecycle, Redmond, WA, Microsoft

Press, 2006.

68

139. S. Lipner, “The Trustworthy Computing Security Development Lifecycle,” 20th Annual
Computer Security Applications Conference, IEEE, pp. 2 - 13, 2004.

140. J. Zambreno, A. Choudhary, R. Simha, B. Narahari, N. Memon and N. Memon, “SAFE-OPS:

An Approach to Embedded Software Security,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 4 (1), pp. 189 - 210, 2005.

141. Y. Desmedt, “Securing Traceability of Ciphertexts—Towards a Secure Software Key Escrow

System,” International Conference on the Theory and Applications of Cryptographic
Techniques, Springer, pp. 147 - 157, 1995.

142. K. Kato and Y. Oyama, “Softwarepot: An Encapsulated Transferable File System for Secure

Software Circulation,” International Symposium on Software Security, Springer, pp. 112 -
132, 2002.

143. S. Ardi, D. Byers and N. Shahmehri, “Towards a Structured Unified Process for Software

Security,” Proceedings of the 2006 International Workshop on Software Engineering for
Secure Systems, ACM, pp. 3 - 10, 2006.

144. J. Deng, R. Han, S. Mishra, “Secure Code Distribution in Dynamically Programmable

Wireless Sensor Networks,” Proceedings of the 5th International Conference on Information
Processing in Sensor Networks, ACM, pp. 292 - 300, 2006.

145. J. Epstein, S. Matsumoto and G. McGraw, “Software Security and SOA: Danger, Will

Robinson!” IEEE Security & Privacy, vo. 4 (1), pp. 80 - 83, 2006.

146. M. Gegick, L. Williams, J. Osborne and M. Vouk, “Prioritizing Software Security

Fortification Throughcode-level Metrics,” Proceedings of the 4th ACM Workshop on Quality
of Protection, ACM, pp. 31 - 38, 2008.

147. B. De Win, R. Scandariato, K. Buyens, and J. Grégoire and W. Joosen, “On the Secure

Software Development Process: CLASP, SDL and Touchpoints Compared,” Information and
software technology, vo. 51 (7), pp. 1152 - 1171, 2009.

148. X. Zhang and R. Gupta, “Hiding Program Slices for Software Security,” Proceedings of the

International Symposium on Code Generation and Optimization: Feedback-Directed and
Runtime Optimization, IEEE Computer Society, pp. 325 - 336, 2003.

149. B. Potter and G. McGraw, “Software Security Testing,” IEEE Security & Privacy, vol. 2 (5),

pp. 81 - 85, 2004.

150. D. P. Gilliam, T. L. Wolfe, J. S. Sherif and M. Bishop, “Software Security Checklist for The

Software Life Cycle. In WET ICE 2003. Proceedings. Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE, pp. 243 - 248,
2003.

69

151. G. McGraw, “From the Ground Up: The DIMACS Software Security Workshop,” IEEE
Security & Privacy, Vol. 1 (2), pp. 59 - 66, 2003.

152. M. Howard and D. LeBlanc, Writing Secure Code, Pearson Education, 2003.

153. D. Avots, M. Dalton, V. B. Livshits and M. S. Lam, “Improving software security with a C

pointer analysis,” Proceedings of the 27th international conference on Software engineering,
ACM, pp. 332 - 341, 2005.

154. C. Heitmeyer, M. Archer, E. Leonard and J. McLean, “Applying Formal Methods to a

Certifiably Secure Software System,” IEEE Transactions on Software Engineering, vol. 34,
(1), pp. 82 - 98, 2008.

155. M. Dowd, J. McDonald and Schuh J. The Art of Software Security Assessment: Identifying

and Preventing Software Vulnerabilities, Pearson Education, 2006.

156. T. August and T. I. Tunca, “Network Software Security and User Incentives,” Management

Science, vol. 52 (11), pp. 1703 - 1720, 2006.

157. C. Cowan, “Software Security for Open-Source Systems,” IEEE Security & Privacy, vol.

1(1), pp. 38 - 45, 2003.

158. “Life in the Crosshairs: The Dawn of the Microsoft Security Development Lifecycle,”

Microsoft Press, Microsoft Corporation, Redmond, Washington, 2014.

