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West Nile virus (WNV) is a widespread arbovirus that imposes
a significant cost to both human and wildlife health. WNV
exists in a bird-mosquito transmission cycle in which passerine
birds act as the primary reservoir host. As a public health
concern, the mammalian immune response to WNV has
been studied in detail. Little, however, is known about the
avian immune response to WNV. Avian taxa show variable
susceptibility to WNV and what drives this variation is
unknown. Thus, to study the immune response to WNV
in birds, we experimentally infected captive zebra finches
(Taeniopygia guttata). Zebra finches provide a useful model, as
like many natural avian hosts they are moderately susceptible
to WNV and thus provide sufficient viremia to infect
mosquitoes. We performed RNAseq in spleen tissue during
peak viremia to provide an overview of the transcriptional
response. In general, we find strong parallels with the
mammalian immune response to WNV, including upregulation
of five genes in the Rig-I-like receptor signalling pathway,
and offer insights into avian-specific responses. Together with
complementary immunological assays, we provide a model of
the avian immune response to WNV and set the stage for future
comparative studies among variably susceptible populations
and species.

1. Introduction

West Nile virus (WNV) is a single-stranded RNA flavivirus
that exists in an avian-mosquito transmission cycle, where
birds (typically Passeriformes) act as the primary amplification
hosts. In addition to birds, nearly 30 other non-avian vertebrate
species have been documented as hosts [1]. Although many
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WNV-infected hosts are asymptomatic, WNV infection can cause severe meningitis or encephalitis in
those that are highly susceptible. Avian species for the most part exhibit low to moderate susceptibility.
That is, individuals become infected and develop sufficient viremia for transmission via mosquito blood
meal, but the hosts recover and avoid significant mortality (reviewed in [2]). First described in 1937,
WNV has not resulted in widespread avian decline throughout its historical range [3], perhaps due to
host-parasite coevolution. However, the emergence of WNV in North America in 1999 has negatively
impacted a wide range of populations [4,5]. Surveys of North American wild birds have shown a
variety of competent WNV hosts, with varying degrees of susceptibility, morbidity and pathogenicity
[2]. American robins (Turdus migratorius) appear to be the main host in spreading WNV infection in
North America [6], but infection appears most detrimental to members of Family Corvidae [7]. Despite
great variation in susceptibility, the mechanisms underlying this variation are primarily unknown [2].

Largely due to interest in human health implications, most work describing the host immune response
to WNV infection has been performed in mammalian systems [8]. From these studies, we know that in
mammals, both the innate and adaptive arms are critical for virus detection and clearance [9,10]. Within
the innate immune response, the retinoic acid-inducible gene 1 (Rig-I)-like receptor (RLR) pathway
appears to play a key role in viral clearance. This pathway recognizes viral products and initiates type I
interferon expression [11]. Mice lacking the viral recognition RLR genes in this pathway, DDx58 (Rig-I)
and IFIH1 (MDADJ), become highly susceptible to WNV infection [12]. In the adaptive immune system, a
broad range of components appear to play important roles in mounting a response, including antibody
and CD4+ and CD8+ T cells [9,13,14]. Interestingly, major histocompatibility complex (MHC) class
I genes are upregulated post-infection [15,16]. Viruses typically evade MHC class I detection [17,18],
as MHC class I molecules bind and present viral peptides to CD8+ T cells. However, the purpose of
WNV-induced MHC expression is unclear.

While the mammalian immune response to WNV infection has been extensively studied, the avian
immune response remains mostly unknown. Of the studies in birds, many involve experimentally
infecting wild caught birds (reviewed in [2]), or domestic chickens (Gallus gallus) [19]. These studies
primarily focus on viral detection, tissue tropism, antibody production or lymphocyte counts [2,19,20].
Little is known about the molecular mechanisms driving the immune response to WNV infection (but
see [21]). Furthermore, current avian WNV studies suffer many challenges. Wild caught birds may
be co-infected with other parasites (e.g. avian malaria) and are difficult to maintain in captivity for
experimental infection studies. Chickens, although an avian model species, are uncommon hosts and
highly resistant to WNYV infection [22]. Therefore, chickens are not ideal to describe the avian immune
response to WNV infection. Passeriformes and Galliformes are also highly divergent bird lineages, with
distinctive immune gene repertoires and architecture [23].

