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Simulating and quantifying legacy
topographic data uncertainty: an initial step
to advancing topographic change analyses
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Abstract

Rapid technological advances, sustained funding, and a greater recognition of the value of topographic data have
helped develop an increasing archive of topographic data sources. Advances in basic and applied research related
to Earth surface changes require researchers to integrate recent high-resolution topography (HRT) data with the
legacy datasets. Several technical challenges and data uncertainty issues persist to date when integrating legacy
datasets with more recent HRT data. The disparate data sources required to extend the topographic record back in
time are often stored in formats that are not readily compatible with more recent HRT data. Legacy data may also
contain unknown error or unreported error that make accounting for data uncertainty difficult. There are also cases
of known deficiencies in legacy datasets, which can significantly bias results. Finally, scientists are faced with the
daunting challenge of definitively deriving the extent to which a landform or landscape has or will continue to
change in response natural and/or anthropogenic processes. Here, we examine the question: how do we evaluate
and portray data uncertainty from the varied topographic legacy sources and combine this uncertainty with current
spatial data collection techniques to detect meaningful topographic changes? We view topographic uncertainty as
a stochastic process that takes into consideration spatial and temporal variations from a numerical simulation and
physical modeling experiment. The numerical simulation incorporates numerous topographic data sources typically
found across a range of legacy data to present high-resolution data, while the physical model focuses on more
recent HRT data acquisition techniques. Elevation uncertainties observed from anchor points in the digital terrain
models are modeled using “states” in a stochastic estimator. Stochastic estimators trace the temporal evolution of
the uncertainties and are natively capable of incorporating sensor measurements observed at various times in
history. The geometric relationship between the anchor point and the sensor measurement can be approximated
via spatial correlation even when a sensor does not directly observe an anchor point. Findings from a numerical
simulation indicate the estimated error coincides with the actual error using certain sensors (Kinematic GNSS, ALS,
TLS, and SfM-MVS). Data from 2D imagery and static GNSS did not perform as well at the time the sensor is integrated
into estimator largely as a result of the low density of data added from these sources. The estimator provides a history
of DEM estimation as well as the uncertainties and cross correlations observed on anchor points. Our work provides
preliminary evidence that our approach is valid for integrating legacy data with HRT and warrants further exploration
and field validation.
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Introduction
Topographic data sources are an essential source of in-
formation used to not only address scientific questions
related to landscape evolution, but also to inform policy
makers and land managers of recent environmental
changes. Earth scientists have also begun to carve out a
role in the global climate agenda (Lane 2013) and topo-
graphic data will play a significant role in these types of
analyses. Recent examples of this research avenue place
greater emphasis on understanding how humans modify
the physical environment (Tarolli and Sofia 2016) as well
as examining the likelihood of extreme weather leading
to magnitude and frequency changes in geomorphic pro-
cesses and surficial features (Spencer et al. 2017). These
two recent research trends also highlight a need to be
able to examine recent topographic changes in the con-
text of longer-term rates of change. This task will re-
quire greater reliance on integrating legacy and more
recent high-resolution topography (HRT) data sources
to aid in our understanding of environmental change
(Glennie et al. 2014; Pelletier et al., 2015). However, the
integration of disparate topographic data sources intro-
duces numerous opportunities to increase uncertainty in
measurements through space and time. Herein, we pro-
vide a means to assay and portray data uncertainty when
fusing legacy and recent HRT data to assess change in
landforms. Statistic and stochastic models are employed
that are not only consistent with topographic data struc-
tures simulated in this research, but also can track the
correlation of errors over time and across different data
sources to establish reliable detection levels. Our find-
ings represent an initial step to providing researchers
with the ability to detect topographic changes with a de-
gree of certainty.
Topographic legacy datasets come from a variety of

field and remotely sensed sampling techniques and in-
strumentation (Wasklewicz et al. 2013). Data quality,
resolution, and temporal availability from these disparate
sources have varied significantly over their historical de-
velopment. Current research challenges in earth science
rely on a deeper understanding of how to integrate these
varied datasets and their associated data uncertainty.
Advancement of scientific research on landscape evolu-
tion and environmental change detection rely on defini-
tively measuring how the changing earth surface. More
exacting measures would aid in items such as the deve-
lopment of more precise early warning systems where
landscape dynamics pose hazards and risks to society,
and could lead to potential innovations in the design of
infrastructure that is more resilient to dynamic surficial
processes.
Research focused on topographic changes has relied

heavily on pre-event topographic data sets (e.g.,
Wasklewicz and Hattanji 2009; Wheaton et al. 2010).

