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Introduction

Brominated flame retardants (BFRs) comprise a 
diverse group of chemicals that have been used in an 
array of commercial and industrial applications for fire 
prevention (Hakk and Letcher, 2003). Polybrominated 
diphenyl ethers (PBDEs) are one class of halogenated 

organic BFRs that are persistent in the environment. 
Three types of PBDE mixtures were manufactured and 
marketed: penta-BDE (containing penta-, tetra-, and 
some hexa-brominated congeners), octa-BDE (con-
taining from hexa- to deca-brominated congeners), 
and deca-BDE (97% deca-BDE and 3% non-brominated 
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Abstract
Polybrominated diphenyl ethers (PBDEs) are an important class of flame-retardants that are environmentally 
persistent and bioaccumulative. Toxicity of these compounds has become a concern because detectable levels of 
PBDEs are present in humans and wildlife and they are structurally similar to polychlorinated biphenyls (PCBs). This 
study examined the effects of the commercial penta-BDE mixture, DE-71, in adult female B6C3F1 mice on hematology, 
serum clinical chemistry, thyroid hormones, tissue histology, and several immunotoxicity end-points (lymphocyte 
proliferation, NK cell activity, splenic immunophenotypes, and SRBC-specific-IgM production). Mice were exposed via 
oral gavage for 28 days to achieve total administered doses (TAD) of 0, 0.5, 5, 50, or 100 mg/kg. No changes in histology, 
clinical chemistry, body or organ weights were observed. Serum total T3 and T4 levels were not altered by any of the 
DE-71 treatments. Peripheral blood monocyte numbers were decreased by the 0.5, 5, and 50 mg/kg treatments, but 
not by the 100 mg/kg TAD concentration. Compared to controls, mitogen-stimulated T- and B-cell proliferation was 
increased by the 100 mg/kg TAD concentration (ED50 = 60 mg/kg TAD [2.14 mg/kg/day] and 58 mg/kg TAD [2.57 mg/
kg/day], respectively). NK cell activity was decreased compared to controls by the 100 mg/kg TAD concentration 
(ED50 = 20 mg/kg TAD [0.7 mg/kg/day]). No alterations were noted in thymic T-cell populations or in SRBC-specific-IgM 
production. Numbers of CD19+CD21−, CD19+CD21+, CD4+CD8−, CD4−CD8+, CD4−CD8−, and MHC-II+ cells in the spleen 
were not affected. However, the numbers of splenic CD4+CD8+ cells were decreased compared to the controls by 0.5, 
5, and 100 mg/kg TAD. This study provides an assessment of the systemic toxicity and immunotoxicity of DE-71, and 
indicates that immune parameters are modulated at exposure concentrations lower than previously reported.
Keywords:  Polybrominated diphenyl ether, PBDE, DE-71, immune, hematology, splenic CD4+/CD8+ cells, serum 
clinical chemistry, thyroid hormone, histology
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congeners) (Mercado-Feliciano and Bigsby, 2008). 
These PBDE commercial mixtures have been used 
extensively as additives in industrial products due to 
their low cost and high performance efficiency for low-
ering flammability (Stoker et al., 2004). The penta-BDE 
mixture, DE-71, has been used primarily in textiles as 
an additive in polyurethane foams (Hale et  al., 2002). 
These compounds are released into the environment as 
they are not chemically bound to the material they are 
intended to protect from burning.

Rising levels of PBDEs detected in environmental 
media, tissues of wildlife, and human tissues has raised 
concerns about possible health effects (de Wit, 2002; 
Sjödin et  al. 2003; Birnbaum and Staskal, 2004; Costa 
et al., 2008; Vonderheide et al., 2008; Shaw and Kannan, 
2009). The concentration of these chemicals in human 
serum and breast milk has exponentially increased in the 
last 3 decades (Noren and Meironyte, 2000; Sjödin et al., 
2004; Schecter et  al., 2005). Recent studies suggest that 
PBDEs may be neurotoxicants (Williams and DeSesso 
2010), developmental neurotoxicants (Kodavanti 
et  al., 2010), reproductive toxicants (Stoker et  al., 2004; 
Darnerud, 2008), and endocrine disruptors (Darnerud, 
2008). Immunomodulating effects of various xenobiotic 
classes including polycyclic aromatic hydrocarbons, 
halogenated aromatic hydrocarbons, organochlorine 
and organophosphorous pesticides, and heavy metals 
have been relatively well characterized (Dean, 1994). 
However, little is known about the immunological effects 
of PBDEs.

