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A myocardial infarction (MI), caused by an arterial blockage preventing blood from flowing to a 

part of the heart, restricts tissue oxygenation and results cell death and myocardial tissue damage. 

This compromises contractility, resulting either in sudden death, or ventricular remodeling and 

eventually heart failure. Echocardiography is the standard, non-invasive cardiac imaging 

technique for humans and small animals. The standard measurements obtained from M-mode 

echocardiography to assess left ventricle (LV) function lack the sensitivity to detect subtle 

changes in regional LV performance at the early stages of disease. Speckle tracking techniques 

in conjunction with strain analysis overcome this issue by tracking the movement of the 

myocardium across 6 transverse segments of the LV. Analysis of strain in more regions of the 

heart from the apex (bottom) to base (top) would reveal earlier, localized detection of LV 

dysfunction.  

 

The purpose of this study is to develop a methodology to improve regional specificity in the 

analysis of strain and strain rate (SR) relative to the site of injury in mouse hearts in 12 equal 

segments along the myocardium and compare these results to the VevoStrain software 

(VisualSonics) strain values. Echocardiographic images obtained from the Vevo 3100 



 

 

(VisualSonics) ultrasound in uninjured hearts or after acute ischemia/reperfusion (30minI/24hr 

R) injury induced by ligation of the left anterior descending coronary artery were analyzed using 

MATLAB (MathWorks). To quantify strain, the motion of the speckles was tracked between the 

epicardium and endocardium for 3 consecutive cardiac cycles. Perpendicular lines were 

generated connecting these contours. Displacement of these lines were calculated from the 

starting location to end location to calculate strain. The LV was divided into 12 equal segments. 

The peak % strain values across the region of interest were averaged for the 12 segments to 

obtain global strain measurements. To measure SR, the change in strain was divided by the time 

between frames. The novel strain analysis was compared to the VevoStrain software data to 

validate the results. These values were used to measure the contractile function of the LV 

between sham, MI, and MI+ephrinA1-Fc mice. Feasibility of the proposed algorithm has been 

demonstrated, but due to some limitations, more work is needed to improve this method. With 

further work, this method could optimize the treatment process by determining the location being 

treated and extent of treatment to the infarct and remote regions of the heart. 
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INTRODUCTION 

According to the American Heart Association (AHA), cardiovascular disease is the leading cause 

of death globally, and remains the number one cause of death in the United States (Benjamin et 

al. 2019; Heusch and Gersh 2016; Gerczuk and Kloner 2012). Cardiovascular disease is defined 

as any heart condition caused by diseased blood vessels, structural changes, or blood clots. A 

heart attack is caused by a blockage preventing blood from flowing to a part of the heart, 

resulting in myocardial cell death. This is referred to clinically as a myocardial infarction (MI).  

Approximately every 40 seconds an American will have a MI (Benjamin et al. 2019). This killed 

114,023 citizens in 2015 (Benjamin et al. 2018).  In 2013, MI was one of the 10 most expensive 

medical conditions treated in hospitals in the United States with a cost of 12.1 billion dollars 

(Benjamin et al. 2019). Therefore, there is a huge need to improve treatment efficacy to reduce 

the number of Americans killed by this awful disease and alleviate the socioeconomic burdens.  



 

 

BACKGROUND RESEARCH 

Anatomy 

The human heart has four chambers - the right atrium, right ventricle, left atrium, and left 

ventricle. The right atrium receives deoxygenated blood from the superior and inferior vena cava 

and pumps it to the right ventricle. Once the right ventricle receives the blood, it pumps the 

blood to the lungs through the pulmonary artery to become oxygenated. The left atrium receives 

the oxygenated blood from the lungs and then pumps the blood to the left ventricle. Finally, the 

left ventricle pumps the oxygen rich blood to the aorta, which delivers blood to the body. This is 

represented in Figure 1, where the blue areas represent deoxygenated blood, and the red areas 

represent oxygenated blood.  

 

Figure 1 Anatomy of Human Heart (Texas Heart Institute) 

The heart has four valves; tricuspid valve, mitral valve, pulmonary valve, and aortic valve. These 

valves are also shown in Figure 1. The valves regulate and control the one directional flow of 
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blood through the heart, pulmonary artery, and aorta. The heart also has coronary arteries, the 

largest of which are conduit vessels that run along the surface of the heart and deliver the oxygen 

rich blood to the heart muscle. The main coronary arteries of the anterior side of the epicardial 

can be viewed below in Figure 2. The coronary arteries are vital blood vessels that are 

responsible for nourishing the heart tissue. A MI is caused by an occlusion of these coronary 

arteries.  

 

Figure 2 Coronary Arteries (Healthwise) 

Epidemiology 

Acute MI due to occlusion of an epicardial artery most commonly occurs following rupture of an 

atherosclerotic plaque, resulting in transmural ischemia (Heusch and Gersh 2016; Klabunde 

2011; Thygesen et al. 2012).  Myocardial ischemia is the imbalance between oxygen supply and 

demand (Thygesen et al. 2012). The process of a MI is represented in Figure 3 below. The size 

and severity of the MI is dependent upon the size of the ischemic area, the duration and 

intermittency of the occlusion, and the magnitude of collateral blood flow (Heusch and Gersh 

2016; Roger 2007; Thygesen 2012; Klabunde 2012).  When the flow of blood is blocked to an 

area of the myocardium, the cardiomyocytes downstream of the occlusion become necrotic as the 
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cells are no longer provided with oxygen (Dries et al. 2011). Therefore, the contractility of the 

heart is compromised, resulting either in sudden death, or leading to ventricular remodeling and 

eventually heart failure (Benjamin et al. 2018; Klabunde 2012; Dries et al. 2011; O’Neal et al. 

2013).  

 

Figure 3 Anatomy of Myocardial Infarction (NIH 2016) 

 

MI can be detected by a trained medical doctor using electrocardiographic (ECG) recordings as 

the conduction pathway is compromised, and the electrical signal is no longer transmitted across 

the necrotic cells. Typical ECG changes that are commonly seen as a result of a MI are the 

presence of ST segment elevations or depressions, T wave inversions, and/or Q waves, displayed 

below in Figure 4 (Thygesen et al. 2012; Klabunde 2012). In addition, cardiac Troponin 1, which 

is a serum biomarker released following cardiac cell death, can be measured as an indicator of 

infarct size (Dries et al. 2011). However, there is variability associated with this due to injury 

onset and size, and issues with specificity and false negatives. 
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Figure 4 ECG Changes in Myocardial Infarction (Torrens 2016) 

 

Given the heart of a mouse is similar to that of a human, in addition to the relatively low cost of 

utilizing a mouse model, it is realistic to analyze the effect of MI and treatment after an MI with 

a mouse model (Ram et al. 2011; Tang et al. 2012). However, it is important to understand the 

physiological differences of mice compared to adult humans as these differences may impact the 

results.  

Cardiac Physiology in Mice 

The mouse heart is much smaller in size with an increased heart rate compared to a human heart 

(Bhan et al. 2014; Ram et al. 2011; Ferferieva et al. 2012). The size of an adult mouse heart is 5-

8mm in length with an average heart rate of 400-650 beats per minute (Lindsey et al. 2018).  

This requires high spatial and temporal resolutions to properly visualize the structure and 

physiology of the left ventricle (Ram et al. 2011; Rea et al. 2016).  

Like a human heart, a healthy mouse heart should contract as one single contractile unit for the 

atria and one single unit for the ventricles. When the heart becomes injured, the way the heart 
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contracts becomes affected. When an area or region of the heart contracts at a different time than 

the rest of the heart, the contraction is out of sync and thus global cardiac function in terms of 

output (oxygenated blood) is compromised. Often this is quantified as dyssynchrony of the 

ventricle based on time to peak strain which is a measure of deformation (Bhan et al. 2014; Ram 

et al. 2011).  

Left Ventricle Dysfunction 

Echocardiography Conventional Parameters 

Left ventricle (LV) dysfunction often leads to left ventricular remodeling after myocardial injury. 

Echocardiography is the standard cardiac imaging technique for humans and small animals as it 

is noninvasive, inexpensive, widely available, and has a short imaging and post-processing time 

(Bauer et al. 2012; Andrews et al. 2013; Ram et al. 2011; An et al. 2016). The standard 

measurements obtained from M-mode echocardiography to assess LV function are chamber 

dimensions, wall thickness, ejection fraction (EF), and fractional shortening (FS) (Andrews et al. 

