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Abstract

Sexual differentiation across taxa may be due to genetic sex determination (GSD) and/or

temperature sex determination (TSD). In many mammals, males are heterogametic (XY);

whereas females are homogametic (XX). In most birds, the opposite is the case with

females being heterogametic (ZW) and males the homogametic sex (ZZ). Many reptile spe-

cies lack sex chromosomes, and instead, sexual differentiation is influenced by temperature

with specific temperatures promoting males or females varying across species possessing

this form of sexual differentiation, although TSD has recently been shown to override GSD

in Australian central beaded dragons (Pogona vitticeps). There has been speculation that

Australian Brush-turkeys (Alectura lathami) exhibit TSD alone and/or in combination with

GSD. Thus, we sought to determine if this species possesses sex chromosomes. Blood

was collected from one sexually mature female and two sexually mature males residing at

Sylvan Heights Bird Park (SHBP) and shipped for karyotype analysis. Karyotype analysis

revealed that contrary to speculation, Australian Brush-turkeys possess the classic avian

ZW/ZZ sex chromosomes. It remains a possibility that a biased primary sex ratio of Austra-

lian Brush-turkeys might be influenced by maternal condition prior to ovulation that result in

her laying predominantly Z- or W-bearing eggs and/or sex-biased mortality due to higher

sensitivity of one sex in environmental conditions. A better understanding of how maternal

and extrinsic factors might differentially modulate ovulation of Z- or W-bearing eggs and

hatching of developing chicks possessing ZW or ZZ sex chromosomes could be essential in

conservation strategies used to save endangered members of Megapodiidae.

Introduction

Gonadal sexual differentiation during embryonic development may involve several genes. In

mammals, these genes are for the most part located on sex chromosomes with females lacking

male-promoting genes that reside on the Y chromosome. There are, however, notable
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exceptions as two spiny rat species, Amami spiny rat (Tokudaia osimensis) and Tokunoshima

spiny rat (T. tokunoshimensis) that reside on two islands off the coast of Okinawa, Japan, with

derived system of sex determination [1, 2]. Sexual differentiation in this species is likely

directed by different dosages of genes residing on autosomal chromosomes. Recently, Monica

Ward’s group generated transgenic mice lacking a Y chromosome [3]. In these animals, two

transgenes, Sox9 and Eif2s3x, compensated for the absence of Y-chromosome encoded genes

that gave rise to males who could sire offspring.

In contrast to mammals where males are heterogametic (XY), females are heterogametic

(ZW) in most birds. Thus, the female can influence the sex of her offspring by differentially

laying Z- or W-bearing eggs. Reptiles may exhibit genetic sex determination (GSD) via sex

chromosomes and/or temperature sex determination (TSD). It has recently been shown that

in Australian central beaded dragons (Pogona vitticeps), which typically demonstrate GSD,

individual sex can be overridden at high incubation temperatures that gives rise to sex-

reversed female offspring [4]. It has been suggested that one avian species, the megapode bird,

Australian Brush-turkey (Alectura lathami), may be unique in demonstrating TSD alone or in

combination with GSD, similar to Australian central beaded dragons [5, 6]. Example male and

female Australian Brush-turkeys are shown in S1 Fig. In this species, females engage in mate

choice by observing male activity prior to copulation, and males can have several females lay-

ing eggs at a time. As newly hatched brush-turkey chicks are precocial, the female’s investment

in them ends after the eggs are laid. After the eggs are laid, the male will monitor the tempera-

ture of the nest with his tongue and can adjust it by removal or addition of nesting material

(S1 Fig and S1 Video- times 00:13, 00:17, and 00.22 seconds show this male behavior). Thus,

the evolution of TSD in this species has been postulated. It remains to be determined though

whether the resulting offspring sex ratio is due to incubation temperature and/or interaction

with sex chromosomes. One report cited a “personal communication” as evidence that this

species may have sex chromosomes [5]. However, evidence of such has not been reported to

date. ZZ/ZW sex chromosomes have been described in other species within the family Mega-

podidae [7]. Thus, we sought to determine whether Australian Brush-turkeys possess hetero-

gametic sex chromosomes.