Only a few studies have characterized the poten-
tial immunotoxicity of PBDEs. Offspring of dams that 
received dietary exposure to deca-DBE from gesta-
tional day (GD) 10 through post-natal day (PND) 21 
had increased susceptibility to respiratory syncytial 
virus (RSV), increased interferon (IFN)-γ in the bron-
choalveolar lavage fluids and gene expression of the 
chemokine RANTES in the lungs of mice (Watanabe 
et  al., 2008). In contrast, 5-week-old female BALB/c 
mice given 1% deca-BDE in their diet for 28 days 
exhibited no overt signs of toxicity and no increase in 
RSV titers (Watanabe et al., 2010a). Bondy et al. (2011) 
reported no changes in delayed type hypersensitivity 
responses, antigen-specific IgG serum titers, or B-cell 
proliferation in Sprague-Dawley rats following lifetime 
exposure to DE-71 (gestation through 42 weeks); how-
ever, decreases in T-cell proliferation were observed in 
F

1
 females.
Suppression of sheep red blood cell (SRBC)-specific–

immunoglobulin (Ig) M production but no alteration 
in natural killer cell (NK) activity was observed in mice 
orally exposed to DE-71 for 14 days (Fowles et al., 1994). 
Teshima et  al. (2008) demonstrated that, although 
Keyhole limpet hemocyanin-specific IgM titers did 
not change in Sprague-Dawley rats following dietary, 
GD10-PND21, exposure to deca-BDE, T-cell popula-
tions were reduced. This dietary exposure decreased 
CD4+/CD8− cells at PND21 with a subsequent rebound 

in this sub-population by PND77, while CD4+/CD25+T
reg

 
cells, NKRP1a+/CD4+ NK cells, and NKRP1A+/CD4− 
NKT cells were decreased at PND77 but not PND21. 
Thuvander and Darnerud (1999) observed decreases in 
the percentage of thymic CD4−CD8− cells in mice along 
with decreased in vitro IgG secretion (36 mg/kg/d 
Bromkal70-5 DE given orally for 14 days). However, 
when PBDE (BDE-47 or -85) was administered to 
human lymphocytes in vitro, lymphocyte prolifera-
tion and immunoglobulin synthesis were not altered 
(Fernlöf et  al., 1997). Studies with American kestrels 
(Falco sparverius) showed that PBDE exposure (BDE47, 
-99, -100, and -153 mixture) increased phytohemag-
glutinin (PHA) skin response, decreased anti-SRBC 
responses, reduced spleen sizes, reduced apoptosis in 
the bursa, and increased numbers of macrophages in 
the thymus (Fernie et al., 2005). In contrast, correlative 
studies with Kemp’s ridley sea turtles did not indicate 
relationships between immune parameters and PBDE 
serum levels (Swarthout et al., 2010).

PBDEs are structurally related to polychlorinated 
biphenyl (PCB) agents and have similar toxicological 
profiles (ATSDR, 2004; Birnbaum and Staskal, 2004) 
and are also known to modulate immune function. 
Thus, studies to assess the effects of PDBEs in a more 
comprehensive manner are warranted. We exam-
ined the effects of PBDEs in a murine model using 
traditional measures of immunotoxicity as outlined 
by Luster et  al. (1988, 1992), with a 28-day exposure 
required by the USEPA Health Effects Test Guidelines 
for Immunotoxicity (OPPTS 870.7800), a Harmonized 
Test Guideline. The total administered dose (TAD) lev-
els in this study (Table 1) were based, in part, on the 
range of PBDE blood levels observed in humans and 
wildlife (see Table 2) and included higher concentra-
tions to address potential increases related to reported 
doubling times (Johnson-Restrepo et  al., 2005: Olsen 
et al., 2007).