2013; Bauer et al. 2012; Ram et al. 2011; Rea et al. 2016; Theodoropoulos and Xu 2008; Tang et 

al. 2012). However, these conventional echocardiography measurements lack the sensitivity to 

detect subtle changes in regional LV performance at the early stages of disease progression 

(Bauer et al. 2012; Theodoropoulos and Xu 2008; Ferferieva et al. 2012) and are limited by 

region specific analysis in a particular plane, usually at mid-papillary level. Therefore, new 

imaging techniques are being developed to improve analysis of LV dysfunction.  

Strain/Strain Rate 

Utilizing a speckle tracking technique with strain analysis enables the ability to detect subtle 

changes in LV function after a MI, and may thus provide a window of possibility for treatments 

that may reduce or at least slow the progression to dysfunction and heart failure. (Bauer et al. 



7 

 

2012; Ferferieva et al. 2014; Andrews et al. 2013; Ram et al. 2011; An et al. 2016). Cardiac 

abnormalities, with the absence of changes in conventional parameters, can be detected with 

strain analysis (Andrews et al. 2013). Speckle tracking technique stands out among the rest of 

echocardiography imaging techniques because this method is angle independent, which is an 

important feature for a dynamic organ that is continually in motion (Bauer et al. 2012; Bhan et 

al. 2014; Ferferieva et al. 2012; Theodoropoulos and Xu 2008; Tang et al. 2012; Bachner-

Hinenzon et al. 2012; Amundsen et al. 2008). Speckle tracking imaging tracks the movement of 

the myocardium, based on the speckles generated from the reflection and scattering of the 

ultrasonic beam, seen along the myocardium on the images (Bhan et al. 2014; Ferferieva et al. 

2012; Ram et al. 2011; Rea et al. 2016; Tang et al. 2012; Spurney et al. 2011).  

Strain is defined as the change in length divided by the original length, 

𝜀(𝑡) = (𝐿(𝑡) − 𝐿0) 𝐿0⁄                                                                      (1)  

and strain rate is defined as the rate of change of deformation over time,  

𝑑

𝑑𝑡
𝜀(𝑡) = [(𝐿(𝑡) − 𝐿0) 𝐿0] × 𝑠𝑒𝑐−1⁄                                                          (2) 

ε represents the strain, L represents the length between the epicardium to endocardium, and L0 

represents the unstressed length between the epicardium to endocardium.  

Commercial algorithms have been generated to calculate the strain and strain rate of the 

myocardium based on the B-mode images. These algorithms can determine the circumferential, 

radial, and longitudinal strain and strain rate globally or regionally across six segments of the 

LV, shown below in Figure 5 (Bauer et al. 2012; Bhan et al. 2014, Ferferieva et al. 2012; 

Andrews et al. 2013). The six segments for the long axis are posterior base, mid posterior, 

posterior apex, anterior base, mid anterior, and anterior apex, and the six segments for the short 
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axis are lateral, posterior, inferior free, posterior septum, anterior septum, and anterior free. 

Global measurements are equal to the average of the six segments. 

 

Figure 5 Regions of LV for Strain Assessment (Ram et al. 2011) 

Radial and longitudinal strain and strain rate can be measured with long axis images, where 

radial and circumferential strain and strain rate can be measured with short axis images. The 

orientation of the heart in regards to the strain measured can be visualized in Figure 6.  

  

Figure 6 Axis Orientation (L- longitudinal, R- radial, C- circumferential) (Bauer et al. 2012) 
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Cardiac assessment with murine models is being performed to measure the strain in the heart 

after injury of the left anterior descending (LAD) artery. Using a high-frequency 

microultrasound system with speckle tracking (Visualsonics Vevo 2100), researchers are able to 

detect LV remodeling through strain analysis (VevoStrain) of B-mode images. The endocardium 

and epicardium are traced semi-automatically, which can be manually adjusted if necessary 

(Andrews et al. 2013; Bauer et al. 2012; Bhan et al. 2014; Ram et al. 2011). When looking at an 

MI group compared to sham (control) group of murine models, longitudinal and radial global 

strain and strain rate were lower for the MI group (radial strain post-MI 7 weeks 7.5 ± 1.5 vs 

sham 19.9 ± 3.2; longitudinal strain post-MI 7 weeks −3.9 ± 1.2 vs sham −15.4 ± 2) (Bhan et 

al. 2014; Bauer et al. 2012). In addition, regional strain and strain rate values were lower for the 

MI group, especially in the apical region of the heart (Bhan et al. 2014). Myocardial performance 

was decreased for both infarct and non-infarct regions 1 week post-MI (Bauer et al. 2012). 

Circumferential global strain was reduced early post-MI (Bauer et al. 2012). Dyssynchrony of 

the LV was significantly increased in the MI group and positively correlated with infarct size 

(radial dyssynchrony MI 20.4 ± 2% vs. sham 8.5 ± 1.4%; longitudinal dyssynchrony MI 

16.6 ± 2.2% vs. sham 7.5 ± 1.3%; 𝑃 < 0.01) (Bhan et al. 2014).  

A study interested in the feasibility of speckle tracking strain analysis of pediatric mice, used the 

Vevo 2100 system on groups of healthy pediatric mice at three different ages, as this ultrasound 

system has only been used for adult mice before. The apical region of the LV resulted in 

different radial and longitudinal strain and strain rate values compared to mid and basal regions, 

which was similar to adult mice findings (Andrews et al 2013; Bhan et al. 2014).  

In another group using a different software platform with speckle tracking images from GE 

Vingmed Ultrasound (EchoPAC workstation), the endocardium was manually traced and then 
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the speckle region of interest width was automatically selected between the endocardium and 

epicardium (Ferferieva et al. 2012). As expected, the global circumferential strain and strain rate 

values were lower in the MI group compared to the control group during resting conditions 

(strain −5.4 ± 4.9%; strain rate −2.9 ± 1.9𝑠−1; 𝑃 < 0.05) (Ferferieva et al. 2012).  As the strain 

analysis shows that LV performance decreases from acute MI, the need for a treatment for MI is 

desperately needed.  

Custom-made algorithms have been generated to calculate the strain and strain rate of the heart 

from B-mode images using MATLAB (MathWorks Inc., Natick, Massachusetts). A study 

compared the strain in the LV of dogs at baseline and post-MI of the LAD using sonomicrometry 

with SonoVIEW (Sonometrics corp.). Speckle tracking of the echocardiographic images were 

performed using a sum of absolute differences method, tracking the speckles along four regions 

of interest over 3 cardiac cycles (Amundsen et al. 2006; Amundsen et al. 2008). The study 

validated the speckle tracking method against the strain derived sonomicrometry and MRI 

method, producing decreased strain values in the occlusion group (Amundsen et al. 2006). A 

study analyzing the feasibility of cardiac function assessment in vitro vs in vivo in fetal rabbits 

used a motion estimation algorithm in MATLAB where the speckles in the defined region of 

interest were tracked across the cardiac cycles to measure the longitudinal and circumferential 

strain (Zhu et al. 2015). In vitro analysis produced higher longitudinal and radial strain compared 

to the in vivo study (Zhu et al. 2015). 

In addition to animals, studies have been conducted asses cardiac function via strain analysis in 

humans. Combining the use of echocardiographic data with tissue doppler data, strain and strain 

rate are being measured (Nakatani et al. 2003; Amundsen et al. 2008). Short-axis 

echocardiographic images can be obtained at three levels (apical, mid, and basal) of the LV to 
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get a total of 12 segments (Nakatani et al. 2003; Stefani et al. 2007). Tissue doppler and 

echocardiogram data were imported into MATLAB to measure wall deformation based on 

speckle tracking analysis with custom code (Nakatani et al. 2003; Stefani et al. 2007; Amundsen 

et al 2008). Results indicated significantly different strain rate values for different wall motion 

classifications (Nakatani et al. 2003). Speckle tracking strain resulted in an overall accuracy of 

86% and was found superior compared to only tissue doppler strain (Amundsen et al. 2008). 

When comparing the longitudinal strain values at the basal segment derived from a tissue 

doppler method to speckle tracking method, the results were equivalent at around 20% peak 

longitudinal strain from a 4-chamber imaging view (Stefani et al. 2007).  

