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Abstract

Background: Biological markers of vegetable and fruit (VF) intake are needed both for nutrition surveillance and for
the evaluation of nutrition interventions. Optically assessed skin carotenoid status (SCS) has been proposed as a
marker of intake but there are few published validity studies to date. Therefore, the objective of the study was to
examine the concurrent validity of multiple methods of assessing VF intake cross-sectionally and seasonally over
one year and to discuss the relative merits and limitations of each method.

Methods: Fifty-two 40–60 y old women completed a 1-year longitudinal study that included 1) SCS assessment
using resonance Raman spectroscopy (RRS) and using pressure-mediated reflection spectroscopy (RS) at 12
timepoints, 2) thirty-six 24-h recalls using the Automated Self-Administered 24-Hour Dietary Assessment Tool
(ASA24; total 1866 recalls), and 3) plasma carotenoid concentrations measured every 3 months. Pearson correlation
coefficients and mixed linear models were used to estimate pairwise correlations between RRS, RS, ASA24, and
plasma carotenoids.

Results: RS and RRS were strongly correlated at baseline and over the year (r = 0.86 and 0.76; respectively, P <
0.001). RS was strongly correlated with plasma carotenoids at baseline (r = 0.70) and moderately across the year (r =
0.65), as was RRS (r = 0.77 and 0.69, respectively, all P < 0.001). At baseline, self-reported VF was weakly correlated
with RRS (r = 0.33; P = 0.016), but not with RS or plasma carotenoids. Across the year, self-reported VF intake was
weakly correlated with both RS (r = 0.37; P = 0.008), RRS (r = 0.37; P = 0.007), and with plasma carotenoids (r = 0.36;
P < 0.008).

Conclusions: SCS as measured by RS and RRS is moderately to strongly correlated with plasma carotenoid
concentrations both cross-sectionally and longitudinally, indicating that it can be a powerful tool to assess
carotenoid-rich VF intake in populations.

(Continued on next page)

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: lisa.jahns@usda.gov
1United States Department of Agriculture, Agricultural Research Service,
Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North,
Grand Forks, ND 58203, USA
Full list of author information is available at the end of the article

Jahns et al. Nutrition Journal           (2019) 18:78 
https://doi.org/10.1186/s12937-019-0500-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12937-019-0500-0&domain=pdf
http://orcid.org/0000-0002-1828-6962
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lisa.jahns@usda.gov


(Continued from previous page)

Clinical trial registry: This trial was registered at ClinicalTrials.gov as NCT01674296.

Keywords: Resonance Raman spectroscopy, Reflection spectroscopy, Skin carotenoids, Biomarkers, Vegetables,
Fruits, ASA24 Dietary Assessment Tool, Dietary intake, Women, Cohort study

Background
Adequate vegetable and fruit (VF) intake is associated with
reduced risk of several chronic diseases [1]. Yet in many
populations intake is either declining [2] or remaining
stable at insufficient amounts [3]. Despite large invest-
ments in initiatives like the 5-A-Day program [4, 5], in-
creasing VF intake still confounds clinicians and public
health nutrition professionals. Accurately measuring VF
intake is crucial for population surveillance and for evalu-
ating the efficacy of interventions, but a key dilemma in
this pursuit has been inherent bias and error in self-
reported measurement tools such as food frequency ques-
tionnaires, food records, and 24-h recalls [6].
There is a need for biological markers of dietary intake

[7]. Ideally, a biomarker would pass through the body
unaffected and be recovered in its entirety. To date, no
such recovery biomarker exists for VF, but concentration
biomarkers have been identified. Concentration bio-
markers reflect the status of the marker of interest in
the body and therefore are affected by individual differ-
ences in absorption, transport, and metabolism [7]. The
Institute of Medicine called blood carotenoid concentra-
tions the best biomarker of VF intake [8]; however, col-
lecting and analyzing blood carotenoids is prohibitive for
many studies. Optically-assessed skin carotenoid status
(SCS) has been proposed as a concentration biomarker
of carotenoid intake for monitoring VF intake and for
assessing change in VF intake as a result of interventions
[9]. SCS has favorably compared to carotenoid content
of biopsied skin [10, 11] and to blood carotenoid con-
centrations [10, 12]. SCS was also responsive to changes
in VF intake in a controlled feeding study [13]. Seasonal
differences in sun exposure and VF intake are purported
to affect SCS, but the literature is mixed [13, 14].
There are two methodologies for measuring SCS; reson-

ance Raman spectroscopy (RRS) [15, 16] and reflection
spectroscopy (RS) [9, 16, 17]. RRS has been used in most
of the existing studies and found to be representative of
longer-term intake than blood carotenoid concentrations,
perhaps by 1–2 weeks [10, 15, 18, 19]. RS represents an
improvement over RRS as it corrects for effects of residual
chromophores like blood and melanin in the skin [16]. RS
was validated against plasma carotenoids in a racially/eth-
nically diverse sample [20] and is correlated with RRS
[16]; yet, to the best of our knowledge, no studies have
cross-validated multiple objective measures of VF intake
(RRS, RS, and plasma carotenoid concentrations) and

subjective measures of VF intake (self-report). This repre-
sents an important research gap that can be used to im-
prove assessment of VF intake and change data.
Therefore, the purpose of this study was to examine

the concurrent validity of multiple methods of assessing
VF intake. We estimated baseline and yearlong pairwise
correlations between 4 methods of assessing VF intake:
1) plasma carotenoid concentration, 2) multiple 24-h re-
calls, 3) RRS, and 4) RS. A secondary aim of the study
was to examine potential seasonal differences in the
measurements obtained using each method.

