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A single, two-sided CUSUM chart utilizing continuously variable sampling intervals

and continuously variable sample sizes monitors a process mean and is optimized

through an economic design metric. The combined CUSUM statistic is capable of

detecting positive and negative shifts simultaneously in one chart, which relies on

consecutive indications of either an increase or decrease in mean. A family of poly-

nomial shapes define the rate at which the minimum sample size/maximum sampling

interval sweeps to the maximum sample size/minimum sampling interval as the com-

bined CUSUM statistic approaches the boundary. All possible transition probabilities

are derived and nine parameters are optimized by minimizing a long-run hourly cost

function using 16 different scenarios, varying costs and times spent in/out of control.
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Chapter 1: Introduction

Cumulative sum (CUSUM) control charts have been noted for their usefulness in

quality control since their development in the 1950’s by Page[3]. Typical CUSUM

statistic calculations involve computing a standardized sample average, comparing

its extremity to a reference parameter, k, and adding it to the previous CUSUM

statistic. Subsequent samples of size n, taken at some sampling interval, h, may

eventually cause the statistic to cross the boundary, b, at which point the process may

be stopped while the search for an assignable cause ensues. A variety of methods can

be used to determine the most effective values for these parameters, k, b, n, and h.

One such method is through statistical design[9], where certain constraints are ap-

plied for the purpose of satisfying some desirable statistical properties. For example,

it may be advantageous to limit the rate of false signals or the time the process runs

out-of-control. This can be achieved by an increase in sampling, which will naturally

increase the cost of process monitoring. Note that an increase in sampling can come

in the form of larger sample sizes, shorter sampling intervals, or a combination of

both.

An alternative method to statistical design is economic design[2], which deter-

mines parameter values by balancing sampling costs, false signals, and out-of-control

time. A cost function incorporating these metrics is minimized, revealing the most ef-

ficient parameter settings. This paper utilizes the economic design method to find the

optimal parameter settings. However, it should be noted that incorporating statisti-

cal design into an economic design model would not be difficult, and would produce

the most cost efficient method of obtaining the desired statistical properties.



Chapter 2: Literature review

Previous research utilizing CUSUM techniques to monitor process control often deliv-

ered superior performance measures over other control charts, especially at detecting

small to moderate shifts in mean[4]. However, this increase in effectiveness was offset

by implementation difficulties due to the nature of their complex designs. Reynolds

and Stoumbos[7] proposed a method of statistical process control which consisted of

two, one-sided CUSUM charts monitoring both positive and negative shifts in mean

in addition to one CUSUM chart measuring deviation in variance. Such schemes have

proved to be very efficient, however, they are often difficult to put into practice and

develop. This is due to the number of chart parameters necessary in addition to the

amount of simulation required to assess their statistical properties.

Attempts to simplify CUSUM chart process monitoring have been explored, ei-

ther through the simplification of the CUSUM statistic or by some other method of

parameter reduction. Wu et al. investigated the combining of mean and variance into

a single statistic[11] and also by reducing the the two-chart mean monitoring into a

single chart that measures mean deviation by its absolute value or distance from its

target[10]. In both cases, two-sided mean detection is possible. However, CUSUM

statistics that incorporate squaring or taking the absolute value of mean deviation

do not keep track of the sign of the shift, positive or negative. In these schemes,

extreme sample statistics consecutively landing on opposite sides of the target, how-

ever unlikely, are summed as deviations without regard to their sign and therefore,

information is lost as well as some level of sensitivity in shift detection[10].



Chapter 3: A combined CUSUM scheme

3.1 The combined CUSUM statistic

This paper proposes the monitoring of process mean by a CUSUM chart which merges

two, one-sided CUSUMs into a single chart. The process is assumed to begin in-

control and produce units that are normally distributed with mean, µ, and standard

deviation, σ. The time until shifting out-of-control is distributed exponentially with

rate, λ. Furthermore, an out-of-control process is considered as producing units with

mean, µ±∆σ, and standard deviation, σ. At the initiation of the monitoring process,

the value of the combined CUSUM (CCSUM) statistic is zero, i.e., Ct=0 = 0. Once

the first sample is taken, the current CCSUM statistic, Ct is calculated by,

Ct =



max

{
0 , Ct−1 + s · Trunc

(
Zt − k
s

)}
, if Ct−1 > 0 and Zt > −k

min

{
0 , Ct−1 + s · Trunc

(
Zt + k

s

)}
, if Ct−1 < 0 and Zt < k

sign(Zt) ·max

{
0 , s · Trunc

(
|Zt| − k

s

)}
, otherwise

where Ct−1 is the previous CCSUM statistic, Zt is the current standardized sample

average given by Zt =
(
Xt − µ

)
/
(
σ/
√
nt
)
, k is a reference parameter, and s is the

step size by which the CCSUM statistic is allowed to increment.

The CCSUM statistic is calculated according to three cases. The first of which

is used when the previous CCSUM statistic is positive, Ct−1 > 0, and the current

standardized sample average is greater than the lower reference parameter, Zt > −k.

These first case conditions can be summarized in the following statement; if there
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have been recent indications of an increase in mean, the CCSUM statistic prioritizes

the detection of a positive shift. Detecting a positive shift continues as the main focus

until significant evidence points to the contrary, namely, obtaining a Zt ≤ −k. When

Ct−1 > 0 and Zt > −k, the CCSUM statistic will either progress toward the boundary

(Zt ≥ k+ s), stagnate (k− s < Zt < k+ s), or regress toward zero (Zt ≤ k− s). Note

that the CCSUM statistic can regress by at most 2k standard deviations, or more

specifically, the largest multiple of s less than this value.

The second case of the CCSUM statistic is handled similarly to the first, but

rather serves to prioritize the detection of a negative shift in mean. The third and

final case of the CCSUM statistic is used when the previous CCSUM statistic is zero,

Ct−1 = 0, or when neither of the conditions are met for the first two cases. The latter

happens during the monitoring of one side of the chart, positive or negative, and a

significant standardized sample average of opposite sign is obtained, at which point

the sign of the most recent sample average becomes the primary focus of mean shift

detection.

In this paper, the CCSUM statistic is designed for its use in conjunction with a

Markov chain approach in determining charting parameters. The following section

introduces this approach to prepare the reader for later references to Markov chain

properties and the optimization algorithm.

3.2 Discretizing the CCSUM for use of a Markov chain

The resulting CCSUM statistic is forced into a discrete value by use of the truncate

function so that the procedure can be modeled by a Markov chain. The matrix of

transition probabilities (P matrix) is indexed by discrete states, 0 to b, in increments

of s, where the boundary, b, is a multiple of s. An arbitrary state of the P matrix,
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i steps of s from the zero state, is labeled ±i · s, coupled with a control status.

Because the CCSUM statistic monitors mean deviation on only one side of its target

at a time, each non-zero state in the P matrix represents both directions of shift, thus

minimizing the size of the P matrix. The options for control status include in-control,

I, and not in-control, N . However, at the moment a process goes out-of-control, a

non-zero CCSUM statistic can find itself on either the same or opposite side of the

mean shift, thus creating the need for two different out-of-control statuses, NC and

ND. NC specifies a CCSUM statistic on the same side (concordant) of the shift, while

ND indicates the CCSUM statistic is on the opposite side (discordant) of the shift.