Magnetic Resonance Imaging 

In addition to quantifying LV dysfunction as strain with speckle tracking ultrasound, magnetic 

resonance imaging (MRI) is being used to quantify functional changes in human and murine 

hearts. MRI is considered to be the noninvasive gold standard for assessing contractile function 

and the extent and severity of MI in humans (Chan et al. 2006; Li et al. 2007). It has also been 

shown to be a reliable cardiac imaging tool for mice (Gilson et al. 2005; Li et al. 2007; Zhou et 

al. 2003; Epstein et al. 2002). MR images are acquired along the LV from the short axis, shown 

in Figure 7, and then reconstructed to visualize the whole chamber (Chan et al. 2006; Epstein et 

al. 2002; Gilson et al. 2005; Li et al. 2007; Zhou et al. 2003; Gerber et al. 2002). With MR 

tagging, the contractile dysfunction of the LV can be analyzed after a MI of the LAD. Spatial 

modulation of magnetization (SPAMM) creates bands within the image which can be tracked to 

measure myocardial strain based on deformation (Zhou et al. 2003; Epstein et al. 2002; 

Amundsen et al. 2008). Studies have found that the circumferential strain of the injured mice 

hearts is significantly less than the circumferential strain of the healthy mice hearts (Chan et al. 
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2006; Gerber et al. 2002; Gilson et al. 2004; Gilson et al. 2005).  Studies have also analyzed the 

severity of the MI with contrast-enhanced (CE) MRI. After an intravenous injection of 

gadodiamide or gadoversetamide, the region of the MI is visualized to analyze the severity of the 

necrosis and occlusion (Gerber et al. 2002; Chan et al. 2006). Using a 1.5T scanner, short axis 

ECG-gated images are obtained after injection of the dye (Chan et al. 2006; Gerber et al. 2002). 

Immediate imaging after injection showing hypoenhancement of the core of the infarct 

represents microvascular occlusion, where delayed imaging after injection showing 

hyperenhancement represents myocardial necrosis (Gerber et al. 2002). The extent of infarction 

is computed as a percent in signal intensity increase compared to the average (Gilson et al 2004; 

Gerber et al. 2002). When comparing echocardiogram strain results to CE MRI results, global 

longitudinal strain was associated with MI size and LV dysfunction (Kim et al. 2017). 

 

Figure 7 Short Axis Slice Locations of the LV (Gilson et al. 2005) 

 

Although MRI is a highly accurate imaging method to quantify cardiac dysfunction and structure 

due to its high spatial and contrast resolution, there are several limitations to this modality (Li et 
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al. 2007; Zhou et al. 2003; Epstein et al. 2002). MRI scanning is very expensive with much 

slower image acquisition times compared to ultrasound (Li et al. 2007; Gilson et al. 2004). In 

addition, interslice gaps of the heart occurs leading to incomplete coverage the LV (Gilson et al. 

2005). This is due to the slices being separated by 0.5mm, illustrated in the diagram above in 

Figure 7 (Gilson et al. 2005). There is often high signal-to-noise ratio due to unwanted 

respiratory motion from breathing or respiratory gating is used due to unavoidable breathing 

interfering with the imaging (Gilson et al. 2005; Li et al. 2007; Gilson et al. 2004).  

Treatment 

To prevent the damage after a MI, techniques need to be developed to maintain cardiomyocyte 

survival, reduce infarct size, and thus reduce LV remodeling (Dries et al. 2011). Since 1986, the 

standard of care for acute MI is reperfusion therapy to reduce injury, preserve LV function, and 

decrease mortality (DuSablon et al. 2017; O’Neal et al. 2013). These therapies, such as coronary 

artery bypass grafting (CABG), must be performed within hours of the ischemic event to slow 

progressive remodeling; however, they do not restore normal cardiac function (DuSablon et al. 

2017; O’Neal et al. 2013). Combining reperfusion techniques with promoting angiogenesis and 

reducing inflammation immediately after injury, reduces remodeling and LV dysfunction 

(O’Neal et al. 2013).  

Intramyocardial administration of ephrin A1-Fc in mice has been shown to restrict tissue damage 

after a non-reperfused MI (DuSablon et al. 2017). EphrinA1-Fc is known to have angiogenic 

properties but the protective effects are unrelated to changes in vascular density (DuSablon et al. 

2017; O’Neal et al. 2013; Dries et al. 2011). A study assessing the success of this ephrin A1-Fc 

treatment compared the LV function in uninjured controls, IgG-Fc-treated controls, and ephrin 

A1-Fc treated mice after 24 hours and 4 days reperfusion post-MI. The mice treated with IgG-Fc 



14 

 

displayed significant impairment in FS and EF 24 hours and 4 days post-MI compared to 

uninjured mice (DuSablon et al. 2017). The mice treated with a single injection ephrin A1-Fc 

experienced no significant differences in FS or EF 24 hours or 4 days post-MI compared to 

uninjured mice (DuSablon et al. 2017). Histological staining and morphometric analysis found 

ephrinA1-Fc mice had 46% reduction (DuSablon et al. 2017) and 50% reduction (Dries et al. 

2011) in infarct size compared to the IgG-Fc mice. Thus, ephrinA1-Fc administered at time of 

injury significantly decreased ischemic damage and myocardium dysfunction post-MI 

(DuSablon et al. 2017; Dries et al. 2011).  

Limitations of Current Research 

Although there have been recent advances in the assessment and treatment of cardiac function, 

there are still some limitations that need to be overcome. When acquiring the gray scale images, 

weak scatter reflections are often lost due to the high signal to noise ratio (Ram et al. 2011; 

Nakatani et al. 2003). This leads to difficulty in analysis of strain and strain rate measurements. 

In addition, geometric assumptions are made for the conventional parameters (Ram et al. 2011; 

Bhan et al. 2014). Tissue doppler derived strain is angle dependent (Stefani et al. 2007). The 

regional strain analysis is broken down into six segments, where each segment is the entire wall 

thickness. However, during non-transmural MI, the ischemia first starts at the endocardium 

(Bachner-Hinenzon et al. 2012). In addition, the ephrinA1-Fc treatment is delivered to the 

anterior wall to the right of the occlusion, leading to regional differences caused by this 

treatment.  Therefore, being able to analyze strain in more regions would reveal earlier detection 

of LV dysfunction, and determine specifically where ephrinA1-Fc is affecting the contractile 

function of the LV. 



 

METHODS 

This study was approved by the East Carolina University Institutional Animal Care and Use 

Committee (IACUC AUP#Q228d) and conforms to the guidelines by the National Institute of 

Health for the Care and Use of Laboratory Animals. Data was collected in Greenville, NC. The 

study is a secondary analysis of an existing data set.  

Objective 

The purpose of this study is to develop a methodology to analyze the strain and strain rate in 

mice post-MI and treatment at 12 different segments along the myocardium to determine the LV 

function and effectiveness of the treatment. In the future, this will optimize the treatment process 

by determining the location being treated and extent of treatment to the infarct and remote 

regions of the heart. This study has four specific aims that must be successfully achieved.  

1. Detect the edges of the epicardium and endocardium to create radial vectors and 

segments.  

2. Implement speckle tracking to determine displacement of the ventricle wall.  

3. Calculate the strain and strain rate based on the radial vector created and the tracking of 

the LV.  

4. Validate strain and strain rate results from the proposed image processing algorithm. 

Experimental Protocol  

Working with data previously collected in Dr. Virag’s lab, the experimental protocol was as 

follows. Animals were housed in 12 h/12 h light/dark cycle conditions and received food and 

water ad libitum. Wildtype mice (10-14 weeks) were anesthetized with an intraperitoneal 

injection of 20 μl/g body weight of tribromoethanol (20 mg/ml) and mechanically ventilated 
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(Dries et al 2011; DuSablon et al. 2017; Virag and Lust 2011). Surgical procedures were 

performed by Dr. Jitka Virag as follows. The left anterior descending (LAD) coronary artery was 

temporarily ligated for 30 minutes using an 8-0 suture, following with 24 hours reperfusion 

(Dries et al. 2011; Virag and Lust 2011). Ischemia was checked by blanching the myocardium 

distal to the ligation (Dries et al. 2011). Sham controls were performed with the suture pulled 

through the heart without ligation (Dries et al. 2011). Within 1 minute of coronary ligation, an 

intramyocardial injection of either 6 μg IgG-Fc (R&D), or 6 μg ephrinA1-Fc (Sigma) (both in 

6µl) was given using a Hamilton syringe with a sterile 30 gauge needle (Dries et al. 2011; Virag 

and Lust 2011). The investigator performing the surgeries was blinded to the treatments (Driest 

et al. 2011). All animals were monitored every hour for the first 8 hours post-operatively and 

then four hours preceding echocardiography and euthanasia (DuSablon et al. 2017).  