As passerine birds are the main hosts for WNV, we have sought to develop a passerine model to
study the impacts of WNV infection on a taxonomically appropriate host [24]. We have recently shown
that zebra finches, Taeniopygia guttata, are moderately susceptible hosts for WNV [25]. That is, WNV
rapidly disseminates to a variety of tissues and is detectable in most samples by 4 days post-inoculation
(dpi). Despite rapid development of sufficient viremia for arthropod transmission, zebra finches develop
anti-WNYV antibodies, clear WNV by 14 dpi, and avoid significant mortality [25]. This moderate disease
susceptibility is similar to what is observed in many natural WNV hosts. Zebra finches are also an
established biomedical model system with a suite of genetic and genomic tools available [26].

In this study, we experimentally infected zebra finches and performed RNAseq to describe their
transcriptional response up to the point of peak viremia. In doing so, we characterize the zebra finch
immune response to WNV infection, explore expression of the avian RLR pathway in response to
WNV, gain insights into the avian immune response to this widespread infectious disease, and uncover
conserved evolutionary responses in avian and mammalian systems.

2. Results

2.1. Experimental infection

We challenged six individuals with 10° plaque-forming units (PFU) WNV and sequenced RNA (Illumina
RNAseq) isolated from spleens, an organ critical to the avian immune response. Three birds served
as procedural controls and on day 0 were injected subcutaneously with 100ul of BA1 media, as
previously described [27]. Peak viremia occurs at 4.6 +1.7 dpi as quantified via RT-PCR [25] and thus,
we characterized the transcriptional response leading to (2 dpi, n = 3) and at peak viral load (4 dpi, n=23)
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in the present study. WNV RNA was detected by culture in lung and kidney RNA pools of two out of
three birds sampled at day 2, and all three birds sampled at 4 dpi. These findings were verified by semi-
quantitative RT-PCR. WNV is rarely detected in spleen by 2 dpi, but all birds previously inoculated at 10°
PFU developed WNV antibodies [25]. We therefore treated all six birds inoculated with WNV as being
infected.

2.2. Sequencing results and read mapping

We obtained 18-30 million paired-end, 100 bp reads for each sample and removed 0.57-1.24% of the total
bases after adapter trimming (electronic supplementary material, table S1). On average, 79.0-80.8% total
trimmed reads mapped to the zebra finch reference genome (electronic supplementary material, table
S2), corresponding to 18 618 Ensembl-annotated genes [28]. Of these, 14 114 genes averaged at least five
mapped reads across all samples and were used for differential expression (DE) analyses.

2.3. Sample clustering and differential expression

We tested for DE in two ways: as pairwise comparisons between treatments with DEseq2 [29] and
as a time-course grouping genes into expression paths with EBSegHMM [30]. To visualize patterns of
expression variation among samples, we conducted principal component analysis (PCA) and distance-
based clustering (electronic supplementary material, figures S1 and S2). The first three principal
components explained 93.04% of the variance in gene expression, but none of the PCs were significantly
correlated with treatment (ANOVA, PC1: p =0.288, PC2: p = 0.956, PC3: p =0.202).

Although clustering analyses suggest that across the genome, much of the variation in expression
was independent of the experimental treatment, pairwise comparisons revealed many genes that were
regulated in response to infection (electronic supplementary material, table S3). When comparing Control
versus 2dpi, we found 161 differentially expressed genes (false discovery rate (FDR) <0.10, average
logy fold-change (FC) =1.74). This gene list includes several immune-related genes associated with the
innate (e.g. IL18) and adaptive (e.g. MHC IIB) immune system (table 1, figure 1). Sixty-five genes were
differentially expressed between Control and 4 dpi (average logoFC =1.61), also with several immune-
relevant genes including five genes in the RLR pathway (table 1, figures 2 and 3). Lastly, we observed 44
DE genes between 2 dpi versus 4 dpi individuals (average log, FC =1.56). Three of these have described
functions in immunity. We also combined 2 dpi and 4 dpi cohorts and compared with Control, but due
to high variation in gene expression between days 2 and 4 dpi, we only found 16 DE genes (average
logrFC =1.64) between Control and Infected cohorts, one of which was associated with immunity.

