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A wavelet Kq(t), that satisfies the q-advanced differential equation K′
q(t) = Kq(qt) for q > 1, is

used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem
nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami
of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by Fq(t, x) =
Kq(t)qSin(x). The profile Fq is similar to tsunami models in present use. The function qSin(t) is
a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another
wavelet, qCos(t), matches a rogue-wave profile. This is explained in terms of a resonance wherein
two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are
used in the detection of tsunamis and rogues, the signal-analysis performance of Kq and qCos is
examined on actual data.

1. Introduction

Tsunami or maremoto waves occur in response to earthquakes or landslides on the seafloor of
large bodies of water, as discussed in [1–4]. The consequential runup to the shore is such that
the tide goes out, then returns as a large surge, only to be followed by several diminishing
cycles of similar events [5]. An understanding of this behavior involves a consideration of the
effects from the seafloor near the shore where the wave velocity decreases [6, 7]. We study a
short-lived forcing that predominantly generates a traveling-wave profile Kq(x − ct) where
Kq solves a multiplicatively advanced differential equation (MADE)whose profile resembles
a typical tsunami (see Figure 1). In contrast to the N-wave profile proposed in [8], the Kq-
MADE profiles are asymmetric wavelets that are flat on a half-line.

In an apparently unrelated phenomena, rogue, freak, or monster waves are caused by
small ripples or currents in layers near the water’s surface [9, 10]. Various methods have
been used to model these rare events, as in [11, 12]. Here, we demonstrate why rogue
waves may be a type of resonance wherein an arbitrarily low amplitude forcing, for a
sufficiently long period of time, can produce any size of localized wave. Our models use
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(a) (b) (c)

Figure 1: (a) Tsunami 52406 from DART, March 2011; (b) replica of tsunami-model profile adapted from
[7]; (c) MADE solution profile y = Kq(t) for q = 1.5.
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Figure 2: (a) y = qCos(t) for q = 1.5; and (b) y = qSin(t) for q = 1.5.

square-integrable versions of the sine and cosine functions that we call qCos(t) and qSin(t)
(see Figure 2).

Tsunami and rogue waves are perturbations of the water-surface elevation function
η(t, x, y). The surface velocity components U ≡ (u, v,w) are small and the time-averaged
mean-flow velocity 〈U〉 is assumed to remain 0 everywhere. Subject to assumptions, the
functions Kq, qCos and qSin will be used in the construction of the forcing terms in the
Matsuno equations [13] as given by
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∂
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)
v
]
= −α(u, v)η +Q,

(1.1)

whereH(x, y) is the depth of the water,w ≡ ∂η/∂t is the vertical velocity of the wave surface,
Px and Py are variable external forcings, andQ is a mass source term. The acceleration due to
gravity g0 accounts for buoyancy, and the Coriolis parameter f0 addresses the rotation of the
earth (only required for very long waves over the earth [14]). The friction coefficient α ≥ 0
acts as a generic sink that reduces the amplitude over time [6].
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This work considers localized plane waves, or wavelets, on a flat sea propagating only
in the x-direction. Thus, we set

u = u(t, x), w = w(t, x), η = η(t, x), v
(
t, x, y

)
= 0,

H = H(x), c = c(x) ≡
√
g0H(x),

Px = Px(t, x), α = f0 = Py = Q = 0.

(1.2)

In deep water H = H0 > 0 is a fixed constant and c0 =
√
g0H0 is a constant surface-wave

speed (called the celerity). Then, for small amplitudes, the elevation function η(t, x) satisfies

generation:
∂2η

∂t2
− c20

∂2η

∂x2
= F(t, x), where η(t, x) � 0, for t� 0, x ∈ R, (1.3)

propagation:
∂η

∂t
+ c0

∂

∂x

(
η +

β

c0
η2 +

ν

c0

∂2η

∂x2

)
= 0, for H(x) � H0, (1.4)

runup:
∂η

∂t
+ c

∂η

∂x
+
η

2
dc

dx
+ β

∂
(
η2
)

∂x
+ ν

∂3η

∂x3
= 0, for H(x) > 0. (1.5)

These equations are found in [8, Equation (2)], [15, Equation (45)], and [16, Equation (13)],
respectively. The new coefficients are defined as β(x) ≡ 3c/(4H) and ν(x) ≡ cH2/6. Equation
(1.4) is referred to as the KdV-top model in [16]. Inclusion of an additional boundary-
turbulence term in (1.5)would result in a loss of conservation properties for η (considered in
[17] but not here).

The forcings F(t, x) in (1.3) will be constructed from bounded wavelets φ(u) that
satisfy MADEs. As such they satisfy the following conditions:

φ ∈ L1(R) ∩ L2(R) ∩ L∞(R),
∫∞

−∞
φ(u)du = 0. (1.6)

Physically, if φ represents the displacement of the water-level from equilibrium, conservation
of mass necessitates that the conditions in (1.6) hold. Note that, as discussed in [15], solitons
are not expected to occur in (1.4) since the total spatial integral of η vanishes. We find that
if F(t∗, x) is a wavelet in the x variable (for fixed t∗ ∈ R), then so is η(t∗, x) away from the
shore (using x-integration of either (1.3) or (1.4)). During the runup, however, η(t, x) looses
its wavelet properties due to the variability of the coefficients in (1.5).

It seems natural that wavelets should appear in the study of surface water waves. The
wavelets presented here are particularly well suited for surface waves. In particular, we show
that when the forcing F is expressed in terms ofKq, qCos and qSin in (2.2)-(2.3), the solution
can be reexpressed in terms of these functions. An objective of this paper is to demonstrate
that the modeling as well as the detection and analysis of an observed wave profile can be
achieved efficiently in terms of the wavelets (2.2)-(2.3), see [18–20]. Hence, a brief discussion
on the topics of signal analysis and recovery on real data is presented usingKq and qCos. We
apply these techniques to the Japanese tsunami of March 11, 2011. The paper is completed
with the details of a perturbation analysis in q > 1+ that is needed to establish the existence
of a resonance for rogue waves.
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2. Preliminaries on Special Functions

The first quantity that we introduce is the function Kq(t) that satisfies the MADE

K′
q(t) = Kq

(
qt
)
, ∀t ∈ R, q > 1. (2.1)

We set Kq(t) ≡ 0 for t ≤ 0, and define

Kq(t) ≡
∞∑

j=−∞

(−1)je−qj t

qj(j+1)/2
, for t > 0, q > 1. (2.2)

Note that Kq(t) satisfies the wavelet conditions in (1.6), see [18]. Furthermore, as in [20], the
reproducing kernel of Kq(t) gives the functions

qCos(t) =Nq ·
∫∞

0
Kq(u)Kq(u − t)du =Nq

∞∑
j=−∞

(−1)je−q2j |t|

qj
2 ,

qSin(t) = −Nq ·
∫∞

0
Kq(u)Kq

(
qu − qt

)
du =

(
t

|t|

)
Nq

∞∑
j=−∞

(−1)je−q2j |t|

qj(j−1)
,

(2.3)

which are displayed in Figure 2 for q = 1.5. The normalization constantNq is chosen so that
qCos (0) = 1. It is shown in [20] that the q-advanced harmonic oscillator equations,

qCos
′′(t) = −q · qCos

(
qt
)
, qSin′′(t) = −q2 · qSin

(
qt
)
, (2.4)

hold, which are second-order MADEs. Each of (2.2)-(2.3) lies in L2. We show as a
consequence of Theorem 2.1 that qCos(t) → cos(t) and qSin(t) → Sin(t) pointwise for t ∈ R

as q → 1+. Note, we also have uniform convergence on compact sets, which was obtained
in [20]. Thus, qCos(t) and qSin(t) can be viewed as L2 approximations of cos(t) and sin(t),
respectively, which are solutions of the limit of equations in (2.4) as q → 1+.