Image Acquisition  

Echocardiography was performed with the Vevo 3100 (VisualSonics, Toronto, Canada) 

diagnostic ultrasound with a 30MHz linear-array transducer used. Echocardiography was 

performed blindly to surgical procedure and injection. Both motion mode (M-mode) and 

brightness mode (B-mode) views were acquired by Dr. Jitka Virag, shown below in Figure 8. M-

mode was acquired at mid-papillary level. B-mode images are real-time black and white images 

of the heart to view heart structure and function, where M-mode images are a sequence of B-

mode images over time at a single axis or line to visualize the wall’s contractile motion (Ram et 

al. 2011).  All acquisitions were performed on conscious, restrained mice in supine position at 24 

hours post-MI. Standard parasternal long-axis and short-axis 2D gray-scale echocardiographic 

images were obtained. Images were acquired at a frame rate of  >300 frames/second. 

Echocardiographic imaging measurements were performed offline. Mice were then anesthetized 
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with lethal intraperitoneal injection of 0.1 mL pentobarbital (390mg/ml) (Virag and Lust 2011; 

DuSablon et al. 2017).  

 
Figure 8 B-mode (left) and M-mode (right) Image Views of Murine Heart (Ram et al. 2011) 

Image Processing 

Figure 9 represents the steps performed to process the echocardiographic images. 

 
Figure 9 Block Diagram of Image Processing 

First, the imaging sets were selected based on clearly defined criteria. From the imaging set, 

three consecutive cardiac cycles were selected. The contours of the epicardium and endocardium 
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of the LV were detected, and radial vectors were generated between these surfaces. The LV was 

then divided into 12 segments with regions aligned with the radial vector at the epicardium and 

endocardium. The speckle tracking was then performed to determine the displacement of the LV 

throughout the defined cardiac cycles. The length between the epicardium and endocardium was 

measured and manually verified to ensure the proposed algorithm was accurately tracking the 

wall motion. Finally, strain and strain rate were calculated. The processing steps are explained in 

greater detail below.  

 

Image Selection 

The echocardiograms were analyzed offline using MATLAB. Echocardiographic images 

obtained in Digital Imaging and Communications in Medicine (DICOM) format were uploaded 

into MATLAB. The best quality long axis cine-loop B-mode images were visually selected for 

analysis. Three mice per experimental group were selected. The experimental groups were sham 

(S), which represents a healthy mouse, post-MI with intramyocardial injection of IgG-Fc (MI), 

which represents an injured mouse, and post-MI with intramyocardial injection of ephrinA1-Fc 

(T), which represents a treated mouse.  In order to accurately quantify the LV function, the 

images must display well-defined epicardial and endocardial borders. Therefore, there cannot be 

shadowing over these borders from the ribs as this will cause dark spots over these areas. In 

addition, images with unwanted artefacts due to breathing were avoided because this could affect 

the strain results.  An example of a high-quality image versus an image with shadowing for both 

long and short axis can be seen below in Figure 10. 
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Figure 10 Healthy Mice Heart during Diastole A) long axis, good quality B) long axis, shadowing over apex C) short axis, 

good quality D) short axis, shadowing over lateral side 

To objectively select good quality images, the following criteria were set. For a short axis image, 

the LV must be circular with a portion of the papillary muscle shown at the intraventricular 

septum (Buttars 2018; O’Connell 2018; Echocardiography 2018). Two of the papillary muscle 

must be in view at the 2 and 4 o’clock position (O’Connell 2018). In addition, the RV must be 

shown, with the LV anterior and posterior endocardium border visible (Buttars 2018; O’Connell 

2018; Echocardiography 2018). For a long axis image, the aorta and apex should be on the same 

horizontal plane, with a clear aortic opening (O’Connell 2018; Echocardiography 2018). The RV 

outflow tract and apex must be visible (Buttars 2018; O’Connell 2018; Echocardiography 2018). 

Finally, the LV should have an oval shape. An example of a short axis and long axis image 

meeting the set criteria can be seen below in Figure 11.  
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Figure 11 Good Quality Echocardiography Images that meet Selection Criteria (Echocardiography 2018) 

Once the cine-loop image was chosen, the cardiac cycles that the speckles were tracked across 

were selected. In MATLAB, a vertical axis line perpendicular to the LV wall was selected across 

the center of the chamber. A new matrix was created displaying all the rows with only the 

selected axis column for each image across time. This created an m-mode image of the LV 

shown below in Figure 12.  
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Figure 12 MATLAB Generated M-mode Image 

Similar to the current VevoStrain method, three consecutive cardiac cycles were manually 

selected from the echocardiographic M-mode image. Cycles with unwanted breathing artefacts 

were excluded. The cycles selected always started and ended at end-systole. The images during 

the three cardiac cycles selected were the only images from the echocardiogram recording used 

for the following steps.   
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Edge Detection 

To quantify strain, a region of interest was selected where the motion of the speckles in this area 

was tracked (Blessberger et al. 2010). The region of interest was the area between the epicardial 

and endocardial borders of the LV. To trace these contours, the points along these borders were 

manually selected by clicking along the borders and storing these coordinates in a matrix at the 

first time point of the selected cardiac cycles. An interpolating cubic spline was then generated 

and plotted along the epicardium and endocardium, as displayed in Figure 13.   

 
Figure 13 (Left) Epicardial and Endocardial Contour Tracing with Proposed Algorithm for Edge Detection (Right) 

Interpolated Points along Edges of LV Wall 

Interpolation was then performed to increase the number of points selected along these borders 

from approximately 10-15 points to 600-1200 points, depending on the size of the mouse heart. 

This is shown above in Figure 13, where green represents the endocardium and red represents the 

epicardium. From the interpolated points generated along the edges of the epicardial and 

endocardial borders, radial lines were created by connecting the points on the endocardium to the 

closest points on the epicardium at the first time point using the distance2curve function in 

MATLAB. One radial line was selected per segment and designated as the radial vector for the 

segment, which is used later in the strain analysis. The radial vector was created by selecting a 

set of those connected points, so the vector is located across the middle of the segment for each 
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segment. The magnitude of this vector provided the initial length between the epicardium and 

endocardium.  

Speckle Tracking 

To track the displacement of the LV wall, the following steps were performed. First, a mask was 

created to measure the area between the epicardium and endocardium, shown below in Figure 

14. The measured area determined by the mask was increased to encompass a larger area around 

the edges of the epicardium and endocardium, and this larger area was then divided equally into 

12 segments for each mouse, as the size of the hearts varied. This was performed at the initial 

time point, which was end-systole since this is when the thickness between the epicardial and 

endocardial is greatest. The location of each segment were manually entered by selecting the 

coordinate of the pixel where the segment begins in the top left corner, and the height and width 

of each segment. This starting location was manually entered for each segment for each mouse.  

Segment one started at the anterior base of the LV with segment 12 ending at the posterior base. 

The orientation of the segment was selected based on the shape of the LV at that location so that 

the area of the LV wall was covered. These segment locations were selected with the aid of a 

video feature in MATLAB to ensure the selected segment location covered the endocardium and 

epicardium contours as best as possible.  As shown earlier in Figure 5, the VevoStrain software 

divides the region of interest into the 6 anatomical segments.      
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Figure 14 Newly Defined Regions of the LV with Axis Orientation (Left = Systole, Right = Diastole) 

Using a point tracking method, a set of points in the region of interest was tracked, using the 

Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm for the selected cardiac cycles. Points 

containing the same speckle pattern in the defined search area were tracked frame-by-frame, 

shown below in Figure 15, reacquiring new points between each time frame as points are easily 

lost due to the high amount of noise in the echocardiographic images. This process is different 

compared to the VevoStrain software which acquires speckles at the beginning of the three 

cardiac cycles and tracks those same speckles every frame.  

 

Figure 15 Speckle Tracking Process for Two Consecutive Frames (Amundsen et al. 2006) 

Each segment was divided into quadrants. Although points were tracked in all quadrants, the 

points located in the quadrant closest to the epicardium were used to calculate the epicardial 
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displacement and points located in the quadrant closest to the endocardium were used for 

endocardial displacement. The selected quadrants aligned with the radial vector shown as the 

purple line in Figure 16. The displacement vector between the initial point (red) and new, tracked 

point (green) was measured for each point for each frame, shown below in Figure 16, where the 

circles represent the epicardial quadrant and the triangles represent the endocardial quadrant. The 

median displacement of the points in each quadrant was calculated. The median was used instead 

of the average displacement to prevent skewing from outliers.  