When analysed for DE as a time course in EBSegHMM, 686 genes showed evidence of differential
expression (posterior probability >0.99, FDR < 0.01). Most DE genes (1 =561) were suppressed relative
to Controls on days 2 and 4 post-infection (‘Down-Down’). Seventy-five genes were ‘Up-Down’, 49 were
‘Down-Up” and one was “‘Up-Up’. As expected, we found overlap of several immune genes between the
two analyses. For example, IL18, APOD and IFITM10 are ‘Up-Down’ and this trend is reflected in the
DEseq2 Control versus 2 dpi analysis (figure 1).

2.4. Functional annotation of differentially expressed genes

To place differentially expressed genes into groups based on their biological function, we performed
a gene ontology (GO) analysis using the GOrilla tool [41,42]. GOrilla uses the rank ordered of genes
from DEseq2 based on FDR-adjusted p-values. An enrichment score is calculated based on the number
of genes in the top of the list that belong to a particular GO category relative to the expected number
based on the frequency of functionally related genes in the total list. As above, we conducted GO
analyses based on multiple pairwise analyses of gene expression. We found five significantly enriched
GO categories between Control versus Infected (2 and 4 dpi) cohorts, of which ‘response to virus’ is
the most significant (FDR = 0.008, Enrichment = 5.34) (table 2). We observed the strongest evidence of
functional enrichment in the Control versus 2dpi (n =120) and Control versus 4dpi (n=36) contrasts
(FDR < 0.05) (electronic supplementary material, table S4). Many enriched GO terms in the Control
versus 2dpi contrast are involved in membrane components, metabolism and cellular processes. Four
GO categories were immune relevant, including ‘inflammatory response’ and “positive regulation of
cytokine biosynthetic process’ (electronic supplementary material, table S4). The immune response
manifests itself most strongly in the Control versus 4 dpi contrast with many enriched GO terms being
immune-related categories (table 2; electronic supplementary material, table S4) and a broad range of
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Table 1. Candidate immune genes differentially expressed in the present study and comparisons with mammals.

requlation  regulation

pattern pattern in
Ensembl ID gene name observed  mammals references

Control versus Infected

differentially expressed immune genes (1 =14, table 1). Only two GO categories are enriched between
2 and 4dpi: ‘inner mitochondrial membrane protein complex” and ‘mitochondrial protein complex’
(table 2; electronic supplementary material, table S4).

We also conducted a similar analysis of genes identified as DE by EBseqHMM, which revealed
one (Up-Up), 199 (Up-Down), 69 (Down-Up) and 527 (Down-Down) significantly enriched GO
categories (FDR <0.05) (electronic supplementary material, table S5). Interestingly, Up-Down GO
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Figure 1. Immune genes differentially expressed between day 2 post-inoculation and Control. (a) Heatmap of expression levels (log
transformed read counts) across all treatments of immune genes differentially expressed at 2 dpi relative to Control. (b—d) Expression
values (normalized read counts) for three key immune genes and their requlation pattern classification by EBSegHMM. Asterisks represent
statistical significance in DEseq2 analysis after FDR correction (*p < 0.10, **p < 0.05, ***p < 0.01).

