
RESEARCH ARTICLE

Structural determination of the complement

inhibitory domain of Borrelia burgdorferi

BBK32 provides insight into classical pathway

complement evasion by Lyme disease

spirochetes

Jialei Xie1, Hui ZhiID
1, Ryan J. GarriguesID

2, Andrew Keightley3, Brandon L. GarciaID
2☯*,

Jon T. SkareID
1☯*

1 Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Sciences

Center, Bryan, Texas, United States of America, 2 Department of Microbiology and Immunology, Brody

School of Medicine, East Carolina University, Greenville, North Carolina, United States of America, 3 Division

of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City,

Kansas City, Missouri, United States of America

☯ These authors contributed equally to this work.

* garciabr18@ecu.du (BLG); jskare@medicine.tamhsc.edu (JTS)

Abstract

The carboxy-terminal domain of the BBK32 protein from Borrelia burgdorferi sensu stricto,

termed BBK32-C, binds and inhibits the initiating serine protease of the human classical

complement pathway, C1r. In this study we investigated the function of BBK32 orthologues

of the Lyme-associated Borrelia burgdorferi sensu lato complex, designated BAD16 from B.

afzelii strain PGau and BGD19 from B. garinii strain IP90. Our data show that B. afzelii

BAD16-C exhibits BBK32-C-like activities in all assays tested, including high-affinity binding

to purified C1r protease and C1 complex, and potent inhibition of the classical complement

pathway. Recombinant B. garinii BGD19-C also bound C1 and C1r with high-affinity yet

exhibited significantly reduced in vitro complement inhibitory activities relative to BBK32-C

or BAD16-C. Interestingly, natively produced BGD19 weakly recognized C1r relative to

BBK32 and BAD16 and, unlike these proteins, BGD19 did not confer significant protection

from serum killing. Site-directed mutagenesis was performed to convert BBK32-C to resem-

ble BGD19-C at three residue positions that are identical between BBK32 and BAD16 but

different in BGD19. The resulting chimeric protein was designated BXK32-C and this

BBK32-C variant mimicked the properties observed for BGD19-C. To query the disparate

complement inhibitory activities of BBK32 orthologues, the crystal structure of BBK32-C

was solved to 1.7Å limiting resolution. BBK32-C adopts an anti-parallel four-helix bundle

fold with a fifth alpha-helix protruding from the helical core. The structure revealed that the

three residues targeted in the BXK32-C chimera are surface-exposed, further supporting

their potential relevance in C1r binding and inhibition. Additional binding assays showed that

BBK32-C only recognized C1r fragments containing the serine protease domain. The struc-

ture-function studies reported here improve our understanding of how BBK32 recognizes
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and inhibits C1r and provide new insight into complement evasion mechanisms of Lyme-

associated spirochetes of the B. burgdorferi sensu lato complex.

Author summary

Lyme disease, caused by Borrelia burgdorferi sensu lato complex, is the most common

tick-borne infection in the Northern hemisphere. As a pathogen that is transmitted within

blood and body fluids, Borrelia species must combat the complement system, which is a

soluble host defense pathway that marks invaders for elimination. Previously, we demon-

strated that the B. burgdorferi protein BBK32 blocks the activation of the classical pathway

of complement by binding to and inhibiting the initiating protease, C1r. Here we show

that the BBK32 orthologue from B. garinii, designated BGD19, is unable to neutralize

complement-mediated serum killing. In contrast, BBK32 and the B. afzelii orthologue

BAD16 potently inhibits serum killing. Comparison of the amino acid sequences of these

proteins identified three residues unique to BGD19 that contribute to its reduced inhibi-

tory activity. The three-dimensional structure of BBK32-C, reported here, showed that

these residue positions are surface exposed in BBK32, further supporting their role in C1r

inhibition. These results render important insight into how Lyme disease-associated spi-

rochetes recognize and block an important human innate immune pathway and provide

mechanistic insight into evolutionarily optimized C1r inhibitors.

Introduction

Spirochetes belonging to the Borrelia burgdorferi sensu lato complex are the causative agent of

Lyme borreliosis and include B. burgdorferi sensu stricto, B. garinii, and B. afzelii. B. burgdorferi
sensu stricto (referred to as B. burgdorferi hereafter) causes 300,000 cases of Lyme disease in

the United States each year [1], while B. garinii and B. afzelii are the most common etiological

agent of Lyme disease in Europe and Asia [2]. B. burgdorferi sensu lato are the leading arthro-

pod-borne infectious agents in the Northern hemisphere and are capable of hematogenous

dissemination whereby a wide range of remote host tissues are colonized. To survive and per-

sist in immunocompetent hosts, Lyme-associated spirochetes must evade host immune

defenses including the evolutionarily ancient proteolytic cascade of innate immunity known as

the complement system.

Complement is a group of nearly three dozen proteins that combine to coordinate a

tightly controlled set of proteolytic reactions directed at target cell surfaces [3,4]. Comple-

ment activation is initiated by soluble pattern recognition proteins which are capable of dis-

cerning foreign molecular surfaces. The specific mode of recognition defines the three

conventional pathways of complement known as the classical pathway, lectin pathway, and

alternative pathway. For instance, the classical pathway is activated upon binding of the

complement protein C1q to antigen-bound antibodies (i.e. immune complexes). Likewise,

the lectin pathway is activated following the binding of mannose-binding lectin or ficolins

to foreign carbohydrate structures, while the alternative pathway is constitutively activated

at low levels via a mechanism referred to as ‘tick-over’ [3,4]. Independent of the molecular

initiating event, all three pathways proceed by activation of a series of specialized serine pro-

teases that converge on the central molecule of complement, C3. C3 is cleaved by enzymatic

complexes called C3 convertases which results in complement amplification at the target
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surface, activation of the terminal pathway of complement, and induction of downstream

effector functions. Complement activation ultimately results in the opsonization of targeted

surfaces, recruitment of professional phagocytes, and direct lysis of susceptible membranes

[3,4].

Host cells express several proteins which function to regulate complement and thus are typ-

ically protected from unintended targeting by the cascade. In contrast, pathogens that traffic in

fluids where complement is present at high concentrations have necessarily evolved mecha-

nisms to evade complement detection and activation. For example, many human pathogens

secrete membrane-associated proteins which bind endogenous host regulators of complement

[5]. In this regard, a prominent bacterial target is the dominant negative regulator of the alter-

native pathway, factor H. Indeed, B. burgdorferi sensu lato species themselves are known to

encode up to five distinct proteins (CspA, CspZ, ErpP, ErpC, and ErpA; note that the latter

three are also referred to OspE-related proteins; Erps) that bind to and recruit factor H to the

bacterial surface, thereby hijacking its complement protective activities [6–13]. In addition to

factor H-binding proteins, distinct borrelial proteins are known that specifically block the for-

mation of the membrane attack complex [14–16], recruit host plasminogen and degrade com-

plement components [17–20], or bind directly to other complement components [21,22]. In

total nearly a dozen B. burgdorferi sensu lato proteins have now been identified that exhibit

specific complement inhibitory activities [23].

Within the small arsenal of borrelial complement inhibitors, the surface-expressed lipo-

protein B. burgdorferi BBK32 remains the lone identified and characterized classical path-

way-specific inhibitor [22]. The classical pathway is controlled by the action of the first

component of complement, C1, which is a multi-protein complex composed of C1q bound

to a heterotetramer of two serine proteases, C1r and C1s (S1 Fig). C1 thereby functions as

both the pattern recognition molecule and initiating zymogen of the classical pathway. The

C1 complex circulates in blood in an inactive form until C1q is recruited to the surface via

recognition of receptors such as immune complexes. C1q-binding promotes autocatalytic

activation of the C1r protease within the C1 complex which then cleaves C1s to form fully

activated C1. At this step the C1s enzyme cleaves complement components C2 and C4, and

the classical pathway intersects the lectin pathway at the formation of classical/lectin path-

way C3 convertases (C4b2a). C3 convertases then convert complement C3 into its activated

forms, which in turn drive downstream reactions of the cascade. Previously we have shown

that the C-terminal globular domain of B. burgdorferi BBK32 (termed BBK32-C) blocks

classical pathway activation by binding with high-affinity to the initiating serine protease

C1r, and preventing both its autocatalytic and C1s cleavage activities within the C1 complex

[22] (S1 Fig).

In this study we investigated the activity of BBK32 orthologues encoded by the prevalent B.

burgdorferi sensu lato species B. garinii and B. afzelii to better understand the structural and

mechanistic basis for BBK32-mediated C1r inhibition. Herein we report the first crystal struc-

ture of the anti-complement domain of BBK32 which reveals a novel helical bundle fold. A chi-

meric mutagenesis strategy provided additional insight into the reduced in vitro activities of B.

garinii BBK32 orthologue BGD19 relative to the B. afzelii BBK32 orthologue BAD16 and B.

burgdorferi BBK32 itself. Biochemical studies were then used to map the BBK32 binding site

on human C1r and demonstrated that the serine protease (SP) domain was required for

BBK32/C1r complex formation. The results of this study significantly improve our under-

standing of the unique classical pathway inhibition properties of BBK32 and suggest that

BBK32-mediated complement evasion activity is shared across major species of Lyme disease-

associated spirochetes.