Subjects and methods
Study design and subjects
The present study reports a secondary outcome using data
from an existing study and should be considered explora-
tory. The study sample consisted of 52 mid-life women
who completed the Life in all Seasons (LENAS) study.
LENAS utilized a closed cohort design and was conducted
in two groups between July 2012 and July 2014. The study
was designed to measure seasonal changes in diet, physical
activity, and body composition over a 1-year period. De-
tails have been reported elsewhere [21, 22]. Seventy-three
women attended informational meetings and 61 signed in-
formed consents. Fifty-four women began the study and
two dropped out due to time constraints. Briefly, over a 1-
year period, women completed 24-h diet recalls (24-HR)
every 10 days at home, had their SCS measured 12 times
(monthly), and had plasma collected 4 times (once every
three months at the midpoint of each season). Individuals
were recruited by advertisements posted at the University
of North Dakota and the surrounding area. Inclusion cri-
teria were ages 40–60 years, body mass index (BMI; kg/
m2) between 18 and 35, access to high-speed internet, and
weight being stable for the previous 6months (no more
than ± 4.5 kg). The majority (96%) of the participants were
non-Hispanic white, with a mean age of 49.4 ± 0.8 years
and mean BMI of 26.5 ± 0.6; 33% were affected by over-
weight and 23% by obesity [21]. None of the participants
reported current smoking. The study protocol was ap-
proved by the Institutional Review Board of the University
of North Dakota and all participants provided informed
written consent.

Skin carotenoid measurements
Skin carotenoid measurements were taken by both RRS
and RS twelve times over the year, approximately one
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month apart. The two devices used were built by the au-
thors (IVE and WG) for use with nutrition studies. RRS
uses a 488 nm solid-state laser for blue light excitation
of the tissue carotenoids. The laser light is directed onto
the skin via optical fiber delivery and a collection module is
placed in contact with the palm of the hand. Light back-
scattered from the skin is routed via a second fiber to a
spectrograph interfaced with a cooled charge coupled de-
vice detector array. The recorded spectrum is analyzed for
resonance Raman response of the skin carotenoids at their
carbon double bond (C=C) frequency at 1525 cm− 1, which
appears at around 527 nm in the Raman spectrum. Since
almost all carotenoid subspecies contribute almost equally
to this frequency (excluding phytoene and phytofluene)
[11], RRS intensity can be used as a measure for total carot-
enoid content. The instrument sensitivity was checked daily
against a calibration standard (sodium nitrate), and individ-
ual skin carotenoid RRS intensities were calibration-
adjusted. The intraindividual variability between the 3 scans
is 5% on this instrument.
Instead of a laser, the RS methodology uses a broad-

band white light to measure skin carotenoids and other
chromophores like melanin and hemoglobin directly
through their respective absorptions in the 400–750 nm
spectral window [17]. The reflected light is routed to a
spectrograph coupled with a room-temperature detector
array. The subject applies gentle pressure against a lens
to temporarily squeeze blood out of the tissue that re-
duces potentially confounding effects of chromophores
such as hemoglobin. The data processing algorithm also
adjusts for the potentially confounding effects of melanin
and tissue scattering. In this study, a prototype instru-
ment was used that took measurements in the thumb;
current commercially available technology takes mea-
surements in the fingers. The intra-individual variability
of the prototype instrument varies between 0.5 and 14%,
depending on the individual. Each individual’s palm
(RRS) and thumb (RS), were scanned 3 times and the
average value used in the analysis.

Dietary intake of vegetables, fruits, and carotenoids
Approximately every 10 days, participants completed an
online dietary recall using the US National Cancer Insti-
tute (NCI)‘s Automated Self-Administered 24-h Dietary
Assessment Tool (ASA24–2011) [23, 24]. ASA24 prompts
individuals to record everything consumed in the previous
24 h from midnight to midnight using detailed probes and
has been validated against interviewer-administered 24-h
recalls and actual intakes [25, 26]. Provided reports in-
cluded servings of VF derived from the USDA Food and
Nutrient Database for Dietary Studies 4.0 [27] and the
USDA MyPyramid Equivalents Database 2.0 [28], and
dietary carotenoids (mg) estimated using data from the
USDA Standard Reference 22 [29] database. Participants

completed a total of 1866 diet recalls with a 92% response
rate for all 36 recalls (range 33–37); no recalls were ex-
cluded as day-to-day variation in intake was expected over
the course of the year. Participants were not provided
feedback or results from their recalls.