Materials and methods

Chemicals, antibodies, and supplies
Unless otherwise specified, all chemicals and mitogens 
were purchased from Sigma (St. Louis, MO). The pen-
ta-BDE technical mix DE-71 (≥98% chemical purity) 
was obtained from Cambridge Isotope Laboratories 

Table 1.  Calculations of administered DE-71 at the end of the 
28-day exposure.

DE-71 mg/kg 
(TADa)

DE-71 μmol/
kg (TAD)

DE-71 
ppmb

DE-71 
ppbc

DE-71 mg/
kg/day

0.5 0.88 0.5 0.500 0.018
5 8.8 0.5 0.5,000 0.180
50 0.88 0.50 0.50,000 1.800
100 177 100 100,000 3.600
aTAD = total administered dose over the course of 28 days.
bppm = mg/kg = μg/g.
cppb = μg/kg = ng/g.
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(Andover, MA); DE-71 is composed of six major conge-
ners: BDE-99 > -47 > -100 > -153 > -154 > -85, ranging 
from 48.60–2.96% (wet weight) (La Guardia et al., 2006). 
Sheep erythrocytes (SRBC) in Alsever’s solution were 
purchased from Lonza (Walkersville, MD). Lyophilized 
guinea pig complement (GPC) and restoring solu-
tion, non-essential amino acids (NEAA; 10 mM, 100×) 
and sodium pyruvate (100 mM) were bought from 
GIBCO (Grand Island, NY). RPMI-1640 medium (with 
L-glutamine and sodium bicarbonate), phosphate-
buffered saline (PBS; with or without Ca2+ and Mg2+), 
penicillin (5,000 IU/ml), and streptomycin (5000 µg/
ml) were obtained from Cellgro (Mediatech, Herndon, 
VA). The radioisotopes sodium chromate ([51Cr]; spe-
cific activity = 351 mCi/mgCr), and tritium ([3H]; spe-
cific activity = 71 Ci/mmol) thymidine were acquired 
from ICN (Costa Mesa, CA). Fetal bovine serum (FBS) 
was from Gemini Bioproducts (Sacramento, CA). 
Fluorescein isothio-cyanate (FITC)-conjugated rat-
anti-mouse CD4 and phycoerythrin (PE) conjugated 
rat-anti-mouse CD8 monoclonal antibodies (mAb) 
were purchased from Caltag (Carlsbad, CA). FITC-
conjugated rat anti-mouse I-AP (MHC-II), Red-PE 
(R-PE)-conjugated rat anti-mouse CD21/CD35 (CR2/
CR1, CD21a/CD21b), and FITC-conjugated CD19 mAbs 
were obtained BD Biosciences (San Jose, CA). Goat 
anti-mouse IgM horseradish peroxidase was purchased 
from Accurate Chemical and Scientific Corp (Westbury, 
NY). Luma Plates™, Unifilters®, and Microscint 20™ were 
procured from Packard (Meriden, CT). YAC-1 cells 
were purchased from ATCC (Manassas, VA). Flat-
bottom 96-well Immuno-lon-2 ELISA microtiter plates 
for the IgM ELISA were obtained from Dynatech Labs 
(Chantilly, VA). Triton-X, tissue culture plates, and dis-
posables were from Fisher Scientific (Atlanta, GA).

Animal care
Mice were housed in plastic shoebox cages on corn-
cob bedding with micro-isolator lids in a HEPA filtered 
ventilated rack system and administered food (TekLab 
Sterilizable Rodent Diet, formula no. 8656; Harlan-Teklab, 

Madison, WI) and water ad libitum. For each treatment 
group, five 7–8-week-old female B

6
C

3
F

1
 mice (Harlan, 

Madison, WI) were acclimated to the conditions of the 
treatment room (12-h light/dark cycle, 22 ± 2°C, 60–65% 
relative humidity) for 1 week before dosing began. 
Bedding, food, and water were changed twice weekly and 
mice were observed daily. All procedures were approved 
by the Medical University of South Carolina Institutional 
Animal Care and Use Committee (IACUC) and conducted 
in an Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC) accredited facility.