  
Figure 16 Tracked Points in Epicardial and Endocardial Quarters of Segment 2. Red = initial point, Green = tracked 

point, Circle = epicardial quadrant, Triangle = endocardial quadrant 

The radial unit vector was determined by dividing the vector by the vector magnitude which 

allowed for the created of a radial axis. The dot product was then performed between the unit 

radial vector and the median displacement vectors from speckle tracking for the epicardial and 

endocardial quadrants. The dot product gives the displacement in the radial direction, shown 

below in Figure 17. Blue represents the radial vector, green represents the epicardial and 

endocardial displacement, and red represents the epicardial and endocardial displacement in the 
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radial axis direction after the dot product was performed. To calculate the displacement between 

the epicardium and endocardium in the radial direction, the wall thickness for time frame 1 (the 

start of the selected cardiac cycles) was added by the displacement for the endocardial quadrant 

and subtracted by the displacement for the epicardial quadrant, shown below in Equation 3.  

𝐿(𝑡) = 𝐿(𝑡 − 1) + 𝐷𝑖𝑠𝑝𝑒𝑝𝑖(𝑡) − 𝐷𝑖𝑠𝑝𝑒𝑛𝑑𝑜(𝑡)                                           (3) 

Dispepi represents the displacement from the epicardial quadrant in the radial direction, Dispendo 

represents the displacement from the endocardial quadrant in the radial direction, and L 

represents the length between the epicardium and endocardium. The addition and subtraction 

were based on the orientation of the coordinate system and was performed for segments 1-6. For 

segments 7-12, the displacement for the epicardial quadrant was added and the displacement for 

the endocardial quadrant was subtracted. Then for each following time frame, the process was 

repeated but the previously generated length was used in place of the initial length, represented 

as L(t-1), to determine how this distance changed with time.  

 

Figure 17 Epicardial to Endocardial length displacement based on radial vector (blue) and displacement vectors (green) 
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Strain Analysis 

To calculate the strain and strain rate based on the speckle tracking results, the following steps 

were taken. The lengths in the radial direction, calculated with Equation 3, were used to calculate 

strain with Equation 1, listed earlier. The average diastolic length was used as L0 for Equation 1. 

The VevoStrain software uses the length at end diastole (O’Connell 2017). To use a similar 

length value as the software, the three diastolic time points were determined by looking at the m-

mode image, shown above in Figure 12. The length at each diastolic time point, as determined by 

the proposed algorithm, were averaged and used as the initial length, L0. Percent strain was 

calculated each frame and the peak percent strain across the selected cardiac cycles was reported. 

The strain rate was calculated by dividing the change in strain by the time between each frame, 

which is provided in the DICOM file.   

Validation 

To validate the proposed algorithm, the length between the epicardium and endocardium was 

manually measured. The original radial vector at the initial time point between the epicardium 

and endocardium was plotted each time frame during the speckle tracking process. The length 

was manually measured by clicking on the image at the location of the epicardium and 

endocardium where it lines up with the radial vector. The coordinates of these two points were 

then used to calculate the magnitude. This is shown below in Figure 18. This was performed on 

each mouse for at least six time points throughout the selected cardiac cycles to assess whether 

the proposed algorithm was accurately tracking the displacement of the LV wall. The manually 

calculated length and the proposed algorithm calculated length were visually compared over the 

cardiac cycles to assess how well the two methods match.  
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Figure 18 Manual Length Measurement 

To further validate the results, the strain analysis was compared to the current speckle-tracking 

method using the VevoStrain software (VisualSonics). Using the same B-mode images from the 

novel processing method, the same three consecutive cardiac cycles were selected. The 

endocardium was manually traced by selecting points along the endocardial border at the starting 

frame at systole. The epicardium was then automatically traced. An example of the border 

tracing with this software is shown below in Figure 19. These points were manually adjusted as 

needed for optimal tracking. Frame-by-frame tracking of these borders was then processed by the 

software for strain measurements of the LV. The LV was automatically divided into six standard 

anatomical segments to obtain regional % peak radial strain measurements across the cardiac 

cycles, shown earlier in Figure 5. Global radial strain values were measured by averaging the 6 

segments.  To measure LV dyssynchrony, the strain rate peak (1/s) was computed. The percent 

difference was calculated to compare the global percent peak strain between the two methods for 

each mouse using the following equation. 
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% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |
(𝜀𝑉𝑆 − 𝜀𝑃𝐴)

𝜀𝑉𝑆 − 𝜀𝑃𝐴
2

| × 100%                                       (4) 

In Equation 4, 𝜀𝑉𝑆 represents the global percent peak strain value from the VevoStrain software 

and 𝜀𝑃𝐴 represents the global percent peak strain value from the proposed algorithm. The 

percent difference was also determined in the same way comparing the manual length to the 

proposed algorithm length.  

 
Figure 19 Epicardial and Endocardial Border Tracing 

In order to make comparisons between the developed algorithm and the commercial code, the 

results from the novel method were averaged into six segments. In addition, the global strain 

values were compared. these strain measurements were averaged across the 12 segments to get 

global values. 
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Data Analysis 

Once this novel strain analysis was validated, the results from the different animal groups were 

compared to investigate the significance of ephrinA1-Fc post-MI. The effectiveness of this 

treatment was analyzed by comparing segmental strain data across the control, MI, and treated 

groups to see if contractile function improves after administration of ephrinA1-Fc post-MI. This 

comparison was performed visually by plotting the average strain value for each mouse across 

time. In addition, the global strain values were ranked from greatest to least to compare the 

performance between groups.  



 

RESULTS 

Nine wildtype mice, both male and female, from 10-14 weeks of age were included for strain 

analysis. Three female mice were used for the sham group, one female and two male mice were 

used for the post-MI group, and one female and two male mice were used for the treated group.  

Using the novel MATLAB algorithm produced in-house, strain was calculated in 12 equal 

segments along the myocardium.  

Validation Analysis 

The length between the epicardium and endocardium was calculated across the selected cardiac 

cycles for each segment through the speckle-tracking algorithm. When plotting the lengths 

calculated by the proposed algorithm compared to the length measured manually every three 

frames, the following curves were produced. An example of these curves for sham mouse two is 

shown below in Figures 20a-c. These figures show the proposed algorithm produced length 

between the epicardium and endocardium compared to the manual length measured. For the 

manual curve, only the 35 measured values were plotted (blue circles), which were connected 

with a curve fitting line. Therefore, the length values between these plotted points, represented 

by the blue line, are not actual length values.  
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Figure 20a Calculated distance between the Epicardium and Endocardium for Segment 1 of Sham Mouse 

 

Figure 20b Calculated distance between the Epicardium and Endocardium for Segment 4 of Sham Mouse 
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Figure 20c Calculated distance between the Epicardium and Endocardium for Segment 9 of Treated Mouse 

 

These results demonstrate the proposed algorithm’s tracking ability varies due to several factors. 

The majority of the segments produced a length curve similar to Figure 20a, which is an example 

of the proposed algorithm tracking the contours of the LV somewhat accurately, or Figure 20b, 

which is an example of the proposed algorithm pretty accurately tracking these contours. This is 

based on how closely the length values align, in addition to whether the curves are in phase with 

each other. As you can see in Figure 20a, a large amount of length values are similar however, 

the curves are out of sync towards the third cardiac cycle showing the proposed algorithm did not 

track properly at the end. Figure 20b shows the curves in phase, but the length values are 

different, showing the proposed algorithm is tracking the change in length properly but not the 

absolute length. Figure 20c is an example of the proposed algorithm poorly tracking the LV wall, 

as most of the length values are not the same and the curves are out of phase. This was tested for 

each mouse group in at least two segments per mouse. The length validation results for each 

mouse are in Appendix A  
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Data Analysis 

The strain and strain rate were calculated for each segment. Figure 21 represents the strain and 

strain rate measured in segment four of a sham mouse (S2). An average radial strain for long 

axis, healthy mice is ~50% (O'Connell 2017).  

 
Figure 21 Strain and Strain Rate measured in % Strain and % Strain/seconds 

To visually analyze the strain across the different experimental groups, the average strain across 

all 12 segments was calculated at each time point of the selected cardiac cycles and plotted. This 

plot is shown in Figure 22a and 22b below. The strain for each mouse was normalized across the 

three cardiac cycles for comparison. The sham mice followed the pattern of the cardiac cycles 

shown by the length in Figure 20. The mice treated with ephrinA1-Fc post-MI and the post-MI 

mice produced a less uniform strain curve with a decreased slope, showing the contractile 

function has been compromised.  
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Figure 22a Average % Strain for each mouse across 3 Cardiac Cycles (* = male) 

 
Figure 22b Average % Strain for each mouse per experimental group across 3 cardiac cycles (* = male) 
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The global strain computed with the proposed algorithm was compared between experimental 

groups to measure the effectiveness of the treatment. These results, shown below in Table 1 and 

Figure 23, show the contractile function of the LV was impacted. These are global strain values 

which means, all 12 segments were averaged. However, as shown earlier, not all segments were 

accurately tracked, skewing the data. This caused increased global values from inaccurately high 

strain values for some segments. With that being said, respectively the sham mice had the 

highest % peak strain values with the treated mice following, and the MI mice being the lowest 

(average global % peak strain per experimental group was 108.5%, 60.0%, and 51.4%, 

respectively). It is important to note that this large of strain values, especially in the sham group, 

has not been reported before in mice. The second mouse post-MI did not follow this trend with a 

large peak % global strain value due to its rather elevated values along the posterior apex and 

posterior base segments. 