Blood sample and carotenoid analysis
At the midpoint of each meteorological season [summer
(July), fall (October), winter (January), and spring (April)],
fasting blood samples were taken by a trained phlebotom-
ist, centrifuged and immediately stored at − 80 °C. Human
plasma carotenoid (α-, β- carotenes, β-cryptoxanthin,
lycopene and lutein/zeaxanthin) analysis was performed
using Bukowski, et al’s “dilute-and-shoot” [30] method by
LC-MS/MS (LCMS-8050, Shimadzu). Under reduced
lighting a 10 μL aliquot of human plasma was combined
with 990 μL of methanol containing internal standard and
was centrifuged to remove protein. The supernatant was
transferred to 1-mL amber glass vial for analysis. A vol-
ume of 25 μL was injected onto a C-30 column (YMC Ca-
rotenoid, 10 × 2mm, 3 μm particle size) with an initial 9:1
methanol water mobile phase, which concentrated ana-
lytes on the front of the column, allowing for the removal
of phospholipid interferences that suppress ionization.
After the washout period, the mobile phase transitioned
over two minutes to 70:20:10 acetonitrile: methylene
chloride: methanol (20mM ammonium acetate, 0.3%
acetic acid). Analytes were eluted over 35min following
the order observed by Melendez-Martinez [31] and were
quantitated against the internal standard of tocol. This
method was validated by analysis of all three levels of
NIST SRM 968e. Measured values for all analytes were
within the stated tolerance for this SRM.
As an additional validation step, a set of standard

addition experiments were performed. Four aliquots of
plasma were spiked with increasing levels of the analytes
from a standard solution. The measured concentrations
for these samples were plotted against the size of the
spike added to the plasma and fit with a linear regres-
sion. The y-intercepts for these regressions agreed
within 2–5% of the measured concentrations for the un-
spiked plasma sample. This indicated that there were no
matrix effects or artifacts from sample preparation.

Statistical analysis
RRS, RS, and self-reported dietary VF and carotenoid
values are presented as means ± standard error of the
mean (SEM). Plasma carotenoid values were skewed ac-
cording to the Kolmogorov-Smirnov test, so values were
log-transformed for analysis. Back-transformed means
-1SEM, +1SEM are presented.
Effects of season were tested using mixed linear models,

in which season was the fixed effect and participant was
the random effect. For RRS, RS and self-reported dietary
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VF and carotenoid values, multiple measurements ob-
tained for each participant during each season were aver-
aged and used as the dependent variable in the model. If
the overall model was significant, Tukey’s contrasts were
used to make pairwise comparisons among all seasons.
Pairwise correlations between baseline measures of ca-

rotenoid status and intake and VF intake obtained by
the 4 methods (i.e. RRS, RS, plasma, and self-report)
were estimated using Pearson correlations.
Finally, we examined the relationship of optically assessed

SCS to self-reported dietary intake and to total plasma ca-
rotenoid concentrations across 1 year. To assess the correl-
ation between plasma and skin carotenoids, we used the
skin carotenoid measurements from the same day that
blood was drawn (4 time points; once each season). For the
correlation of plasma and dietary carotenoids, we used the
closest dietary recall preceding the blood draw. To assess
correlation between SCS and dietary carotenoids, we used
the closest preceding dietary recall at each month (12 time
points; once each month). Maximum likelihood estimation
was used to calculate the overall correlation of each pair of
variables of interest using all available measurements. The
method used [32] provides estimates of both the within-
individual correlation and the between-individual correlation
across the course of the study and correctly accounts for the
multiple measurements on each subject. The relationship
between RRS and RS was further investigated by fitting a

mixed effects linear model (Fig. 1). In the model used, re-
ferred to as a random slopes model, the overall slope was
modeled as a fixed effect while allowing for a random devi-
ation from the overall slope for each individual. The correl-
ation between observations arising from each individual was
also accounted for in the model, and BMI was included as a
covariate. All analyses were conducted using SAS version
9.4; (SAS Institute, Inc., Cary, North Carolina) and a P value
of < 0.05 was considered significant. As adapted from
Mukaka for studies related to medical research [33], the in-
terpretation of the correlation coefficients was as follows:
0.00–0.49 =weak, 0.50–0.69 =moderate, and 0.70+ = strong.

Results
Seasonal differences in study variables
There were no seasonal differences in RS intensities
(P = 0.500); however, RRS scores were marginally lower
in summer than in spring or fall (P < 0.001) (Table 1).
Total plasma carotenoid concentrations also differed
marginally by season (P = 0.025), with the lowest occur-
ring in summer and the highest occurring in spring. Nei-
ther self-reported VF (P = 0.441) nor self-reported
carotenoid intake (P = 0.983) differed by season.

Correlations between RS and RRS
At baseline, RS and RRS were strongly correlated (r = 0.86;
P < 0.001). Figure 1 displays the relationship between RS

Fig. 1 RS compared with RRS intensities for 52 women over 12 time points. Colored lines represent the slope for each person over the year. Per
maximum likelihood, the overall between-person correlation between the two skin carotenoid scores was 0.76 (P < 0.001) and the overall within-
person correlation coefficient was 0.30 (P < 0.03). RS, reflection spectroscopy; RRS, resonance Raman spectroscopy
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and RRS over the year. Based on the mixed linear model
fit of the data, the between-person correlation was strong
(r = 0.76; P < 0.001), but the overall within-person correl-
ation was weak (r = 0.30; P = 0.03). Each individual’s slope
is displayed and within-person correlations ranged from
r = − 0.71 to 0.87; median: r = 0.30.