2.1. Theta Functions

As part of our study, we employ the Jacobi theta function, defined for ω ∈ C \ {−qn}n∈Z
,

θ
(
q,ω

)
≡

∞∑
k=−∞

ωk

qk(k−1)/2
= μq

∞∏
n=0

(
1 +

ω

qn

)(
1 +

1
ωqn+1

)
,

μq ≡
∞∏
n=0

(
1 − 1

qn+1

)
.

(2.5)

This function will only be used in regions where ω > 0 and q > 1. Clearly the function
θ(q2, ω2) is C∞ for allω ∈ R−{0} and grows faster than any rational polynomial at ±∞ and 0.
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As such, for each q > 1 one has that 1/θ(q2, ω2) is a Schwartz function that is flat at ω = 0. It
also satisfies the algebraic identity

θ
(
q; qnω

)
= qn(n+1)/2ωnθ

(
q;ω

)
, n ∈ Z, (2.6)

which plays an important role in our analysis, [18].

Theorem 2.1. For q > 1, let

δq(ω) ≡

⎧⎪⎨
⎪⎩

1[
ln
(
q
)
θ
(
q2;ω2

)] if ω > 0

0 if ω ≤ 0.
(2.7)

Then δq(ω) is a delta sequence in q > 1+, at ω = 1 and has the following properties:

(i) lim
q→ 1+

δq(ω/= 1) = 0, (ii) lim
q→ 1+

δq(1) = ∞, (iii) lim
q→ 1+

∫∞

0
δq(ω)dω = 1. (2.8)

Proof. From [21], for 1 < q < eπ and for ω > 0 one has

0 < q1/4|ω|e(ln(|ω|))
2/ ln(q)

{√
π

ln
(
q
) − 1

}
≤ θ

(
q2;ω2

)
, (2.9)

0 < θ
(
q2;ω2

)
≤ q1/4|ω|e(ln(|ω|))

2/ ln(q)

{√
π

ln
(
q
) + 1

}
. (2.10)

Multiplication of (2.9) and (2.10) by ln(q), followed by reciprocation, gives that for ω > 0

⎡
⎢⎣ q−1/4|ω|−1e−(ln(|ω|))2/ ln(q)√

ln
(
q
){√

π +
√
ln
(
q
)}

⎤
⎥⎦ ≤ δq(ω) ≤

⎡
⎢⎣ q−1/4|ω|−1e−(ln(|ω|))2/ ln(q)√

ln
(
q
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√
ln
(
q
)}

⎤
⎥⎦. (2.11)

Now, (i) follows from (2.11) and the fact that for k > 0, limq→ 1+[e−k/ ln(q)/
√
ln(q)] = 0. For

ω = 1, (ii) also follows from (2.11). To obtain (iii), we handle some preliminaries. First, it was
shown in [18] that

∥∥Kq

∥∥2
2 ≡

∫∞

−∞
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∫∞

−∞

q2
(
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q
(
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)4
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2π

∫∞

−∞

dv
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(
q2;v2

) =
q
(
μq
)4
μq2

π

∫∞

0

dv

θ
(
q2;v2

) .
(2.12)
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The functional identity (μq)
4q = 2‖Kq‖22(μq2)

2Nq, established in [20], allows for the
replacement of (‖Kq‖22/q) by ((μq)

4/[2(μq2)
2Nq]) in (2.12) to obtain the following:

∫∞

0

dv

θ
(
q2;v2

) =
π
∥∥Kq

∥∥2
2

q
(
μq
)4
μq2

=
π

2Nq

(
μq2

)3 . (2.13)

This in turn gives that

lim
q→ 1+

∫∞

0
δq(ω)dω = lim

q→ 1+

∫∞

0

dω

ln
(
q
)
θ
(
q2;ω2

) = lim
q→ 1+

π

2 ln
(
q
)
Nq

(
μq2

)3 = 1, (2.14)

where the last equality follows from the q-Wallis limit, limq→ 1+[ln(q)Nq(μq2)
3] = π/2, from

[21]. This proves (iii) and finishes the proof of the theorem.

2.2. q-Advanced Wavelets That Solve MADEs

The appearance of theta functions is a consequence of the Laplace transform of (2.2),

Kq(t) = L−1
[

−μ3
q

sθ
(
q, s

)
]
(t), where L

[
f(t)

]
(s) ≡

∫∞

t=0
e−stf(t)dt. (2.15)

In [20], we use the inverse Fourier transform to compute the expressions

qCos(t) =

(
μq2

)3
Nq

π

∫∞

−∞

eiωtdω

θ
(
q2, ω2

) ,

qSin(t) =
−i
(
μq2

)3
Nq

π

∫∞

−∞

eiωtωdω

θ
(
q2, ω2

) ,
(2.16)

and these expressions will be used in the proof of a resonance for rogue waves. The
representation in (2.15) verifies the MADE in (2.1), and (2.16) implies the identities

qCos′(t) = − qSin(t), qSin′(t) = q · qCos
(
qt
)
, (2.17)

which verify the MADEs in (2.4). Now Theorem 2.1 gives that both δq(ω) and δq(−ω) are
delta sequences in q > 1+ atω = ±1, respectively. These applied to (2.16), in combination with
the q-Wallis limit, give that pointwise

lim
q→ 1+ q

Cos(t) = cos(t), lim
q→ 1+ q

Sin(t) = sin(t), for t ∈ R. (2.18)
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For q > 1, the functions in (2.15) and (2.16) are in the Schwartz space. In particular, their
rates of decay for large |t| are typically slower than exponential but faster than any reciprocal
polynomial. It can be shown that ∃C > 0 so that for t ∈ R and q > 1,

max

{∣∣Kq(t)
∣∣, ∣∣∣ qCos(t)

∣∣∣, ∣∣∣ qSin(t)
∣∣∣, 1∣∣θ(q; t)∣∣

}
≤ Cq−log

2
q(|t|). (2.19)

Remark 2.2. The use of theta functions in frequency space provides decaying versions of cosine
and sine while preserving many differential properties of these functions.