categories had the strongest representation of immune-related GO terms, including ‘immune response’
(FDR =4.85 x 10~%) and ‘negative regulation of immune system process” (FDR =6.01 x 107%). Among
Down-Down genes, we observed enrichment of many metabolic and membrane processes and only
one immune-related category (‘positive regulation of innate immune response’, FDR =0.01). We found
enrichment of mitochondrial components and processes among Down-Up genes, similar to the 2 dpi
versus 4dpi contrast in the DEseq2 analysis. Additionally, 10 categories involved in immunoglobulin
processes were significantly enriched among ‘Down-Up’ genes, driven by the presence of the joining
chain of multimeric IgA and IgM (JCHAIN) gene. Lastly, as in the DEseg2-based analysis, we also
detected a strong enrichment signature of membrane proteins. Genes annotated as ‘plasma membrane
part’ were highly enriched among those showing an Up-Down pattern (FDR = 1.61 x 10712, electronic
supplementary material, table S5). Combined, we found broad overlap in GO representation between
the EBsegHMM and DEseq2 approaches.

In addition to placing genes into broad systematic functions in the GO analysis, we were also
interested in placing our gene expression results in the context of immune pathways of interest. The RLR
antiviral pathway is critical to WNV clearance in mammals [12] and appears important in mounting
an immune response to avian influenza in ducks [43-45]. Using Pathview v1.8.0 [46], we find that WNV
infection induces the RLR pathway. Five genes, including the two RLR genes, DDx58 and IFIH1, which
encode the Rig-I and MDADJ viral detection molecules, are significantly upregulated (table 1, figure 2;
electronic supplementary material, figure S3). We detect expression of 36/37 genes in the pathway, many
of which are also upregulated, though not always significantly (figure 3).

3. Discussion

We have characterized the zebra finch transcriptional response to WNV infection. Overall, we find that
as in mammalian systems, components of both the adaptive and innate immune pathways are activated
following infection. While WNV is primarily an avian-specific infectious disease, most work describing
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Figure 2. Immune genes differentially expressed between day 4 post-inoculation and Control. (a) Heatmap of expression levels (log
transformed read counts) across all treatments of immune genes differentially expressed at 4 dpi relative to Control. (b—d) Expression
values (normalized read counts) for three key immune genes and their requlation pattern classification by EBSegHMM. Asterisks represent
statistical significance in DEseq2 analysis after FDR correction (*p < 0.10, **p < 0.05, ***p < 0.01).

the host immune response to infection has been performed in mammals. Despite genomic, physiological
and evolutionary differences between birds and mammals, the host immune response shows broad
similarity between taxa (table 1).

We were particularly interested in the role of the innate RLR pathway. This pathway mounts an
antiviral innate immune response and is critical for WNV detection and clearance in mammals [12].
We have shown here that the RLR pathway in zebra finches is induced by WNV infection. Five genes in
this pathway are significantly upregulated at 4 dpi (figure 3; electronic supplementary material, figure
S3), including DDx58 and IFIH1 (figure 2b,d), which encode molecules that recognize WNV particles in
mammals [47]. This results in a corresponding over-representation of genes in the interferon signalling
and regulation GO categories (table 2; electronic supplementary material, table S4). While no studies
have investigated the role of the RLR following WNV infection in birds, this pathway appears important
for avian influenza clearance in ducks [43-45], Buggy Creek virus clearance in house sparrows [48], and
probably for the broad avian antiviral immune response, including WNV. Interestingly, chickens (Gallus
gallus), which are often used as sentinels for WNV, have lost the gene encoding the DDx58 RLR during
their evolution [43] yet do not develop disease post WNV infection [22]. This suggests that chickens
respond to WNV using a Rig-I independent mechanism and highlights the importance of future work
targeting the evolution of avian innate immunity.

We observed other parallels with mammals as well (table 1). For example, T-cell immunoglobulin
mucin receptor 1 (TIM1) is upregulated at 2dpi in zebra finches (figure 1a,). In human cell lines,
expression of TIM1 promotes infection of WNV virus-like particles (VLPs) [33,34], suggesting that the
upregulation of TIM1 seen in zebra finches may promote viral entry as well. Similarly, C-C motif
chemokine (ENSTGUG00000005295) is upregulated in our study at 2dpi and in previous human cell
line and mouse experiments, suggesting a conserved role in chemokine production following WNV
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Table 2. Top five statistically enriched gene ontology (GO) categories, FDR-adjusted p-value, and GOrilla enrichment score, among DEseq2
pairwise comparisons. Enrichment is calculated as (b/n)/(B/N), where N is the total number of genes, B is the total number of genes
associated with a specific GO term, n is the number of genes in the top of the input list, and b is the number of GO-term-associated genes
in the top of the list [41,42].