To illustrate the necessity of these additional statuses, consider an example where

the current CCSUM statistic is 2 · s. If the process is out-of-control and the shift is

positive, the current state is (2 · s,NC). Alternatively, if the process is out-of-control

and the shift is negative, the current state is (2 · s,ND).

Define r = b/s and m = 3r so that the P matrix has order m + 1. The ordering

of all possible states and their respective indices in the P matrix are provided below.

1 ≡ (0, I)

2 ≡ (±1 · s, I)

3 ≡ (±2 · s, I)

...
...

r ≡ (±(b− s), I)

r + 1 ≡ False signal

r + 2 ≡ (0, N)

r + 3 ≡ (±1 · s,NC)

r + 4 ≡ (±2 · s,NC)
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...
...

2r + 1 ≡ (±(b− s), NC)

2r + 2 ≡ (±1 · s,ND)

2r + 3 ≡ (±2 · s,ND)

...
...

3r ≡ (±(b− s), ND)

3r + 1 ≡ True signal

Indexing the states is necessary, since expected values will be derived later us-

ing properties of Markov chains. The next section discusses how sample sizes and

sampling intervals are determined, and is more intuitively discussed in terms of the

absolute value of the current CCSUM statistic.

3.3 Continuously variable sampling intervals and sample sizes

Variable sampling intervals (VSI) have been shown to produce more efficient models

of process control monitoring as opposed to fixed intervals. Reynolds et al.[6] investi-

gated VSI in conjunction with CUSUM charts showing an improvement in efficiency

in its application to process control. Rendtel[5] later contributes the idea of varying

both variable sampling intervals and sampling sizes (VSSI) in the context of CUSUM

schemes. The logic behind variable sampling intervals and sample sizes is that when

a process is in-control and the CCSUM statistic is close to its target, it is more cost

efficient to have larger sampling intervals and smaller sample sizes. Conversely, if it

is suspected that the process is out-of-control and the CCSUM statistic is wandering

toward its alarm boundary, it is desirable to take larger samples, more quickly. Much

of what has been written on this topic includes a multi-stage procedure, such as a
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two-stage or a three-stage procedure, in accomplishing VSSI[5]. In a two-stage VSSI

scheme, for example, a warning zone is designated as an intermediate detection area

prior to reaching the boundary, such that a CUSUM statistic entering this region

will cause a transition from a more conservative setting for sample size and sampling

interval, (n1 , h1), to a setting with increased sampling, (n2 , h2).

A unique sampling interval and sample size could be individually optimized for

each state in the proposed CCSUM scheme. However, this would create the need for

an unwieldy array of parameters, and lead to an extremely time-consuming optimiza-

tion procedure. Carolan et al.[1] proposed continuously variable sampling intervals in

conjunction with X-bar (X) control charts by calculating the probability of obtaining

a subsequent statistic closer to the boundary and multiplying by a parameter repre-

senting the maximum sampling interval. The maximum of the resulting value and

the minimum sampling interval is taken as the sampling interval associated with the

current state. This idea allowed for the sampling interval to sweep continuously from

an optimal maximum value to a minimum based on its proximity to the boundary.

This paper introduces a variation on this idea in that the rate at which the maxi-

mum sampling interval (or minimum sample size) decreases (or increases) with respect

to the proportion of states traversed, of all states prior to reaching the boundary, is

defined by a family of polynomial shapes indexed by 3 parameters (minimum, maxi-

mum, shape). The formulas are given by,

ni·s = nmin + nrange

(
i · s
b− s

)αn

and

hi·s = hmin + hrange

[
1−

(
i · s
b− s

)]αh

for sample size and sampling interval, respectively. A unique sampling interval and
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sample size (before necessarily rounding) are assigned to each state, by row, in the

P matrix as a result. The variety of polynomial shapes attainable range from linear

to concave up or down by letting the parameter, α, take any value in the domain,

0 < α < ∞. In addition to a shape parameter, a minimum and maximum sample

size/sampling interval are required for parameterization. Therefore, the defining pa-

rameters are (nmin , nmax , αn) and (hmin , hmax , αh), for sample size and sampling

interval calculation, respectively. The functions governing sample sizes and sampling

intervals are plotted in Figure 3.1. These graphs aim to show the variety of shapes

possible, and it should be noted that rounding sample size output values to the nearest

integer creates a step function that will retain the general shape of the polynomial.
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Figure 3.1

A variety of methods were investigated in order to attain the optimal shape for

these curves. During the optimization process, it was discovered that changing the

shape of the function that defines the rate of increase or decrease has a large impact

on the long-run hourly cost of production. This is especially true concerning the

function that governs the sampling interval, hi·s. For instance, both shape parameters

were initially commissioned to compound the proportion of the states traversed with

respect to how far they were from the zero state. However, it was later determined
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that allowing the shape parameter, αh, to compound the proportion of remaining

states dramatically improved the results. This is due to the inherent properties of the

shapes produced when very large or very small values for αh are found to be optimal.

While the optimal function governing sample sizes is relatively linear in nature, i.e.

αn ≈ 1, the optimal function defining the sampling interval sweeps drastically towards

its minimum upon leaving state zero. This requirement is more efficiently met in the

case where the proportion of remaining states is compounded by αh.

3.4 Economic design of the CCSUM model

Economic design employs a long-run hourly cost (LRHC) function to determine the

optimal parameters for each scenario of cost/time settings. The optimal parameters

are those which minimize LRHC, the expected cost of one cycle divided by the ex-

pected time to complete one cycle. A cycle begins at the start of a process and ends

when an assignable cause is repaired. The LRHC is calculated by,

LRHC =
c1E[N ] + c2E[OOCT ] + c3E[F ] + c4

E[PT ] + t1E[F ] + t2

where the constants and expected values are defined below.

c1 the sampling cost per unit

c2 the out-of-control cost per hour

c3 the repair cost per signal (false)

c4 the repair cost per signal (true)

t1 the time spent per signal (false)

t2 the time spent per signal (true)
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E[PT ] the expected number of hours spent in production

E[OOCT ] the expected number of hours spent out-of-control

E[N ] the expected number of units sampled per cycle

E[F ] the expected number of false signals

The four terms in the numerator of the LRHC function represent the total costs per

cycle in regards to sampling, running out-of-control, false signals, and repairing a true

signal. The three terms that define the denominator represent the total time spent

in production per cycle, the total time caused by false signals per cycle, and the total

time spent repairing an assignable cause. The expected values in the LRHC function

are calculated using the properties of Markov chains while the remaining variables

are necessarily predefined.

3.5 Utilizing Markov chain properies

The P matrix of order m+ 1, as previously defined, must first be reduced to a matrix

containing only transient states, denoted by PT . When a true signal is received,

production ceases, and the search for an assignable cause ensues. Therefore, the only

absorbing state in the P matrix lies in the true signal state, whereby the corresponding

row and column is removed to find PT , which has order m. Calculate S = [I−PT ]−1 =

{sij}, of which the first row contains the expected number of visits to each state

throughout one cycle of the process. Thus, the expected values from the LRHC

formula are provided below.