Materials and methods

Life history of Australian Brush-turkeys included in the study

All three sampled Australian Brush-turkeys are captive born specimens currently house at Syl-

van Heights Bird Park (SHBP) in North Carolina, USA. They are undoubtedly decedents from

the nominate race, A. l. lathami [8] based on body size, iris/wattle color, and importation rec-

ords. SHBP facility identification numbers are K1380 (male), K1878 (female), and K1379

(male). Blood was withdrawn on April 11th, 2017 as staff moved all three birds from their

indoor wintering aviaries to the summer breeding aviary. K1380 (male) and K1878 (female)

are shown in S1 Fig and S1 Video. These studies were approved by the ethics board at the

SHBP.

Blood collection

From the two males and one female, blood was collected from the basilic wing vein (located on

the ventral surface of the proximal ulna) via an 18-gauge needle (Catalogue number: 305196,

Becton, Dickinson and Company, Franklin Lakes, NJ) connected to a 3cc syringe (Catalogue

number: 305196, Becton, Dickinson and Company). Avian blood sample collection protocol

followed in accordance with Harrison’s Clinical Avian Medicine [9]. The samples were then
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placed vertical in a rack on ice and shipped overnight to the Cytogenetics Laboratory at Stan-

ford Health Care in Palo Alto, CA, where the samples were immediately processed.

Cytogenetic analysis

Using standard cytogenetic methodologies [10, 11], peripheral blood buffy coat obtained by

centrifugation was inoculated into suspension culture using RPMI 1640 medium supple-

mented with 15% fetal bovine serum 50 μg/mL gentamycin sulfate and 2mM L-glutamine.

Cultures were mitogenically stimulated with 1% Gibco phytohemagglutinin (Life Techonolo-

gies Corp, Carlsbad, CA) and pokeweed 10 μg/mL mitogen (Sigma, St. Louis, MO) and incu-

bated at 37˚C and 40˚C. Cultures were harvested at 72 hours following a two hour mitotic

arrest with 0.05 μg/mL Colcemid1 and one hour addition of 10 μg/mL ethidium bromide

using standard methodologies of hypotonic shock with 0.075 M KCl and fixation with metha-

nol:acetic acid fixative (3:1) [12, 13]. Metaphase preparations were made by dropping fixed cell

suspension onto wet microscope slides, flooding with fixative and air-drying. Slides were aged

at 90˚C for 30 minutes and stained independently by trypsin/Giemsa G-banding and barium

hydroxide C-banding [11, 12]. Metaphase cells were imaged and analyzed with an Olympus

BX41 microscope (Olympus Corp., Center Valley, PA) 100x planapochromatic objective and

Leica CytoVision image/karyotype system (Leica Microsystems Inc., Buffalo Grove, IL).

Results

G-banded chromosome analysis demonstrates an Australian Brush-turkey karyotype consist-

ing of approximately 80 chromosomes. The karyotype is interpreted in reference to the stan-

dardized Domestic Chicken (Gallus gallus domesticus) [14] and other galliform lineage

karyotypes [15, 16] as including 10 macrochromosome pairs and approximately sixty micro-

chromosomes (Fig 1). Macrochromosomes include heteromorphic Z and W sex chromo-

somes. Imprecision regarding the exact chromosome number reflects the technical challenge

of enumeration and classification of small microchromosomes in typical avian metaphase

preparations. Based on G- and C-band analyses, chromosome #1 is morphologically sub-meta-

centric and chromosomes # 2 through #9 are telocentric. Any Z chromosome C-band is nearly

indiscernible, however the chromosome overall appears morphologically telocentric. Based on

C-band staining, the W chromosome is largely heterochromatic. Comparative G-band analysis

indicates that the chromosome #1 common to other published galliform karyotypes represents

a fusion of the Australian Brush-turkey chromosomes #2 and #4, where chromosome #2 corre-

sponds to a common galliform #1 long arm and #4 corresponds to the galliform #1 short arm.

Consequently, the Australian Brush-turkey chromosome #1 corresponds to the G. galus
domesticus chromosome #2, etc.