Baseline and full-year pairwise correlations
Baseline and between-individual correlations across the
year are presented in Table 2. RS was strongly correlated
with plasma carotenoids at baseline (r = 0.70; P < 0.001),
but moderately across the year (r = 0.65; P < 0.001), as
was RRS (r = 0.77 and 0.69, respectively; P < 0.001). At
baseline, self-reported VF was weakly correlated with
RRS (r = 0.33; P = 0.016) but not with RS (P = 0.053) or
plasma carotenoids (P = 0.050). Across the year, self-

reported VF intake was weakly correlated with RS and
RRS (r = 0.37 for both; P < 0.01), and with plasma carot-
enoids (r = 0.36; P = 0.008). Dietary carotenoids were not
correlated with RS (P = 0.500), RRS (P = 0.057), or
plasma (P = 0.089) at baseline, but were moderately cor-
related with VF intake (r = 0.56; P < 0.001). Over the
year, dietary carotenoids were weakly correlated with
RRS (r = 0.29; P = 0.034) and plasma carotenoids (r =
0.34; P = 0.15), and moderately correlated with VF intake
(r = 0.51; P < 0.001).

Discussion
This study demonstrated that SCS measured by RS is
highly correlated with RRS and with plasma carotenoid
concentrations and is weakly correlated with dietary in-
take of carotenoids or VF measured by self-report. If

Table 1 Mean (± SEM) values of study variables by season among US women (N = 52) living in North Dakota, USA

Spring Summer Fall Winter P-value

Mean ± SEM

Skin carotenoid status

RRS intensitiesb 38,238x ± 2617 34,629y ± 1910 37,044x ± 2043 36,563xy ± 1818 < 0.001

RS intensitiesb 0.091 ± 0.004 0.087 ± 0.004 0.088 ± 0.004 0.088 ± 0.004 0.500

Dietary Intakea

Vegetable and fruit (g/d) 188 ± 16 220 ± 16 194 ± 16 187 ± 18 0.441

Dietary carotenoids (mg/d) 12.1 ± 0.76 12.0 ± 0.97 11.9 ± 0.72 11.9 ± 1.11 0.983

Geometric mean -1SEM, +1SEM

Total plasma carotenoids (μM/L)c 2.53; 2.36, 2.71 x 2.26; 2.11, 2.42 y 2.46; 2.30, 2.64 xy 2.34; 2.18, 2.51 xy 0.025
aMeasured by the Automated Self-Administered 24-Hour (ASA24) Dietary Assessment Tool at 36 times over the year
bMeasured at 12 times over the year
cMeasured at 4 times over the year
•Analyzed carotenoids were α- and β-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin.
x,y, Values between seasons with the same superscript letters are not significantly different (P > 0.05) by Tukey contrasts.
RS, reflection spectroscopy.
RRS, resonance Raman spectroscopy.

Table 2 Correlation coefficientsa and 95% confidence intervals of skin carotenoids, plasma carotenoids, and self-reported vegetable
and fruit intake at baseline and across one year

Total plasma carotenoids (μM/L)d VF (cup eq.)b Dietary carotenoids (mg/d)b

Baseline Year Baseline Year Baseline Year

Reflection spectroscopyc 0.70***
(0.53, 0.82)

0.65***
(0.46, 0.79)

0.27
(0.00, 0.51)

0.37**
(0.10, 0.58)

0.10
(−0.18, 0.36)

0.24
(− 0.03, 0.48)

Resonance Raman spectroscopyc 0.77***
(0.63, 0.86)

0.69***
(0.52, 0.81)

0.33*
(0.06, 0.55)

0.37**
(0.11, 0.59)

0.27
(0.00, 0.51)

0.29*
(0.02, 0.52)

Total plasma carotenoids (μM/L)d 0.27
(0.00, 0.51)

0.36**
(0.10, 0.58)

0.24
(−0.03, 0.48)

0.33*
(0.06, 0.55)

VF (cup eq.)b 0.56***
(0.34, 0.72)

0.51***
(0.27, 0.69)

aPairwise correlations at baseline were estimated using Pearson coefficients and full-year between-individual correlations were estimated using a mixed model
bMeasured by the Automated Self-Administered 24-Hour (ASA24) Dietary Assessment Tool at 36 times over the year
cMeasured at 12 times over the year
dMeasured at 4 times over the year
Analyzed carotenoids were α- and β-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin
*Significant at P < 0.05
**Significant at P < 0.01
***Significant at P < 0.001
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plasma carotenoid concentrations are considered the ref-
erence biomarker, then our results indicate that SCS
may be considered a superior method to self-report for
assessing VF intake. However, multiple assessment
methods may be needed to gain a more complete assess-
ment of VF intake. Self-report methods can be expensive
if interviewer-assisted, and are potentially subject to par-
ticipant bias such as social desirability [34], whereas SCS
cannot detect intake of non-carotenoid-rich VF, such as
potatoes or mushrooms. Self-report, by either 24-HR or
food frequency questionnaire (FFQ), is the only way to
determine overall dietary patterns. Similar to blood ca-
rotenoids, SCS is affected by factors that influence the
absorption, transport, and metabolism of carotenoids
[35], such as the food matrix [36] or genetics [37], and
may be affected by environmental factors, such as smok-
ing, sun exposure, or adiposity, therefore it is (thus far)
not possible to link a given SCS score with a specific in-
take of VF. Regardless, SCS is another tool that public
health researchers and clinicians may use for surveillance
and assessment of the effectiveness of interventions. For
example, SCS is being used to determine the effectiveness
of a cost-offset Community Supported Agriculture (CSA)
project among low-income children and their caregivers
[38] and to determine the effectiveness of a healthy corner
store initiative in North Carolina [20, 39]. The present
study is especially pertinent as it is the first longitudinal
study to assess the relative validity of RS, which is more
widely available compared to the RRS technology.
Many factors may have influenced our observed results.