3. Tsunami Modeling Using MADEs

A tsunami wave is the consequence of a spontaneous change in elevation on the seafloor,
which creates a variable pressure field throughout the volume of water. This sets up forces
that extend to the surface of the ocean causing it to be moved up and down, locally. The
perturbed wave height then propagates away from this disturbance. In still water, the surface
wave speed c0 =

√
g0H0 mainly depends on the average depthH0 of the ocean. For tsunamis,

the wavelength is much longer thanH0 and so the shallow-water wave equation applies (see
[22, page 195]). Near the shore nonlinear effects need to be introduced to account for the
sloping of the shoreline [4, 12, 23, 24].

Suppose that the faultline on the seafloor is parallel to the y coordinate. Then the y-
dependence can be ignored even after the tsunami-causing event has taken place. In this
situation, the wave front will travel in the x direction only.

3.1. q-Advanced Tsunami Model

Consider the forced one-dimensional wave equation for the water-level function ψ [14, 22],

∂2t ψ(t, x) − c20∂
2
xψ(t, x) = F(t, x), ∀t ∈ R, x ∈ R, ψ(t, x) = 0, ∀t < 0, x ∈ R, (3.1)

where the condition on the right in (3.1) constitutes the boundary and initial conditions. The
forcing is expected to satisfy the conditions, for fixed t∗, x∗ ∈ R,

lim
|t|→∞

F(t, x∗) = 0, lim
|x|→∞

F(t∗, x) = 0,
∫∞

−∞
F(t∗, x)dx = 0, (3.2)

and is related to the depth of the ocean floor by ∂2tH(t, x) = F(t, x). The models in [4, 8] start
with ground-motion profilesH = HTS orH = HZWL where

HTS ≡
A

γ
tanh

(
γx − t

τ

)
, HZWL ≡

(
2Aγ

)
sech2(γx) tanh(γx) sin

(
πt

2τ

)
, (3.3)

respectively. In [8], it is noted that using the first model H = HTS gives a force consistent
with a landslide that continues for all time. In [4], the second model H = HZWL suggests an
earthquake that continues for all time. In these settings, (3.2) does not hold. However, these
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models are still used as part of the initial forcings for the wave equation since they lead to
integrable solutions whose evolutions resemble that of actual tsunamis. As a comparison, we
propose the following q-advanced model:

Hq(t, x) ≡ A ·Kq

(
t

τ

)
qSin

(
γ · x

)
,

Fq(t, x) ≡
∂2Hq

∂t2
=

A · q
τ2

Kq

(
q2t

τ

)
qSin

(
γ · x

)
,

(3.4)

where Fq(t, x) now satisfies the conditions in (3.2). When (3.4) is substituted into (3.1), solved
and simplified, one obtains a unique solution ψ(t, x) to the forced wave equation. To express
the solution, define the two phase functions, corresponding to right and left propagation,

ϕ+
μ(t, x, ξ) ≡

t

τ
−
γ · x − ξ
qμ

, ϕ−
μ(t, x, ξ) ≡

t

τ
+
γ · x − ξ
qμ

, ∀t, x, ξ ∈ R, (3.5)

where the parameters are related by c0γτ = qμ. Define, for any α, β, μ ∈ R and q > 1,

T±
α,β,μ(t, x) ≡

∫ γ ·x
ξ=0

qSin
(
qα · ξ

)
·Kq

(
qβ · ϕ±

μ(t, x, ξ)
)
dξ. (3.6)

Then, for t > 0 and x ∈ R, the reader can verify that

ψ(t, x) = ψparticular(t, x) + ψhomogeneous(t, x), (3.7)

where a particular solution to (3.1), with the forcing in (3.4), is

ψparticular(t, x) =
(−A · q−μ

2

)
·
[
T−

0,1,μ(t, x) − T+
0,1,μ(t, x)

]
. (3.8)

A smooth solution that satisfies ψ(t, x) = 0, for t ≤ 0, is obtained by choosing

ψhom.(t, x) =
−1
2

[
ψpar.(0, x + c0t) + ψpar.(0, x − c0t) +

∫x+c0t
x−c0t

∂ψpar.(0, u)
c0 · ∂t

du

]
. (3.9)

One can see from (3.5)–(3.9) that the solution has the basic wavelet properties

ψ(·, x∗), ψ(t∗, ·) ∈ L1(R) ∩ L2(R) ∩ L∞(R),
∫

R

ψ(t, x∗)dt =
∫

R

ψ(t∗, x)dx = 0, (3.10)

for each t∗, x∗ ∈ R. To analyze the long-term behavior of the solution ψ, we use (2.1), (2.17),
and integration by parts, twice, to obtain Proposition 3.1.
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Figure 3: DART 21418: Data showing earthquake ( forcing, on the left) and resulting tsunami (on the right)
observed on March 11, 2011, from 5:43 am to 6:51 am (horizontal axis is time in minutes, vertical axis is in
meters).

Proposition 3.1. For any α, β, μ ∈ R and q > 1 the following identity holds:

T±
α,β,μ(t, x) = q−α ·Kq

(
qβ ·

[
t

τ
∓
γx

qμ

])
− q−2α+2β−2μ+1 · T±

α−1,β+2,μ(t, x)

− q−α · qCos
(
qαγx

)
·Kq

(
qβt

τ

)
± q−2α+β−μ qSin

(
qα−1γx

)
·Kq

(
qβ+1t

τ

)
.

(3.11)

The expression in (3.11) demonstrates that T±
α,β,μ

, as used in (3.8), can be written as
a series of localized (bound) states and traveling (free) states. These different terms appear
as translated and scaled versions of the wavelets Kq, qCos and qSin. Thus, such functions
provide a good match for a wave profile ψ that was generated by the family of forcings Fq in
(3.4). Furthermore, for t� 0, x � 0 and μ� 0 (reasonable for tsunamis),

ψparticular(t, x) �
(
Aq−3μ−1

2

)
·Kq

(
γ · q−μ[c0t − x]

)
. (3.12)

Finally, observe that Fq(t, x) in (3.4) is q-advanced in time compared to the ground-motion
profile Hq(t, x). We also find that the forcing precedes the response ψ for the q-advanced
models. Figure 4(a) illustrates a case where a forcing profile generates a similarly shaped
tsunami in Figure 4(b).

Remark 3.2. Similar results hold for height functions H̃q(t, x) ≡ Ã ·Kq(t/τ) qCos(γ · x).