Table 1 Rank of Global % Peak Strain Values (* = male) 

 

After a coronary ligation, the MI group with the intramyocardial injection of IgG-Fc, referred to 

as MI in Figure 23, had a lower % peak global strain compared to the sham mice. Overall, the 

MI+ephrinA1-Fc group, which received the intramyocardial injection of ephrinA1-Fc after 

coronary ligation, had a higher % peak global strain compared to the MI group based on average 

% peak global strain values per experimental groups listed earlier. This % strain was less than 

* 

* 

* 

* 
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the sham group, showing contractile function improves after treatment, but not to the full extent. 

However, due to a limited data set, no statistical analysis was performed. These trends are what 

is expected based on previous studies and physiological reasons, but the strain values were 

greater than expected. 

 
Figure 23 % Peak Global Strain between Experimental Groups (* = male) 

The strain values measured with the proposed algorithm were comparable to the expected value 

of 50% peak strain for a healthy mouse for radial strain in the long axis, with the exception of 

sham mouse 1 which had unusually high strain values for all segments and was unable to be 

tracked around the entire apical region due to poor image quality. The global strain rate results 

are shown below in Figure 24. The strain rate was greatest in the mice with the greatest strain 

across all experimental groups. The full strain and strain rate results can be found in Table 3 in 

Appendix B.  
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Figure 24 Global Strain Rate between Experimental Groups (* = male) 

The global strain values computed with the VevoStrain software were compared across 

experimental groups to validate the proposed algorithm and commercial algorithm produce 

similar findings. The proposed algorithm and commercial algorithm % peak global strain values 

are shown below in Table 2. The percent difference between the two methods was computed 

using Equation 4 listed earlier.  

Table 2 % Global Peak Strain from VevoStrain and Proposed Algorithm (* = male) 
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and 17.9% respectively. Excluding the second treated mouse, the post-MI mice actually had 

greater strain values than the treated mice. This trend is different to what was reported with the 

proposed algorithm. In addition, the strain values from the VevoStrain software are much smaller 

compared to the proposed algorithm strain values lowering confidence in the algorithm’s values. 

The global % peak strain values from the VevoStrain software were plotted for each group as 

well, shown below in Figure 25. 

 
Figure 25 Global % Peak Strain from VevoStrain software (* = male) 
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segments were the proposed algorithm was unable to track the speckles because of shadowing or 

inability to detect features.  

 

Figure 26a Segmental % Peak Strain for Sham mice 

Sham mouse 1 produced extremely high % peak strain values throughout all the segments 

tracked, shown in Figure 26a. As mentioned earlier, percent peak strain values this large have not 

been reported before. The high values for sham 1 were consistent for all segments indicating that 

the tracking of deformation was uniform along the LV wall, but the values recorded were greater 

than expected. In addition, the proposed algorithm was unable to track along the segments 

around the apex for this mouse due to shadowing along this area. For sham mouse 2 and 3, the 

strain was relatively uniform across segments with higher strain values seen around the apex.  
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Figure 26b Segmental % Peak Strain for MI mice (* = male) 

The strain values were consistent across segments for the post-MI mice, shown in Figure 26b. 

The first MI mouse reported the smallest strain values. Both MI mouse 1 and 2 resulted in 

unusually high % peak strain values near the posterior apex at ~150%.  

 

Figure 26c Segmental % Peak Strain for Treated mice (* = male) 
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As can be seen in the variation in the colors in Figure 26c, the segmental strain values for the 

mice injected with ephrinA1-Fc post-MI had the greatest range (difference between minimum 

and maximum strain values) as well as difference between mice.  The second treated mouse 

ranges from 27%-230% peak strain.  All three treated mice experience lower strain values along 

the posterior location of the LV. This suggests the treatment is not reaching this area of the LV 

wall. To compare segmental strain values from the proposed algorithm across experimental 

groups, the average percent peak strain for each group and each segment are shown below in 

Figures 27a-b.  The full comparison of segmental strain values across experimental groups is 

shown below in Appendix C.  

 
Figure 27a Comparison of % Peak Strain for Segment 4 

Figure 27a displays a segment where the results coincide with what is physiologically expected 

at this segment. The sham group experiences the greatest percent peak strain, with a lower 

percent peak strain in the post-MI group. The treated group has a higher percent peak strain 

compared the post-MI group.   
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Figure 27b Comparison of % Peak Strain for Segment 9 

Figure 27b represents a segment where the data does not physiologically display what is 

expected. The sham and post-MI group have similar percent peak strain values indicating this 

location may not be impacted by the occlusion. The treated group resulted in the lowest percent 

peak strain values, however this is within the healthy range. Also to note for both of these 

segments, the sham group has the largest interquartile ranges. This may be due to the extremely 

high values of strain in sham 1.   



 

DISCUSSION 

The goal of this project was to develop a proposed algorithm to quantify LV dysfunction through 

regional strain analysis. This methodology permits measurement of the performance of the LV 

along 12 smaller segments compared to only 6 segments used with the VevoStrain software, thus 

enabling more specific, regional measurement of contractile performance in uninjured, infarcted, 

and ephrinA1-Fc-treated mouse myocardium.  

For the proposed algorithm, the sham mice produced the greatest strain, with the treated mice 

following, and the post-MI mice with the lowest strain values (average global % peak strain 

108.5%, 60.0%, and 51.4%, respectively). Apart from the results from the second post-MI mouse 

and first and third treated mice, the proposed algorithm data follows a physiological expected 

trend. When the heart is healthy, the contraction is strong, so the heart pumps a greater volume of 

blood to the aorta. This results in a greater change in radial length when the heart goes from 

systole to diastole, thus producing a large radial strain value. After an MI occurs, the electrical 

signal is not conducted across all the myocardium. This produces a decreased contractile force, 

therefore decreasing the amount of blood pumped to the aorta per heartbeat. With this lower 

contractile force, the length change between the epicardium and endocardium is less per 

contraction resulting in a decreased radial strain value. The results from the proposed algorithm 

do not match the results from the VevoStrain software. The VevoStrain values resulted in the 

sham producing the greatest strain, with the post-MI mice following, and the treated mice 

producing the smallest strain values (average global % peak strain 28.0%, 19.2%, and 17.9%, 

respectively).  

When comparing the results from the proposed algorithm and VevoStrain software to strain 

reported by other groups, the results produce similar trends. Peak percent radial strain values 
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being greater in the sham group compared to the post-MI group for both the proposed algorithm 

and commercial algorithm were consistent with similar studies mentioned earlier in the 

background (Bhan et al. 2014; Bauer et al. 2012; Ram et al. 2011).  Ram et al. reported an 

average radial strain of 43±1.17% for healthy wildtype mice (gender unknown), which was 

similar to the strain values obtained from the same commercial code, but different for the 

proposed algorithm. Other studies by Bhan et al. and Bauer et al. compared the strain for healthy 

and 1 and 7 weeks post-MI mice. These were permanent occlusions and the echocardiograms 

were recorded when the mice were lightly anesthetized. The mice used for this project were fully 

conscious and the occlusion was for 30 minutes following with 24 hours reperfusion. With these 

differences in study parameters noted, the global radial strain values were greater for the sham 

group (28.0%) compared to the MI group (19.2%) (19.9% sham, 7.5% post-MI, Bauer et al 

2012).  

For the treatment to be effectively working, the expected strain values would be greater than the 

post-MI values. The value produced by the proposed algorithm for the 2nd treated mouse was 

greater than the average strain in the post-MI mice, showing greater contractile function. 

However, the strain for the first and third treated mice were less than the average strain of the 

post-MI mice, indicating contractile function was impacted. The mice were different in the post-

MI versus treated groups so a direct comparison between mice cannot be done. The radial strain 

should be smaller around the apical regions of the LV in the post-MI and treated mice compared 

to the other segments and sham mice as this is downstream the location of the ligation of the 

LAD. The % peak average strain values were actually greater in this region for the proposed 

algorithm, while the VevoStrain algorithm showed lower values compared to the other segments.  
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One factor that may have caused these discrepancies was the gender of the mice. Post-MI and 

treated mice two and three were males. The rest of the mice were females. The gender of mice 

could have caused differences in contractile function and effectiveness in the treatment. Overall, 

the % peak strain was greater in the male mice compared to the female mouse for the post-MI 

group for both the proposed algorithm and VevoStrain methods. There does not appear to be a 

gender difference in the reported strain values for the treated mice. However, with a total of nine 

mice, four of which are male, limited conclusions can be drawn about gender differences.  