Scarmo and colleagues compared SCS (measured by RRS)
values over a 6-month period and found good agreement
over time, although they also found that RRS scores were
lower in summer, as we found [14]. We did not find strong
correlations between SCS and dietary carotenoids in the
current study. However, Mayne et al., compared SCS (mea-
sured by RRS) to dietary carotenoids measured by a 2-
month FFQ (representing “usual” intake) and found a
correlation of 0.57 [10]. To put this in perspective, many
FFQs are validated compared to blood carotenoid concentra-
tions, with correlations ~ 0.2–0.5 [40–42]. As a year’s worth
of 24-HR may also be considered to approximate “usual” in-
take, we found similar correlations with VF intake of r= 0.37
using either SCS method for between-person correlations;
generally the only coefficient measured in validation studies.
However, within an individual, we found very poor correla-
tions with plasma and dietary intakes for both SCS methods
(data not shown), suggesting that SCS is a better indicator of
group intakes than of individual intakes. This may be reflect-
ive of a number of factors: 1) As there was only marginal
variation between seasons in either self-reported VF or diet-
ary carotenoids, these low levels of variability in intake of VF
and dietary carotenoids may be at least partially responsible
for the low observed correlations; 2) vegetables are often

consumed in mixed dishes, which are notoriously difficult to
assess and rely upon the best judgement of the respondent
to identify a food code similar to what they consumed, which
is linked to a recipe similar to that consumed by the re-
spondent, which is then linked to nutrient databases that
have their own set of errors. Factors other than vegetable
and fruit intake affect blood carotenoid concentrations, and
therefore may be expected to impact observed SCS as well.
Animal foods, such as eggs (a rich source of lutein), shellfish
and salmon contain carotenoids. Genetics is probably the
most influential; single nucleotide polymorphisms in the β, β
carotene 15,15′-oxygenase 1 [43, 44] gene, as well as others
[45–47], are beginning to be described as affecting blood ca-
rotenoid concentrations. Other factors may also play a role,
such as smoking, adiposity, sun exposure and oxidative stress
exposure, such as chronic illness [15]. Individuals with meta-
bolic syndrome have lower levels of SCS than healthy indi-
viduals [48]. In addition, carotenoids are sequestered into
other body tissues, such as adipose [49], eye [50], bone [51],
and brain [52], leading to competition for skin deposition
with resultant variability in tissue levels of carotenoids [53–
55]. The kinetics of carotenoids depositing into skin are still
not well-defined, and it is unknown how SCS responds to
different doses of VF.
SCS as a biomarker of VF intake has been proposed

and several validation studies have been published [9].
However, this is the first study to compare RS to RRS,
and the first to compare SCS to 24-HR data. Specifically,
strengths of this study include the full year longitudinal
nature of the data as it allowed us to examine correla-
tions both between and within individuals over time, as
well as cross-sectionally at baseline. The use of the
ASA24 can also be considered a strength as it collects
detailed dietary information. This study also has several
limitations to consider. The sample is small, homoge-
neous, and not generalizable to the larger US population.
The women who participated were also overweight; only
23% had obesity. Thus, our results may differ in lean
populations and people with obesity. SCS, in addition to
the caveats listed above, is limited in that it only re-
sponds to carotenoid-rich foods. However, it is an ob-
jective measure, and current dietary guidance specifically
recommends intake of dark green and orange and red
vegetables, which are rich in carotenoids [56]. SCS was
poorly correlated with baseline self-reported VF intake,
which is not surprising considering that 24-HRs estimate
only short-term intake, while SCS may be expected to
represent longer-term tissue stores. The RS device used
in this study was a prototype, and the commercially-
available RS device may be more sensitive.

Conclusions
In conclusion, we found that SCS is strongly correlated
to plasma carotenoids, but weakly to self-reported VF
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intake. This begs the question, which method do we
choose to evaluate our interventions? In this long-term
study, we have shown that plasma carotenoid concentra-
tions, the gold standard for VF intake, are strongly cor-
related with RS and RRS but only weakly correlated with
self-reported dietary intake of VF. SCS, particularly as
measured by RS, is rapid, non-invasive and does not re-
quire specialized training or data processing compared
to blood carotenoid analysis. Our results indicate that
SCS assessed via RRS and RS is more strongly associated
with plasma carotenoids than is self-reported VF or ca-
rotenoid intake. At this point, there are a variety of
methods to assess changes in VF intake, and we cau-
tiously suggest that SCS can be another tool that re-
searchers and clinicians may utilize when attempting to
change dietary behavior or during population-level mon-
itoring and surveillance.

Abbreviations
ASA24: Automated Self-Administered 24-Hour Dietary Assessment Tool;
RRS: resonance Raman spectroscopy; RS: reflection spectroscopy; SCS: skin
carotenoid status; VF: vegetables and fruits

Acknowledgements
Not applicable.