3.2. Numerical Solution of a q-Advanced Tsunami Wave Event

Here, we model the Japan tsunami of March 11, 2011, using (1.3), (1.4), and (1.5) with a
forcing term Fq in (3.4) with environmental parameters chosen to be, in mks units,

g0 = 10ms−2, H0 = 4000m, c0 = 200ms−1,

γ = 0.01m−1, τ = 100 s, A = 6 × 107 m,
(3.13)
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Figure 4: (a) Comparison of forcing from data (dashed line) and model (solid line) results in q = 1.25;
(b) comparing tsunami at DART 21418 and propagation model results in A = 6 × 107 m.

which are based on past experience [4]. The sea-depth function is chosen to be

H(x) = H0, for x ≤ 0, H(x) = H0 ·
[
1 −

(
x

5
km

)2
]
, for x ∈ (0, 5 km), (3.14)

which models the sea-floor near Wake Island. This is a required modification of the model
used in [7]. For stability, we employ a Lax-Wendroff correction term in the numerical method.
A good match with typical tsunami profiles and run-up profiles was obtained by using q =
1.25. In this case, μ � 23.74, which justifies the approximation in (3.12).

Figure 3 represents data from the Japan tsunami of March 11, 2011, at the first oceanic
observation site DART 21418. This data includes a preliminary forcing profile from the (local)
times 5min to 20min, along with the actual tsunami profile from the (local) times 42min to
72min.

Figure 4(a) again shows the Dart 21418 forcing profile from the times 5min to 20min,
along with a q-advanced forcing profile as in (3.4), withA and q chosen to beA = 6× 107 and
q = 1.25 to effect comparable forcing profiles.

Figure 4(b) shows the Dart 21418 actual tsunami profile from the times 42min to
72min along with the numerically propagated theoretical tsunami for the same time interval
that was generated by (1.3) and (1.4) for the forcing Fq in (3.4) as above (with parameters
A = 6 × 107 and q = 1.25).

Figure 5 shows the actual tsunami profile at a later time and greater distance at oceanic
observation DART 21413 from the (local) times 5min to 65min. Also shown for comparison is
the numerically propagated theoretical tsunami for the same time interval that was generated
by (1.3) and (1.4) for the forcing Fq in (3.4) with parameters A = 6 × 107 and q = 1.25.

Figure 6 shows the actual run-up profile taken from the tide gauge at Wake Island at
an even later time and greater distance. This is compared with our predicted run-up profile
generated by (1.3) and (1.4) together with (1.5) for the forcing Fq in (3.4) with parameters
A = 6×107 and q = 1.25. The run-up data and theoretical profile have similar profiles initially,
for the first few oscillations.
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Figure 5: DART 21413: Data showing tsunami about 90 minutes after the earthquake and propagation
model.
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Figure 6: Wake Island: Data showing tsunami about 125 minutes after the earthquake and run-up model
for Wake Island shoal.

4. Rogue-Wave Modeling Using Solutions of MADEs

A debate continues on the physical cause of rogue waves, [9]. One possible mechanism is a
natural outcome of a constructive interference between rippling surface waves that propagate
in different directions [22, page 191]. We construct a localized plane wave using a MADE-
generated solution of the wave equation, for A > 0,

Ψq(t, x) = A · qCos
(
t

τ

)
· qCos

(
γ · x

)
. (4.1)

Substituting Ψq into (3.1) results in a small but persistent forcing. The model in (4.1) ignores
possible translational behavior, which will be discussed at the end of this section. Here, γ and
τ are parameters that satisfy cγ = 1/τ for a constant celerity c > 0. The forcing required to
obtain Ψq from a calm distant past consists of two terms

Fq(t, x) = Aqγ2c2 ·
[
qCos

(
q · t
τ

)
· qCos

(
γ · x

)
− qCos

(
t

τ

)
· qCos

(
q · γ · x

)]
, (4.2)



12 Abstract and Applied Analysis

and it is easily seen that ‖Fq‖∞ ≤ A/τ2. We show that ‖Fq‖∞ → 0 as q → 1+ while from
(4.1) it follows that ‖ψq‖∞ = A remains constant for all q > 1. This is a type of triad resonance
with peak at (t, x) = (0, 0). To proceed with our analysis, estimates on the differences between
q-advanced functions, which are solutions of MADEs, are needed.

4.1. Analysis of Forcing Terms for q Cos and q Sin-Type Rogue Waves

In this section, we show that small amplitude forces, over long periods of time, can naturally
produce large rogue waves. This demonstrates the existence of a resonance for the system
externally forced by (4.2).

Proposition 4.1. Let ε > 0 be given. Then there exists Qε
C > 1 such that for all q with 1 < q < Qε

C

one has

∣∣∣ qCos(qt)− qCos(t)
∣∣∣ < ε, (4.3)

for all t ∈ R; also there exists Qε
S > 1 such that for all q with 1 < q < Qε

S one has

∣∣∣ qSin(qt)− qSin(t)
∣∣∣ < ε, (4.4)

for all t ∈ R.

The proof of this result is given in the last section. It is used here to show that small
amplitude forces, over long periods of time, can naturally produce rogue waves. That is, for
q sufficiently near 1, we now apply Proposition 4.1 to show that for arbitrarily small forcing
terms Fq(t, x) there are large rogue solutions Ψq(t, x) of the forced wave equation (4.5) (and
of (4.10)).

Theorem 4.2. Let A, c > 0 and define Ψq as in (4.1) and Fq as in (4.2). Let ε > 0 be given, and let
q > 1 be sufficiently close to 1. Then Ψq(t, x) satisfies the forced wave equation

(
∂2t − c2∂2x

)
Ψq(t, x) = Fq(t, x), (4.5)

where Ψq(0, 0) = A is fixed, but |Fq(t, x)| < ε for all t, x ∈ R.

Proof. Without loss of generality, set γ = 1 and c = 1/τ . Then one has, for all q > 1, that

(
∂2t − c2∂2x

)
Ψq(t, x) =

(
∂2t − c2∂2x

)[
A · qCos(ct) · qCos(x)

]

= A
(
−q
)
· qCos

(
qct

)
c2 · qCos(x)

− c2A · qCos(ct)
(
−q
)
· qCos

(
qx
)

= −Aqc2
[
qCos

(
qct

)
· qCos(x)− qCos(ct) · qCos

(
qx
)]

= Fq(t, x),

(4.6)
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giving (4.5). Choose q0 > 1. Now let ε̃ ≡ ε/[2Aq0c2], and let Qε̃
C > 1 be chosen so that for 1 <

q < Qε̃
C one has | qCos(qx)− qCos(x) | < ε̃ by Proposition 4.1. Then, for all 1 < q < min{Qε̃

C, q0},

∣∣Fq(t, x)∣∣ =
∣∣∣−Aqc2[ qCos(qct) · qCos(x)− qCos(ct) · qCos(x)

]

− Aqc2
[
qCos(ct) · qCos(x)− qCos(ct) · qCos

(
qx
)]∣∣∣

≤ Aqc2
∣∣∣ qCos(x)

∣∣∣
∣∣∣[ qCos(qct)− qCos(ct)

]∣∣∣
+Aqc2

∣∣∣ qCos(ct)
∣∣∣
∣∣∣[ qCos(x)− qCos

(
qx
)]∣∣∣

(4.7)

≤ Aqc21
∣∣∣ qCos(qct)− qCos(ct)

∣∣∣ +Aqc21∣∣∣ qCos(qx)− qCos(x)
∣∣∣

≤ Aqc2ε̃ +Aqc2ε̃ < ε

2
+
ε

2
= ε,

(4.8)

where (4.8) follows from the fact that ‖ qCos‖∞ = 1. Now, since qCos(0) = 1, we have
Ψq(0, 0) ≡ A · qCos(0) · qCos(0) = A.