E[OOCT ] = E[PT ] − 1

λ
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where

E[PT ] =
r∑
j=1

s1j · h(j−1)·s +
2r+1∑
j=r+2

s1j · h(j−r−2)·s +
3r∑

j=2r+2

s1j · h(j−2r−1)·s

The values for E[N ] and E[F ] are derived as follows.

E[N ] =
r∑
j=1

s1j · n(j−1)·s +
2r+1∑
j=r+2

s1j · n(j−r−2)·s +
3r∑

j=2r+2

s1j · n(j−2r−1)·s

and

E[F ] = s1 , r+1

The next section explains the process of parameter optimization as well as the

resulting benefits of the proposed CCSUM scheme. In direct comparison to previous

research, a detailed analysis is presented and the incorporation of statistical design is

discussed.



Chapter 4: Numerical Analysis

Comparisons are made between the results of this paper to the previous work of Car-

olan et al.[1] where X control charts with continuously variable sampling intervals and

two stage sample sizes are employed. Tabular results are notated with the subscripts,

X, where findings from Carolan et al.[1] are listed, and CCSUM, when referring to

the discoveries of this paper. The in-text reference to the work of Carolan et al.[1]

will be referred to as the X chart model.

4.1 Optimization method and procedures

Eight constants are used in conjunction with the LRHC formula in determining the

settings of the 9 optimal parameters in each of the 16 scenarios (examples) via the

P matrix. Since a solution for optimizing these 9 parameters is not possible through

analysis, a grid search method is used for the task. The grid search was performed

using the R software environment, and an example of the R code used for this paper

is provided in the appendix. The fixed settings per each scenario are provided in

Table I, where each constant is defined as stated in the previous chapter.

It was discovered during optimization that reducing the value of certain param-

eters, in their respective domains, led to increased efficiency in terms of LRHC. For

example, the step size, s, continued to be more optimal for decreasing positive values

approaching zero. This is expected since smaller values of s lead to a more continuous

state space for the Markov chain, which translates to a more sensitive detection of

mean shift. Due to limitations in computer processing memory, the value of s has

a necessary lower limit. For this paper, the step size is defined to be s = 0.01, for

all scenarios. The minimum sampling interval, hmin, is another parameter that op-
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Table I. Process parameters (constants)

Fixed settings per example

Ex. c1 c2 c3 c4 t1 t2 λ ∆

1 2 500 1500 1000 2 1 0.01 0.5

2 5 500 1500 1000 2 1 0.01 0.5

3 2 1500 1500 1000 2 1 0.01 0.5

4 5 1500 1500 1000 2 1 0.01 0.5

5 2 500 3000 1000 5 1 0.01 0.5

6 5 500 3000 1000 5 1 0.01 0.5

7 2 500 3000 1000 5 1 0.01 0.5

8 5 1500 3000 1000 5 1 0.01 0.5

9 2 500 1500 1000 2 1 0.01 1

10 5 500 1500 1000 2 1 0.01 1

11 2 1500 1500 1000 2 1 0.01 1

12 5 1500 1500 1000 2 1 0.01 1

13 2 500 3000 1000 5 1 0.01 1

14 5 500 3000 1000 5 1 0.01 1

15 2 500 3000 1000 5 1 0.01 1

16 5 1500 3000 1000 5 1 0.01 1

timizes at its lowest allowable setting. This should also come as no surprise, since

smaller values of hmin mean that once the process drifts significantly away from its

target, it is more cost efficient to sample as quickly as possible to either drive the

CCSUM statistic back to zero or further advance it across the boundary. However,

there is a minimum feasible sampling interval for every manufacturing process, to be

determined by the scientist. In this study, sampling can occur once every 3 minutes

at a minimum, i.e., hmin = 0.05 for all scenarios.

4.2 Optimizing parameters for sample size and sampling interval

After completing the optimization procedure, trends were apparent regarding the 6

parameters allocated to govern sample sizes and sampling intervals. For instance,
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while the minimum and maximum sample size, nmin and nmax, can be quite varied

across all scenarios, the value for αn, the shape parameter, remained relatively con-

sistent. The average value for αn among all scenarios is 1.80; this means that, on

average, the polynomial shape describing the rate of transition from nmin to nmax is

approximately quadratic. Conclusions can be drawn from the values of αh received

through optimization as well. Although, the range of these values is much larger,

there is not much variation in terms of the shapes of the sampling interval functions

overall. Therefore, it may be informative to analyze one scenario in particular, for

the purpose of gaining a better general idea of what is optimal for any given scenario.

The following two figures display the optimal settings for sample sizes and sam-

pling intervals from scenario 4. Figure 4.1 displays the graph of the sample size

function. The function is designed to output rounded values during optimization,

hence, the step function graph. The sweep from nmin = 10 to nmax = 21 could even
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be described as relatively linear in shape and is indicative of the general shape of

ni·s for all scenarios. Figure 4.2 presents the graph of the sampling interval function

resulting from scenario 4. This illustrates the aforementioned drastic sweep to hmin

that all scenarios require in minimizing LRHC. This optimal shape for sampling in-

terval can be summarized in the following statement; as the CCSUM statistic begins

to drift away from state zero, it is economically more efficient to sample more quickly

right away than it is to immediately begin taking larger sample sizes.
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4.3 Results and comparison of X and CCSUM chart designs

Since the settings per each scenario used in this paper are identical to the X chart

model, the effectiveness of the CCSUM chart design and procedures can be measured

by direct comparison. Table II displays the final optimized parameter settings for the

variable components of the CCSUM chart design, in addition to the LRHC results

from each of the two proposed designs and subsequent savings. The savings are
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presented as a percent decrease of the CCSUM LRHC from the X LRHC as given by

the formula below.

% Savings =
LRHCX − LRHCCCSUM

LRHCX

· 100%

The results shown in Table II clearly point to an improvement of design in the CCSUM

model over the X model. Savings were especially robust in the scenarios where a

smaller shift required detecting. This is expected due to the information retaining

properties of CUSUM charts in general.

A detailed cost breakdown is provided in Table III, where individual cost and time

values per scenario are presented from both the X chart and CCSUM chart models.

Included in this table are the first three terms of the LRHC function’s numerator along

with two time metrics, all of which are defined in the previous chapter. However, the

concept of lag time has yet to be discussed or defined. Recall the assumption that

the time until the process shifts out-of-control is distributed exponentially with rate,

λ. For all scenarios, this rate is set to be λ = 0.01 (see Table I), which implies

that the expected time until the process shifts out-of-control is 100 hours. For the

purpose of this paper, lag time is defined as the amount of elapsed time from when

the process shifts out-of-control until any indication is given that a problem exists,

or more specifically, until the next sample is taken. Therefore, lag time is calculated

by,

Lag =
r∑
1

s1j · h(j−1)·s −
1

λ

where {sij} = [I − PT ]−1 as defined in the last chapter. Note that the product being

summed is the amount of time spent in each in-control state, where s1j is the expected

number of visits to each state, hj·s is the sampling interval associated with each state,

and r is the number of in-control states excluding the false signal state.

The CCSUM chart model boasts superior cost savings to the X chart model, in
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addition to lowering both the expected time spent out of control and the expected

number of false signals in all 16 scenarios. In 6 scenarios, the X chart model has a

shorter lag time than the CCSUM model, as highlighted in Table III. This simply

means that in the X chart model, a sample is taken sooner after a shift occurs.