GOID description FDR enrichment
Control versus WNV

infection [31,35,36]. Apolipoprotein D (APOD), a gene typically involved in brain injury and potentially
responding to the neurodegenerative nature of WNV, is upregulated in WNV-infected mice [37], as
well as in our study. Two interferon-stimulated genes (ISGs), ADAR and MOV10 are both significantly
upregulated at 4 dpi relative to Control. Schoggins ef al. [39] showed ADAR expression to enhance WNV
replication and MOV10 expression to have antiviral activity. While further testing of these genes is
needed to validate their roles in avian WNYV infection, they nonetheless offer insights into a broad range
of conserved responses between mammals and birds.

Within the adaptive immune response, the role of the MHC in the host response to WNV is also
particularly interesting. The MHC plays a key role in antigen processing and presentation. The MHC
comprises two main gene families (Class I & II) and both are upregulated in mammals following WNV
infection [15,16,38]. Similarly, two genes encoding MHC class IIB proteins are significantly upregulated in
zebra finches at 2 dpi (figure 1). Unlike mammals, however, we found that MHC class I is not significantly
DE in any comparison (e.g. C versus 4 dpi, logoFC =0.001, FDR =0.99). In mammals, upregulation of
MHOC class I may not be adaptive for the host, as upregulation may be a mechanism by which the virus
evades Natural Killer (NK) cell detection by the innate immune system [15]. It has also been suggested
that MHC upregulation is a by-product of flavivirus assembly [15]. Interestingly, at 2 dpi, interleukin-
18 (IL18) is significantly upregulated (table 1, figure 1a,b). IL18 can enhance NK cell activity [49] and is
potentially a mechanism by which the immune system can counteract WNV evasion strategies via NK
cell activation, although further testing is needed to quantify NK cell activity in zebra finches to support
this hypothesis.

Despite many similarities, several immune genes differentially expressed in our analyses have not
been previously reported in the mammalian WNV literature or are expressed differently in zebra finches
(table 1). For example, at 2dpi, the proinflammatory cytokine IL18 was significantly upregulated in

967001 % DS uado 205y BioBuiysgndiaaposieforsoss



zebra finches (figure 1), contrasting a previous study in human cell lines, which showed no difference
in IL18 expression following WNV infection [32]. Furthermore, interferon regulatory factor 6 (IRF6)
was downregulated at 2 dpi, but upregulated in human macrophages following infection [35]. Another
significantly downregulated gene at 2 dpi, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), has been
previously associated with pattern recognition receptor (PRR) pathway (e.g. RLR) function in human
cell lines infected with high-risk human papilloma virus [50]. When upregulated, UCHL1 supresses PRR
expression leading to viral evasion of the host immune response. However, downregulation of UCHL1
restores functional PRR pathways [50]. Thus, the downregulation of UCHL1 2 dpi in zebra finches may
be associated with the upregulation of the PRR RLR pathway in this study (table 1, figure 3). Interferon-
induced protein with tetratricopeptide repeats (IFIT) and interferon-inducible transmembrane protein
(IFITM) gene families are known innate antiviral proteins and have been shown to restrict WNV entry in
human cells lines [39,51]. Both IFIT5 and IFITM10 are upregulated (figure 24,c) in our study and yet, to
our knowledge, neither have previously been implicated in the WNV immune response. This potentially
reveals an avian-specific function of IFIT5 and IFITM10. Lastly, several genes involved in metabolic and
mitochondrial processes were DE in our analyses. Viral alteration of host metabolism typically benefits
viral replication [52,53] and highlights the need for future work investigating the role of WNV on host
physiology.