Theorem 4.3. Let A, c > 0. Let ε > 0 be given, and let q > 1 be sufficiently close to 1. Define

Φq(t, x) ≡ A · qSin(ct) · qSin(x),

Gq(t, x) ≡ −Aq2c2
[
qSin

(
qct

)
· qSin(x)− qSin(ct) · qSin

(
qx
)]
.

(4.9)

Then Φq(t, x) satisfies the forced wave equation

(
∂2t − c2∂2x

)
Φq(t, x) = Gq(t, x), (4.10)

where supt,x∈R
Φq ≈ A� ε, but |Gq(t, x)| < ε for all t, x ∈ R.

Proof. From (4.9), one has for all q > 1 that

(
∂2t − c2∂2x

)
Φq(t, x) =

(
∂2t − c2∂2x

)[
A · qSin(ct) · qSin(x)

]

= A
(
−q2

)
· qSin

(
qct

)
c2 · qSin(x)

− c2A · qSin(ct)
(
−q2

)
· qSin

(
qx
)

= −Aq2c2
[
qSin

(
qct

)
· qSin(x)− qSin(ct) · qSin

(
qx
)]

= Gq(t, x),

(4.11)



14 Abstract and Applied Analysis

giving (4.10). Choose q0 > 1. Now let ε̃ ≡ ε/[2Aq02c2
√
q0], and let Qε̃

S > 1 be chosen so that
for 1 < q < Qε̃

S one has | qSin(qx)− qSin(x) | < ε̃ by Proposition 4.1. Then, for all 1 < q <

min{Qε̃
S , q0},

∣∣Gq(t, x)
∣∣ = ∣∣∣−Aq2c2[ qSin(qct) · qSin(x)− qSin(ct) · qSin(x)

]

− Aq2c2
[
qSin(ct) · qSin(x)− qSin(ct) · qSin

(
qx
)]∣∣∣

(4.12)

≤ Aq2c2
∣∣∣ qSin(x)

∣∣∣
∣∣∣[ qSin(qct)− qSin(ct)

]∣∣∣
+Aq2c2

∣∣∣ qSin(ct)
∣∣∣
∣∣∣[ qSin(x)− qSin

(
qx
)]∣∣∣

(4.13)

≤ Aq2c2
√
q
∣∣∣ qSin(qct)− qSin(ct)

∣∣∣ +Aq2c2√q
∣∣∣ qSin(qx)− qSin(x)

∣∣∣ (4.14)

≤ Aq2c2
√
qε̃ +Aqc2

√
qε̃ <

ε

2
+
ε

2
= ε, (4.15)

where (4.14) follows from the fact that ‖ qSin‖∞ ≤ √
q, as in [20]. Now, since sup qSin ≈ 1 for

q > 1 sufficiently close to 1, we have that supΦq ≈ A.

4.2. Slowly Moving Rogue Waves

When a slight drift in the rogue-generating current is present, there may be a speed v � c to
the wave-height profile. A model for such a rogue can be given by

ψq,v(t, x) = A · qCos
(
Γv · γ · ct

)
· qCos

(
γ · (x − vt)

)
, (4.16)

where Γv ≡
√
1 − (v/c)2. The peak of this wave still occurs at (t, x) = (0, 0) but moves to

the right at speed v. The techniques used in the previous section show that by choice of
parameters, a small amplitude forcing, over a long period, will create a moving rogue of
arbitrary size.

Theorem 4.4. Let A, c, γ > 0 and c > v > 0. Define Γv ≡
√
1 − (v/c)2. Let ε > 0 be given, and let

q > 1 be sufficiently close to 1. Define the surface-height function

Ψ̃q,v(t, x) ≡ A · qCos
(
Γv · γ · ct

)
· qCos

(
γ · (x − vt)

)
, (4.17)

and let the forcing be given by

F̃q(t, x) ≡ −
(
2Aγ2vcΓv

)
· qSin

(
Γvγct

)
qSin

(
γ(x − vct)

)

−Aγ2q
(
c2 − v2

)
·
[
qCos

(
qΓvγct

)
qCos

(
γ(x − vt)

)

+ qCos
(
Γvγct

)
qCos

(
qγ(x − vt)

)]
.

(4.18)
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Then Ψ̃qv(t, x) satisfies the forced wave equation

(
∂2t − c2∂2x

)
Ψ̃q,v(t, x) = F̃q(t, x), (4.19)

where Ψ̃q,v(0, 0) = A is fixed, but |F̃q(t, x)| < ε + (2AqΓvγ2c) · v for all t, x ∈ R.

Proof. Applying the operator (∂2t −c2∂2x) to (4.17) yields (4.19) for F̃q in (4.18). The magnitude
of the first term in (4.18) is handled as follows:

∣∣∣(2Aγ2vcΓv
)
qSin

(
Γvγct

)
qSin

(
γ(x − vt)

)∣∣∣
≤
(
2Aγ2vcΓv

)∣∣∣ qSin(Γvγct)
∣∣∣ · ∣∣∣ qSin(γ(x − vt)

)∣∣∣
≤
(
2Aγ2vcΓv

)√
q
√
q =

(
2Aγ2qcΓv

)
· v,

(4.20)

where the last inequality follows from the fact that ‖ qSin‖∞ ≤ √
q. The remaining expressions

in (4.18) are controlled by noticing that

∣∣∣ qCos(q · Γvγct) · qCos(γ(x − vt)
)
− qCos

(
Γvγct

)
· qCos

(
q · γ(x − vt)

)∣∣∣ (4.21)

can be brought below ε for q sufficiently close to 1+ by paralleling steps (4.7) through (4.8) in
Theorem 4.2 and applying Proposition 4.1. The result is now proven.

Remark 4.5. For v sufficiently small (as well as q sufficiently near 1+), the term (2AqΓvγ2c) · v
in Theorem 4.4 is small, and one then has that F̃q(t, x) can bemade arbitrarily small compared
with the rogue amplitude A, independently of t, x ∈ R. For smaller values of γ , the moving
rogue wave maintains a large amplitude near A for a longer period of time.

Remark 4.6. There is a corresponding theorem for the moving qSin rogue wave given by

Φ̃q,v(t, x) ≡ A · qSin(Γvγct) · qSin(γ(x − vt)).

Remark 4.7. Note that, as is demonstrated in Figure 7, classic roguewave profiles emerge from
smaller forcings even for q relatively far from 1.