Discussion

The initial goal of the study was to confirm that Australian Brush-turkeys have sex chromo-

somes. Chromosome analysis demonstrates that in the limited sample size (two males and one

female) Australian Brush-turkeys possess heteromorphic Z and W sex chromosomes consis-

tent with other known galliform karyotypes. G-band analysis also indicates that the Australian

Brush-turkey, as a representative megapode, has a karyotype distinct from other galliform line-

ages by virtue of two separate autosome pairs (#2 and #4) present in other galliform lineages as

a single fused chromosome #1. Whether this represents an evolutionary process of chromo-

some fusion or fission is uncertain. One possibility is that this is a fission of a common ances-

tral chromosome #1 still extant in the other galliform lineages, or it may represent a fusion

event occurring in an ancestral galliform subsequent to separation of the megapodes. Either
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scenario is consistent with current phylogeny of the Galliformes, which separates Megapodii-

dae, who likely originated during the Cretaceous period, ancestrally from other Galliformes

that were derived during Tertiary period [17–20]. However, the possibility that this represents

a fission event from another galliform lineage rather than an ancestral galliform cannot be

ruled out based on the current data. It is interesting to note that chromosome fusion as a speci-

ation-associated karyotypic phenomenon is well-documented in primates where there is

fusion of the chimpanzee and bonobo (Pan troglodytes, P. paniscus) chromsomes #12 and #13

to form the human chromosome #2 [21]. When comparing the Z chromosomes of the Austra-

lian Brush-turkey and G. gallus domesticus, the centromeric regions appear similar in that they

Fig 1. Karyotype results for Australian Brush-turkeys. G-band karyotype images without

microchromosomes of A) female A. lathami demonstrating heterogametic ZW sex chromosomes and B) male

A. lathami demonstrating homogametic ZZ sex chromosomes, C) G-band sex chromosomes of one female

and two male A. lathami, and D) a C-band female metaphase image demonstrating weak to absent C-banding

on the Z chromosome and complete C-banding on the W chromosome. For A and B, the numbers of

corresponding chromosomes from the G. gallus domesticus karyotype are provided parenthetically.

https://doi.org/10.1371/journal.pone.0185014.g001
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both lack a distinct centromere C-band unlike most autosomes in either karyotype. The main

differences are morphologic: probable telocentric (Australian Brush-turkey) vs. sub-metacen-

tric (G. gallus domesticus). Additionally, G. gallus domesticus has a heterochromatic region not

present in the Australian Brush-turkey. An inversion and a heterochromatic addition would

account for the altered G. gallus domesticus Z chromosome relative to the Z chromosome of

the Australian Brush-turkey.

With the documentation that the Australian Brush-turkey possesses sex chromosomes, it

opens up several potential avenues by which this species can affect offspring sex ratio. For

instance, the final sex ratio of Australian Brush-turkeys might vary based on interactions of

offspring sex and nest temperature (i.e. temperature-dependent sex-biased embryonic mortal-

ity), as suggested by other reports [5, 6, 22]. Developing males appear to be more vulnerable at

higher incubation temperatures; whereas, lower incubation temperatures tends to be lethal to

females [22]. It is not clear why these sex-differences exist and whether they might relate to

genes expressed on the now identified sex chromosomes (ZW) within this species. Incubation

temperature can vary the dry mass of the yolk-free body and residual yolk of hatchlings in this

species with elevated temperatures giving rise to chicks with reduced yolk-free body mass and

greater residual yolk mass than those incubated at lower temperatures [23].

In most mammalian species, who possess sex chromosomes, a variety of maternal-associ-

ated mechanisms exist that can result in skewed offspring sex ratios [24–30]. In birds, skewed

offspring sex ratio can result due to differential embryonic survival. However, as the heteroga-

metic sex, females are the sex determining parent, and it could be that maternal factors differ-

entially influence ovulation of Z- or W-bearing eggs. This has shown to be the case in the

endangered flightless parrot located in New Zealand, the Kakapo (Strigops habroptila). By pro-

visioning the females with additional nutrient supplements prior to ovulation, researchers

were able to generate male-biased chick sex ratios, and thus, sex allocation theory might have

practical importance in helping to vary the number of males and females available for breeding

in this endangered species [31]. Further, a lek mating system is present in Kakapos where the

males gather and show-off to the females who then select their reproductive partners. Males in

the best body condition are likely successful in obtaining the best “booming sites” and thereby

attract a greater number of females.