Some studies use the same instrumentation and apply
a consistent methodology throughout the observation
period (e.g., Wester et al. 2014; Staley et al. 2014;
Wasklewicz and Scheinert 2015). The integration of
topographic data from a single source with the aid of
a repeatable surveying campaign over time has pre-
sented an opportunity to reduce the systematic errors
while accounting for other positional errors and sur-
face representation uncertainties. However, when repeat-
able surveying campaigns are not followed, researchers
found data can possess erroneous calibration and im-
proper error modeling (Oskin et al. 2012; Glennie et al.
2014). These inherent issues are expressed as substantial
systematic errors, which lead to improper measurements
when compared with the post-event data. Glennie et al.
(2014) warn systematic errors must be minimized or re-
moved prior to differencing the pre- and post-event air-
borne laser scanning (ALS) data sets. Schaffrath et al.
(2015) identified comparable issues with both vertical
and horizontal measures from pre- and post-flood ALS
data being inadequately defined from the use of differ-
ent geoid models and poor co-registration of flight
lines, respectively.
The complexity of the data uncertainty increases with

the incorporation of legacy data. A single instrument is
never used in these cases. Instead, researchers attempt
to fuse topographic data from multiple instruments as
technological advances in data collection have occurred
over time (Crowell et al. 1991; Carley et al. 2012; Schaf-
frath et al. 2015). A variety of topographic data sources
that include contour maps, cross-sections or topo-
graphic profiles, raster, triangulated irregular networks
(TINs), and point clouds can be integrated as legacy data
into these types of analyses. Each different data source
introduces varying: data quality, spatial resolution, and
temporal consistency. These items increase the spatially
variable uncertainty of the measurements taken during
analyses of these disparate data sets, which must be
accounted for in the presentation of the findings.
The recent incorporation of SfM-MVS (structure from

Motion-Multi-View Stereo) techniques has the benefit of
permitting researchers to extend back further the legacy
record by using archived aerial photographs to recon-
struct a point cloud and digital elevation model (DEM)
(Gomez et al. 2015; Micheletti et al. 2015), but also add-
ing further complications to examining spatially variable
uncertainty. While all signs from these studies indicate a
strong potential to use these data sources to measure
topographic changes from legacy data, several issues
must be addressed to accurately use this approach. Some
of the common photogrammetric issues included incon-
sistent image quality, varied scales, objects in motion,
clouds, and other superfluous information in the photos
(Gomez et al. 2015; Micheletti et al. 2015). Initial results
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indicated aerial imagery at a scale of 1:20,000 may only
be able to detect changes in the 1 to 1.5 m range with
quality ground control points (Micheletti et al. 2015),
but in some instances this value can be at a coarser-
scale (Fonstad et al. 2013; Gomez et al. 2015). Another
major concern with applying this technique is overesti-
mation of the topography within areas of vegetation and
locations where there is disparate topographic relief
(Gomez et al. 2015; Micheletti et al. 2015). However,
some these obstacles can be overcome with the appro-
priate establishment of ground control points and con-
sistent field validation of the results where possible and
others will require development of uncertainty measures
capable of uncovering errors in complex topography.
Robust estimates of spatially variable uncertainty have

received more recent attention, but remain in their in-
fancy (Schaffrath et al. 2015). As highlighted in Carley et
al. (2012), researchers have generally used three different
approaches when examining uncertainty in topographic
legacy data: (1) a uniform error threshold (Brasington et
al. 2003; Lane et al. 2003; Milan et al., 2007), which have
been noted to bias data in various topographic se-
quences; (2) spatial variance thresholds used to produce
a minimum level of detection raster file (Heritage et al.
2009; Milan et al. 2011), which work well in settings
with high-density point clouds and mid- to fine-scale
roughness features; and (3) error-source threshold
methods developed from fuzzy inference systems
(Wheaton et al. 2010, Schaffrath et al. 2015), which has
been proven to assess the spatial variability of uncer-
tainty often inherent in the digital elevation models
(DEM[s]) used in topographic changes. Carley et al.
(2012) employed a hybrid method of the spatial variance
approach (#2) to consider the addition of legacy topo-
graphic map data to their analyses. They applied a sur-
vey and interpolation error (SIE) equation (Heritage et
al. 2009) to produce SIE point grids for the DEMs used
in the DEM-of-difference and combined these to produce
a critical error threshold (Brasington et al. 2000, 2003;
Lane et al. 2003) for each cell and a level-of-detection sur-
face was generated from this style of analysis.
The issue of incorporating additional measurements