5. Wavelet Signal Analysis, Inversion, and the Frame Operator

We now have a collection of solutions to differential equations that give the qualitative
behavior of a physical phenomena. Next, to detect, analyze, store, and recover a tsunami
waveform, it is common to use a wavelet analysis [25]. The process begins by identifying a
discrete set of functions, called an affine frame,

Λψ ≡
{
ψj,k(t) ≡

qj/2ψ
(
qjt − kb

)
∥∥ψ∥∥

∣∣∣∣∣j, k ∈ Z

}
. (5.1)
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Figure 7: Parameters: c = 1.0, λ = 1.0, τ = q = 3/2, and γ = 1/q = 2/3. (a) Forcing profile Fq converges
toward x = 0 as t → 0−; (b) rogue solution Ψq in a neighborhood of x = 0 that oscillates over time; (c)
forcing with ‖Fq‖∞ ≤ 1/q2 = 4/9 and solution with ‖Ψq‖∞ = 1.

With some effort, it can be shown that spanΛψ = L2(R), for appropriate ψ and b > 0
sufficiently small [26]. This leads a wavelet transformWψ : L2(R) → �2(Z2) where

Wψ

[
f
](
j, k

)
≡
〈
ψj,k, f

〉
=

[
qj/2∥∥ψ∥∥

]∫
R

ψ
(
qjt − kb

)
f(t)dt. (5.2)

The range ofW is a subspace of �2(Z2) and has an adjointW∗ defined to be

W∗ :W
[
L2(R)

]
⊆ �2

(
Z
2
)
−→ L2(R), W∗[{cj,k}Z2

]
=
∑

cj,kψ
∗
j,k(t), (5.3)

where ψ∗
j,k

are the elements of the dual frame to Λψ . The frame operator S ≡W∗W : L2(R) →
L2(R) is invertible for b > 0 sufficiently small. If Λψ is an orthonormal basis for L2(R), then
one can use ψ∗

j,k = ψj,k. The waveletsKq, qCos, and qSin generate frames whose inner product
structures are nearly orthogonal [20]. Consequently, as will be shown below, a reasonable
analysis of the different waveforms is obtained without computing the dual to Λψ .

The results of a signal analysis and synthesis, briefly presented here, consist of (1)
choosing 256 equallyspaced points from the data, (2) computing the inner products with
elements of Λψ , (3) sorting and identifying inner products with the largest magnitudes, (4)
reconstructing the wavelet-based waveform, (5) normalizing in L2, and (6) computing the
normalized RMS error.

By [19], the sizes chosen for the parameters are q = 1.5 and b ∼ 2, with slight
adjustments being made to improve the result. The reconstructed signal has an amplitude
about b/(2q) of the size of the data profile. The need for this scaling was explained in [20]
and is due to the fact that the L2 operator norm of S−1 is estimated to be b/(2q).

5.1. Tsunami Wavelet Analysis

On March 11, 2011, an earthquake of magnitude 9.0 occurred off the coast of Japan causing
a tsunami no less than 10m high. Surface wave levels were detected by buoys operated by
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Figure 8: (a) Tsunami 46411 from DART, March 2011; (b) relative magnitude of coefficients for 3 scales
{q−1, 1, q} for q = 1.5; (c) relative magnitude of coefficients for 5 scales {qj}3j=−1; (d) Kq(t) wavelet
approximation with 20 largest coefficients; (e) largest magnitude of Kq (q = 1.5, scale = q0 = 1, shift =
2 · b = 3.9); (f) comparison between DART data and Kq wavelet reconstruction.
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Figure 9: (a) Rogue 1520 fromDraupner, January 1995; (b) relative magnitude of coefficients for 3 scales {1,
q, q2} for q = 1.5; (c) relativemagnitude of coefficients for 5 scales {qj}4j=0; (d) qCoswavelet approximation
using largest 30 coefficients; (e) largest magnitude of qCos (q = 1.5, scale = q2, shift = 5 · b =12.2); (f)
comparison between Draupner data and qCos wavelet reconstruction.

DART. To detect, analyze, store, and recover a tsunami waveform, we choose the wavelet
frame

ΛKq =

⎧⎨
⎩
√

qj

CK
·Kq

(
qjt − kb

)∣∣∣∣∣∣j, k ∈ Z

⎫⎬
⎭, CK ≡

∫∞

0
K2
q(t)dt, (5.4)

with q = 1.5 and b = 1.95. Then the application of WKq on tsunami data gives coefficients
{cj,k}which can be plotted in a k versus j diagram. The largest values of |cj,k| indicate position
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(due to k) and narrowness (due to j). Only the largest 20 coefficients in magnitude, for the
ranges −1 ≤ j ≤ 3 and 1 ≤ k ≤ 10, were used to obtain the fit on the bottom right of Figure 8.
The normalized-RMS error

NRMSE ≡ 1

max
(
ywavelet
i

)
−min

(
ywavelet
i

) ·
(

1
N

N∑
i=1

(
ydata
i − ywavelet

i

)2
)1/2

(5.5)

was computed to be NRMSE = 16%. The bubble plots of the relative sizes of the coefficients
are shownwith the discrete time translation variable k displayed horizontally, and the discrete
frequency exponent j displayed vertically.

5.2. Rogue Wavelet Analysis

On January 1, 1995, a rogue wave was detected on the Draupner platform in the North Sea.
Surface wave heights were recorded using a laser-detection method [10]. Here we use the
wavelet frame

Λ
qCos =

⎧⎨
⎩
√

qj

CC
· qCos

(
qjt − kb

)
| j, k ∈ Z

⎫⎬
⎭, CC ≡

∫∞

0
qCos

2(t)dt, (5.6)

with q = 1.5 and b = 2.44. Here, we used 30 coefficients, for the ranges 1 ≤ j ≤ 4 and 1 ≤ k ≤ 10,
to obtain the fit on the bottom right. The normalized RMS error is 18%. See Figure 9 for the
results of this analysis.

6. Estimates for |q Cos(qt) − qCos(t) | and |q Sin(qt)−q Sin(t)|

In this section, the estimates for the differences of q-advanced trigonometric functions are
proven. First we record useful Fourier transform expressions. From (2.3)we have the Fourier
transforms of qCos(t), qCos(qt), qSin(t), and qSin(qt), respectively, are given by

F
[
qCos(t)

]
(ω) =

2
(
μq2

)3
Nq√

2π

1
θ
(
q2;ω2

) , (6.1)

F
[
qCos

(
qt
)]
(ω) =

1
q

2
(
μq2

)3
Nq√

2π

1

θ
(
q2;

(
q2
)−1

ω2
) =

ω2

q
F
[
qCos(t)

]
(ω), (6.2)

F
[
qSin(t)

]
(ω) =

2
(
μq2

)3
Nq√

2π

(−iω)
θ
(
q2;ω2

) , (6.3)

F
[
qSin

(
qt
)]
(ω) =

1
q

2
(
μq2

)3
Nq√

2π

(
−iω/q

)
θ
(
q2;

(
q2
)−1

ω2
) =

ω2

q2
F
[
qSin(t)

]
(ω), (6.4)
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where the algebraic identity θ(q2; (q2)nω2) = (q2)n(n+1)/2(ω2)nθ(q2;ω2), that follows from
(2.6), was used to obtain (6.2) and (6.4). Further details are presented in [21].