However, in each of these 6 scenarios, the CCSUM model detects the shift earlier

than the X model due to spending less time out-of-control. While lag times do not

have much bearing on the overall efficiency throughout a cycle, they do provide some

insight on the detection properties of different control chart schemes.

Table III. Cost breakdown

Example N cost OOC cost F cost E[OOCT ] Lag E[F ]

1X 1542 1606 50 3.211 1.764 0.035

1CCSUM 1421 1497 30 2.994 1.471 0.020

$ savings 121 109 20 = 250/cycle

2X 2367 2547 159 5.094 2.735 0.106

2CCSUM 2254 2360 65 4.721 2.259 0.044

$ savings 113 187 94 = 394/cycle

3X 2613 2778 87 1.852 1.002 0.058

3CCSUM 2431 2609 49 1.740 0.871 0.033

$ savings 182 169 38 = 389/cycle

4X 4062 4315 228 2.876 1.461 0.152

4CCSUM 3826 4052 100 2.701 1.096 0.067

$ savings 236 263 128 = 627/cycle

5X 1567 1618 48 3.245 1.764 0.016

5CCSUM 1453 1513 28 3.027 1.475 0.009

$ savings 114 105 20 = 239/cycle

6X 2462 2572 123 5.144 2.862 0.041

6CCSUM 2336 2385 58 4.770 2.117 0.019

$ savings 126 187 65 = 378/cycle
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Table III. Cost breakdown (continued)

Example N cost OOC cost F cost E[OOCT ] Lag E[F ]

7X 2647 2806 76 1.871 1.002 0.025

7CCSUM 2470 2648 43 1.765 0.871 0.014

$ savings 177 158 33 = 368/cycle

8X 4169 4362 181 2.908 1.528 0.060

8CCSUM 3942 4092 77 2.728 1.328 0.026

$ savings 227 270 104 = 601/cycle

9X 760 829 20 1.658 0.872 0.013

9CCSUM 721 777 12 1.554 0.956 0.008

$ savings 39 52 8 = 99/cycle

10X 1223 1289 40 2.578 1.125 0.027

10CCSUM 1129 1195 21 2.390 1.334 0.014

$ savings 94 94 19 = 207/cycle

11X 1308 1486 32 0.991 0.588 0.022

11CCSUM 1238 1385 22 0.923 0.544 0.015

$ savings 70 101 10 = 181/cycle

12X 2090 2255 62 1.504 0.645 0.041

12CCSUM 1962 2114 34 1.409 0.869 0.023

$ savings 128 141 28 = 297/cycle

13X 772 850 25 1.699 0.712 0.008

13CCSUM 732 786 10 1.572 0.955 0.003

$ savings 40 64 15 = 119/cycle

14X 1235 1300 47 2.600 1.125 0.016

14CCSUM 1170 1218 18 2.437 1.538 0.006

$ savings 65 82 29 = 176/cycle

15X 1322 1494 30 0.996 0.585 0.010

15CCSUM 1260 1397 19 0.932 0.540 0.006

$ savings 62 97 11 = 170/cycle

16X 2090 2289 73 1.526 0.648 0.024

16CCSUM 1965 2120 31 1.413 0.745 0.010

$ savings 125 169 42 = 336/cycle



20

4.4 Incorporating statistical design into an economic design model

In this paper, the charting parameters are optimized by strict economic design, which

yields the setting with the lowest LRHC. Statistical design chooses the appropriate

settings according to some desired statistical properties, such as low average run

length or low false signal rate. Previous work by Saniga[8] explores metrics which

incorporate both economic and statistical design and strike a balance between the

two design methods. While process monitoring is an expense to the manufacturer

and quality control is of utmost importance to most, it could be said that economic

design is an ideal starting ground for the incorporation of statistical design. Strict

economic design establishes the baseline of process monitoring costs; incorporating

statistical design forces the manager to decide how much, in cost, he or she is willing

to give up in order to gain a desired statistical property or properties.

Similar to the interplay between type I and type II error probabilities in hypothesis

testing, the expected number of false signals in a cycle, E[F ], and the mean time the

process runs out of control in a cycle, E[OOCT ] are inversely related. Increasing

the boundary, b, the reference parameter, k, and/or the sampling intervals, hi·s, all

result in lowering E[F ] at the expense of raising E[OOCT ]. Conversely, lowering

these settings will lower E[OOCT ] at the expense of raising E[F ].

Interestingly, increasing the sample sizes, ni·s, only serves to decrease E[OOCT ],

but at no expense to E[F ] which remains stationary. The counterbalance here is

increased sampling costs. Once one recognizes this fact, it becomes clear that some

economic consideration is appropriate. So, the balance between E[F ] and E[OOCT ]

also should involve a consideration of cost.

Economic design, through the LRHC function, does exactly this. It seeks to keep

both E[F ] and E[OOCT ] low, with cost efficiency in mind. Incorporating statistical



21

design into economic design, called economic statistical design[8], simply selects the

most cost effective setting from among all statistically viable settings. For example,

if the design was required to have the properties E[F ] ≤ 0.05 and E[OOCT ] ≤ 1.5

hours, then the economic statistical design procedure would select the most efficient

design among all designs with the required statistical properties.

Consider an example of incorporating statistical design in scenario 4. The ex-

pected time spent out-of-control per cycle, as given in Table III, is E[OOCT ] = 2.701

hours, as determined by strict economic design. If a manager were to demand that

E[OOCT ] ≤ 2 hours, he or she could expect an increase in sampling costs. Using

economic statistical design, the optimal settings can be derived to establish the most

cost effective way to limit the mean out-of-control time to no more than 2 hours per

cycle. Table IV displays the optimal settings and the cost breakdown, illustrating the

results of this example. In this table, example 4 refers to the settings derived from

strict economic design and example 4∗ refers to the settings using economic statistical

design.

Table IV. Incorporating statistical design using scenario 4

Optimized settings per example Results

Example b s k hmin hmax αh nmin nmax αn LRHC

4 3.99 0.01 0.84 0.05 2.41 15.78 10 21 1.87 86.52

4∗ 4.05 0.01 0.86 0.05 1.83 15.70 11 19 1.94 90.14

Cost breakdown per example

Example N cost OOC cost F cost E[OOCT ] Lag E[F ]

4 3826 4052 100 2.701 1.096 0.067

4∗ 5192 3000 99 2.000 0.832 0.066

$ savings −1366 1052 1 = −313/cycle

Notice that there are adjustments made in all parameters not held constant. How-

ever, the most significant difference in parameter optimization is in the shortening

of the maximum sampling interval, a reduction of almost 25%. A smaller range of
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sample sizes was found to be optimal, and yet, in both cases they are centered around

15 to 16 units. This narrowed range of sample size values points to the de-emphasis of

its contribution to lowering out-of-control time. In other words, the CCSUM statistic

will gain more information from sampling more quickly rather than sampling a larger

number of units at a time. Shorter sampling intervals allow the CCSUM statistic to

quickly reach the boundary once a process has shifted out-of-control.