with existing models or maps has also been encountered
in the robotics and computer vision communities. For
example, a robotic mapping problem can be solved by
using discretized map representation. A common ap-
proach of mapping a 2D or 3D space is to abstract the
whole space into a list of objects with corresponding
properties, such as location and uncertainties (Thrun et
al. 2005). For example, a 2D space can be generalized
into an “occupancy grid” (Elfe 1989). The occupancy
grid represents a dense 3D map with a finite array of
points. Any additional measurements or data sources
over the same space can then relate to one or several

grid points. A similar concept of sparse discretized map-
ping has also been applied into our approach to model
topographic features. A 3D surface in space can be ap-
proximated using a finite set of known points, on which
any given point can be predicted via a wide variety of
interpolation techniques. Some of these techniques are
commonly used in geosciences, including Kriging
models (Krige 1951) and other types of regression
methods (Williams 1998; Dumitru et al. 2013).
There is also a realization that it is equally important,

if not more so, to accurately represent the uncertainty
function across the whole space. Spatial uncertainty
modeling is a key element in the regression-based pre-
diction processes. Moreover, the spatial uncertainty
functions may change over time due to the underlying
geomorphic processes, and this can be evaluated with a
stochastic estimator, such as a Kalman filter (Kalman
1960). For example, Mardia et al. (1998) and Cortes
(2009) suggested the combination of spatial and tem-
poral modeling by using Kriging and Kalman filters.
Here, our focus is on the spatio-temporal uncertainty

model itself, instead of any specific interpolation
method. Our approach produces an efficient, accurate,
and robust uncertainty model that opens the door to the
integration of legacy data and new sensors, and provides
more definitive measures of landform and landscape
evolution from a variety of sources. A major benefit and
advance of our adopted approach is that an optimum
interpolation method can be applied to this model,
which would estimate or predict the elevation and the
associated uncertainty for any location in the entire re-
gion, at any given time in history or even in the future.

Methods/Experimental
Spatio-temporal uncertainty model
Here, we consider topographic uncertainty as a stochas-
tic process that takes into consideration spatial and tem-
poral variations. The spatial uncertainty can be modeled
as a Gaussian process, which tends to vary across the re-
gion of interest, and yet often has local correlations. A
higher level of spatial correlation may be expected from
smooth surfaces, whereas sudden elevation changes,
such as a steep cliff, will result in lower correlation. A
covariance function can describe this type of uncertainty
model and is required by most interpolation or predic-
tion techniques. Although it could be challenging to ob-
tain the complete covariance function, especially if such
function is also changing over time, following Williams
(1998), we estimate a covariance matrix over a finite set
of hypothetical anchor points. The covariance matrix is
updated over time, based on input from a variety of sen-
sors, such as laser scanners and global navigation satel-
lite system (GNSS) survey. Although the filter does
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benefit from direct observations whenever available, sen-
sors are not expected to make direct observation of the
anchor points. For example, a terrestrial laser scanner
(TLS) provides a high-resolution scan of the region, but
the point cloud is not guaranteed to overlap the hypo-
thetical anchor points. Static GNSS surveys in historical
data, on the other hand, may only be available on a few
points in a region, which are even less likely to overlap
with the anchor points. The lack of coincident data with
the anchor does not preclude the use of this method, ra-
ther this method does not require any direct sensor ob-
servations in our experimental design or in any future
field applications of this methodology.
Anchor point distributions are instead dependent

upon the complexity of the topographical features,
which is independent of any specific sensor measure-
ments. However, sensor observation made at any given
location within the region can still be used to update the
uncertainty model of the neighboring anchor point(s).
To achieve that, we further assume that more points will
be used to model an area with lower spatial correlation,
such that the elevation at a given location can be inter-
polated or extrapolated with neighboring anchors with
sufficient accuracy. Thus, a surficial feature with topo-
graphic complexity is covered with densely populated
anchor points, whereas less topographically complex
areas are covered with a sparse scatter of anchor points.
The uncertainty model and associated anchor points

not only account for the spatial uncertainty, but also
consider the function of time. A stochastic estimator
traces the evolution of such randomness, in which the
anchor points form a space of “states”. Thus, the eleva-
tion and uncertainty of any given point at any time can
be approximated with a combination of these states. In a
software simulation, we created a landform of 150 by
150 m, and simulated the elevation change over the
course of 30 years. Both the landform and the elevation
change have non-linear surfaces (Fig. 1). To demonstrate
the concept of using anchor points, we first formulated