Functional enrichment of immune-related GO terms primarily appears in Up-Down path defined
by EBsegHMM (electronic supplementary material, table S5), as many genes in the immune system
are upregulated post-infection (table 1, figures 1 and 2). In both the EBsegHMM and DEseq2 analyses,
most of the significant immune GO categories are innate immune responses, although adaptive immune
categories involved in immunoglobulin complexes and B & T cell proliferation appear in the EBseqHMM
analysis (table 2; electronic supplementary material, tables S4 and S5). Similar to the mammalian model,
broad organismal processes, encompassing both innate and adaptive immunity, are represented in the
zebra finch response to WNV.

Like many passerine birds infected in nature, zebra finches are moderately susceptible to WNYV,
developing sufficient viremia to serve as competent hosts, but generally resist mortality due to infection
[25]. While there are clear differences among treatments in terms of differentially expressed genes
(table 1), the modest effect of treatment on overall expression profile (electronic supplementary material,
figures S1 and S2) may be a reflection of this moderate susceptibility. Most zebra finches are able to
clear WNV infection by 14 dpi [25]. WNV infection intensity varies among tissues [20], but due to the
spleen’s important role in the avian immune system [54,55] we expect the results presented here to be
representative of the overall immune response. Although we expect to have missed some genes that
are regulated in response to infection, DEseq2 has been shown to perform very well (low false positive
rate) in experiments with a sample size of three [56]. Further studies will also be required to document
more subtle, and tissue-specific patterns of gene regulation in response to infection. We note that we only
sampled our control group at 4 dpi and thus, do not have a direct procedural control at 2 dpi. Changes in
gene expression at 2 dpi therefore could be in part due to the injection itself. Pronounced DE of immune-
related genes at 2 dpi, however, suggests that changes in gene expression were driven by WNV infection
rather than by the injection, which might be predicted to trigger a more general stress response.

We have begun to develop the zebra finch as an avian model for the host response to WNV infection.
We show here that in terms of gene expression, the zebra finch immune response is largely conserved
with that seen in mammalian-based studies (table 1). Additionally, we identify many components of
the immune system that have not been previously implicated in the host immune response to WNV.
This potentially reveals an avian-specific immune response and highlights avenues for future research.
Combined with our recent immunological characterization [25], we have broadly described the immune
response of a moderately susceptible avian host for WNV. This sets the stage for future comparative
work to uncover the genetic basis of variable avian susceptibility to WNV infection.

4. Methods

4.1. Experimental set-up

All animal use was approved by the USGS National Wildlife Health Center Institutional Animal Care
and Use Committee (IACUC Protocol: EP120521) and this study was performed in accordance with
USGS TACUC guidelines. The experimental infection set-up is described in detail in [25]. Briefly, nine
female zebra finches were randomly divided into three cohorts, one unchallenged and two challenged
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(n=3 each). Birds were challenged subcutaneously with 100l BA1 media containing 10° plaque-
forming units (PFU) of the 1999 American crow isolate of WNV (NWHC 16399-3) and sacrificed at 2 and
4 dpi, corresponding to peak viremia. Uninfected individuals were injected with 100 ul BA1 media and
sacrificed at 4 dpi. WNV infection was confirmed by RT-PCR, as previously described [26], in lung and
kidney pooled tissue [25]. Due to the critical role of the spleen in the initiation of the immune response,
and its common use in experimental infection gene expression studies [57-60], we focused our study
on gene expression in the spleen. Spleens from each individual were removed, placed into RNAlater
(Qiagen, Valencia, CA, USA), and frozen at —80°C until RNA extraction.