Studies with other avian species, including the Superb Starlings (Lamprotornis superbus),
Homing Pigeons (Columba livia domestica), Meadow Pipits (Anthus pratensis), Gouldin

Finches (Erythrura gouldiae), Tree Swallows (Tachycineta bicolor), Blue Tits (Cyanistes caeru-
leus), Red-capped Robins (Petroica goodenovii), Common Starlings (Sturnus vulgaris), and

Lesser Black-backed Gulls (Larus fuscus) strongly indicate that maternal condition and sur-

rounding environment can result in offspring sex ratio adjustments [32–41]. This maternal-

induced offspring sex ratio skewing could be due to selective laying of Z- or W-bearing eggs or

sex dependent differences in deposition of yolk proteins, hormones, or other nutrient factors

within the egg. Variation in yolk androgen content has been previously identified in Australian

Brush-turkeys [42].

The current data provides definitive evidence that Australian Brush-turkeys possess sex

chromosomes. Additionally, the potential fusion of autosomal pairs #2 and #4 of other Galli-

forms to form chromosome #1 in Australian Brush-turkeys is likely consistent with the previ-

ously identified earlier lineage of Megapodiidae relative to other Galliformes. While past

studies have explored how adjustments in nest temperature by male Australian Brush-turkeys

affects egg composition and offspring sex ratio, no studies to date have considered how mater-

nal condition and environment might affect offspring sex ratio in this species. With the char-

acterization of sex chromosomes in this species, it suggests that future studies should be

directed at examining how maternal condition might influence laying of Z- or W-bearing
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eggs. Additionally, genes expressed from the Z- or W- chromosome may interact with egg

composition or incubation temperature to result in sexually dimorphic differences in survival

under various intrinsic and extrinsic environments. Thus, the current studies that have defini-

tively identified sex chromosomes in Australian Brush-turkeys may open up new avenues in

research to examine how maternal condition, sex-chromosome expressed genes, and embry-

onic environment, interact to modulate primary offspring sex ratio, as appears to be the case

with Australian central beaded dragons, where TSD can seemingly override GSD [4]. The

main mechanisms that can affect offspring sex ratio in Australian Brush-turkeys, and likely

other avian species, are summarized in S2 Fig. A better understanding of these complex inter-

actions in Australian Brush- turkeys and other avian species may be critical in breeding-strate-

gies designed to alter offspring sex ratio in species already genetically bottlenecked and on the

brink of extinction.

Supporting information

S1 Fig. Male and female Australian Brush-turkeys. Comparison of example breeding male

(Panels A and B) with an example breeding female (C and D) reveals that when the male is in

full breeding mode, his wattle enlarges and become bright red in color. However, the female

wattle, which is smaller, remains the same color and size from season to season. Females tend

to be smaller than males, and the plumage of males is slightly darker.

(TIF)

S2 Fig. Diagram of all the potential mechanisms that can result in skewing of primary sex

ratio in Australian Brush-turkeys. A) As the sex-determining parent, females can selectively

lay Z- or W-bearing eggs. She can also alter in a sex-dependent manner the amount of yolk

proteins, hormones, or other nutritional factors within the egg. B) The male can affect off-

spring sex ratio by adjusting the temperature of the nest that may favor the survival of one sex

over the other. C) It is also possible that both parents can affect primary offspring sex ratio by

the collective methods shown in panels A and B.

(TIF)

S1 Video. This video demonstrates how a male Australian Brush-turkey constructs a nest

out of various materials. He will then proceed to check the temperature of it with his tongue

and alter the amount of nesting material based on the perceived temperature. This behavior is

demonstrated at 00:13, 00:17, and 00:22 seconds in the video.

(MP4)
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