Structure and inhibitory activity of BBK32 orthologues
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Results

BBK32 orthologues identified within Borrelia burgdorferi sensu lato
complex

B. burgdorferi BBK32 is a surface-exposed lipoprotein with multiple roles in vertebrate host

interactions [22,24–32]. Nearly two decades ago BBK32 was shown to interact with human

fibronectin [29] and later with certain host glycosaminoglycans [28]. Owing to these activities

BBK32 has long been viewed as the prototypical B. burgdorferi adhesin and has been shown to

play critical roles in colonization and dissemination [24–26,33]. While the interaction of

BBK32 with fibronectin and glycosaminoglycans is formed by non-overlapping binding sites

in the intrinsically disordered N-terminal region of BBK32 (BBK32-N) [28,30,31,34,35], the

globular C-terminal region of BBK32 (BBK32-C) is now known to bind specifically to the initi-

ating protease of the classical complement pathway, C1r [22] (Fig 1A). Orthologues to B. burg-
dorferi BBK32 within the sensu lato complex are encoded by B. afzelii (termed BAD16) and B.

garinii (termed BGD19). These BBK32 orthologues share ~90% and ~70% overall amino acid

sequence identity relative to B. burgdorferi BBK32, respectively (Fig 1B).

Recombinant BBK32 orthologues from B. garinii and B. afzelii bind with

high affinity to C1 and C1r

Among the B. burgdorferi sensu lato complex in vitro studies have shown that B. garinii is

more sensitive to the lytic component of human serum (i.e. the complement membrane attack

complex) than B. burgdorferi or B. afzelii [36]. Increased alternative pathway complement

activity has been posited as an explanation, as B. garinii does not recruit functional human

Fig 1. BBK32 orthologues are encoded by Borrelia burgdorferi sensu lato isolates. A) BBK32 is a multifunctional

lipoprotein expressed on the surface of B. burgdorferi. BBK32 interacts with three vertebrate host macromolecules via

non-overlapping binding sites. The intrinsically disordered N-terminal domain of BBK32 (BBK32-N) recognizes

certain glycosaminoglycans and the human extracellular matrix protein fibronectin, while the globular C-terminal

region (BBK32-C) binds to the complement protease C1r within the C1 complex. B) A sequence alignment of the C-

terminal domain of BBK32 orthologues from the Lyme disease-associated spirochetes B. burgdorferi BBK32 from

strain B31, B. garinii BGD19 from strain IP90, and B. afzelii BAD16 from strain PGau is shown. Residues selected for

mutational analysis in this study (i.e. “BXK32-C”) are highlighted in yellow and marked with arrows.

https://doi.org/10.1371/journal.ppat.1007659.g001
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factor H via factor H-binding proteins, unlike human serum-resistant B. burgdorferi and B.

afzelii [37]. However, prior work showed that B. garinii strains are also human serum sensitive

in a C1q-dependent manner, indicating a potential role for the classical complement pathway

in the human serum susceptibility phenotype of B. garinii [36]. In this regard the relative clas-

sical pathway-specific complement inhibitory activities of the BBK32 orthologues B. garinii
BGD19 and B. afzelii BAD16 are unknown. To address this, we produced recombinant pro-

teins of each orthologue corresponding to the C-terminal complement inhibitory region of

BBK32 (i.e. BBK32-C) (Fig 1B), and evaluated their ability to bind to human C1 complex and

isolated human C1r using surface plasmon resonance (SPR). These experiments show that

BAD16-C and BGD19-C each bind to human C1 and C1r with high affinity (Fig 2, S1 Table).

B. garinii BGD19 has significantly reduced complement inhibitory activity

relative to B. burgdorferi BBK32 or B. afzelii BAD16

Previously we have shown that the high-affinity interaction formed between BBK32-C and

human C1r correlates with blockade of classical pathway activation in assays where human

Fig 2. The C-terminal domain of BGD19 and BAD16 bind with high affinity to human C1 and C1r. The ability of

the C-terminal region of BGD19 (BGD19-C) and BAD16 (BAD16-C) to bind human C1 or C1r, was assessed by SPR.

BBK32-C was used as a control. For C1, a two-fold dilution series (0.1 to 150 nM) was injected over immobilized

BBK32-C (panel A), BGD19-C (panel B), and BAD16-C (panel C). The raw sensorgrams are drawn as black lines and

the results of kinetic fitting analysis using Biacore T200 Evaluation Software are drawn as red lines. For C1r the a

single-cycle analysis was performed using a five-fold dilution series (1.6 to 1000 nM) of BBK32-C (panel D), BGD19-C

(panel E), and BAD16-C (panel F). For clarity, the dissociation phase of each sensorgram is labeled with the C1r

injection concentration. Sensorgrams from a representative injection series are shown and all experiments were

conducted in triplicate with the dissociation constants (KD) reported as the mean ± S.D.

https://doi.org/10.1371/journal.ppat.1007659.g002
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serum is used as the source of complement [22]. In a classical pathway-specific ELISA assay

that monitors the deposition of the complement activation products C3b or membrane attack

complex (MAC) we found that BGD19-C (IC50, C3b deposition = 32 nM; IC50, MAC deposition = 35

nM) exhibited a two to three fold decrease in potency relative to BBK32-C (IC50, C3b deposition =

14 nM; IC50, MAC deposition = 13 nM), whereas BAD16-C exhibited no greater than a two-fold

increase in potency (IC50, C3b deposition = 9.6 nM; IC50, MAC deposition = 5.9 nM) (Fig 3A and 3B)

based on non-overlapping 95% confidence intervals (S2 Table). In a classical pathway hemoly-

sis assay we found a larger difference in relative potency as concentrations of B. garinii BGD19

up to 1 μM failed to exhibit saturable inhibition of classical pathway activation in hemolysis

assays (estimated IC50 ~ 7,600 nM), unlike BBK32 (IC50 = 170 nM) or BAD16 IC50 = 55 nM)

which both exhibit dose-dependent protection of sheep red blood cell lysis by human serum

(Fig 3C, S2 Table).

Sequence alignment of BBK32, BAD16, and BGD19 reveals there are just three non-conser-

vatively substituted amino acids shared between BBK32-C and BAD16-C that are different in

BGD19-C (see highlighted residues and arrows Fig 1B). In B. burgdorferi BBK32 and B. afzelii
BAD16 these residues are Glu-308, Gln-319, and Glu-324, whereas in B. garinii BGD19 these

positions are changed to Lys-308, Lys-319, and Gln-324. To investigate the potential role of

these residues in mediating C1r inhibition, we produced a chimeric BBK32-C protein, termed

BXK32-C, where each residue was changed to the B. garinii BGD19 residue (i.e. BBK32-

E308K-Q319K-E324Q). Interestingly, the inhibitory activity of the chimeric BXK32-C shifts

from that of BBK32 to BGD19 (Fig 3A–3C). These data indicate that residues encoded at one

or more of these positions in BGD19 likely contribute to its observed reduction in human clas-

sical complement pathway inhibitory activity.

Next, we investigated the activity of BGD19 and BAD16 when expressed as full-length lipo-

proteins on the spirochetal surface by using the poorly adherent, non-infectious strain B314 of

B. burgdorferi. A shuttle vector containing each orthologous bbk32 gene controlled by its

native promoter was constructed, transformed into strain B314, and designated as B314/

pCD100 (B. burgdorferi bbk32) [22], B314/pBGD19 (B. garinii bgd19), and B314/pBAD16 (B.

afzelii bad16) (S2A and S2B Fig). BBK32, BGD19 and BAD16 were expressed heterologously

in B. burgdorferi strain B314 and surface localization was assessed using the proteinase K acces-

sibility assay. Here, BAD16 and BGD19 were sensitive to protease digestion under conditions

that the subsurface endoflagellar protein, FlaB, was not affected, indicating that the BBK32

orthologues were surface exposed and that the borrelial cells were structurally intact, respec-

tively (S3 Fig). Additionally, we assessed the different transcript levels of the bbk32 orthologues

by qRT-PCR analysis and found that all orthologues were expressed at levels that were not sig-

nificantly different (S2C Fig). Next, Far Western blot experiments were performed using bioti-

nylated-human C1 (Fig 4A and 4B) or human C1r (Fig 4C and 4D) as probes and normalized

to the levels of B. burgdorferi BBK32 produced. These data suggest that BGD19 and BAD16

bind with similar affinity to human C1 (Fig 4B). However, when C1r is used as the probe,

BGD19 binds only weakly and not significantly different relative to a vector only control

(denoted as “Vector”), whereas BBK32 and BAD16 each bind to C1r (Fig 4D).

To assess the binding of C1r to native, surface exposed BAD16 and BGD19 relative to

BBK32, we incubated whole, intact borrelial strain B314 cells with immobilized C1r. In agree-

ment with the whole cell lysate assays (Fig 4) BGD19 showed significantly reduced C1r bind-

ing relative to BBK32 and BAD16 (Fig 5A). Next, we assessed the ability of heterologously

expressed BGD19 and BAD16 to confer serum resistance to strain B314. While expression of

BBK32 and BAD16 at the B314 surface protected spirochetes from classical pathway-mediated

complement killing, BGD19 did not significantly reduce killing relative to the vector only

Structure and inhibitory activity of BBK32 orthologues
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Fig 3. BGD19 and BAD16 inhibit the classical pathway of complement. A) Two in vitro assays of classical pathway

complement activation were used to assess the relative inhibitory activity of recombinant BBK32-C, BGD19-C,

BAD16-C, and BXK32-C. (A-B) an ELISA-based assay was used in the presence of a two-fold concentration series of

BBK32-C, BGD19-C, BAD16-C, and BXK32-C (1 nM to 2,000 nM). A) C3b deposition or B) MAC deposition was

detected in separate experiments each performed in duplicate. C) A classical pathway-specific hemolytic assay was

used in the presence of a concentration series of each inhibitor (31 to 1,000 nM) to assess the relative ability of each

protein to protect sensitized sheep red blood cells from complement-mediated lysis in 1% normal human serum. Each

experiment was performed in triplicate and values are reported as the mean ± SEM.

https://doi.org/10.1371/journal.ppat.1007659.g003

Structure and inhibitory activity of BBK32 orthologues

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007659 March 21, 2019 7 / 29

https://doi.org/10.1371/journal.ppat.1007659.g003
https://doi.org/10.1371/journal.ppat.1007659


control (Fig 5B). Interestingly, BAD16 exhibited greater resistance to serum relative to BBK32

(Fig 5B).