Authors’ contributions
LJ designed and conducted research; IE and WG provided essental materials,
MB analyzed data, LKJ performed statistical analysis; all authors interpreted
results and wrote the paper; LJ had primary responsibility for final content.
All authors read and approved the final manuscript.

Funding
United States Department of Agriculture, Agricultural Research Service 3062–
51000-051-00D.

Availability of data and materials
Data described in the manuscript, code book, and analytic code will be
made available upon request pending approval and signed agreements.

Ethics approval and consent to participate
The study protocol was approved by the Institutional Review Board of the
University of North Dakota and all participants provided informed written
consent.

Consent for publication
Not applicable.

Competing interests
WG and IE hold patents on the reflection technology and are with Longevity
Link Corporation, the maker of the instrumentation used in this study The
other authors declare that they have no competing interests.

Author details
1United States Department of Agriculture, Agricultural Research Service,
Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North,
Grand Forks, ND 58203, USA. 2Department of Health Sciences, William &
Mary, 251 Ukrop Way, Williamsburg, VA 23185, USA. 3Department of Food
Science and Nutrition, 225 Food Science and Nutrition, 1334 Eckles Ave, St.
Paul, MN 55108, USA. 4Department of Public Health, Brody School of
Medicine, East Carolina University, 115 Heart Drive MS 660, Greenville, NC
27834, USA. 5Department of Nutrition and Health Sciences, College of Health,
Ball State University, Muncie, IN 47306, USA. 6Longevity Link Corporation,
University of Utah Research Park, 391 Chipeta Way Suite E, Salt Lake City, UT
84108, USA.

Received: 6 August 2019 Accepted: 30 October 2019

References
1. Aune D, Giovannucci EL, Boffetta P, Fadnes LT, Keum N, Norat T, et al. Fruit

and vegetable intake and the risk of cardiovascular disease, total cancer and
all-cause mortality–a systematic review and dose-response meta-analysis of
prospective studies. Int J Epidemiol. 2017;46:1029–56.

2. Abe SK, Stickley A, Roberts B, Richardson E, Abbott P, Rotman D, et al.
Changing patterns of fruit and vegetable intake in countries of the former
Soviet Union. Public Health Nutr. 2013;16:1924–32.

3. Rehm CD, Peñalvo JL, Afshin A, Mozaffarian D. Dietary intake among us
adults, 1999-2012. JAMA. 2016;315:2542–53.

4. Capacci S, Mazzocchi M. Five-a-day, a price to pay: an evaluation of the UK
program impact accounting for market forces. J Health Econ. 2011;30:87–98.

5. Pomerleau J, Lock K, Knai C, McKee M. Interventions designed to increase
adult fruit and vegetable intake can be effective: a systematic review of the
literature. J Nutr. 2005;135:2486–95.

6. Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML,
et al. Addressing current criticism regarding the value of self-report dietary
data. J Nutr. 2015;145:2639–45.

7. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in
nutritional epidemiology: applications, needs and new horizons. Hum
Genet. 2009;125:507–25.

8. Institute of Medicine, National Academy of Sciences, Food and Nutrition
Board, Panel on Dietary Antioxidants and Related Compounds. Dietary
Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids
Washington: National Academy Press; 2000.

9. Ermakov IV, Ermakova M, Sharifzadeh M, Gorusupudi A, Farnsworth K, Bernstein
PS, et al. Optical assessment of skin carotenoid status as a biomarker of
vegetable and fruit intake. Arch Biochem Biophys. 2018;646:46–54.

10. Mayne ST, Cartmel B, Scarmo S, Lin H, Leffell DJ, Welch E, et al. Noninvasive
assessment of dermal carotenoids as a biomarker of fruit and vegetable
intake. Am J Clin Nutr. 2010;92:794–800.

11. Ermakov IV, Gellermann W. Validation model for Raman based skin
carotenoid detection. Arch Biochem Biophys. 2010;504:40–9.

12. Nguyen LM, Scherr RE, Linnell JD, Ermakov IV, Gellermann W, Jahns L, et al.
Evaluating the relationship between plasma and skin carotenoids and
reported dietary intake in elementary school children to assess fruit and
vegetable intake. Arch Biochem Biophys. 2015;572:73–80.

13. Jahns L, Johnson LK, Mayne ST, Cartmel B, Picklo MJ Sr, Ermakov IV, et al. Skin and
plasma carotenoid response to a provided intervention diet high in vegetables
and fruit: uptake and depletion kinetics. Am J Clin Nutr. 2014;100:930–7.

14. Scarmo S, Cartmel B, Lin H, Leffell DJ, Ermakov IV, Gellermann W, et al. Single v.
multiple measures of skin carotenoids by resonance Raman spectroscopy as a
biomarker of usual carotenoid status. Br J Nutr. 2013:911–7.

15. Mayne ST, Cartmel B, Scarmo S, Jahns L, Ermakov IV, Gellermann W.
Resonance Raman spectroscopic evaluation of skin carotenoids as a
biomarker of carotenoid status for human studies. Arch Biochem Biophys.
2013;539:163–70.

16. Ermakov IV, Gellermann W. Optical detection methods for carotenoids in
human skin. Arch Biochem Biophys. 2015;572:101–11.