The values generated from the proposed algorithm were much higher compared to the values 

reported from the VevoStrain software with an average percent difference of 102.3% between 

the two methods. These elevated strain values are possibly due to including unwanted artefacts in 

the speckle tracking process and length calculation, or creating segments based on Cartesian 

coordinates instead of ellipsoid coordinates, which better aligns with the shape of the LV. In 

addition, new points are reacquired each time frame unlike the commercial algorithm, which 

uses the same speckles throughout the entire three cardiac cycles. This may lead to including 

speckles that represent noise instead of an underlying structure causing these greater strain 

values. The feasibility of developing a region-specific method to quantify LV dysfunction 

through strain analysis in mice based on B-mode ultrasound images has been accomplished.  

Limitations 

There were several limitations faced with the current study. First, a sample size of only three 

mice per experimental group was selected, preventing a more thorough understanding of the 

variations between and within experimental groups.  However, for the purpose of developing this 

methodology, three mice per group was sufficient. Also, there can be gender variations between 

mice which greatly influences baseline size and function as well as response to injury. As for the 
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size variations, each segment was subject-specific, so this difference was not an issue. Females 

have been seen to maintain contractile function with the presence of disease due to higher 

estrogen levels at younger ages (Blenck et al. 2016). The effects of how gender influences 

treatment of ephrinA1-Fc is still unknown.  

In addition to the mice chosen, limitations existed throughout the image processing steps. As 

shown in Figure 20c, the speckle-tracking algorithm developed does not always accurately track 

the length between the epicardium to endocardium. For example, in sham 2 segment 12 the 

average percent difference between manual length and proposed algorithm length was 35.8% 

with a maximum percent difference of 96.1%. There are several possible reasons for this. If there 

is shadowing along the LV, the speckles will not be detected. For example, segment 6 is located 

around the apex where there were often dark shadows for most of the mice, so the contours at the 

epicardium and endocardium are not well defined. This prevents tracking the speckles at this 

location, and thus prevents tracking the LV wall deformation. Because there are no values in 

those segments, the global strain may skewed. These shadows can be seen below in Figure 28. 

This issue could possibly be addressed by enhancing the image through image processing to 

make the borders of the epicardium and endocardium visible. However, the speckles may have 

been lost initially where the ultrasonic beam was unable to reflect light off the LV, so applying a 

filter to the DICOM image may not result in a more accurate analysis. In addition, some areas 

along the base of the LV may inaccurately be tracked due to interference from the mitral valve. 

At times, the speckle-tracking algorithm is detecting the speckles along the valve which creates a 

length greater than the actual length between the epicardium and endocardium. This was a 

common problem at segments 1, 2, 10, and 11.  
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Figure 28 Example of Shadowing at the Apex 

In terms of measuring the manual length, the individual performing this task could influence this 

measurement. The process of manually measuring the length requires looking at the LV at 

different times along the selected cardiac cycles and clicking points where the initial radial 

vector lines up at the endocardium and epicardium. If the individual does not accurately select 

two points at the right location, at the defined contours and in-line with the radial vector, then the 

manual length will not be a true value. In the future this problem could be addressed by 

developing a more automatic process to verify the length calculation provided by the proposed 

algorithm. In addition, the radial vector used to determine the manual length is defined from the 

initial time frame. However, this line does not move with the pixels, so the epicardium and 

endocardium points selected at a given time point may not be the same location of the LV wall as 

originally selected. The LV may shift vertically and/or horizontally throughout the recording of 

the echocardiography, which is not accounted for in this manual length measurement. This could 

cause the manual length to be taken from a different location along the LV wall than the original 

location. This has the possibility of causing issues in validating the speckle tracking algorithm.  
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There is only one radial vector selected per segment. However, the radial direction is not the 

same across the entire segment. Therefore, more radial vectors selected per segment could 

improve the accuracy in tracking the LV wall deformation.  

A minor limitation deals with the key step in the strain calculation which is defining the L0 value 

used in Equation 1, which represents the unstressed length. As mentioned earlier, the average 

diastolic length was used as this is how the VevoStrain software defines it. However, this 

assumes the LV wall is not under any stress at diastole. However, the chamber is full of blood at 

this point in the cardiac cycle, which applies pressure on the wall. Thus the diastolic length 

would be smaller than the true, unstressed length, causing a greater strain value.   

Another limitation was the three consecutive cardiac cycles selected during the image selection 

process impact the strain values calculated. Since the echocardiogram images are taken on 

conscious mice, the mouse’s breathing and heart rate may be irregular throughout the recording, 

as this is a high stress situation for them. When using the MATLAB algorithm developed, the 

strain values were different for the same segment when different cardiac cycles were selected. 

Therefore, the same three cycles should be selected for all segments during the image processing 

stage to get a consistent global strain value. Since the cardiac cycles selected influence the peak 

% strain results, the same three cardiac cycles should be used for the proposed algorithm and the 

commercial algorithm during the validation process.  A sensitivity study should be performed on 

the selection of cardiac cycles to better understand the impact of this selection.  

It is important to note the differences between the locations of the segments of the proposed 

algorithm to the VevoStrain software, shown below in Figure 29.  The twelve segments 

determined by the proposed algorithm do not line up exactly with the six segments from the 
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commercial algorithm. However, when every two segments from the proposed algorithm are 

compared to commercial algorithm segments, there is a reasonable similarity of areas covered 

and locations. Therefore, taking the average % peak strain value measured by the MATLAB 

algorithm for every two segments (1 and 2, 3 and 4, etc.) produces comparable segment 

locations. These average % peak strain values for every two segments from the proposed 

algorithm are shown in Appendix B. 

 

 
Figure 29 Segment Locations between Proposed Algorithm (left) and Commercial Algorithm (right) 

Second, the shape of the segments in the proposed algorithm is different than the shape of the 

segments in the commercial algorithm. The shape of the segments and the quadrants for selecting 

the median displacement for the epicardium and endocardium used in the proposed algorithm are 

rectangular, but the shape of the LV is ellipsoidal. This causes some portions along the 

epicardium and endocardium to be excluded in the speckle tracking process, in addition to 

tracking unwanted areas of the echocardiogram. These segments in the proposed algorithm are 

stagnant where they do not move with the movement of LV wall. This can also cause portions of 
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the epicardium and endocardium to be excluded in the speckle tracking process at certain time 

points in the three cardiac cycles. 

A key value to having an increased number of segments allows the user to locate specifically 

where along the LV the heart’s contractility is compromised. With the VevoStrain software, the 

entire anterior apex could be represented as experiencing dysfunction. However, with the 

MATLAB algorithm, the user may see the location of dysfunction is greater at segment six 

compared to segment five. This could be extremely useful when administering and analyzing the 

effects of the ephrinA1-Fc treatment. Unfortunately, the apical region of the LV is where the 

shadowing and inaccurate tracking occurred most often, making it difficult to evaluate the LV 

dysfunction at this vital area.   

Future Work 

As mentioned earlier, feasibility of this method has been shown, but more work is needed to 

make this tool useful. There are several steps that can be taken to improve the proposed 

algorithm developed. These steps are as follows: 

1. Segment definition 

Adjusting the segments so they align with the VevoStrain software would produce more 

comparable strain results. Currently, the segments were created based on Cartesian 

coordinates. Segments should be defined based on the ventricle wall which may be 

accomplished by using ellipsoid coordinates and the radial vectors. By plotting the 

segments with ellipsoid coordinates, the segments will better align with the contours of 

the epicardium and endocardium, and better align with the VevoStrain segment locations.  

2. Regions used for tracking 
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Currently the quadrants used for tracking may not align with the epicardium and 

endocardium surface. By aligning the regions with the contours of the epicardium and 

endocardium, the motion of the speckles in the regions should better correspond with the 

motion of the LV wall. Again, choosing an ellipsoidal coordinate system instead of 

Cartesian to define the regions will track the epicardium and endocardium more 

accurately. This would prevent the influence of the mitral valve and limit unwanted 

artefacts in the strain values. Also allowing the regions to move with the LV as the heart 

goes from systole to diastole will ensure that the wall is always within the tracking 

region.  