Animal dosing
DE-71 was administered via oral gavage (volume = 80–110 
μl depending on weight) in a solution of canola oil con-
taining 10% DMSO. Control mice were administered 10% 
DMSO in canola oil. Mice were dosed daily for 28 days 
(0, 0.017, 0.17, 1.7, or 3.6 mg/kg/day) to yield a TAD over 
the 28 days of 0, 0.5, 5, 50, or 100 mg/kg TAD (Table 1). 
No anesthesia was required or utilized for each gavag-
ing procedure. Mice were weighed weekly and volumes 
adjusted if needed to maintain the TADs.

End-point assessment
The experiment was repeated three times (three trials). 
Due to the limited amount of blood available from mice, 
clinical chemistry, hematology, thyroid hormones, and 
SRBC-specific IgM titers were assessed singly from serum 
collected from one of the three trials. Lymphocyte prolif-
eration was assessed in all three trials. NK cell activity, total 
cellularity, and immunophenotype of cells from the thymus 
and spleen were assessed in two of the three trials.

Body and organ mass, and immune organ cellularity
To calculate mass change over the 28 days, body mass 
was measured 1 day prior to exposures and at the termi
nation of the experiment (weight change = final mass − 
start mass). Spleen, thymus, liver, kidney, uterus, brain, 
lung, and adrenals were collected and weighed following 
euthanization in a CO

2
-saturated environment. Organ 

mass was normalized for body weight and reported as 

Table 2.  Total administered dose (TAD) concentrations applied in this study were based on the following poly-brominated diphenyl 
ethers (PBDE) tissue concentrations found in humans and wildlife.

Species Location Tissue ΣPBDE* mean (ng/g = ppb) Reference
Bottlenose dolphin Charleston, SC, USA Blubber 6830 l.w.a Fair et al. (2007)
Bottlenose dolphin Indian River Lagoon, FL, USA Blubber 1690 l.w.a Fair et al. (2007)
Brown bats Albany County, NY, USA Fat 5270 l.w. Kannan et al. (2010)
Sea lions California, USA Blubber 3900 w.w. Stapleton et al. (2006)
Human Managua, Nicaragua Serum 540 l.w. Athanasiadou et al. (2007)
Human USA Serum 52.6 l.w.b Schecter et al. (2005)
Human California, USA Serum 42.2 l.w.c Windham et al. (2010)
Human USA (NHANES) Serum-Male 40.5 l.w.a Fraser et al. (2009)
Human USA (NHANES) Serum-Female 48.2 l.w.a Fraser et al. (2009)

*ΣPBDE refers to the sum of PBDE congeners reported; l.w. = lipid weight; w.w. = wet weight.
aGeometric mean. All other mean values, unless otherwise noted, are arithmetic mean.
bRange = 4.6–365.5 ppb (ng/g lipid).
cMedian, Range = 4.9–855 ppb (ng/g lipid).
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a somatic index ((organ weight/body wt) × 100). Organs 
for histopathology assessment were placed in tissue 
cassettes and stored in formalin until analysis. Immune 
organs (spleen and thymus) were aseptically processed 
into single cell suspensions with the use of sterile, frosted 
microscope slides. Spleen and thymus samples collected 
from the two experimental trials that did not assess 
immune organ histology were assessed for differences 
in cellularity. Viable cell counts for sample dilutions and 
total cellularity determinations were obtained via trypan 
blue exclusion using a hemacytometer following red 
blood cell (RBC) lysis.

Serum chemistries and hematology
Twenty-four hours after the last day of exposure (day 28), 
blood was collected under isoflurane anesthesia. Whole 
blood was collected via the retro-orbital sinus into an 
EDTA-coated microtainer for hematological analysis or a 
non-heparinized Eppendorf tube for serum chemistries, 
respectively. Immediately following blood collection, 
mice were euthanized with CO

2
. Blood collected without 

anti-coagulant was permitted to clot for 1 h. After clot for-
mation, the blood sample was centrifuged for 10 min at 
1350 x g using a microcentrifuge (Eppendorf, 5415C) and 
serum was transferred into an Eppendorf tube. Samples 
were kept cool until processed and shipped on frozen gel 
packs (wrapped and insulated to prevent freezing but 
to allow for sample to remain cool during shipping) to 
the Cornell University Veterinary Diagnostic Laboratory 
(Ithaca, NY) for analysis.