a 5 by 5 array, which has sufficient density for a discre-
tized representation of the simulated landform. However,
anchor points do not necessarily form any regular shape
in general.
Data from a TLS, an ALS, a 2D aerial camera, a stereo

vision system, structure from motion SfM-MVS from a
limited number of historic aerial photographs taken
from a nadir-looking camera, static and Kinematic
GNSS surveys are considered in our simulations
(Table 1). These sensors differ greatly in accuracy and
resolution. We assume all the sensor errors can be pro-
jected onto the vertical direction, and thus only the ver-
tical errors are of concern in developing an objective
comparison among the various sensors.
Gaussian error models are used for GNSS positioning

in this simulation. Naturally, the static surveys are more
accurate. However, the Kinematic GNSS survey will
gather more data points (Table 1).
The uncertainty in laser ranging measurements can be

modeled with two main components, angular and radial.
Although the complete ranging error model may be
sophisticated (Thrun et al. 2005), it is often sufficient to
assume that in practice, both error sources follow a
normal distribution. The underlying mechanisms are in-
dependent from each other (Glennie 2007). Figure 2 il-
lustrates a typical application of laser scanner, which
applies to both TLS and ALS. The laser scanner is ele-
vated from the ground by h, and it scans a location on
the ground at a line of sight distance r. Errors in the
horizontal (azimuth) and vertical (elevation) angles re-
sult from laser beam width and the precision in orienta-
tion measurements and follow a 2D normal distribution
(red ellipse in Fig. 2). Since the focus of this work is not
on the high-fidelity simulation of ALS data, the compre-
hensive error model (Glennie 2007) is abstracted and
represented with two components: a radial error σr, and
a vertical angular error σθ. A target observed at distance
r has the total uncertainty of σv. Compared to an ALS, a
TLS is closer to the ground, produces a denser point

Fig. 1 Simulated landform (left) and accumulated changes over 30 years (right). The magnitude of change is approximately ± 5 m
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cloud, and has more accurate ranging measurements.
The ALS, on the other hand, scans the ground from a
high altitude, in which case the vertical error is less sen-
sitive to the angular uncertainty.
Data from a 2D camera image does not provide direct

observation of elevation, as can be seen in Table 1. How-
ever, 2D images can be related to the 3D landform via a
3D-2D projection model (Hartley and Zisserman 2003).
Let vector [u, v]T represent the 2D location of a point L
on the image of a landform, observed using a camera

with lens focal length f, and vector xCL ; y
C
L ; z

C
L

� �T
be the

3D location of point L, as observed in the camera frame
(C frame). The 3D-2D relationship can be modeled with

u
v

� �
¼ f

zCL

xCL
yCL

" #
;

which is implemented in the estimator. Any change in
xCL and yCL are thus observable in 2D images. The land-
form elevation change is observed on the z axis in a Glo-
bal frame G, ΔzGL . As shown in Fig. 3, point L is located
at XG

L , and it is being observed by a camera located at
XG

C , both in the global frame. The elevation error ΔzGL is
related to the observation error made in the camera
frame ΔxCL . Δx

C
L can be geometrically decomposed into

errors in the horizontal direction, ΔxGL and the vertical
direction, ΔzGL in the global frame. The camera associ-
ated with the aerial photography is typically located
above the landform (Fig. 3). The vertical observable ΔzGL
is thus smaller than the horizontal component ΔxGL in
this geometry. Therefore, it tends to be less effective

(Table 1) when elevation changes are detected with an
overhead image collected with an airborne camera.
The aforementioned projection model should not be

confused with SfM-MVS, which operates on the same
principle of multi-view geometry (Hartley and Zisserman
2003), as does stereo vision or triangulation. A camera
in motion (with a limited overlapping nadir-looking im-
ages to simulate a historic aerial photogrammetric ap-
proach) will provide repeated observations of the same
3D landform [u, v]T1. . n, collected from n perspectives
(unstructured photographs). In this process, the camera
orientation and location are known at all n perspectives,
referenced to frame G. The 2D images, [u, v]T1. . n will
then be converted into unit vectors in frame G, UG

1. . n.
At the ith perspective, UG

i points from the camera pos-
ition XG

C;i to the landform position XG
L . Since XG

L does
not change over the different perspectives, it is solved by
using UG

1. . n and XG
C;1::n via an optimization process

(Hartley and Zisserman 2003). Figure 4 illustrates the
geometric relationship between the landform and the
camera on perspectives 1 and n. The uncertainty of XG