The crystal structure of B. burgdorferi BBK32-C determined to 1.7Å
resolution

Circular dichroism studies indicate that the secondary structure of BBK32-C is predominantly

helical in solution [38]. Beyond this, little is known about the structure of the complement

inhibitory domain of BBK32. To address this, we initiated crystallographic studies with the

goal of determining a high-resolution structure of BBK32-C. Attempts to crystallize the origi-

nal BBK32-C construct (i.e. residues 206–354) were unsuccessful. Preliminary limited proteol-

ysis experiments suggested that flexible residues were present at the N- and C-termini in

BBK32-C. A number of constructs were designed to truncate BBK32, ultimately yielding a C-

terminal truncation mutant lacking six residues (i.e. BBK32(206–348)) which produced protein

crystals (see Methods and Materials). Importantly, the BBK32(206–348) construct retained full

C1-binding, C1r-binding and complement inhibitory activities (S4A–S4C Fig).

Fig 4. Binding of C1 and C1r to BBK32 orthologues via far western blot analysis. A-D) BGD19, BBK32, and

BAD16 were expressed as lipoproteins on the surface of B. burgdorferi B314. Whole cell protein lysates were separated

on an SDS-PAGE gel and probed for binding to human C1 (panel A) or C1r (panel C) using a Far Western blot

overlay. Samples tested include strain B314/pBBE22luc (vector only control; labeled as “Vector”), B314/pBDG19

(labeled as BGD19), B314/pCD100 (labeled as BBK32), B314/pBAD16 (labeled as BAD16), and B314 alone (labeled as

null). FlaB was used as a loading control to normalize variation between C1 and C1r binding by BBK32, BAD16, and

BGD19 in panels A and C. Densitometry was performed from independent blots to quantify the observed signals as

depicted in panels A and C. Panels B and D report the signal detected for C1 and C1r to the samples indicated on the x

axis, respectively. All values were normalized relative to BBK32 binding to either C1 or C1r. P values between samples

are indicated above the bars.

https://doi.org/10.1371/journal.ppat.1007659.g004
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Fig 5. Native BAD16 and BGD19 exhibit differential binding to C1 and C1r and confer serum-resistance when

expressed on the surface of spirochetes. A) Natively expressed bad16 (labeled as BAD16) and bgd19 (labeled as

BGD19), were tested for their ability to bind immobilized C1r (blue circles) or BSA (yellow squares) relative to B314

containing BBK32 (labeled as BBK32) or B314 with vector DNA alone (labeled as Vector). Binding was done in

triplicate for independent samples and the average and standard deviation shown. B) The ability of each protein to

confer resistance to normal human serum (NHS) was assessed in the serum sensitive B. burgdorferi strain B314.

Structure and inhibitory activity of BBK32 orthologues
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BBK32(206–348) crystals grew in space group P65 with one molecule per asymmetric unit and

diffracted to 1.7 Å resolution (Table 1). BBK32(206–348) consists of five α-helices and adopts a

helical bundle fold (Fig 6A, S4D Fig). Starting from the N-terminus, helix α1 (residues Ser-

211 to Met-245) interacts with helices α3 (Lys- 256 to Ala-286), α4 (Ile-293 to Lys-317), and

α5 (Leu-323 to Ile-347) to form an anti-parallel four-helix bundle. Helix α2 (Asn-251 to Ala-

261) does not participate in the core bundle motif but rather forms hydrophobic interactions

with helix α1 and sits at an angle of ~120˚ relative to helix 3. Adaptive Poisson-Boltzmann

Solver software was used to calculate the electrostatic potential of the BBK32-C molecular sur-

face [39] (Fig 6B). The protein surface is characterized by several contiguous positively

charged regions with a larger negatively charged surface being formed where the C-terminal

and N-terminal helices meet. Overall the structure of BBK32-C is best characterized by a posi-

tively charged anti-parallel four helix bundle where a fifth helix, helix α2, protrudes away from

the helical core.

The relative activities of the BXK32-C mutant suggest that one or more of the non-conser-

vative amino acid substitutions between BBK32/BAD16 and BGD19 (i.e. E308, Q319, and

E324) contribute to C1r inhibitory activity (Fig 3). In the BBK32-C structure E308 is a surface

exposed residue located midway through α4, while Q319 and E324 are in the short loop

Sensitivity was scored as a ratio of the affected cells relative to the total cells viewed. Cells affected were categorized as

those that lacked motility, exhibited membrane damage, or manifested overt cell lysis (blue circles). Heat inactivated

NHS was used as a control and is shown on the right (yellow squares). P values between samples are indicated above

the bars. ns, not significant.

https://doi.org/10.1371/journal.ppat.1007659.g005

Table 1. Data collection and refinement statistics (molecular replacement).

Data collection and refinement BBK32(206–348)

Data collection

Space group P65

Cell dimensions

a, b, c, Å 66.53, 66.53, 79.51

α, β, γ,˚ 90.00, 90.00, 120.00

Resolution, Å 33.3–1.72 (1.78–1.72)

Rpim 0.019 (0.397)

I/σI 35.3 (1.9)

Completeness, % 99.8 (99.9)

Redundancy 22.1 (16.8)

Refinement

Resolution, Å 33.3–1.72

No. reflections 21,115

Rwork/Rfree 20.5 / 23.6

No. non-hydrogen atoms 1,265

Protein 1,149

Water 116

B-factors

Protein 41.98

Water 50.66

Rmsd

Bond lengths, Å 0.007

Bond angles,˚ 0.96

https://doi.org/10.1371/journal.ppat.1007659.t001

Structure and inhibitory activity of BBK32 orthologues

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007659 March 21, 2019 10 / 29

https://doi.org/10.1371/journal.ppat.1007659.g005
https://doi.org/10.1371/journal.ppat.1007659.t001
https://doi.org/10.1371/journal.ppat.1007659


connecting α4 and α5. Q319 and E324 are also surface exposed and together present a contigu-

ous surface region (Fig 7A and 7B). Homology models of BAD16-C, BGD19-C, and BXK32-C

were constructed using SWISS-MODEL and templated on the BBK32-C crystal structure (S5

Fig, PBD: 6N1L). These models predict that residues at the 308, 319, and 324 positions

(BBK32 numbering) [40,41] are also surface exposed in each BBK32 orthologue protein (S5

Fig). As each of these residues is exposed to solvent, they are potentially positioned to interact

with C1r, supporting the functional data implicating their involvement in BBK32-mediated

complement inhibitory activity (Fig 3).

The C1r-SP domain is required for high affinity interaction with BBK32-C

The crystal structure of BBK32(206–348) and identification of surface residues which affect C1r

inhibition presented above provides insight into the structural determinants for BBK32-me-

diated C1r recognition. However, the C1r domains involved in mediating BBK32/C1r complex

Fig 6. The crystal structure of the complement inhibitory domain of BBK32. A) The structure of BBK32(206–348)

solved at 1.7Å resolution (PDB: 6N1L). A ribbon diagram representation using a spectrum-based coloration scheme of

BBK32(206–348) where the N-terminal region of the protein is colored in blue and the C-terminus in red. The structure

is shown turned 180˚ about the y-axis. BBK32(206–348) is characterized by a helical bundle fold where helices 1, 3, 4, and

5 form a core four-helix bundle motif and helix 2 extends away from the core at ~120˚ relative to helix 3. B) BBK32 is

drawn in a surface representation in the same orientations as depicted in panel A. The Adaptive Poisson-Boltzmann

Solver as implemented in Pymol was used to calculate the electrostatic potential of the molecular surface. The color

scheme represents a gradient of electrostatic potential where regions of negative (red) and positive (blue) are

contoured at ± 2 kbT/e where kb is Boltzmann’s constant = 1.3806 x 10−23 J K-1, T is temperature in K, and e is the

charge of an electron = 1.6022 x10-19 C.

https://doi.org/10.1371/journal.ppat.1007659.g006
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formation are unknown. C1r is a 92 kDa chymotrypsin-like serine protease with a modular

architecture consisting of two complement C1r/C1s, Uegf, Bmp1(CUB) domains, an epider-

mal growth factor (EGF) domain, two complement control protein (CCP) domains, and a ser-

ine protease (SP) domain arranged in sequential fashion (CUB1-EGF-CUB2-CCP1-CCP2-SP)

(Fig 8). We noted that purified full-length C1r has been reported to undergo a series of autop-

roteolytic cleavages when incubated for prolonged periods [42,43]. Following overnight incu-

bation of purified C1r at 37˚C, we injected the autolytic C1r digestion reaction onto a size

exclusion chromatography column (Fig 8A, black line). The chromatogram displayed three

well-resolved peaks (labeled 1, 2, and 5). Next, purified BBK32(206–348) was injected alone

resulting in a single peak (labeled 4) (Fig 8A, red line). Finally, a 2-fold molar excess of

BBK32(206–348) was mixed with the autoproteolytic C1r digestion reaction and injected onto

the column (Fig 8A, blue dashed line). While peaks 1, 2, 4, and 5 remain, a new peak also

appears (labeled peak 3). Analysis of each peak in the BBK32(206–348)/C1r digestion injection

was performed using non-reducing SDS-PAGE (Fig 8B). A single band which migrates on the

gel at an apparent molecular mass of 55 kDa was found in peak 2. This same 55 kDa band co-

eluted with BBK32(206–348) in peak 3. Mass spectrometry analysis identified the 55 kDa band

observed in peaks 2 and 3 to be identical to one another and to correspond to residues Leu-

300 to Asp-705 of C1r. This region maps to the C-terminal portion of C1r and includes the C-

terminal six residues of the CUB2 domain and the entirety of the CCP1-CCP2-SP domains

(hereafter referred to as C1rCCP1-CCP2-SP-auto). The C1rCCP1-CCP2-SP-auto fragment identified

here closely matches the previously reported autolytic C1r fragment known as γ-B [42,43]. As

expected, the lower band observed on the gel which migrates at ~17 kDa in peak 3, was con-

firmed as BBK32(206–348) by mass spectrometry analysis.