The cost breakdown in Table IV shows the monetary trade-off when requiring

E[OOCT ] ≤ 2. In finding the most cost efficient setting for achieving this statis-

tical property, the boundary and reference values were increased, thus lowering the

expected number of false signals and associated costs. A reduction in lag time should

be expected, since reducing hmin means less time elapses between sampling. More

specifically, less time will elapse between the time the process goes out of control until

another sample is taken. Clearly, an increase in sampling costs and a decrease in out-

of-control costs will result. However, it is interesting to find out that a manager who

wishes to implement this design, under scenario 4 settings, should expect to spend

an extra $3.62 per hour, compared to the hourly cost determined by strict economic

design.



Chapter 5: Conclusions

The topic of process control has been widely discussed and researched, where CUSUM

schemes lead the way in the detection of small to moderate shifts in mean. Some

research[10][11] tackle the implementation difficulties due to overly complex schemes

where a high level of efficiency are shown. However, in the calculation of the CUSUM

statistic, information regarding the sign of the shift is lost due to the method of

simplification, and thus some sensitivity of mean detection is compromised. This

paper proposes a CUSUM statistic calculation that differentiates between positive

and negative trends in shift detection.

In addition to the novelty of the statistic, this paper provides a method of assign-

ing a sample size and unique sampling interval to each CCSUM statistic, where each

depends on only 3 parameters (minimum, maximum, shape). Variable sampling in-

tervals and sample sizes have long been employed and shown to improve the results of

process control[5]. However, the extent to which variability is explored has not been

fully investigated, most likely due to concerns with an excess in parameterization.

Through an economic design metric, the improved efficiency of the CCSUM

scheme is unveiled through direct comparison with the previous work of Carolan

et al.[1]. The process monitoring method proposed in this paper shows considerable

improvement in all categories, exhibited by the Tables II and III in the previous chap-

ter. Specifically, the improvement in LRHC shown in Table II is made possible by the

individual cost savings presented in Table III. To summarize, an overall increase in

efficiency can be attributed to a reduction in sampling, a decrease in time spent while

out-of-control, and a lower false signal rate, all of which are important to managers.
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Appendix A: Derivation of transition probabilities

All non-zero probability statements are given below except for PFalse (0,I) = 1 and

PTrue True = 1. A CCSUM statistic reaching the boundary while the process is in-

control produces a false signal, and the CCSUM statistic returns to 0. If a CCSUM

statistic reaches the boundary and the process is out-of-control, a true signal is pro-

duced, production ceases, and an assignable cause is identified and corrected. Hence,

the true signal serves as an absorbing state in the P matrix.

When the process is in-control, the units produced are assumed to be normally dis-

tributed with mean, µ, and standard deviation, σ. The transition probabilities to in-

control states are written in terms of a standard normal random variable, Z ∼ N (0, 1).

When the process is not in-control, the assumption is that the mean has shifted ∆

standard deviations while the standard deviation remains unaffected. Therefore, a

process that is not in-control produces units with mean, µ±∆σ, and standard devi-

ation, σ. Consider the case where a positive shift in mean occurs, where units now

come from the distribution, N (µ+ ∆σ, σ). Therefore,

Zt =
X t − µ
σ/
√
n

=
X t − (µ+ ∆σ) + ∆σ

σ/
√
n

=
X t − (µ+ ∆σ)

σ/
√
n

+ ∆
√
n .

This implies that the new standardized random variable is distributed, N (∆
√
n, 1),

which can be expressed by the shifted standard normal random variable, Z + ∆
√
n.

The negative case is handled similarly and results in the shifted standard normal

random variable, Z −∆
√
n. Therefore, the transition probabilities to or from out-of-

control states are expressed accordingly, i.e., Z±∆
√
ni·s. In the following probability

statements, the notations, Z∆+
and Z∆−

, are used for Z + ∆
√
ni·s and Z −∆

√
ni·s ,

respectively.
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There are 26 unique cases that define all possible transition probabilities. Recall

that states in the P matrix are ordered pairs of the form, (CCSUM statistic, control

status). The probability statements below are organized by their row in the P matrix,

i.e., the state it is transitioning from. Determining transition probabilities from one

state to another requires addressing the control status transition and conditionally

addressing the CCSUM statistic transition. If a process is out-of-control, it is assumed

that it will remain out-of-control until a true signal is received. Therefore, out-of-

control states only transition to other out-of-control states. In this paper, the time,

T , until a process shifts out-of-control is assumed to be exponentially distributed

with rate, λ = 0.01. The sampling interval associated with the absolute value of

the current CCSUM statistic, | ± i · s|, ranging from 0 to b − s, is notated as hi·s =

{hmax , h1·s , h2·s , . . . , hb−2·s , hmin}. Likewise, each state has a corresponding sample

size given by ni·s = {nmin , n1·s , n2·s , . . . , nb−2·s , nmax}.

Transition from state x = (0, I):

• To state y = (0, I) with probability,

Pxy = P (−k − s < Z < k + s) · P (T < hmax)

• To state y = (±j · s, I) with probability,

Pxy = P
(
k + j · s < |Z| < k + (j + 1) · s

)
· P (T < hmax)

• To state y = False with probability,

Pxy = P (|Z| > k + b) · P (T < hmax)

• To state y = (0, N) with probability,

Pxy = P (−k − s < Z + ∆
√
nmin < k + s) · P (T > hmax)

• To state y = (±j · s,NC) with probability,

Pxy = P (k + j · s < Z + ∆
√
nmin < k + (j + 1) · s) · P (T > hmax)

• To state y = (±j · s,ND) with probability,

Pxy = P (k + j · s < Z −∆
√
nmin < k + (j + 1) · s) · P (T > hmax)
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• To state y = True with probability,

Pxy = P (|Z + ∆
√
nmin| > k + b) · P (T > hmax)

Transition from state x = (±i · s, I):

• To state y = (0, I) with probability,

Pxy = P (−k − s < Z < max{−k, k − i · s}) · P (T < hi·s)

• To state y = (±j · s, I) with probability, Pxy =

[
P (max{−k, k − (i− j + 1) · s} < Z < max{−k, k − (i− j) · s})

+ P (−k − (j + 1) · s < Z < −k − j · s)
]
· P (T < hi·s)

if i > j

[
P (k + (j − i) · s < Z < k + (j − i+ 1) · s)

+ P (−k − (j + 1) · s < Z < −k − j · s)
]
· P (T < hi·s)

if i < j

[
P (max{−k, k − s} < Z < k + s)

+ P (−k − (j + 1) · s < Z < −k − j · s)
]
· P (T < hi·s)

if i = j

• To state y = False with probability,

Pxy =
[
P (Z > k + b− i · s) + P (Z < −k − b)

]
· P (T < hi·s)

• To state y = (0, N) with probability,

Pxy =
[

1
2
P (−k − s < Z∆+

< max{−k, k − i · s})

+1
2
P (min{k,−k + i · s} < Z∆+

< k + s)
]
· P (T > hi·s)

• To state y = (±j · s,NC) with probability, Pxy =

[
1
2
P (max{−k, k − (i− j + 1) · s} < Z∆+

< max{−k, k − (i− j) · s})