L
will also be dependent on the accuracy of UG

1. . n and
XG

C;1::n , and the geometric relationship between XG
C;1::n

and XG
L . We conservatively assume a short displacement

between camera perspectives in this experiment, which
results in greater vertical errors in SfM.
The stochastic estimator uses measurements that be-

come available sequentially over time. Let a state vector
x represent the vertical errors on the 25 anchors, located
at mx[1..25], and a 25 by 25 matrix P for the covariance
among states. x and P are initialized with some

Table 1 Sensor resolution and error

Sensor name TLS ALS 2D camera SfM Static GNSS Kinematic GNSS

Vertical error standard deviation in simulated data (m) 0.02 0.1 N/A 3.3 0.04 0.08

Sample Density (pt/km2) 1.1 × 107 7 × 103 1.1 × 105 1.1 × 105 278 2.2 × 104

The values presented herein are representative of our instrumentation and our experience to represent sensor quality. The large vertical error is observed with
SfM since the displacement between camera perspectives is short in the simulation and is represented of legacy aerial photography. Sample density represents
the density of measurements used to update the estimator in this simulation. It does not necessarily represent the density of raw data available from these
sensors (such as TLS and ALS)

Fig. 2 Laser scanner error model. θ: vertical angle, r: range, σr: standard deviation of radial ranging error, σθ: standard deviation of vertical angular
error, σv: standard deviation of total vertical error
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measurements, such as a TLS scan at time tk-1, and then
propagated to another time tk using a Brownian process.

xk;k−1 ¼ Fxk−1;k−1 þ μ

Pk;k−1 ¼ FPk−1;k−1F þQ;

where F is a matrix describing the dynamic relationship
between states, which will be the identity matrix in this
case. μ is the process noise component, corresponding
to the Brownian process, of which the covariance matrix
is defined with Q.
Without additional measurements, the matrix P, will

grow as a function of time. The Brownian process may
be established with the best-known model of terrain
change, and will only be used to predict the increase of
uncertainty if the model is valid for the underlying geo-
morphic process.

The fundamental concept can be illustrated using just
two of the anchor points, located at mx[1] and mx[2], re-
spectively. The initial uncertainty of both points can be
represented with two circles at t0 (Fig. 5). As time prop-
agates to t1, the uncertainty grows for both points, il-
lustrated with greater circles. A new measurement
becomes available at t1, made at location mz[t1]. The
uncertainty of this measurement is represented with an
ellipse. This measurement is then used to update both
anchor points. Right after this update, at t1+, the uncer-
tainty of both points is reduced to ellipses. Since the
update is closer to mx[2], the corresponding ellipse be-
comes smaller than that of mx[1]. Without additional
measurements, both ellipses are propagated to t2, which
result in greater ellipses. A second measurement was
made at t2, which occurred much closer to mx[1] this
time. It effectively reduced the size of the ellipses, more
so on mx[1] than mx[2].

Fig. 3 2D camera image error model in a typical aerial photography application

Fig. 4 SfM error model with two perspectives. A long displacement example is shown on the left, with the error of landmark location illustrated
in a purple ellipse. On the right is a short displacement example, where the error is greater in the vertical direction
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The geometric relationship between anchor points and
any measurement can still be represented or approxi-
mated with a linear/linearized model, which can be
established by using an interpolation method. Notice
that the interpolation model used in this step estimates
the covariance function, instead of predicting the land-
form as does Kriging or polynomial regression. The bicu-
bic interpolation method introduced in Keys (1981) has
been widely used in the computer vision community, and
it has been adopted in digital elevation surface modeling
(Dumitru et al. 2013). With bicubic interpolation, a linear-
ized relationship between a given point and the anchor
points, denoted with matrix H, can be easily estimated.
This approach handles non-linear landforms, and remains
relatively computationally efficient.
The elevation at mz now has a direct measurement z,

and a prediction from the estimator states, Hxk; k − 1.
Any disagreement between them is likely a result of un-
certainties associated with both and new information
that can be observed as “innovation” on the states,

y ¼ z−Hxk;k−1;

with a de-facto standard estimation method, the Kalman
filter (Kalman 1960), x and P are updated with a gain K:

K ¼ Pk;k−1H
′ HPk;k−1H

′ þ R
� �−1

which allows us to update the states x and covariance P
using this new information:

xk;k ¼ xk;k−1 þ Ky

Pk;k ¼ I−KHð ÞPk;k−1

After this step, the states are further propagated onto
time tk + 1, with the integration of another measurement
(such as aerial photo). The time history of states x and
covariance matrix P are the outcome of this approach.
Notice that only a few key steps of the estimator are
highlighted here for the sake of conciseness. For details
on the derivation and implementation, please refer to
(Kalman 1960) and (Smith et al. 1962).
At any given point in time, x and P are used as input

to predict the elevation and uncertainty of any given
point on the landform with a standard interpolation
method. An accurate and consistent covariance matrix P
is the key to an optimum interpolation process.
Consistency of covariance is defined based on how well
P describes and over-bounds the actual error in states x.
To verify the estimation, x will be compared against a
truth reference xref used in the software simulation.
With field data, the truth reference can be generated
from a high-resolution, high-fidelity sensor such as TLS.
The variance and covariance of error Δx = x − xref, is ex-
pected to be closely bounded by P at each time step tk.
Since it may be difficult to visualize the comparison be-
tween matrices, the standard error σΔx[k] will be com-
pared against an uncertainty level for this step, by using
the root mean square of all the diagonal elements in P.

σ est k½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag Pk;k

� �q

In the software simulation, the actual elevation change
is not provided to the estimator. Rather, an over-
bounding Brownian process is used, and we expect to
have σ est≥σΔx in the history of 30 years.

Physical modeling experiment
A physical model is developed in the Terrain Analysis
Lab at East Carolina University as a further means of
validating our uncertainty measures. The controlled
simulation is designed around a fan-shaped surficial fea-
tures (i.e. an alluvial fan or washover fan) built in a
stainless-steel stream table (3.7 m long by 1.8 m wide)
using coarse sand on a white sheet of plotter paper to
reduce reflectivity of the stainless-steel table (Fig. 6).
The fan-shaped feature is 0.974 m wide and 0.392 m in
with a relief of 0.05 m from the bottom of the stream
table (Fig. 6).
A Leica P20 laser scanner was inverted and mounted

on an aluminum swing set (Lisenby et al. 2014). Targets
mounted on the wall of the lab and within the stainless-
steel table as well as the corner points of the table were
used to register the TLS data (Fig. 6). Cartesian

Fig. 5 Two anchor points located mx[1] (blue) and mx[2] (red) show
what happens when new measurements become available over
time. Uncertainty in both points are represented by circles and the
circles increase and decrease in size with increasing or decreasing
uncertainty, respectively
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coordinates associated with TLS point clouds provide lo-
cations for the control points used in the SfM. A single
scan from the nadir looking position of the scanner cap-
tured the entire simulated fan surface in t0 and t1. SfM
data were collected with a Ricoh GR II digital camera.
The camera was positioned at two different heights at 32
locations looking obliquely and inward at the fan surface
(Fig. 6). A total of 64 images were used to generate a

point cloud with the aid of Agisoft Photoscan software.
A combination of 14 12-bit targets from the Agisoft soft-
ware were printed on sticky back paper and adhered to
the stainless-steel table, along with 10 small circle tar-
gets with known dimensions. Targets and circles were
used to aid in the photo alignment process.
The original landform (t0) was modified (t1) by adding

approximately 2 cm of coarse sand onto a segment of

Fig. 6 The experimental fan model. a Location of control points and cameras. b SfM image of the fan on the plotter paper with the circle targets
(image rotated 90 CCW to A). c A topographic map of the experimental fan. d Elevation difference from t1 to t0
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the fan (Figs. 6 and 7) to emulate fan segment aggrad-
ation over an arbitrary time-period (for example, t1 is set
to 30 years). TLS and SfM-MVS data are collected at
both t0 and t1. TLS at t1 is used as a truth reference. We
initialize the estimator at t0 with TLS and SfM-MVS,
propagate and update at t1 using SfM-MVS. The esti-
mated σ est 1½ � is compared against the actual error σΔx[1]
in this case.