Co-migration of BBK32(206–348) with the C1rCCP1-CCP2-SP-auto proteolytic fragment sug-

gested that BBK32 binds to the C-terminal region of C1r. To confirm this, we purified

C1rCCP1-CCP2-SP-auto and used SPR to assay its affinity for BBK32. Indeed, this autolytic C1r

fragment displays similar affinity for BBK32 (Fig 8C, KD = 1.5 nM) to that previously mea-

sured for full-length C1r (Fig 2D). To further refine the mapping of the BBK32 binding site on

Fig 7. Residues in the BBK32 to BGD19 chimera are solvent exposed. A) A chimeric BBK32-C protein encoding

three charged residues which are identical between BBK32 and BAD16, but different in BGD19-C, exhibits

BDG19-like activity (see sequence alignment in Fig 1B and Fig 3). The structure of BBK32-C is oriented to highlight

each of these residues (colored orange, stick representation). B) A molecular surface representation of BBK32-C in the

same orientation as shown in panel A indicates all three residues altered in the BXK32-C chimera construct are surface

exposed in the BBK32-C crystal structure.

https://doi.org/10.1371/journal.ppat.1007659.g007
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C1r we produced recombinant C1r domain truncations corresponding to the C-terminus of

C1r. While C1r-CCP1 and C1r-CCP1-CCP2 failed to interact with BBK32 in SPR binding

experiments, a construct containing only the CCP2-SP domains bound with similar affinity to

BBK32 (Fig 8D, KD = 3.9 nM) as was found for C1, C1r, and C1r CCP1-CCP2-SP-auto. Efforts to

produce a recombinant protein corresponding to the C1r SP domain only were unsuccessful.

However, collectively the data presented above strongly suggests that the SP domain of C1r is

required for high affinity interaction with BBK32. A model of full-length C1r was constructed

Fig 8. BBK32 binds to the C-terminal region of C1r and requires the SP domain for high affinity interaction. A-B)

Intrinsic proteolysis of C1r reaches completion upon overnight incubation at 37˚C resulting in the release of a

fragment corresponding to the C-terminal domains CCP1-CCP2-SP. The auto-catalyzed digestion reaction of C1r was

injected onto a size exclusion column. The C1rCCP1-CCP2-SP-auto proteolytic fragment elutes in peak 2. When

BBK32(206–348) is added to the C1r digestion reaction at 2-fold molar excess (relative to full-length C1r) a new peak

appeared, peak 3, which contains both BBK32(206–348) and the C1rCCP1-CCP2-SP-auto proteolytic fragment, as judged by

mass spectrometry analysis. C) To confirm that BBK32 recognizes the C-terminal C1r CCP-1-CCP2-SP domains, SPR

binding studies were performed. Purified C1rCCP1-CCP2-SP-auto exhibited high affinity interaction for BBK32(206–348)

(KD = 1.5 nM) D) Recombinant refolded His-C1r-CCP2-SP retains high affinity interaction (KD = 3.9 nM), whereas

recombinant His-CCP1 or His-CCP1-CCP2 alone fail to interact with BBK32(206–348). E) A model of full-length C1r is

shown which is built from the available crystal structures of C1r domain truncations (PDB’s: 4LOT, 6F39, and 1GPZ).

The location of the C1rCCP1-CCP2-SP-auto proteolytic fragment is indicated. Together these data indicate that BBK32

targets the C-terminal region of the C1r protease and requires the SP domain for high-affinity interaction.

https://doi.org/10.1371/journal.ppat.1007659.g008
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from the available C1r domain truncation mutants crystal structures [44–46], and the pro-

posed BBK32 binding site is shown (Fig 8E).

Discussion

Human complement is an evolutionarily ancient arm of the innate immune system that was

first described nearly 120 years ago. Historically, complement has been regarded as a ‘first-

line-of-defense’ against invading pathogens. Indeed, if a pathogen is unable to evade detection

by one of the three complement pathways, initiating serine proteases begin converting zymo-

gen complement proteins into activated fragments resulting in distinct but synergistic host

defense mechanisms that include: i) opsonization (C1q, C3b, C4b); ii) phagocyte recruitment

(C3a, C5a); iii) priming of the adaptive immune system (C1q, C3b, C4b, C3a, C5a); and iv)

lysis (membrane attack complex). In this context it is no surprise that microorganisms that

encounter blood, and other complement containing fluids, have evolved mechanisms to evade

complement recognition and activation. Lyme disease spirochetes of the Borrelia burgdorferi
sensu lato complex are among a group of human pathogens that have evolved several mecha-

nistically distinct extracellular complement inhibitor proteins [5,7,22]. For example, B. burg-
dorferi sensu lato species employ a well-known pathogenic anti-complement strategy via

expression of proteins which recruit the endogenous host regulator of the alternative pathway

of complement, factor H, to the bacterial surface [5–12,47,48]. Lyme-associated Borrelia also

produce a distinct set of surface proteins capable of binding host plasminogen and specifically

degrading complement components [17–20], proteins that prevent complement activation at

the level of C4 cleavage [21,49], and those that interfere with the formation of the membrane

attack complex [14–16].

While complement has traditionally been viewed as a sentinel against microbial intruders,

it is no longer considered an isolated innate immune response. Complement is integral to

homeostatic maintenance and has direct roles in the regulation of both T cell and B cell immu-

nity [50–52]. Interestingly, it has been hypothesized that the dominant function of some

microbial complement inhibitors may be to interfere with complement-dependent shaping of

adaptive immune responses, rather than protection from complement-mediated lysis [53]. In

our recent infectivity studies, we noted that when mice are genetically deficient in the classical

complement pathway pattern recognition molecule C1q they exhibit altered T cell and B cell

responses to B. burgdorferi infection compared to wild type mice [54]. This is of potential rele-

vance to BBK32-mediated classical pathway evasion as it has been shown that abrogated depo-

sition of C4 on follicular dendritic cells underlies diminished antigen presentation and alters

the kinetics of germinal center formation during Lyme borreliosis [55,56]. Given that C4 is

one of two native substrates for C1, and that BBK32 directly inhibits C1 activation, it is possi-

ble that BBK32 may contribute to the impairment of germinal center formation and therefore

the quality of antibody response to B. burgdorferi infections. Future studies will be important

to elucidate the in vivo role of BBK32-mediated classical pathway complement inhibition on

the subversion of T-dependent B cell responses by Lyme disease-causing spirochetes.

In regards to human serum susceptibility, B. burgdorferi and B. afzelii have been classified

as resistant whereas B. garinii strains have often been classified as sensitive [36]. Differences in

the susceptibility of Borrelia burgdorferi sensu lato species to complement may reflect an in
vivo selection process that contributes to the pathogens ability to colonize different reservoirs

[57–59]. For instance, a small rodent, Peromyscus leucopus, is the natural reservoir for B. burg-
dorferi in the Midwest and northeastern United States [60] whereas in Europe rodents and

migratory birds are the principal reservoirs for B. afzelii and B. garinii, respectively [61]. For

this study, we selected human serum-resistant strains of B. burgdorferi (strain B31) and B.
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afzelii (strain PGau), as well as a human serum-sensitive strain of B. garinii (strain IP90), to

investigate the relative complement inhibitory activities of BBK32 orthologues. Quantitative

affinity measurements using SPR with purified proteins indicated that recombinant BGD19-C

binds C1r with similar affinity to that of BBK32-C and BAD16-C (Fig 2). Surprisingly,

BGD19-C showed slightly weaker inhibition in complement assays involving artificial surfaces

(Fig 3A and 3B), and conferred significantly reduced protection from complement-mediated

lysis to the naïve membranes of sheep red blood cells (Fig 3C). These results suggest that bind-

ing of recombinant C-terminal BBK32 orthologues is necessary but not sufficient for potent

C1r inhibitory activity. However, we note that when full-length BGD19 was expressed on the

surface of a surrogate B. burgdorferi strain, it bound C1r weakly in qualitative binding assays

relative to either full-length BBK32 or BAD16. It is unclear why C1r-binding observed in these

assays differs from the similar affinities measured with recombinant proteins using SPR.

Nonetheless, consistent with the weaker complement inhibitory properties of recombinant

BGD19-C, surface expressed full-length BGD19 failed to protect B. burgdorferi B314 from

complement-mediated killing (Figs 4 and 5). Collectively, our results show that B. garinii
BGD19 has significantly reduced capacity to inhibit in vitro classical pathway complement

activation compared to B. burgdorferi BBK32 or B. afzelii BAD16.