+ 1
2
P (−k − (j + 1) · s < Z∆−

< −k − j · s)
]
· P (T > hi·s)

if i > j

[
1
2
P (k + (j − i) · s < Z∆+

< k + (j − i+ 1) · s)

+ 1
2
P (−k − (j + 1) · s < Z∆−

< −k − j · s)
]
· P (T > hi·s)

if i < j

[
1
2
P (max{−k, k − s} < Z∆+

< k + s)

+ 1
2
P (−k − (j + 1) · s < Z∆−

< −k − j · s)
]
· P (T > hi·s)

if i = j
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• To state y = (±j · s,ND) with probability, Pxy =

[
1
2
P (min{k,−k + (i− j) · s} < Z∆+

< min{k,−k + (i− j + 1) · s})

+ 1
2
P (k + j · s < Z∆−

< k + (j + 1) · s)
]
· P (T > hi·s)

if i > j

[
1
2
P (−k − (j − i+ 1) · s < Z∆+

< −k − (j − i) · s)

+ 1
2
P (k + j · s < Z∆−

< k + (j + 1) · s)
]
· P (T > hi·s)

if i < j

[
1
2
P (−k − s < Z∆+

< min{k,−k + s})

+ 1
2
P (k + j · s < Z∆−

< k + (j + 1) · s)
]
· P (T > hi·s)

if i = j

• To state y = True with probability,

Pxy = (1
2

[
P (Z∆+

> k + b− i · s) + P (Z∆+
> −k − b)

]
+1

2

[
P (Z∆−

> k + b− i · s) + P (Z∆−
> −k − b)

]
) · P (T > hi·s)

Transition from state x = (0, N):

• To state y = (0, N) with probability,

Pxy = P (−k − s < Z + ∆
√
nmin < k + s)

• To state y = (±j · s,NC) with probability,

Pxy = P (k + j · s < Z + ∆
√
nmin < k + (j + 1) · s)

• To state y = (±j · s,ND) with probability,

Pxy = P (k + j · s < Z −∆
√
nmin < k + (j + 1) · s)

• To state y = True with probability,

Pxy = P (|Z + ∆
√
nmin| > k + b)

Transition from state x = (±i, NC):

• To state y = (0, N) with probability,

Pxy = P (−k − s < Z∆+
< max{−k, k − i · s})



29

• To state y = (±j · s,NC) with probability, Pxy =
P (max{−k, k − (i− j + 1) · s} < Z∆+

< max{−k, k − (i− j) · s}) if i > j

P (k + (j − i) · s < Z∆+
< k + (j − i+ 1) · s) if i < j

P (max{−k, k − s} < Z∆+
< k + s) if i = j

• To state y = (±j · s,ND) with probability,

Pxy = P (−k − (j + 1) · s < Z∆+
< −k − j · s)

• To state y = True with probability,

Pxy = P (Z∆+
> k + b− i · s) + P (Z∆+

< −k − b)

Transition from state x = (±i, ND):

• To state y = (0, N) with probability,

Pxy = P (−k − s < Z∆−
< max{−k, k − i · s})

• To state y = (±j · s,NC) with probability,

Pxy = P (−k − (j + 1) · s < Z∆−
< −k − j · s)

• To state y = (±j · s,ND) with probability, Pxy =
P (max{−k, k − (i− j + 1) · s} < Z∆−

< max{−k, k − (i− j) · s}) if i > j

P (k + (j − i) · s < Z∆−
< k + (j − i+ 1) · s) if i < j

P (max{−k, k − s} < Z∆−
< k + s) if i = j

• To state y = True with probability,

Pxy = P (Z∆−
> k + b− i · s) + P (Z∆−

< −k − b)



Appendix B: R code

#Long Run Hourly Cost Function

LRHC <− function (b , s , k , hmin , hmax , halpha , nmin , nmax , nalpha , lam , del ,

f t ime , ttime , ncost , ooccost , f c o s t , t c o s t ) {

r <− round(b/s ) #Forces search a l gor i thm

va lue s to f i t d i s c r e t e model

b <− s∗r

s <− b/r

m <− 3∗r #Order o f the S−matrix

P <− matrix (0 ,m+1,m+1) #Zero matrix order m+1

s t a t e s <− seq (0 , b−s ,by=s ) #Creates a vec t o r o f s i z e

b/s , incremented by s , ranging from zero to b−s

#Paired wi th a con t r o l

s t a t u s o f I ,N,NC, or

ND to i d e n t i f y a

s p e c i f i c s t a t e in the

P−matrix

#Continuous ly Var iab l e Sampling I n t e r v a l

hrange <− hmax−hmin

h <− hmin+hrange∗(1− s t a t e s/ (b−s ) ) ˆhalpha #Creates a vec t o r

o f decreas ing sampling i n t e r v a l s

#Cont inuous ly Var iab l e Sample S i z e

nrange <− nmax−nmin
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n <− nmin+nrange∗ ( s t a t e s/ (b−s ) ) ˆnalpha #Creates a vec t o r

o f i n c r ea s in g sample s i z e s

n <− round(n)

#The P−Matrix

#In the commentary below , i and j i s used in l i e u o f the complete

notat ion , +/−i∗s and +/−j∗s .

#Row 1 − (0 , I ) to ?

P[ 1 , 1 ] <− 2∗ (pnorm( k+s ) −.5)∗exp(−hmax∗lam ) #(0 , I ) to (0 , I )

P[ 1 , 2 : r ] <− 2∗ (pnorm( k+s t a t e s [ 2 : r ]+ s )−pnorm( k+s t a t e s [ 2 : r ] ) )∗exp(−

hmax∗lam ) #(0 , I ) to ( j , I )

P[ 1 , r+1] <− 2∗(1−pnorm( k+b) )∗exp(−hmax∗lam ) #(0 , I ) to Fa lse

P[ 1 , r+2] <− (pnorm( k+s ,mean=de l∗sqrt (nmin ) )−pnorm(−k−s ,mean=de l∗

sqrt (nmin ) ) )∗(1−exp(−hmax∗lam ) ) #(0 , I ) to (0 ,N)

P[ 1 , ( r+3) : ( 2∗r+1) ] <− (pnorm( k+s t a t e s [ 2 : r ]+s ,mean=de l∗sqrt (nmin ) )

−pnorm( k+s t a t e s [ 2 : r ] ,mean=de l∗sqrt (nmin ) ) )∗(1−exp(−hmax∗lam ) )

#(0 , I ) to ( j ,NC)

P[ 1 , ( 2∗r+2) : ( 3∗r ) ] <− (pnorm( k+s t a t e s [ 2 : r ]+s ,mean=−de l∗sqrt (nmin )

)−pnorm( k+s t a t e s [ 2 : r ] ,mean=−de l∗sqrt (nmin ) ) )∗(1−exp(−hmax∗lam )

) #(0 , I ) to ( j ,ND)
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P[ 1 , ( 3∗r+1) ] <− (1−pnorm( k+b ,mean=de l∗sqrt (nmin ) )+pnorm(−k−b ,mean

=de l∗sqrt (nmin ) ) )∗(1−exp(−hmax∗lam ) ) #(0 , I ) to TRUE

#Rows 2 : r − ( i , I ) to ?