Results and discussion
The estimator in the software simulation is initialized
with a TLS scan. Subsequently, five additional sensor
data sets become available over 30 years, to observe the
geomorphic change. A general pattern evolves whereby
the estimated uncertainty provides an over bound of the
actual error (Fig. 8), i.e., σ est≥σΔx . Both σ est and σΔx
grow over time during the simulation, and are dramatic-
ally reduced by some measurements, such as ALS, SfM-
MVS and Kinematic GNSS surveys. Other sensors, such
as 2D photos and static GNSS, are less effective, as ex-
pected. Although the SfM-MVS measurements are not
nearly as accurate as static GNSS survey, it offers a
much higher point density and therefore, is also able to
reduce the error more effectively. The over-bounding as-
sociated with the static GNSS has more to do with the
lack of data produced with this technique than the ac-
curacy of the data collected. The truth reference used in
this software simulation can be used to verify the estima-
tion in x (Fig. 9).
The estimator is also applied to the changes associated

with the lab-simulated fan model. As this terrain is more
sophisticated, a 20 by 20 mesh of anchors is used. The
actual change xref is obtained by comparing the two TLS
scans (Fig. 10). The estimated change is observed on the

anchor points, by using a less accurate and lower-
resolution SfM-MVS update. At t1 = 30 years, σ est ¼ 5:6
mm and σΔx = 3.7mm, σ est is greater than, and yet rea-
sonably close to σΔx. The difference is below the detect-
able limits for topographic change associated with the
data source instrumentation (Wester et al. 2014, Staley
et al. 2014; Wasklewicz and Scheinert 2015).
The software simulation and physical modeling experi-

ment both show that the estimator can provide a reliable
and consistent measure of uncertainty in legacy data. Al-
though some sensors are more desired than others, the
availability of sensors in legacy data and sometimes also
in new data collection campaigns dictates that data from
all sensors must be incorporated. The estimator will
allow us to retrieve information from sensors of low ac-
curacy, low observability (2D images) or low spatial
resolution (static surveys). We further emphasize that
the discussed estimator is not limited to just the Kalman
filter. Other Bayesian estimators, such as particle filters
(Montemerlo and Thrun 2003), are applicable as well.
Similarly, bicubic interpolation is not the only choice for
interpolation either. Other methods that can yield a line-
arized relationship between measurements and states are
also valid options, which will provide various types of
advantages (Dumitru et al. 2013).
The statistical consistency of uncertainties in all the

sensor measurements and estimates are critical in our
application. In practice, repeated measurements could
also lead to a covariance matrix P that is too small
(Julier and Uhlmann 2001), such as high-density data
from SfM-MVS. As x and P can be used to predict the
elevation and uncertainty of the whole landform, an
overly optimistic P can easily cause unexpected errors in
the prediction. For instance, few erroneous points in x

Fig. 7 Elevation model from TLS point cloud of the simulated fan model at t1
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with small variances would dominate the prediction and
generate a bias in a neighborhood. Overly optimistic P
also would prevent x from being updated with other
sensors. Additional steps will be taken in future work to
guarantee the consistency of P.
The successful outcomes and corroboration in our ini-

tial software and physical modeling simulations, the ability
to adopt and use multiple estimators and interpolation
techniques, and an ability to be employed across a variety
of environmental settings provides a new alternative to in-
tegrating legacy and HRT data.
Applications of existing and planned methodology to

field research will help extend our understanding of the

dynamic landform and landscape changes that take place
through space and time. At present, earth science re-
searchers conducting studies with the aid of HRT data
have placed a great deal of emphasis on methods and
techniques that provide rapid, accurate, and spatially
continuous topographic data. HRT provide the user with
unparalleled information of short-term changes in pro-
cesses and forms. Subtle topographic changes that earth
scientists must measure in the future, for example those
associated with climate change (Lane 2013), require de-
tailed data that can be precisely acquired and accurately
assessed to address scientific questions and inform pol-
icy makers. However, the sole use of HRT data limits the

Fig. 8 Uncertainty of software simulated landform over 30 years, estimated sigma σest vs. actual error σΔx

Fig. 9 Actual vs. estimated terrain change in year 7 (left), year 19 (middle) and year 31 (right). Upper: actual terrain change xref; lower: estimation
in states x
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temporal framework for which earth scientists can con-
sider these changes because these data sets have only
been recently developed. Legacy topographic data allow
us to extend this temporal perspective of change back-
ward in time to better inform us of variations on decadal
time-scales and in some instances, as far back as a half-
century or more (Corsini et al. 2009; Carley et al. 2012;
James et al. 2012; Schaffrath et al. 2015). While we ap-
preciate that this represents a miniscule amount of time
from a geological perspective, the ability to use legacy
topographic data increases the temporal sample size
earth scientists are working from and allows us to make
more authoritative statements about landform evolution
than the shorter-term view supplied by research solely
using HRT data.
Scientists need to be able to definitively measure the