17. Ermakov IV, Gellermann W. Dermal carotenoid measurements via pressure
mediated reflection spectroscopy. J Biophotonics. 2012;5:559–70.

18. Scarmo S, Cartmel B, Lin H, Leffell DJ, Welch E, Bhosale P, et al. Significant
correlations of dermal total carotenoids and dermal lycopene with their
respective plasma levels in healthy adults. Arch Biochem Biophys. 2010;504:34–9.

19. Scarmo S, Henebery K, Peracchio H, Cartmel B, Lin H, Ermakov IV, et al. Skin
carotenoid status measured by resonance Raman spectroscopy as a
biomarker of fruit and vegetable intake in preschool children. Eur J Clin
Nutr. 2012;66:555–60.

20. Jilcott Pitts SB, Jahns L, Wu Q, Moran NE, Bell RA, Truesdale KP, et al. A non-
invasive assessment of skin carotenoid status through reflection
spectroscopy is a feasible, reliable and potentially valid measure of fruit and
vegetable consumption in a diverse community sample. Public Health Nutr.
2018:1664–70.

21. Jahns L, Johnson LK, Scheett AJ, Stote KS, Raatz SK, Subar AF, et al.
Measures of diet quality across calendar and winter holiday seasons among
midlife women: a 1-year longitudinal study using the automated self-
administered 24-hour recall. J Acad Nutr Diet. 2016;116:1961–9.

Jahns et al. Nutrition Journal           (2019) 18:78 Page 7 of 8



22. Jahns L, Conrad Z, Johnson LK, Scheett AJ, Stote KS, Raatz SK. Diet quality is
lower and energy intake is higher on weekends compared with weekdays
in midlife women: a 1-year cohort study. J Acad Nutr Diet. 2017;117:1961–9.

23. National Cancer Institute, Epidemiology and Genomics Research. ASA24
Automated Self-Administered 24-hour Recall. http://epi.grants.cancer.gov/
asa24/. Accessed 24 Oct 2019.

24. Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, Bingley C,
et al. The automated self-administered 24-hour dietary recall (ASA24): a
resource for researchers, clinicians, and educators from the National Cancer
Institute. J Acad Nutr Diet. 2012;112:1134–7.

25. Thompson FE, Dixit-Joshi S, Potischman N, Dodd KW, Kirkpatrick SI, Kushi
LH, et al. Comparison of interviewer-administered and automated self-
administered 24-hour dietary recalls in 3 diverse integrated health systems.
Am J Epidemiol. 2015;181:970–8.

26. Kirkpatrick SI, Subar AF, Douglass D, Zimmerman TP, Thompson FE, Kahle
LL, et al. Performance of the automated self-administered 24-hour recall
relative to a measure of true intakes and to an interviewer-administered 24-
h recall. Am J Clin Nutr. 2014;100:233–40.

27. USDA. Food and nutrient database for dietary studies, 4.1. Beltsville (MD):
USDA, Agricultural Research Service, Food Surveys Research Group. 2010.

28. Bowman SA, Friday JE, Moshfegh A. MyPyramid equivalents database, 2.0
for USDA survey foods, 2003–2004.Beltsville: Beltsville Human Nutrition
Research Center, Agricultural Research Service, U.S. Department of
Agriculture; 2008.

29. US Department of Agriculture, Agricultural Research Service, Nutrient Data
Laboratory. USDA National Nutrient Database for Standard Reference, Release
22. http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 24 October, 2019.

30. Bukowski MR, Voeller K, Jahns L. Simple and sensitive dilute-and-shoot
analysis of carotenoids in human plasma. J Chromatogr B Analyt Technol
Biomed Life Sci. 2018;1095:32–8.

31. Melendez-Martinez AJ, Stinco CM, Liu C, Wang XD. A simple HPLC method
for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of
carotenoids for nutritional studies. Food Chem. 2013;138:1341–50.

32. Hamlett AC, Ryan L, Serrano-Trespalacios P, Wolfinger R. Mixed models for
assessing correlation in the presence of replication. J Air & Waste Manage
Assoc. 2003:442–50.

33. Mukaka MM. Statistics corner: a guide to appropriate use of correlation
coefficient in medical research. Malawi Med J. 2012;24:69–71.

34. Dietary Assessment Primer. National Institutes of Health, National Cancer
Institute. http://dietassessmentprimer.cancer.gov/. Accessed 24 October, 2019.

35. Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, et al.
Host-related factors explaining interindividual variability of carotenoid
bioavailability and tissue concentrations in humans. Mol Nutr Food Res.
2017;61:1600685.

36. Rodriguez-Roque MJ, de Ancos B, Sanchez-Vega R, Sanchez-Moreno C, Cano
MP, Elez-Martinez P, et al. Food matrix and processing influence on
carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-
based beverages. Food Funct. 2016;7:380–9.

37. Borel P, Desmarchelier C. Genetic variations associated with vitamin a status
and vitamin a bioavailability. Nutrients. 2017;9.

38. Seguin RA, Morgan EH, Hanson KL, Ammerman AS, Jilcott Pitts SB,
Kolodinsky J, et al. Farm fresh foods for healthy kids (F3HK): an innovative
community supported agriculture intervention to prevent childhood
obesity in low-income families and strengthen local agricultural economies.
BMC Public Health. 2017;17:306.