P [ 2 : r , 1 ] <− (pnorm(pmax(−k , k−s t a t e s [ 2 : r ] ) )−pnorm(−k−s ) )∗exp(−h [ 2 :

r ] ∗lam ) #( i , I ) to (0 , I )

for ( i in 2 : r ) {

for ( j in 2 : r ) {

i f ( i>j ) {

P[ i , j ] <− (pnorm(max(−k , k−( i−j )∗s ) )−pnorm(max(−k ,

k−( i−j +1)∗s ) )+pnorm(−k−( j−1)∗s )−pnorm(−k−j∗s ) )

∗exp(−h [ i ] ∗lam )

}

i f ( i<j ) {

P[ i , j ] <− (pnorm( k+(j−i +1)∗s )−pnorm( k+(j−i )∗s )+

pnorm(−k−( j−1)∗s )−pnorm(−k−j∗s ) )∗exp(−h [ i ] ∗lam

)

}

i f ( i==j ) {

P[ i , j ] <− (pnorm( k+s )−pnorm(max(−k , k−s ) )+pnorm(−k

−( i −1)∗s )−pnorm(−k−i ∗s ) )∗exp(−h [ i ] ∗lam )

}

}

} #( i , I ) to ( j , I )

P [ 2 : r , r+1] <− (1−pnorm( k+b−s t a t e s [ 2 : r ] )+pnorm(−k−b) )∗exp(−h [ 2 : r ] ∗
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lam ) #( i , I ) to Fa lse

P [ 2 : r , r+2] <− ( . 5∗ (pnorm(pmax(−k , k−s t a t e s [ 2 : r ] ) ,mean=de l∗sqrt (n

[ 2 : r ] ) )−pnorm(−k−s ,mean=de l∗sqrt (n [ 2 : r ] ) ) )+.5∗ (pnorm( k+s ,mean=

de l∗sqrt (n [ 2 : r ] ) )−pnorm(pmin(k,−k+s t a t e s [ 2 : r ] ) ,mean=de l∗sqrt (n

[ 2 : r ] ) ) ) )∗(1−exp(−h [ 2 : r ] ∗lam ) ) #( i , I ) to (0 ,N)

for ( i in 2 : r ) {

for ( j in 2 : r ) {

i f ( i>j ) {

P[ i , r+1+j ] <− ( . 5∗ (pnorm(max(−k , k−( i−j )∗s ) ,mean=

de l∗sqrt (n [ i ] ) )−pnorm(max(−k , k−( i−j +1)∗s ) ,mean

=de l∗sqrt (n [ i ] ) ) )+.5∗ (pnorm(−k−( j−1)∗s ,mean=−

de l∗sqrt (n [ i ] ) )−pnorm(−k−j∗s ,mean=−de l∗sqrt (n [

i ] ) ) ) )∗(1−exp(−h [ i ] ∗lam ) )

}

i f ( i<j ) {

P[ i , r+1+j ] <− ( . 5∗ (pnorm( k+(j−i +1)∗s ,mean=de l∗

sqrt (n [ i ] ) )−pnorm( k+(j−i )∗s ,mean=de l∗sqrt (n [ i

] ) ) )+.5∗ (pnorm(−k−( j−1)∗s ,mean=−de l∗sqrt (n [ i ] )

)−pnorm(−k−j∗s ,mean=−de l∗sqrt (n [ i ] ) ) ) )∗(1−exp

(−h [ i ] ∗lam ) )

}

i f ( i==j ) {

P[ i , r+1+j ] <− ( . 5∗ (pnorm( k+s ,mean=de l∗sqrt (n [ i ] ) )

−pnorm(max(−k , k−s ) ,mean=de l∗sqrt (n [ i ] ) ) )+.5∗ (

pnorm(−k−( i −1)∗s ,mean=−de l∗sqrt (n [ i ] ) )−pnorm(−
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k−i ∗s ,mean=−de l∗sqrt (n [ i ] ) ) ) )∗(1−exp(−h [ i ] ∗lam

) )

}

}

} #( i , I ) to ( j ,NC)

for ( i in 2 : r ) {

for ( j in 2 : r ) {

i f ( i>j ) {

P[ i , ( 2∗r+j ) ] <− ( . 5∗ (pnorm(max(−k , k−( i−j )∗s ) ,mean

=−de l∗sqrt (n [ i ] ) )−pnorm(max(−k , k−( i−j +1)∗s ) ,

mean=−de l∗sqrt (n [ i ] ) ) )+.5∗ (pnorm(−k−( j−1)∗s ,

mean=de l∗sqrt (n [ i ] ) )−pnorm(−k−j∗s ,mean=de l∗

sqrt (n [ i ] ) ) ) )∗(1−exp(−h [ i ] ∗lam ) )

}

i f ( i<j ) {

P[ i , ( 2∗r+j ) ] <− ( . 5∗ (pnorm( k+(j−i +1)∗s ,mean=−de l∗

sqrt (n [ i ] ) )−pnorm( k+(j−i )∗s ,mean=−de l∗sqrt (n [ i

] ) ) )+.5∗ (pnorm(−k−( j−1)∗s ,mean=de l∗sqrt (n [ i ] ) )

−pnorm(−k−j∗s ,mean=de l∗sqrt (n [ i ] ) ) ) )∗(1−exp(−h

[ i ] ∗lam ) )

}

i f ( i==j ) {

P[ i , ( 2∗r+j ) ] <− ( . 5∗ (pnorm( k+s ,mean=−de l∗sqrt (n [ i

] ) )−pnorm(max(−k , k−s ) ,mean=−de l∗sqrt (n [ i ] ) ) )

+.5∗ (pnorm(−k−( i −1)∗s ,mean=de l∗sqrt (n [ i ] ) )−

pnorm(−k−i ∗s ,mean=de l∗sqrt (n [ i ] ) ) ) )∗(1−exp(−h [
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i ] ∗lam ) )

}

}

} #( i , I ) to ( j ,ND)

P [ 2 : r , ( 3∗r+1) ] <− ( 0 . 5∗(1−pnorm( k+b−s t a t e s [ 2 : r ] ,mean=de l∗sqrt (n

[ 2 : r ] ) )+pnorm(−k−b ,mean=de l∗sqrt (n [ 2 : r ] ) ) ) +0.5∗(1−pnorm( k+b−

s t a t e s [ 2 : r ] ,mean=−de l∗sqrt (n [ 2 : r ] ) )+pnorm(−k−b ,mean=−de l∗sqrt (

n [ 2 : r ] ) ) ) )∗(1−exp(−h [ 2 : r ] ∗lam ) ) #( i , I ) to True

#Row r+1 − False S i gna l

P[ r +1 ,1] <− 1 #False to (0 , I )

#Row r+2 − (0 ,N) to ?