environmental changes and communicate these mea-
sures to a broad audience of possible users that include
their peers, public officials, and the community. Express-
ing the uncertainty associated with these measurements
or reducing the uncertainty in the data production
process is a critical first step to achieving more definitive
measures and communication. Here, our uncertainty
model, associated anchor points, and stochastic estima-
tor clearly highlight that spatial uncertainty can be
accounted for across the time-scales of the legacy and
HRT data. Each elevation point/grid has an associated

error, which can be used to produce better maps when
interpolating to raster data and provide better measure-
ment tolerances as they relate to topographic changes
and sediment transport.
The ability to accurately assess spatially variable uncer-

tainty across a broad range of temporal scales also pro-
vides a means to exchange information between
researchers, engineers, policy makers, and environmental
managers and planners. The longer-term understanding
of topographic change and sediment transport and the
uncertainties associated with these dynamics permits
greater understanding of issues such as: water quality,
habitat loss, and risks to built-environments and human
lives from environmental hazards. Furthermore, an ability
to measure the level of data uncertainty associated with
past landform and landscape dynamics will help advance
landscape evolution models because of the ability to cor-
roborate existing landscape evolutionary models with the
longer-term record of topographic change derived from
legacy topographic data sets and recent HRT data. This is
a necessary advancement as we may come to rely on land-
scape evolution models as an integral tool in the decision
and management schemes as we face climate change and
increased scenarios of extreme weather.

Conclusions
Our software simulation and physical modeling experi-
ments provide a new approach to measuring topo-
graphic data uncertainty where legacy data from a
variety of data sources can be integrated with HRT data
to expand the time-scales of topographic change detec-
tion. As anticipated, the difference in the actual and ex-
pected errors of our HRT physical model experiment
was quite small (< 2 mm). Current instrumentation and
field methods often have a higher minimal level of detec-
tion, so this value is quite acceptable for HRT data
sources and represents a value comparable to or lower
than most uncertainty measures found in current research
exploring topographic change detection. The uncertainty
model, associated anchor points, and stochastic estimator
was further applied to a software simulation whereby a
variety of remote-sensing data sources were used to simu-
late data capture from legacy data sources. Our findings
show the estimated error coincides with the actual error
using certain sensors (Kinematic GNSS, ALS, TLS, and
SfM-MVS). Data from 2D imagery and static GNSS did
not perform as well at the time the sensor is integrated
into estimator. Nevertheless, the software simulation
shows the approach can be used to estimate the error as-
sociated with all elevation values in the legacy and HRT
data over the time-period of the simulation.
Our findings show a strong potential for this tech-

nique to be applied in a variety of field settings. We an-
ticipate further development of the uncertainty model in

Fig. 10 Actual vs. estimated terrain change in lab-simulated fan
model. Upper: actual terrain change xref; lower: estimation in states x
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future research. Our goal is to expand the capability to
densify the anchor points in areas that are more topo-
graphically complex and test by overfitting the surface
how well the uncertainty model is performing in these
locations. At present, it is not clear if the use of sparse
points (for example, techniques that rely on interpolation
from topographic maps) under sample the topographic
surface and therefore, do not accurately represent the sur-
face or the spatially variable uncertainty in the measure-
ment of topographic change. We intend to expand the
capabilities of the model by conducting further software
simulations that analyze and visualize topographic change
over time using the varied densification of anchor points.
The advances in the uncertainty model will then be fur-
ther evaluated using real-world data from a variety of
sources. For example, ALS data can be used in a fashion
to simulate different types of data by varying the data
density, data noise, etc. to examine known differences in
the data and the capability to measures these data pertur-
bations using the refine uncertainty model. Once these
items have been worked out our intent is to apply the un-
certainty model to the real-world topographic and envir-
onmental changes within various environmental settings
that include more topographically complex areas like
mountainous environments versus less topographic com-
plex locales such as barrier islands.
Our existing uncertainty model shows clear evidence

that the temporal component of spatially variable uncer-
tainty of legacy topographic data sets can be measured
in both of our simulations. A capacity to integrate legacy
topographic data expands earth scientist’s ability to
understand topographic changes and sediment transport
over longer time-scales. This should lead to more defini-
tive measurements and answers regarding how environ-
ments are changing over the past 50 to 100 years
(dependent upon the temporal availability of topographic
data sources). More conclusive measures and findings
stem from our ability to assess uncertainty across the
spectrum of legacy data in relation to more recent HRT
data using techniques like we have documented in this
research. New results from these approaches should pro-
vide valuable information to the broader scientific com-
munity and society. Societal benefits will likely be
recognized in the form of delivering relevant informa-
tion that show the potential range for environmental
changes over time-scales demanded by managers and
policy makers.
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