3. Multiple radial vectors per segment  

Only one radial vector was used per segment. However, this could also be improved by 

selecting more than one radial vector per segment or choosing all the radial vectors to 

track the entire LV wall deformation.   

4. Repeat validation  

The validation process should be reconstructed by determining a way to more objectively 

measure the manual length for validation to decrease the bias in the length value. Using 

the displacements to move the radial vector would include the impact of the LV wall 

shifting throughout the echocardiography recording in the manual length measurement. 

This will increase the confidence that the proposed algorithm and manual length are 

producing similar results, and thus accurately tracking the speckles. After improving the 

validation process and completing the above three steps, the validation results should be 

improved.  

5. Increase sample size 
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Increasing the sample size and choosing mice with the same gender will improve the 

confidence ability for the comparison across experimental groups. Once the sample size 

is sufficient, comparison across genders should be examined.  

6. Obtain circumferential and longitudinal strain 

Currently, only the radial strain and strain rate were measured. Radial strain is the percent 

change in left ventricular myocardial wall thickness. To get a more thorough 

understanding of the LV dysfunction, the circumferential and longitudinal strain should 

also be measured. Circumferential strain will measure the myocardial circumference 

change, and longitudinal strain will measure the percent change in length of the LV (Ram 

et al. 2011).  



 

CONCLUSION  

The feasibility of analyzing LV dysfunction through region-specific strain analysis using speckle 

tracking was demonstrated in mice. Once the limitations are overcome and the future work has 

been completed, this process can be used to measure the performance of the heart. This method 

will give the ability to assess the contractile function between experimental groups at a more 

detailed level, due to the increased number of smaller segments. By applying this process, one 

could locate how the LV is impacted by ephrinA1-Fc and locate the optimal location for more 

targeted drug delivery.  
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APPENDIX B: Table of Percent Peak Strain Results and Strain Rate Results 

 

 

 
 

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7 Segment 8 Segment 9 Segment 10 Segment 11 Segment 12 Global

123.7346 80.2358 117.6102 257.6206 80.8666 203.8523 271.0671 188.0978 414.9585 193.1160

181.8910

65.4349 74.1362 23.5265 77.2019 36.5489 100.1699 45.1504 26.4802 43.4503 37.1699 60.7652 53.6395

52.2153

34.9326 81.7827 56.7254 89.7415 96.1248 97.9484 202.6091 123.1322 32.1843 48.9138 34.0260 45.2446 78.6138

78.6138

26.4045 24.0261 15.5979 22.2888 43.6361 153.7690 34.8827 38.1120 19.4410 42.0176

40.4563

43.1916 73.4920 56.8884 44.3723 57.8006 28.3512 154.1232 73.5577 40.9580 42.8472 200.2098 61.5582

80.8263

39.1463 56.9307 66.5631 78.2255 48.9640 54.4697 47.5330 63.1816 30.8867 32.2670 39.8676 19.9274 50.7305

48.1636

72.8448 39.9945 43.9054 120.5918 41.4210 9.4001 10.0916 30.8683 26.1285 104.1586 47.3955

46.0592

97.6566 67.8467 160.7424 174.9842 104.3189 230.6492 48.8180 30.2215 26.9709 26.9757 52.8762 92.9146

93.3097

39.3101 48.2158 24.5698 30.9349 34.9169 22.6299 22.8065 90.0215 62.0148 20.0258 39.5446

39.7905

Global

S1 31.5095

S2 28.4951

S3 24.0084

M1 14.4824

M2 18.0689

M3 24.9851

T1 9.8387

T2 31.5351

T3 12.4145

24.3090

28.2488 18.7205 14.1963 18.4216 35.4987 34.8246

12.3862 20.9806 18.9754 -29.4399 29.6035 21.9810

33.9241

27.4865 21.5442 30.1180

49.6192 37.8563 27.8226 10.6661 29.1688

18.1599

38.8746 24.3630 21.8868

10.9249 24.6237 8.0436

0.8529 2.2890 15.6827

31.6115 31.5130 8.1447 11.5988 36.8732

73.2335 97.0366 162.8706 40.5491 39.6353

72.3943 51.7169 55.3573

Segment 4

301.5281

S2
69.7855 50.3642 36.5489 72.6602 34.9653 48.9676

S1
101.9852 187.6154 80.8666

28.7765

M2
57.2578 121.5285

% Peak Strain

20.4800 65.1435

T2
97.6566 114.2945 139.6515 139.7336 28.5962 39.9260

T1
56.4197 43.9054

154.1232

M1

237.4597

58.3418

Sham 

MI

MI + ephrinA1-Fc

Code

T3

M3

S3
58.3577

43.7630

48.0385 31.5768 29.8975

26.4045

50.6304 43.0759

19.8120 32.9625

27.7523 28.7734 56.4140 62.0148 20.0258

81.0064 9.4001

94.3258

Sham 

MI

MI + ephrinA1-Fc

VevoStrain 26.0929

10.6169

53.5408

Segment 5

37.3501

20.5998 11.2097

34.2681 29.8271

24.7942

26.6301

10.7952

21.7512

13.9342

2.9608

19.1708

Segment 6Segment 1

16.2980 9.8318

Segment 2 Segment 3
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Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Segment 7 Segment 8 Segment 9 Segment 10 Segment 11 Segment 12 Global

178.0655 112.9680 93.8223 173.7728 57.4530 121.1092 78.2918 133.1025 697.6583 182.9159

170.3696

60.5261 29.3498 24.6256 26.1199 14.0494 70.0234 38.4734 41.0985 34.4332 36.4124 11.9539 35.1878

33.4262

69.7225 54.3147 39.3741 48.7602 60.7426 114.2094 716.6503 108.7827 30.8070 66.6815 45.8779 49.5824 117.1254

117.1254

25.5131 15.2112 10.0439 29.0922 32.0362 148.7652 32.0975 33.3279 21.9332 38.6689

37.3533

32.4600 48.4378 34.0271 37.1114 75.9728 29.7070 256.9396 72.5270 51.2937 66.7499 134.6962 76.3566

91.4052

16.7255 19.3656 14.8539 18.3656 13.8167 30.6004 25.3559 26.5556 10.3898 8.9500 9.4692 7.8099 16.8548

16.8548

120.6211 49.4646 57.0586 130.6817 45.3880 20.2955 18.2691 18.3538 12.3924 70.0944 46.8887

51.6645

56.3678 56.2687 123.5900 117.0162 87.7624 348.1083 52.2363 62.7994 55.5831 26.4633 39.1072 93.2093

90.1392

30.9238 23.7223 13.6786 12.0998 25.8274 52.2007 35.3015 66.0134 36.8657 71.2975 36.7931

39.6745

Global

S1 13.6224

S2 18.1654

S3 15.3317

M1 12.0196

M2 9.0219

M3 8.3443

T1 8.6608

T2 20.1112

T3 14.7193

4.6221 10.8821 11.2590

13.7298 20.3868 6.7759 9.5748

12.1057 11.9580 7.4151 6.3677 8.9051 7.3800

18.0158 17.5376 7.0485 9.5293 22.0581 17.8006

85.0428 57.0586 88.0349 20.2955 18.3115 41.2434

MI + ephrinA1-Fc

T1

T2

T3
27.3231 12.8892 39.0141 50.6575 36.8657 71.2975

56.3678 89.9294 102.3893 200.1723 59.1912 32.7853

8.6396

40.4489 35.5693 52.8399 256.9396

% Peak Strain Rate (1/s)

Code

Sham 

S1
145.5167 133.7976 57.4530 99.7005 415.3804

S2
44.9380 25.3727 14.0494 54.2484 37.7659 24.1831

S3
62.0186 44.0671 87.4760 412.7165 48.7442 47.7302

MI

M1
25.5131 12.6275 30.5642 90.4314 27.6305

M2

M3

61.9104 100.7231

18.0455 16.6097 22.2085 25.9557 9.6699

Segment 3 Segment 4 Segment 5 Segment 6

VevoStrain

Sham 

22.3154 17.8148 12.8355 5.1784 10.9051 12.6852

22.0099 15.2118 17.2951 20.5575 20.3387 13.5792

MI

11.7086 9.9417

10.3079 8.9537 4.0408

MI + ephrinA1-Fc

16.8155 9.8991 5.6608 4.0182 4.7179 10.8535

15.0877 33.9618 23.6352 18.3410 13.1852 16.4563

8.3503 13.2308 14.7715 23.5945 18.5408 9.8278

Segment 1 Segment 2



 

 

APPENDIX C: Segmental Strain Comparison across Experimental Groups from Proposed 
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