Proof of Proposition 4.1. We first prove the estimate for the differences involving qCos. From
(6.1) and (6.2), one has

∣∣∣ qCos(qt)− qCos(t)
∣∣∣ = ∣∣∣F−1

(
F
[
qCos

(
qt
)])

− F−1
(
F
[
qCos(t)

])∣∣∣

=
1√
2π

∣∣∣∣∣∣
∫

R

eiωt

⎧⎨
⎩

1
q

2
(
μq2

)3
Nq√

2π

ω2

θ
(
q2;ω2

)

−
2
(
μq2

)3
Nq√

2π

1
θ
(
q2;ω2

)
⎫⎬
⎭dω

∣∣∣∣∣∣

(6.5)

≤ 1√
2π

1
q

2
(
μq2

)3
Nq√

2π

∫
R

∣∣ω2 − q
∣∣

θ
(
q2;ω2

)dω =
2
(
μq2

)3
Nq

2πq
2
∫∞

0

∣∣ω2 − q
∣∣

θ
(
q2;ω2

)dω,
(6.6)

=
2
πq

(
μq2

)3
Nq

[∫1

0

∣∣ω2 − q
∣∣

θ
(
q2;ω2

)dω +
∫∞

1

∣∣ω2 − q
∣∣

θ
(
q2;ω2

)dω
]
, (6.7)

where the triangle inequality gives the inequality in (6.6), and the evenness of |ω2 −
q|/θ(q2;ω2) allows for reduction to integration over [0,∞) in (6.6).

The change of variablesω = 1/u is made on the first integral in (6.7), and the algebraic
identity θ(q2;u−2) = u−2θ(q2;u2) is used to obtain

∫1

0

∣∣ω2 − q
∣∣

θ
(
q2;ω2

)dω =
∫1

∞

∣∣u−2 − q∣∣
θ
(
q2;u−2

)(−u−2)du =
∫∞

1

∣∣u−2 − q∣∣
θ
(
q2;u2

)du. (6.8)

Now (6.8) is used to reexpress the bound (6.7) as

∣∣∣ qCos(qt)− qCos(t)
∣∣∣ ≤ 2

πq

(
μq2

)3
Nq

∫∞

1

∣∣ω−2 − q
∣∣ + ∣∣ω2 − q

∣∣
θ
(
q2;ω2

) dω. (6.9)

From (2.9), we have that

1
θ
(
q2;ω2

) ≤
[
q1/4|ω|e(ln(|ω|))

2/ ln(q)

{√
π

ln
(
q
) − 1

}]−1

= ln
(
q
)
⎡
⎢⎣ 1√

ln
(
q
) q

−1/4|ω|−1e−(ln(|ω|))2/ ln(q){√
π −

√
ln
(
q
)}

⎤
⎥⎦,

(6.10)
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for 1 < q < eπ . Deploying the bound (6.10)within the integral in the bound (6.9) gives

∣∣∣ qCos(qt)− qCos(t)
∣∣∣ ≤ F(q)

⎡
⎢⎣ 1√

ln
(
q
)
∫∞

1

{∣∣ω−2 − q
∣∣ + ∣∣ω2 − q

∣∣}ω−1

e(lnω)
2/ ln(q)

dω

⎤
⎥⎦, (6.11)

where

F
(
q
)
≡

2 ln
(
q
)(
μq2

)3
Nq

πq5/4
1

√
π −

√
ln
(
q
) . (6.12)

It follows from [21] that

lim
q→ 1+

[
ln
(
q
)(
μq2

)3
Nq

]
=
π

2
=⇒ lim

q→ 1+
F
(
q
)
=

1√
π
. (6.13)

We now show that | qCos(qt)− qCos(t) | can be made arbitrarily small, independently
of t, for all q > 1 sufficiently close to 1+. In light of (6.13), this is accomplished by first showing
the corresponding statement holds for the bracketed expression in (6.11).

Let α > 0 be arbitrary, with α to be specified later. The integral in ω over the interval
[1,∞) in (6.11) is now subdivided into two integrals, the first over [1, eα

√
ln(q)] and the second

over [eα
√

ln(q),∞). First, considering ω restricted to the interval [1, eα
√

ln(q)], one has that

1√
ln
(
q
)
∫eα√ln(q)

1

{∣∣ω−2 − q
∣∣ + ∣∣ω2 − q

∣∣}ω−1

e(lnω)
2/ ln(q)

dω

≤ 1√
ln
(
q
)
∫eα√ln(q)

1

{∣∣ω−2 − q
∣∣ω2 +

∣∣ω2 − q
∣∣}ω−1

e(lnω)
2/ ln(q)

dω

=
1√
ln
(
q
)
∫eα√ln(q)

1

{∣∣ω−1 − qω
∣∣ + ∣∣ω − qω−1∣∣}

e(lnω)
2/ ln(q)

dω.

(6.14)

Now the function |ω−1−qω| assumes its maximum value on [1, eα
√

ln(q)] at the right endpoint
eα
√

ln(q). In addition, for all q sufficiently close to 1, the function |ω − qω−1| assumes its
maximum value on [1, eα

√
ln(q)] at the right endpoint eα

√
ln(q). The latter statement follows

since g(ω) = ω−qω−1 is increasing, and one needs only to compare endpoints |g(1)| = q−1 and
|g(eα

√
ln(q))| = eα

√
ln(q)−qe−α

√
ln(q) to determine the larger value. An application of L’Hopital’s
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rule gives that limq→ 1+ |g(eα
√

ln(q))|/|g(1)| = ∞. Thus, for q near 1, on the interval [1, eα
√

ln(q)],
one has

{∣∣∣ω−1 − qω
∣∣∣ + ∣∣∣ω − qω−1

∣∣∣} ≤
∣∣∣e−α√ln(q) − qeα

√
ln(q)

∣∣∣ + ∣∣∣eα√ln(q) − qe−α
√

ln(q)
∣∣∣

= qeα
√

ln(q) − e−α
√

ln(q) + eα
√

ln(q) − qe−α
√

ln(q)

=
(
q + 1

)(
eα
√

ln(q) − e−α
√

ln(q)
)
.

(6.15)

Thus, we bound the integral in (6.14) by the length of the interval times the bound (6.15) on
the numerator. This gives

1√
ln
(
q
)
∫eα√ln(q)

1

{∣∣ω−1 − qω
∣∣ + ∣∣ω − qω−1∣∣}

e(lnω)
2/ ln(q)

dω

≤ 1√
ln
(
q
)
∫eα√ln(q)

1

(
q + 1

)(
eα
√

ln(q) − e−α
√

ln(q)
)
dω

≤ 1√
ln
(
q
)
(
q + 1

)(
eα
√

ln(q) − e−α
√

ln(q)
)(
eα
√

ln(q) − 1
)
.