P[ r+2, r+2] <− pnorm( k+s ,mean=de l∗sqrt (nmin ) )−pnorm(−k−s ,mean=de l∗

sqrt (nmin ) ) #(0 ,N) to (0 ,N)

P[ r+2 ,( r+3) : ( 2∗r+1) ] <− pnorm( k+s t a t e s [ 2 : r ]+s ,mean=de l∗sqrt (nmin )

)−pnorm( k+s t a t e s [ 2 : r ] ,mean=de l∗sqrt (nmin ) ) #(0 ,N) to ( j ,NC)

P[ r +2 ,(2∗r+2) : ( 3∗r ) ] <− pnorm( k+s t a t e s [ 2 : r ]+s ,mean=−de l∗sqrt (nmin

) )−pnorm( k+s t a t e s [ 2 : r ] ,mean=−de l∗sqrt (nmin ) ) #(0 ,N) to ( j ,ND)

P[ r +2 ,(3∗r+1) ] <− 1−pnorm( k+b ,mean=de l∗sqrt (nmin ) )+pnorm(−k−b ,

mean=de l∗sqrt (nmin ) ) #(0 ,N) to True

#Rows ( r+3) : ( 2∗r+1) − ( i ,NC) to ?
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P[ ( r+3) : ( 2∗r+1) , r+2] <− pnorm(pmax(−k , k−s t a t e s [ 2 : r ] ) ,mean=de l∗

sqrt (n [ 2 : r ] ) )−pnorm(−k−s ,mean=de l∗sqrt (n [ 2 : r ] ) ) #( i ,NC) to (0 ,

N)

for ( i in 2 : r ) {

for ( j in 2 : r ) {

i f ( i>j ) {

P[ r+1+i , r+1+j ] <− (pnorm(max(−k , k−( i−j )∗s ) ,mean=

de l∗sqrt (n [ i ] ) )−pnorm(max(−k , k−( i−j +1)∗s ) ,mean

=de l∗sqrt (n [ i ] ) ) )

}

i f ( i<j ) {

P[ r+1+i , r+1+j ] <− (pnorm( k+(j−i +1)∗s ,mean=de l∗

sqrt (n [ i ] ) )−pnorm( k+(j−i )∗s ,mean=de l∗sqrt (n [ i

] ) ) )

}

i f ( i==j ) {

P[ r+1+i , r+1+j ] <− (pnorm( k+s ,mean=de l∗sqrt (n [ i ] ) )

−pnorm(max(−k , k−s ) ,mean=de l∗sqrt (n [ i ] ) ) )

}

}

} #( i ,NC) to ( j ,NC)

for ( i in 2 : r ) {

for ( j in 2 : r ) {

P[ r+1+i , ( 2∗r+j ) ] <− pnorm(−k−( j−1)∗s ,mean=de l∗sqrt (n [ i ] ) )

−pnorm(−k−j∗s ,mean=de l∗sqrt (n [ i ] ) )
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}

} #( i ,NC) to ( j ,ND)

P[ ( r+3) : ( 2∗r+1) , (3∗r+1) ] <− (1−pnorm( k+b−s t a t e s [ 2 : r ] ,mean=de l∗

sqrt (n [ 2 : r ] ) ) )+pnorm(−k−b ,mean=de l∗sqrt (n [ 2 : r ] ) ) #( i ,NC) to

True

#Rows (2∗r+2) : ( 3∗r ) − ( i ,ND) to ?

P[ ( 2∗r+2) : ( 3∗r ) , r+2] <− pnorm(pmax(−k , k−s t a t e s [ 2 : r ] ) ,mean=−de l∗

sqrt (n [ 2 : r ] ) )−pnorm(−k−s ,mean=−de l∗sqrt (n [ 2 : r ] ) ) #( i ,ND) to

(0 ,N)

for ( i in 2 : r ) {

for ( j in 2 : r ) {

P[ ( 2∗r+i ) , r+1+j ] <− pnorm(−k−( j−1)∗s ,mean=−de l∗sqrt (n [ i ] )

)−pnorm(−k−j∗s ,mean=−de l∗sqrt (n [ i ] ) )

}

} #( i ,ND) to ( j ,NC)

for ( i in 2 : r ) {

for ( j in 2 : r ) {

i f ( i>j ) {

P[ ( 2∗r+i ) , (2∗r+j ) ] <− (pnorm(max(−k , k−( i−j )∗s ) ,

mean=−de l∗sqrt (n [ i ] ) )−pnorm(max(−k , k−( i−j +1)∗s

) ,mean=−de l∗sqrt (n [ i ] ) ) )

}

i f ( i<j ) {
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P[ ( 2∗r+i ) , (2∗r+j ) ] <− (pnorm( k+(j−i +1)∗s ,mean=−

de l∗sqrt (n [ i ] ) )−pnorm( k+(j−i )∗s ,mean=−de l∗sqrt

(n [ i ] ) ) )

}

i f ( i==j ) {

P[ ( 2∗r+i ) , (2∗r+j ) ] <− (pnorm( k+s ,mean=−de l∗sqrt (n

[ i ] ) )−pnorm(max(−k , k−s ) ,mean=−de l∗sqrt (n [ i ] ) ) )

}

}

} #( i ,ND) to ( j ,ND)

P[ ( 2∗r+2) : ( 3∗r ) , (3∗r+1) ] <− (1−pnorm( k+b−s t a t e s [ 2 : r ] ,mean=−de l∗

sqrt (n [ 2 : r ] ) ) )+pnorm(−k−b ,mean=−de l∗sqrt (n [ 2 : r ] ) ) #( i ,ND) to

True

#Row 3∗r+1 − True S i gna l

P[ ( 3∗r+1) , (3∗r+1) ] <− 1 #True to True

PT <− P [ 1 :m, 1 :m] #Matrix o f t r an s i e n t s t a t e s

I <− diag (1 ,m) #Id en t i t y matrix

#S−Matrix

T <− solve ( I−PT) #Inver se matrix o f ( I−PT)

numvis it <− T[ 1 , 1 :m] #Fi r s t row o f S−Matrix

#Expected number o f v i s i t s to each s t a t e
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t imes <− c (h , ft ime , h , h [ 2 : r ] ) #Time per v i s i t f o r each s t a t e

#h , t f a l s e r ep re s en t the in−

con t r o l s t a t e s

#h , h [ 2 : r ] r ep r e s en t the out−of−

con t r o l s t a t e s

samples <− c (n , 0 , n , n [ 2 : r ] ) #Sample s i z e f o r each s t a t e

#n ,0 r ep re s en t the in−con t r o l

s t a t e s

#n , n [ 2 : r ] r ep r e s en t the out−of−

con t r o l s t a t e s

meanvis i t <− c ( t imes∗numvisit , tt ime ) #Long−run expec ted time

spent in each s t a t e

t o t a l n c o s t <− c ( samples∗numvis it∗ncost ) #Long−run expec ted

sampling co s t f o r each s t a t e

cyc l e t ime <− sum( meanvi s i t ) #Time to complete one

c y c l e

totooct ime <− sum( meanvi s i t [ ( r+2) :m] )+sum( meanvi s i t [ 1 : r ] )−(1/lam )

#Total expec ted time spent out−of−con t r o l

t o t oo c co s t <− totooct ime∗ooccos t #Total expec ted co s t when

proces s i s out−of−con t r o l
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t o t f c o s t <− meanvis i t [ r+1]∗ f c o s t #Expected co s t o f f a l s e

s i g n a l

c y c l e c o s t <− sum( t o t a ln co s t , to tooccos t , t o t f c o s t , t c o s t ) #Total

expec ted co s t o f one c y c l e

l r h c o s t <− c y c l e c o s t/ cyc l e t ime #Long−run hour ly co s t

return ( l r h c o s t )

}