Our data support the notion that the relative increased susceptibility of B. garinii to human

serum killing is related to the reduced activity of borrelial complement evasion proteins, as has

been previously proposed for B. garinii factor H-binding proteins [37]. However, the in vitro
serum-sensitivity classification scheme is recognized as being dependent on reagents, experi-

mental conditions, and importantly the strains being studied [23]. Like B. burgdorferi and B.

afzelii, B. garinii also causes human infections, and thus, some B. garinii strains can overcome

complement-mediated clearance in vivo. Borrelia burgdorferi sensu lato spirochetes, including

B. garinii, likely have multiple layers of functional redundancy that make up its complement

evasion repertoire in vivo. Thus, while the reduction in activity of a single complement inhibi-

tor like the BBK32 orthologue BGD19 is expected to contribute to the relative ability of B. gari-
nii to survive complement-mediated attack in vivo, it must be considered in the context of a

functionally redundant borrelial complement evasion system. Ultimately it will be the collec-

tive activities of these inhibitors, rather than dominance by a single complement evasion mole-

cule, that would be expected to drive in vivo susceptibility of Borrelia burgdorferi sensu lato
spirochetes to complement.

The crystal structure of B. burgdorferi BBK32-C presented here has provided the first

insight into the structural determinants required for high affinity C1r interaction and inhibi-

tion by borrelial BBK32-like proteins. We probed the BBK32 molecular surface using a chime-

ric BBK32-C construct encoding three non-conserved surface residues originating from

BGD19 (i.e. BXK32-C) and found that these substitutions alone shift the inhibitory activity of

BBK32 towards that of BGD19. BBK32-like sequences are unique to the Borrelia genus and

include three families of proteins found in relapsing fever-associated spirochetes termed

FbpA, FbpB, and FbpC [62]. The relative sequence conservation of Fbp proteins to BBK32 is

much lower than that of B. burgdorferi sensu lato orthologues and ranges between 25% and

60% identity at the amino acid level. Our data indicate that subtle changes in amino acid

sequences can result in significant differences in the ability of B. burgdorferi sensu lato BBK32

orthologues to block human complement and thus it will be important to determine if

BBK32-like classical pathway complement inhibition is restricted to Lyme disease spirochetes

or is common to all pathogenic Borrelia.

B. burgdorferi BBK32, as well as its orthologues, have unique and apparently disparate func-

tions within the vertebrate host. The disordered N-terminal half acts as an adhesin by binding

to glycosoaminoglycans and the extracellular matrix protein fibronectin, while the ordered
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carboxy terminal half acts as a C1r-binding complement inhibitor (Fig 1A). While discrete

BBK32-binding sites have been identified for each of these host ligands, it remains unknown if

BBK32 interacts simultaneously with C1r and fibronectin or GAGs. This may be of impor-

tance as the formation of functionally synergistic ternary complexes involving virulence factors

from other pathogens, such as Staphylococcus aureus extracellular fibrinogen-binding protein

(Efb) in complex with complement C3 and fibrinogen, have been described [63]. Furthermore,

linkage of an intrinsically disordered host-interaction domain with an ordered host interaction

domain, like that observed in BBK32, is seen in Efb and several Gram positive MSCRAMMs

[63–65]. Whether BBK32-like, covalently linked, intrinsically disordered/ordered structural

domains with multifunctional host interaction properties is common in Borrelia–or even in

other human pathogens–has yet to be fully evaluated.

Among the multi-pronged borrelial complement evasion arsenal [23], BBK32 is unique in

its ability to specifically target the classical pathway of complement [22]. In fact, there are rela-

tively few examples of pathogenic strategies which specifically target the classical pathway and

BBK32 is the only known inhibitor which directly blocks the initiator protease C1r [66]. By

localizing the BBK32 interaction site to the catalytically active serine protease domain on C1r

and solving the high-resolution structure of BBK32-C in an unbound form, this study has

greatly improved our knowledge of the molecular basis for BBK32-mediated C1r inhibition.

Continued work in this area is needed to further refine the BBK32/C1r molecular interface

and to pinpoint key residues that drive complex formation, knowledge of which will greatly

improve our ability to harness the therapeutic potential of the potent and highly specific anti-

complement activities of BBK32 proteins for use in complement-related diseases.

Materials and methods

Bacterial strains and plasmid constructs

B. burgdorferi B31 strains ML23 and B314, as well as B. afzelii strain PGau and B. garinii strain

IP90, were grown in BSK-II media supplemented with 6% normal rabbit serum (Pel-Freez Bio-

logicals, Rogers, AR) under microaerobic conditions at 32˚C, 1% CO2 atmosphere, pH 7.6.

Strain B314 is a serum-sensitive, non-infectious strain B31 derivative that lacks most linear

plasmids [67,68]. All B. burgdorferi cells were enumerated by dark field microscopy.

Heterologous bbk32 genes from B. afzelii strain PGau and B. garinii strain IP90, designated

as bad16 and bgd19, respectively, were cloned into the shuttle vector pBBE22luc. To carry this

out, oligonucleotide primers were designed based on the sixteenth open reading frame of lp17

from B. afzelii strain PKo (Genbank accession number CP002942.1; region 12854–13912 of

lp17 from B. afzelii PKo) and the nineteenth open reading frame of lp17 from the B. garinii
strain PBr (Genbank accession number CP001309.1; region 12206–11160 of lp17 from PBr).

The letter “D” or “d” used to denote the orthologous protein or gene, respectively, is due to

their presence on the lp17 episome, which is referred to as the “D” plasmid in B. burgdorferi
strain B31 [69]. Note that the corresponding proteins from both B. afzelii strains are 100%

identical whereas the B. garinii proteins share 96% identity. Oligonucleotide primers were syn-

thesized by Eurofins, Inc. (Lousville, KY) and their corresponding sequences are shown in

Table 2. Oligonucleotide primers with sequences that overlapped with the borrelial gene and

the vector pBBE22luc were used for PCR amplification using genomic DNA from B. afzelii
strain PGau and B. garinii strain IP90 as template. The amplified fragments contained 395 and

491 bp of upstream sequences and 185 and 177 bp downstream from the translational start site

and stop codon corresponding to the 1059 bp bad16 and 1065 bp bgd19 genes, respectively.

The resulting PCR products were 1639 bp and 1733 bp for bad16 and bgd19, respectively. The

plasmid pBBE22luc was digested with BamHI HF and SalI HF (New England Biolabs, Ipswich,
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MA) and assembled separately with each of the aforementioned PCR fragments using the

manufacturer’s instructions for NEBuilder (New England Biolabs). The resulting constructs

were transformed into Escherichia coliDH5α cells (F–ϕ80lacZΔM15 Δ(lacZYA-argF)U169

recA1 endA1 hsdR17(rK
–, mK

+) phoA supE44 λ– thi-1 gyrA96 relA1) and transformants

selected on LB agar plates containing kanamycin at 50 μg/ml (Sigma-Aldrich; note that all

chemicals and reagents mentioned herein were purchased from Sigma-Aldrich unless indi-

cated otherwise). The resulting constructs, which contained bad16 and bgd19 expressed under

the control of their native promoters, were confirmed by sequencing and designated pBAD16

and pBGD19, respectively.

Transformation of strain B314 with pBAD16 and pBGD19 was done as previously

described [70]. Transformants were selected for resistance to kanamycin and screened by PCR

to confirm the presence of pBBE22luc vector. The cloning was confirmed with PCR and

sequencing with primers pncAf and lucf (Table 2).

Proteins

Recombinant BBK32-C (residues 206–354, B. burgdorferi strain B31), BBK32-C(206–348) (resi-

dues 206–348, B. burgdorferi strain B31), BGD19-C (residues 206–354, B. garinii strain IP90),

BAD16-C (residues 204–352, B. afzelii strain PGau), and BXK32-C (i.e. BBK32-C

E308K-Q319K-E324Q) were sub-cloned into the pT7HMT vector [71] and purified to

Table 2. Oligonucleotides used in this study.

Oligo-

nucleotide

Sequence (5’ to 3’) Description Refer-

ence

pBBE22-bad16usF GGATAGCATAGAGGTACCCGGGGATCCCAAACCTAAATATGGTCTTAAAGTAAAGATAG Oligonucleotide pair used to

amplify 1639 bp containing bad16
and the upstream/down region

from B. afzelii PGau with a 27 bp 5’

and a 22 bp 3’ flanking region

homologous to pBBE22luc vector,

including the BamHI site SalI sites.

This

studybad16ds-

pBBE22R

GCTTGCATGCCTGCAGGTCGACCATATTCTGATATATCCTGTAAACAGTGTT

pBBE22-

bgd19usF

GGATAGCATAGAGGTACCCGGGGATCCTTAGCAGCAACTGAAAAATTAGACAAAGC Oligonucleotide pair used to

amplify 1733 bp containing bgd19
and the upstream/down region

from B. garinii IP90 with a 27 bp 5’

and a 22 bp 3’ flanking region

homologous to pBBE22luc vector,

including the BamHI site SalI sites.

This

study

bgd19ds-

pBBE22R

GCTTGCATGCCTGCAGGTCGACAATTCTGATATAGCTTAAACAATATTTTTGAC

pncAf TATTGGAATTAATAGGCGGTGATG Oligonucleotide pair used to

confirm pBAD16, pBGD19, and

pCD100 constructs

This

studylucf GAGGGGTTGTATTTGTTGACG

qRT-

bad16F

TGGTGAAAGTGGTGAATTGAAGG Oligonucleotide pair used in the

qRT-PCR to check for bad16
expression in B314/pBAD16.