4.2. RNA extraction and sequencing

Whole spleen tissue was homogenized in Tri-Reagent (Molecular Research Company) and total RNA
was purified with a Qiagen RNeasy (Valencia, CA, USA) mini kit following the manufacturer’s protocol.
RNA was DNAse treated and purified. Purified RNA was quality assessed on a Bioanalyzer (Agilent,
Wilmington, DE, USA) to ensure RNA quality before sequencing (RIN = 6.6-8.1). All library prep and
sequencing was performed at the University of Illinois Roy J. Carver Biotechnology Center. A library for
each sample was prepared with an Illumina TruSeq Stranded RNA sample prep kit. All libraries were
pooled, quantitated by qPCR, and sequenced on one lane of an Illumina HiSeq 2000 with a TruSeq SBS
Sequencing Kit producing paired-end 100nt reads. Reads were analysed with Casava 1.8.2 following
manufacturer’s instructions (Illumina, San Diego, CA). Sequencing data from this study have been
deposited in the NCBI Sequence Read Archive (BioProject: PRINA352507).

4.3. Adapter trimming and read mapping

We removed Illumina adapters from reads with Trim Galore! v0.3.7 (http://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/) which makes use of Cutadapt v1.7.1 [61]. Reads were then
mapped to the zebra finch genome (v3.2.74,26) using TopHat v2.0.13 [62], which uses the aligner Bowtie
v2.2.4 [63]. We specified the library type as fr-firststrand in TopHat2. Successfully mapped reads were
converted from SAM to BAM format with SAMtools View v1.2 [64,65] and counted in htseq-count v0.6.0
specifying ‘-s rev’ [66]. This assigned zebra finch Ensembl gene IDs and we only retained genes with >5X
mapping across each sample.

4.4. Differential expression

Gene counts were then normalized for read-depth and analysed for DE in DEseq2 v1.8.1 [29]. We analysed
DE across four comparisons: Control versus Infected, Control versus 2 dpi, Control versus 4dpi, and
2dpi versus 4dpi. We visualized expression profiles in R ©.3.3.0 [67] by PCA with the R package
pcaExplorer [68], and hierarchical clustering heat maps with the ggplot2 library [69] following the DEseg2
manual. DEseq2 tests for DE with a Wald test and genes were considered differentially expressed if the
Benjamini & Hochberg [70] FDR correction for multiple testing p-value less than 0.10. We chose this
significance threshold as DEseq2 is generally conservative in classifying DE [71]. Furthermore, this cut-
off is used by the DEseq2 authors [29] and has been used in other RN Aseq experimental infection studies
[72]. We plotted genes of interest individually with the plotCounts function in DEseq2 and clustered
expression profiles of these genes with the pheatmap R library to view expression levels across samples
and treatments.

We tested DE genes for enriched gene ontology (GO) categories with GOrilla [41,42]. GOrilla does
not perform analyses with zebra finch Ensembl IDs, so we converted zebra finch Ensembl IDs to
human Ensembl IDs using BioMart [73]. We used this set of 10152 genes for analysis. For each
pairwise comparison, we used the FDR ranked order DE genes from DEseq2. Statistical significance
was determined with p-values corrected for multiple hypothesis testing (p < 0.05) using the Benjamini &
Hochberg method [70]. To visualize DE results in the context of the RLR pathway, we used Pathview
v1.8.0 [46] to plot the log fold change of each gene detected in our dataset into the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway (KEGG ID = 04622) [74,75].

4.5. Time-course gene expression

In addition to the pair-wise comparisons performed in DEseq2, we were interested in understanding
how clusters of genes are differentially expressed over the time course of infection. Thus, we performed
DE analyses in EBSegHMM [30]. EBSegHMM uses a Bayesian approach with a hidden Markov model
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to identify DE between ordered conditions. Genes are then grouped into expression paths (i.e. ‘Up-
Down’, ‘Down-Down’), in which DE occurs when expression paths change between at least one adjacent
condition. For example, a gene upregulated at both 2 dpi relative to Control and 4 dpi relative to 2 dpi
would be classified as ‘Up-Up’. We included three time points, with Control individuals classified as t1,
2dpi as t2 and 4dpi as t3. Genes were considered DE at posterior probability >0.99 and FDR <0.01.
We chose a more stringent cut-off in this analysis as EBseq can be liberal in classifying differential
expression [71] and based on visual inspection of expression profiles. We ordered genes based on
posterior-probability for each expression path and performed the GO analysis described above.
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