39. Jilcott Pitts SB, Wu Q, Truesdale KP, Haynes-Maslow L, McGuirt JT, Ammerman
A, et al. One-year follow-up examination of the impact of the North Carolina
healthy food small retailer program on healthy food availability, purchases, and
consumption. Int J Environ Res Public Health. 2018;15:2681.

40. Fraser GE, Jaceldo-Siegl K, Henning SM, Fan J, Knutsen SF, Haddad EH, et al.
Biomarkers of dietary intake are correlated with corresponding measures
from repeated dietary recalls and food-frequency questionnaires in the
Adventist health Study-2. J Nutr. 2016;146:586–94.

41. Lassale C, Castetbon K, Laporte F, Deschamps V, Vernay M, Camilleri GM,
et al. Correlations between fruit, vegetables, fish, vitamins, and fatty acids
estimated by web-based nonconsecutive dietary records and respective
biomarkers of nutritional status. J Acad Nutr Diet. 2016;116:427–38.

42. Carlsen MH, Karlsen A, Lillegaard ITL, Gran JM, Drevon CA, Blomhoff R, et al.
Relative validity of fruit and vegetable intake estimated from an FFQ, using
carotenoid and flavonoid biomarkers and the method of triads. Br J Nutr.
2011;105:1530–8.

43. Leung WC, Hessel S, Meplan C, Flint J, Oberhauser V, Tourniaire F, et al. Two
common single nucleotide polymorphisms in the gene encoding beta-
carotene 15,15′-monoxygenase alter beta-carotene metabolism in female
volunteers. FASEB J. 2009;23:1041–53.

44. Lietz G, Oxley A, Leung W, Hesketh J. Single nucleotide polymorphisms upstream
from the beta-carotene 15,15′-monoxygenase gene influence provitamin a
conversion efficiency in female volunteers. J Nutr. 2012;142:161S–5S.

45. Borel P. Genetic variations involved in interindividual variability in
carotenoid status. Mol Nutr Food Res. 2012;56:228–40.

46. Borel P, Lietz G, Goncalves A, Szabo de Edelenyi F, Lecompte S, Curtis P,
et al. CD36 and SR-BI are involved in cellular uptake of provitamin A
carotenoids by Caco-2 and HEK cells, and some of their genetic variants are
associated with plasma concentrations of these micronutrients in humans. J
Nutr. 2013;143:448–56.

47. Borel P, Moussa M, Reboul E, Lyan B, Defoort C, Vincent-Baudry S, et al. Human
plasma levels of vitamin E and carotenoids are associated with genetic
polymorphisms in genes involved in lipid metabolism. J Nutr. 2007;137:2653–9.

48. Holt EW, Wei EK, Bennett N, Zhang LM. Low skin carotenoid concentration
measured by resonance Raman spectroscopy is associated with metabolic
syndrome in adults. Nutr Res. 2014;34:821–6.

49. El-Sohemy A, Baylin A, Kabagambe E, Ascherio A, Spiegelman D, Campos H.
Individual carotenoid concentrations in adipose tissue and plasma as
biomarkers of dietary intake. Am J Clin Nutr. 2002;76:172–9.

50. Bernstein PS, Zhao DY, Sharifzadeh M, Ermakov IV, Gellermann W.
Resonance Raman measurement of macular carotenoids in the living
human eye. Arch Biochem Biophys. 2004;430:163–9.

51. Ermakov IV, Ermakova MR, Rosenberg TD, Gellermann W. Optical detection
of carotenoid antioxidants in human bone and surrounding tissue. J
Biomed Opt. 2013;18:117006.

52. Craft NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. Carotenoid,
tocopherol, and retinol concentrations in elderly human brain. J Nutr Health
Aging. 2004;8:156–62.

53. Parker RS. Carotenoid and tocopherol composition of human adipose
tissue. Am J Clin Nutr. 1988;47:33–6.

54. Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW, Gellermann W.
Resonance Raman measurement of macular carotenoids in normal subjects and
in age-related macular degeneration patients. Ophthalmology. 2002;109:1780–7.

55. Arab L, Cambou MC, Craft N, Wesseling-Perry K, Jardack P, Ang A. Racial
differences in correlations between reported dietary intakes of carotenoids
and their concentration biomarkers. Am J Clin Nutr. 2011;93:1102–8.

56. US Department of Health and Human Services and US Department of
Agriculture. 2015 – 2020 Dietary Guidelines for Americans. 8th Edition. 2015.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Jahns et al. Nutrition Journal           (2019) 18:78 Page 8 of 8

http://epi.grants.cancer.gov/asa24/
http://epi.grants.cancer.gov/asa24/
http://www.ars.usda.gov/ba/bhnrc/ndl
http://dietassessmentprimer.cancer.gov/


© 2019. This work is licensed under
http://creativecommons.org/licenses/by/4.0/ (the “License”).  Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Clinical trial registry

	Background
	Subjects and methods
	Study design and subjects
	Skin carotenoid measurements
	Dietary intake of vegetables, fruits, and carotenoids
	Blood sample and carotenoid analysis
	Statistical analysis

	Results
	Seasonal differences in study variables
	Correlations between RS and RRS
	Baseline and full-year pairwise correlations

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