This

study

qRT-

bad16R

AGAATTTGAGCCTGAAATAGCTTG

qRT-bgd19F TTCCCTTAGCGGTGAAAGTGGTG Oligonucleotide pair used in the

qRT-PCR to check for bgd19
expression in B314/pBGD19.

This

studyqRT-bgd19R CTTGATCCTGAAATGCCTTGTAGG

flaBf CAGCTAATGTTGCAAATCTTTTCTCT Oligonucleotide pair used in the

qRT-PCR to check for flaB
expression in all the B314

background strains.

Hyde

et al.,

2007
flaBr TTCCTGTTGAACACCCTCTTGA

BBK32f GAATATAAAGGGATGACTCAAGGAAGTT Oligonucleotide pair used in the

qRT-PCR to check for bbk32
expression in B314/pCD100.

Hyde

et al.,

2007
BBK32r TTTGGCCTTAAATCAGAATCTATAGTAAGA

https://doi.org/10.1371/journal.ppat.1007659.t002
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homogeneity using protocols previously described for BBK32-C [22]. For BBK32-C(206–348), a

DNA fragment encoding BBK32 residues 206 to 348 was generated by PCR from the existing

pT7HMT-BBK32-C plasmid [22] using oligonucleotide primers that appended BamHI andNotI
sites at the 5’ and 3’ends, respectively. For BGD19-C, BAD16-C, and BXK32-C an Escherichia coli
codon-optimized DNA sequence flanked with a 5’ BamHI site, a 3’NotI site, and a stop codon

were synthesized commercially using IDT Technologies gBlock Gene Fragment service. Recombi-

nant C1r domain truncations corresponding to the CCP1, CCP1-CCP2, or CCP2-SP domains (as

defined by UNIPROT ID: P00736) were produced as follows. Synthetic E. coli codon-optimized

DNA (synthesized by IDT Technologies gBlock), corresponding to the sequence of human C1r

domains CCP1-CCP2-SP (amino acid residues 307–705), was used as a PCR template along with

oligonucleotide primers that appended BamHI andNotI at the 5’ and 3’ends, respectively, to pro-

duce DNA fragments corresponding to CCP1 (residues 309–373), CCP1-CCP2 (residues 309–

449), and CCP2-SP (residues 376–705). All C1r domain truncations were purified under denatur-

ing conditions using previously published protocols [71] with the following modifications. CCP1

and CCP1-CCP2 were refolded by overnight dialysis at room temperature into 100 mM Tris (pH

8.6), 20 mM glycine, 1 mM ethylenediaminetetraacetic acid (EDTA), 1mM L-cysteine, and 2.5 M

Urea. A second overnight dialysis was then performed into 20 mM Tris (pH 8.0), 10 mM Imidaz-

ole, 500 mM NaCl and further purified using nickel affinity and gel filtration chromatography

using a HiLoad Superdex 75 PG column (GE Healthcare) CCP2-SP was refolded according to

previously published protocols [72]. Briefly, 5 ml’s of the CCP2-SP denaturing nickel affinity elu-

ent was rapidly diluted into 50 ml’s of a buffer containing 50 mM Tris (pH 8.3), 3 mM reduced

glutathione/1mM oxidized glutathione, 5 mM EDTA, and 500 mM L-arginine and allowed to

incubate overnight at room temperature. This step was followed by overnight dialysis into 50 mM

Tris (pH 7.4), 145 mM NaCl. Following refolding, CCP2-SP was further purified by gel filtration

chromatography using a HiLoad Superdex 200 PG column (GE Healthcare). Purified C1 complex

and full-length C1r enzyme were obtained from Complement Technology (Tyler, TX). Biotinyla-

tion of C1 and C1r was done as previously described [22].

Surface plasmon resonance

All SPR experiments were conducted on a Biacore T200 instrument at 25˚C and unless other-

wise noted using a flowrate of 30 μl min-1 and a running buffer of HBS-T (20 mM HEPES (pH

7.3), 140 mM NaCl, 0.005% Tween-20). Proteins were immobilized using standard amine cou-

pling chemistry on CMD200M biosensor chips (Xantec) as described previously [22]. The fol-

lowing immobilization densities were used for the corresponding injection series: C1 analyte

over BBK32-C (680 RU), BGD16-C (850 RU), BAD16-C (720 RU); C1r analyte over BBK32-C

(1800 RU), BGD19-C (4060 RU), BAD16-C (3200 RU); C1rCCP1-CCP2-SP-auto analyte over

BBK32(206–348) (780 RU, 1760 RU, 1600 RU). The C1 and C1r injection series were performed

in HBS-T buffer supplemented with 5 mM CaCl2. C1 injections consisted of a twelve point,

two-fold dilution series ranging from 0 to 150 nM C1 for 2 min association and 3 min dissocia-

tion. C1r was injected using a single-cycle kinetic format [73] using a five point, five-fold dilu-

tion series ranging from 1.6 to 1000 nM. Regeneration to stable baseline was achieved by

injecting HBS-T supplemented with 10 mM EGTA for 1 min followed by three 30 s injections

of a solution containing 0.1 M glycine (pH 2.2), 2.5M NaCl. C1rCCP1-CCP2-SP-auto, C1rCCP1,

C1rCCP2, and C1rCCP1-CCP2-SP injections were identical to that of C1r using a concentration

range of 0.8 to 500 nM. Kinetic analysis was performed for each set of sensorgrams injections

using T200 Evaluation Software (GE Healthcare) using a 1:1 (Langmuir) binding model and a

dissociation constant (KD) was calculated from the resulting fits. All injection series were per-

formed in triplicate and the mean value is reported for each KD ± standard deviation.
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Complement inhibition assays

The ability of recombinant BBK32 orthologue proteins to inhibit the activation of human com-

plement was assessed using two assay formats. First, an ELISA-based assay was used that relies

on the activation of the classical pathway via surface-immobilized IgM (Athens Research and

Technology) and subsequent detection of the complement deposition products derived from

normal human serum (Innovative Research), specifically C3b or MAC through use of mono-

clonal antibodies (both purchased from Santa Cruz Biotechnology) [74]. Each borrelial protein

was evaluated using a duplicate 12-point, two-fold dilution series ranging from 2 to 2000 nM.

A second assay was used which monitors the hemolytic activity of human complement activa-

tion via the classical pathway in the presence of recombinant BBK32-C or the BBK32 ortholo-

gues BAD16-C, BGD19-C, or BXK32-C by using sensitized sheep erythrocytes (Complement

Tech, Tyler, TX). In each case these assays were performed in an identical manner to those

described previously in detail for the evaluation of BBK32-C [22].

Proteinase K accessibility assay

B. burgdorferi strains B314/pBAD16 and B314/pBGD19 were grown in complete BSK-II

media, harvested by centrifugation at 5,800 x g, and washed twice with PBS. The cell pellet was

re-suspended in 0.5 ml of either PBS alone or with PBS with proteinase K (Invitrogen) to a

final concentration of 200 μg ml-1. All samples were incubated at 20˚C for 40 min. Reactions

were terminated by the addition of phenylmethylsulfonyl fluoride (PMSF) to a final concentra-

tion of 1 mM. Cells were again pelleted by centrifugation (9,000 x g for 10 min at 4˚C), washed

twice with PBS containing 1 mM PMSF, re-suspended in Laemmli sample buffer, and resolved

on SDS-PAGE. The separated proteins were transferred to a PVDF membrane (Thermo Fisher

Scientific) and probed as described below with anti-BAD16, anti-P66, and anti-FlaB antibod-

ies, respectively.

B. burgdorferi whole cell adherence assays

B. burgdorferi adherence assay was done as previously described with slight modifications

[22,75]. Briefly, poly-D-lysine pre-coated coverslips (Corning Biocoat) were coated with 1 μg

human C1r (Complement Tech) or BSA, respectively, and incubated at 4˚C overnight. The

coverslips were washed thoroughly in PBS to remove excess unbound proteins. The coverslips

were then blocked with 3% BSA at room temperature for 1 hr. B. burgdorferi strains B314/

pBBE22luc (vector only control), B314/pCD100 (expresses bbk32), B314/pBAD16 (expresses

bad16), and B314/pBGD19 (expresses bgd19) were grown to mid-logarithmic phase at 32˚C,

1% CO2, pH 7.6. All B. burgdorferi strains were subsequently diluted to 107 organisms/ml in

BSK-II medium without serum. The resulting B. burgdorferi samples, in 0.1 ml volumes, were

applied onto the coverslips and incubated for 2 hr at 32˚C. Unbound bacteria were removed

from the coverslips by gentle washing with PBS; this wash step was repeated 7 times. The cov-

erslips were applied to a glass slide and the binding of spirochetes was scored by dark field

microscopy.

Serum complement sensitivity assay

Complement sensitivity assays were performed as previously described [22]. Briefly, B. burg-
dorferi strains were grown to exponential phase at 32˚C, 1% CO2, pH 7.6, and 80 μl of a 106

cell suspension in BSK-II medium was added to 20 μl of normal human serum (NHS; Comple-

ment Technologies) to give a final volume of 100 μl (i.e., 20% NHS). The samples were placed

in microtiter plates and the suspensions were sealed and incubated at 32˚C for 2 h. Heat-
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inactivated normal human serum (hiNHS) was used as a control. After incubation, B. burgdor-
feri cells were scored by dark field microscopy and the percentage of viable B. burgdorferi cells

were calculated from randomly chosen fields and based on immobilization, loss of cell enve-

lope integrity, and/or overt lysis.