(6.16)

An application of L’Hopital’s rule gives that

lim
q→ 1+

(
eα
√

ln(q) − e−α
√

ln(q)
)

√
ln
(
q
) = 2α, (6.17)

which implies that in (6.16) we have

lim
q→ 1+

⎡
⎢⎣(q + 1

)
(
eα
√

ln(q) − e−α
√

ln(q)
)

√
ln
(
q
)

(
eα
√

ln(q) − 1
)
⎤
⎥⎦ = 2 · 2α · 0 = 0. (6.18)

Combining (6.18) with (6.16) and (6.14) gives that

lim
q→ 1+

⎡
⎢⎣ 1√

ln
(
q
)
∫eα√ln(q)

1

{∣∣ω−2 − q
∣∣ + ∣∣ω2 − q

∣∣}ω−1

e(lnω)
2/ ln(q)

dω

⎤
⎥⎦ = 0. (6.19)
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We next estimate the portion of the integral in (6.11) over the interval [eα
√

ln(q),∞).

1√
ln
(
q
)
∫∞

eα
√

ln(q)

{∣∣ω−2 − q
∣∣ + ∣∣ω2 − q

∣∣}ω−1

e(lnω)
2/ ln(q)

dω

=
1√
ln
(
q
)
∫∞

eα
√

ln(q)

{∣∣ω−3 − qω−1∣∣ + ∣∣ω − qω−1∣∣}
e(lnω)

2/ ln(q)
dω

≤ 1√
ln
(
q
)
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eα
√

ln(q)

{
ω−3 + 2qω−1 +ω

}
e(lnω)

2/ ln(q)
dω,

(6.20)

by bounding the integrals of the summands in (6.20). For each exponent k ∈ Z one has

1√
ln
(
q
)
∫∞

eα
√

ln(q)

ωk

e(lnω)
2/ ln(q)

dω =
1√
ln
(
q
)
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√

ln(q)
ek lnωe−(lnω)

2/ ln(q)dω

=
qk

2/4√
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(
q
)
∫∞

eα
√

ln(q)
e−(1/ ln(q))[lnω−k ln(q)/2]

2
dω,

(6.21)

where a completion of squares gives (6.21). We use the following estimate from [21]

∫∞

C

e−A[lnω+B]2dω ≤
√
π

2
e1/(4A)−B

√
A

e−A[ln(C)+B−1/(2A)]2 , (6.22)

which is applied to (6.21)with A = 1/ ln(q), B = −k ln(q)/2, and C = eα
√

ln(q) to obtain

qk
2/4√
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(
q
)
∫∞
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√
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2
dω

≤
qk

2/4√
ln
(
q
)
√
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α
√
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√
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2
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√
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2/4

√
π

2
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√
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=
√
π

2
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2
eα(k+1)

√
ln(q).

(6.23)
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Combining (6.21) and (6.23) gives that, for each k ∈ Z,

1√
ln
(
q
)
∫∞

eα
√

ln(q)

ωk

e(lnω)
2/ ln(q)

dω ≤
√
π

2
e−α

2
eα(k+1)

√
ln(q). (6.24)

Revisiting (6.20) and applying (6.24) now gives

1√
ln
(
q
)
∫∞

eα
√

ln(q)

{∣∣ω−2 − q
∣∣ + ∣∣ω2 − q
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e(lnω)
2/ ln(q)

dω (6.25)

≤ 1√
ln
(
q
)
∫∞

eα
√

ln(q)

{
ω−3 + 2qω−1 +ω

}
e(lnω)

2/ ln(q)
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[
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ln(q) + 2qeα(0)
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ln(q) + eα(2)

√
ln(q)

]
.

(6.26)

Since the expression in (6.26) approaches 2
√
πe−α

2
as q → 1+, by choosing α sufficiently large

one can make (6.26), and hence (6.25), arbitrarily small for q sufficiently close to 1.
Now, let ε > 0 be given. By (6.11)we have for all α > 0

∣∣∣ qCos(qt)− qCos(t)
∣∣∣ ≤ F

(
q
)
⎡
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∫eα√ln(q)
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(6.27)

One has from (6.13)

lim
q→ 1+
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)√π
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ln(q) + 2qeα(0)
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ln(q)

]
= 2e−α

2
. (6.28)

Choose Ã > 2 and then fix α > 0 such that Ãe−α
2
< ε/2. By (6.26) and (6.28), there exists

q1 = q1(Ã, α, ε) such that for all 1 < q < q1 one has
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)
⎡
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.

(6.29)
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For this value of α, by virtue of (6.19), one has

lim
q→ 1+

F
(
q
)
⎡
⎢⎣ 1√

ln
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∫eα√ln(q)

1
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1√
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· 0 = 0, (6.30)

which in turn says that there is a q2 = q2(α, ε) such that for all 1 < q < q2 one has
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q
)
⎡
⎢⎣ 1√
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(
q
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∫eα√ln(q)
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ε

2
. (6.31)

Thus, for Qε
C = Q(Ã, α, ε) = min{q1, q2}, and for all 1 < q < Qε

C, applying (6.31) and (6.29) to
(6.27) yields

∣∣∣ qCos(qt)− qCos(t)
∣∣∣ < ε

2
+
ε

2
< ε, (6.32)

independently of t ∈ R. The proposition is now proven for qCos.
The proof for qSin parallels the above argument for qCos, so we only outline it here,

indicating points of slight differences. From (6.3) and (6.4), the analogue of (6.6) becomes
(6.33) below

∣∣∣ qSin(qt)− qSin(t)
∣∣∣ = ∣∣∣F−1

(
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(6.33)

=
2
πq2

(
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Nq
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1
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∣∣

θ
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) dω, (6.34)

where a reciprocation change of variables on the integral on [0, 1] converts to an integral on
[1,∞), yielding (6.34) as the analogue of (6.9). Deploying the bound (6.10) to (6.34) now
gives
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⎤
⎥⎦, (6.35)

with F(q) defined in (6.12). For the integral in ω in (6.35) over the interval [eα
√

ln(q),∞), an
application of (6.24) in conjunction with the triangle inequality lets us proceed directly to an
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analogue of (6.26), with key factor e−α
2
still intact and the remaining factor approaching a

constant as q → 1+. On the other hand, the integral over the interval [1, eα
√

ln(q)] in (6.35)
proceeds as follows. One has
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=
1√
ln
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{
−e−2α

√
ln(q) + e2α

√
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}[
eα
√

ln(q) − 1
]
, (6.37)

where (6.36) and (6.37) hold for q sufficiently near 1+. Since limx→ 0[(−e−2αx + e2αx)/x] = 4α,
we have the limit as q → 1+ of expression (6.37) is 0. The remainder of the proof is now
entirely parallel to that of the qCos case.
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