Crystallization, structure determination, refinement, and analysis

BBK32(206–348) was concentrated to 5.1 mg ml-1 in a buffer of 10 mM HEPES (pH 7.3), 50 mM

NaCl. Crystals of BBK32(206–348) were obtained by vapor diffusion of sitting drops at 20˚C.

Drops were setup by mixing 1 μl of protein solution with 1 μl of precipitant solution. Two crys-

tallization conditions were identified. The first condition contained 0.1 M MES (pH 6.5), 0.2M

ammonium sulfate, and 30% PEG-MME 5,000. Small plate clusters reproducibly appeared in

this condition between 2 and 5 d with rounds of microseeding producing large plates which

could be harvested and cryoprotected with supplementation of 5% glycerol to the precipitant

solution. Crystals in this condition grew in the space group P21 with four BBK32(206–348) mole-

cules in the asymmetric unit, diffracting to 2.5 Å resolution. A second condition was identified

containing 15% PEG 3,350 and 0.1M succinic acid (pH 7.0). These crystals appeared only after

prolonged incubation (i.e.,> 6 months). Cryoprotection was achieved by supplementing the

precipitant solution with 20% glycerol. These crystals grew in space group P65 with a single

copy of BBK32(206–348) in the asymmetric unit, diffracting to 1.7Å. Monochromatic X-ray dif-

fraction data were collected at 0.973-Å wavelength using beamline 22-ID of the Advanced

Photon Source (Argonne National Laboratory). Diffraction data were integrated, scaled, and

reduced using the HKL2000 software suite [76]. Of all deposited structures in the RCSB data-

base, none share> 25% sequence identity to BBK32-C. Exhaustive attempts at various molecu-

lar replacement strategies utilizing the P21 dataset failed. However, a single solution was found

using the P65 dataset by the MRage program [77] implemented via the PHENIX crystallogra-

phy software suite [78–80]. MRage was configured to use a homology search based on the top

three hits for BBK32 obtained from the HHPRED server implemented via the MPI Bioinfor-

matics Toolkit [81]. The top scoring solution was a homology model of 51 residues (BBK32 resi-

dues 267–317) based on a partial structure of PDBID: 5J0K [82]. Despite a relatively low scoring

solution (LLG = 43.8, TFZ = 6.6), initial phases obtained from this search, yielded an initial

PHENIX.AUTOBUILD model which refined to 24%/27% (Rwork/Rfree). Subsequent manual

building was performed using COOT [83] and iterative cycles of refinement using PHENIX.

REFINE produced a final refined model of 20.5%/23.6% (Rwork/Rfree). Residues 206–208 are

missing from the final model due to poor electron density and thus the completed model con-

tains BBK32 residues 209–348. Using the final refined model obtained from this crystal as a

molecular replacement search model readily provided a solution for the P21 crystal and a final

refined model of 20.8% / 26.9% (Rwork/Rfree). Refined coordinates and structure factors for the

P65 crystal form have been deposited in the Protein Data Bank, Research Collaboratory for

Structural Bioinformatics, Rutgers University (www.rcsb.org/) under PDB ID code 6N1L. A

description of crystal cell constants, diffraction data quality, and properties of the final model

for BBK32(206–348) can be found in Table 1. Representations of protein structures and electron

density maps were generated by PyMol (www.pymol.org/). Homology models of BGD19-C,

BAD16-C, and BXK32-C presented in S5 Fig were created using SWISS-MODEL in user-tem-

plate mode where the crystal structure of BBK32-C (PDB:6N1L) served as a template.

C1r autolytic digestion and BBK32-binding site analysis

A total of 400 μl of purified C1r (Complement Tech) at 1.0 mg ml-1 was diluted into an equal

volume of 50 mM Tris (pH 8.0), 0.5 mM CaCl2 and allowed to incubate overnight at 37˚C.
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150 μl of this reaction was mixed with either 100 μl of buffer or 100 μl of BBK32(206–348) at 2

fold molar excess relative to full-length C1r. A third sample was prepared with only

BBK32(206–348). Each 250 μl sample was then injected onto a SuperDex 200 Increase 10/300 GL

small scale size-exclusion column (GE Healthcare) previously equilibrated in 10 mM HEPES

(pH 7.3), 140 mM NaCl at a flowrate of 0.5 ml min-1. Peaks were evaluated by SDS-PAGE

under non-reducing conditions. The bands in ‘Peak 3’ (elution volume 14.5 to 15.5) were iden-

tified by mass spectrometry.

Gel bands representing the autolytically formed 55kDa form of C1r, and BBK32(206–348)

were excised from the SDS-PAGE gel, reduced and alkylated, and digested with trypsin over-

night by standard methods. Extracted peptides from each digest were subjected to LC-tandem

MS analysis for verification and determining the coverage of C1r in the 55kDa gel band. The

digests were resolved by reversed phase nanoLC in a C18 column (50μm x 12cm, packed with

Phenomenex Jupiter, 10μm), in a 1% to 35% acetonitrile, 100 minute gradient (buffer A, 0.1%

Formic acid in water), eluting into a Q Exactive Plus MS system. Data were acquired in data

dependent mode, MS scans at 35k, with 16 dependent MS2 scans per cycle at 17.5k resolution.

The HRMS data files were searched using Mascot version 2.6 against a custom database con-

sisting of the full length native human C1r sequence (Uniprot accession P00736), and a

sequence for BBK32(206–348) consistent with the predicted amino acid sequence of the cloned

construct. Peptides considered were restricted to semi-Trypsin specificity, with tolerances of

10ppm (MS) and 0.01Da (MS2 fragment) allowed, with fixed Carbamidomethyl (Cys), and

variable modifications Deamidation (Asn,Gln) and Oxidation (Met) included. Peptides identi-

fied at P > 0.05 threshold were manually inspected to verify the quality of the apparent

sequence coverage.

Far Western and conventional immunoblotting

In the Far Western assay, three biological repeats were performed for each B. burgdorferi
strains, B314 (no vector), B314/pBBE22luc (vector only control), B314/pCD100 (produces

BBK32), B314/pBAD16 (produces BAD16), and B314/pBGD19 (produces BGD19). The pro-

tein lysate of one repeat of each B. burgdorferi strain was resolved in the same SDS–PAGE gel

and transferred to PVDF membranes as described [22,84]. PVDF membranes were blocked in

5% non-fat milk (Wal-Mart Stores, Inc.) in PBS, 0.2% Tween-20, washed with PBS, 0.2%

Tween-20, and then incubated with biotinylated C1 or C1r (both from Complement Tech) at

1 μg/ml in PBS, 0.2% Tween-20. The blot was incubated with rocking overnight at 4˚C. The

membrane was then washed in PBS, 0.2% Tween-20 and subsequently incubated with infrared

fluorescent dye (IRDye) 800CW Streptavidin (Li-Cor Biosciences; Lincoln, NE) diluted 1:1000

in 5% non-fat milk, 0.2% Tween-20 with 0.1% SDS for 1 hr. Subsequently, the membrane was

washed extensively in PBS, 0.2% Tween-20 and scanned using the Li-Cor Odyssey Fc Imaging

System.

Immunoblotting to detect the endoflagellar antigen FlaB was done for all samples using the

same PVDF membrane used in C1 or C1r Far Western detection. A monoclonal to B. burgdor-
feri strain B31 FlaB (Affinity BioReagents) was diluted at 1:4,000 and incubated with the blot

for 1 hr. After washing in PBS, 0.2% Tween-20, the blot was next incubated with a 1:10,000

dilution of Goat anti-mouse IgG with IRDye 680RD (Li-Cor Biosciences) as the secondary

antibody. The membrane was washed extensively in PBS, 0.2% Tween-20 and scanned using

the Li-Cor Odyssey Fc Imaging System.

The signals obtained from the Li-Cor unit were analyzed using the Image Studio-lite Ver

5.2.5 software. The bands were detected with manual adjustment to their shape relative to

background. All BBK32 orthologue signals obtained were initially normalized to the FlaB
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signal from the same sample, then to the B314/pCD100 on the same blot, to compare across

distinct Far Western blots quantitatively as indicated here for BAD16:

Signal for BAD16 ¼
BAD16 binding to C1=FlaB signal

BBK32 binding to C1=FlaB signal on the same membrane

The resulting values were then used in statistical analyses described below.

Conventional immunoblots were also performed with rat polyclonal antibodies to

BBK32-C, BAD16-C, and BGD19-C (each diluted 1:1000; kindly provided by Richard Mar-

coni) produced in the B314 background strain. To detect membrane-bound immune com-

plexes, Goat anti-Rat IgG with an IRDye 800CW conjugate (Li-Cor Biosciences) was used as a

secondary antibody and diluted to 1:10,000. Detection of P66 was accomplished using rabbit

anti-P66 serum (generously provided by Sven Bergström) diluted 1:1000 followed by detection

on membrane immune complexes using a 1:10,000 dilution of Goat anti-rabbit conjugated

with IRDye 800CW (Li-Cor Biosciences). The membranes were scanned using the Li-Cor

Odyssey Fc Imaging System.

Transcript quantification of bbk32 and orthologues

Three independent cultures of each B. burgdorferi strain B314/pCD100 (expresses bbk32),
B314/BGD19 (expresses bgd19), and B314/BAD16 (expresses bad16) were grown to the expo-

nential growth phase (i.e., 5 x 107 cells per ml), and total RNA was isolated from 5 x 108 cells

using Direct-zol RNA MiniPrep (Zymo Research, USA). The RNA samples were treated with

the in-kit DNase I and TURBO DNA free kit (Invitrogen, USA) to eliminate contaminating

DNA. RNA integrity was examined by gel electrophoresis.

Oligonucleotide primers for amplifying flaB and bbk32 via quantitative RT-PCR

(qRT-PCR) were adopted from prior studies [85] and primers for bad16 and bgd19 were

designed in this study and shown in Table 2. Each primer pair was tested to confirm amplifica-

tion of a single product of the expected size using genomic DNA from appropriate B. burgdor-
feri sensu lato strains as template. Reverse transcription reactions of three biological repeats of

each strain were carried out with SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad,

CA). A control reaction with a mixture lacking reverse transcriptase was performed for each

primer set to confirm that DNA was not present. Subsequently, the products from the reverse

transcription reaction were subjected to quantitative real-time PCR using an Applied Biosys-

tems StepOnePlus Real-Time PCR system. PowerUp SYBR Green Master Mix (Thermo Fisher

Scientific) was used to perform quantitative PCR in triplicate (technical repeats). The constitu-

tively expressed flaB gene of B. burgdorferi was used for normalization as previously described

[85,86]. The expression levels of bbk32 orthologues were first normalized to the flaB in the

same sample, then the normalized values of bad16 and bgd19 were compared to the level of

bbk32 using the 2-ΔΔCt method. The final fold differences were used in statistical analyses.

Statistics

Statistical analysis was performed with GraphPad Prism version 7. For calculation of IC50 val-

ues in ELISA and hemolytic complement assays using recombinant proteins, non-linear

regression was performed using a variable four-parameter fit where the top and bottom values

were constrained to 100 and 0, respectively. Two-way ANOVA were used in C1r binding assay

and serum sensitivity assay, and One-way ANOVA were used in Far Western and qRT-PCR

analyses.
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Supporting information

S1 Fig. BBK32-C mediated inhibition of the classical pathway of complement. A) A sche-

matic depiction of classical pathway complement activation is shown. C1q, the pattern recog-

nition subunit of the C1 complex, binds to the targeted surface. C1q binding autoactivates the

initiator serine protease, C1r, which then proteolytically cleaves C1s. Activated C1s cleaves

complement proteins C2 and C4 leading to the surface formation of C4b2a, the CP (Classical

Pathway)/LP (Lectin Pathway) C3 convertase. C3 convertases then cleave C3 into C3a and

C3b leading to CP/LP C5 convertase formation (C4b2a3b). Cleavage of C5 by C5 convertases

releases the anaphylatoxin C5a and leads the formation of the membrane attack complex

(C5b-9) on the surface of the target cell. The membrane attack complex is a lytic pore structure

that can directly kill the targeted cell(s). For Borrelia species, BBK32, or active orthologues of

BBK32, can block activation of C1r and inhibit the classical complement cascade. B) A model

for BBK32-mediated inhibition of the classical pathway. C1 complex, consists of C1q, which is

composed of six collagen-like structures connected to six globular head domains. C1q binds a

C1r2C1s2 heterotetramer to form C1 complex. The depiction of the arrangement of subunits

within C1 is based on the work of Ugurlar and colleagues [87]. BBK32-C, binds the exposed

serine protease (SP) domain of C1r and inhibits the autoproteolytic activation of C1r as well as

the C1r-mediated cleavage of proC1s. Inhibition at this step halts the classical pathway at the

initial proteolytic step and prevents formation of the downstream activation products of the

cascade, including the membrane attack complex.

(TIF)

S2 Fig. Construction of bbk32 orthologues into pBBE22luc and expression of these genes

in B burgdorferi strain B314. A) Schematic showing how the bbk32 orthologues bad16 and

bgd19 from B. afzelii and B. garinii, respectively, were constructed using the pBBE22luc vector

backbone. The resulting constructs were transformed into B. burgdorferi strain B314. B) PCR

confirmation of bgd19 from B314/pBGD19, bbk32 from B314/pCD100, and bad16 from B314/

pBAD16. All constructs contained the bad16, bbk32, bgd19 expressed from their native pro-

moters. The Vector lane refers to the use of pBBE22luc as template for PCR with the oligonu-

cleotide primers used to screen inserts. Values listed to the left indicate the size of markers in

kilobases (kb). C) Quantitative RT-PCR shows that the expression of bbk32 orthologues (e.g.,

bad16 and bgd19) in strain B314 using their native promoters make transcripts equivalent or

greater than B. burgdorferi sensu stricto bbk32. Expression of the bbk32 orthologues was com-

pared relative to the constitutively expressed flaB gene (internal control). The qRT-PCR was

done in triplicate and the mean values obtained for bbk32 was used as a comparator for the

other orthologous genes (i.e., bad16 and bgd19).
(TIF)

S3 Fig. Cross-reactivity of BBK32 orthologues and evaluation of their surface exposure in

B burgdorferi strain B314. A) Antisera to BBK32 orthologues is cross reactive against all sensu
lato isolates tested. Antisera against BGD19 from B. garinii, BBK32 from B. burgdorferi, and

BAD16 from B. afzelii were tested in immunoblots of protein lysates from B. burgdorferi strain

B314 containing the vector pBBE22luc (B314/luc), as well as B314 strain expressing B. garinii
bgd19 (B314/pBGD19), B. burgdorferi bbk32 (B314/pCD100), and B. afzelii bad16 (B314/

pBAD16). Individual membranes were then probed with rat polyclonal antisera against

BGD19-C, BBK32-C, and BAD16-C as specified on the right. In all instances, the reagent used

recognized its homologous target protein best but also showed significant reactivity to the

other heterologous proteins. Markers in kDa are indicated on the left. B) The BBK32 ortholo-

gues encoded by B. afzelii and B. garinii, designated as BAD16 and BGD19, respectively, are
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surface exposed in the surrogate B. burgdorferi B314 strain. B314/pBAD16 and B314/pBGD19,

encoding BAD16 and BGD19, respectively, were grown, washed, and then either resuspended

with Proteinase K (ProtK; denoted with a “+”) or buffer alone (denoted with a “-“). Following

processing, the resulting samples were subjected to SDS-PAGE and immunoblotted with anti-

serum directed against either BAD16-C, the outer membrane P66 protein, or the subsurface

FlaB protein. Given the cross-reactivity of anti-BAD16 with all B. burgdorferi BBK32 ortholo-

gues (panel A), the fate of BGD19 could be assessed with the anti-BAD16-C reagent. Protein

markers are indicted in the left (in kDa).

(TIF)

S4 Fig. Validation of BBK32(206–348) activity and electron density map quality. A-C) The

construct used for crystallization, BBK32(206–348), which lacks six C-terminal residues relative

to BBK32-C (i.e. BBK32206-354), retains high affinity C1r interaction and complement inhibi-

tory properties. D) 2Fo-Fc density contoured at 1.2 σ for the entire BBK32 polypeptide.

(TIF)

S5 Fig. Three surface residues contribute to the reduced C1r-inhibitory profile of B. garinii
BGD19. SWISS-MODEL was used to produce homology models of A) BAD16-C and B)

BGD19-C that are based on the crystal structure of BBK32-C (PDB: 6N1L). Residues that are

non-identical between BAD16-C and BBK32-C are shown in red on the protein surface (panel

A), while residues that differ between BGD19-C and BBK32-C are shown in yellow (panel B).

C) The homology models of BAD16-C and BGD19-C are structurally aligned. The coloring

scheme shown in panels A/B is retained except overlapping residues are now colored in

orange. Surfaces that remain yellow represent residues that are uniquely different in BGD19-C

relative to BAD16-C. D) Three of these residues were selected for the BXK32-C chimera pro-

tein used in this study including residue positions 308, 319, and 324 (BBK32 numbering). A

SWISS-MODEL homology model of the BXK32-C chimeric protein, also based on the

BBK32-C crystal structure, predicts these three residues would remain solvent exposed. Global

Model Quality Estimation (GMQE) is used by SWISS-MODEL to provide an estimate of

model accuracy. Values range between 0 and 1, with higher numbers indicating higher model

reliability and are as follows: BAD16-C (GMQE = 0.81); BGD19-C (GMQE = 0.93); BXK32-C

(GMQE = 0.97).

(TIF)

S1 Table. Surface plasmon resonance binding and fitting parameters. The calculated equi-

librium dissociation constants, rate constants, and associated fitting statistics are provided for

surface plasmon resonance binding experiments.

(DOCX)

S2 Table. Complement assay IC50 data and non-linear regression fitting statistics. The cal-

culated half maximal inhibitory concentration (IC50) values and associated fitting statistics are

provided for each experimental set of complement functional assays.

(DOCX)
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tion of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Bor-

relia burgdorferi. Mol Microbiol. 2006; 59: 1591–1601. https://doi.org/10.1111/j.1365-2958.2005.05042.

x PMID: 16468997

28. Fischer JR, LeBlanc KT, Leong JM. Fibronectin binding protein BBK32 of the Lyme disease spirochete

promotes bacterial attachment to glycosaminoglycans. Infect Immun. 2006; 74: 435–441. https://doi.

org/10.1128/IAI.74.1.435-441.2006 PMID: 16368999

29. Probert WS, Johnson BJ. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia

burgdorferi isolate B31. Mol Microbiol. 1998; 30: 1003–1015. PMID: 9988477
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48. Oliver MA, Rojo JM, Rodrı́guez de Córdoba S, Alberti S. Binding of complement regulatory proteins to

group A Streptococcus. Vaccine. 2008; 26 Suppl 8: 75.
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