Complete blood cell counts (CBC) (white blood cells, 
red blood cells, hemoglobin, packed cell volume, mean 
corpuscular volume, mean corpuscular hemoglobin 
concentration, red blood cell distribution width, mean 
platelet volume, and platelets) were determined using an 
automated analyzer (Bayer ADVIA 120, Bayer Diagnostics, 
Tarrytown, NY). Differential leukocyte counts (neu-
trophils, lymphocytes, eosinophils, and monocytes), 
as part of the CBC, were performed by microscopic 
examination of modified Wright-Giemsa stained blood 
smears. Serum chemistry analytes were measured with 
an automated analyzer (Roche Hitachi 917, Indianapolis, 
IN) and included: glucose, sodium, potassium, chloride, 
calcium, phosphate, blood urea nitrogen (BUN), creati-
nine, total bilirubin, alkaline phosphatase (ALP), alanine 
aminotransferase (ALT), aspartate transaminase (AST), 
creatine phosphokinase (CPK), gamma-glutamyl trans-
ferase (GGT), amylase, triglyceride, and iron.

Thyroid hormones
Twenty-four hours after the last day of exposure (day 
28), whole blood was collected for the analysis of total 
triiodothyronine (TT3) and total thyroxine (TT4). Whole 
blood was permitted to clot for 1 h. After clot formation, 
the blood sample was centrifuged for 10 min (1350 × g) 
using a micro-centrifuge (Eppendorf, 5415C) and the 
resultant serum was transferred into an Eppendorf tube. 
Samples were kept cool until processed and shipped (as 

above) to the Cornell University Veterinary Diagnostic 
Laboratory (Ithaca, NY) for thyroid hormone measure-
ments. TT4 and TT3 were measured by solid-phase [125I]-
radioimmunoassays (RIA) using commercially-available 
kits (Coat-A-Coat® TT4, Siemens Heathcare Diagnostic 
Inc, Los Angeles, CA; Coat-A-Coat Total® TT3, Diagnostic 
Product Corp, Los Angeles, CA). Thyroid RIA was vali-
dated according to procedures described in Reimers 
et al. (1981). All results met criteria for quality assurance, 
precision, and percent coefficient of variation. Limits of 
detection were 0.11 μg/dl for TT4 and 0.08 ng/dl for TT3.

Histology
Tissue samples of spleen, thymus, liver, adrenal, lung, 
brain, uterus, and kidney were placed in 10% neutral 
buffered formalin, embedded in paraffin, sectioned at 5 
µm, and stained with hematoxylin and eosin for exami-
nation by light microscopy. Spleen and thymus samples 
were obtained from one of the experimental trials and a 
small section was collected for histopathology, while the 
remaining samples were used for immune assessments. 
A veterinary pathologist assessed the slides for abnormal-
ties and treatment groups were blinded to the evaluator.

Lymphocyte proliferation
Spleens were processed and diluted to 2 × 106 nucleated 
cells/ml in RPMI-1640 (with 10% fetal bovine serum 
(FBS), 1% non-essential amino acids (NEAA), 1% sodium 
pyruvate, 10 mM HEPES, 1% penicillin/streptomycin, 
and 10 µM 2-mercaptoethanol) that had been adjusted to 
pH 7.4. Mitogens used were 2.5 µg ConA/ml (concanava-
lin A, Type IV-S) and 5 µg LPS/ml (lipopolysaccharide; 
E. coli 0111:B4) as previously described (Peden-Adams 
et al., 2008).

Natural killer (NK) cell activity
Natural killer cell activity was assessed via an in vitro cyto-
toxicity assay using 51Cr-labeled YAC-1 cells (Duke et al., 
1985; Holsapple et al., 1988) with slight modifications to 
methods described in Peden-Adams et  al. (2008). The 
results are expressed in lytic units/107 splenocytes using 
10% lysis as the reference point (Bryant et al., 1992).

Splenic and thymic immunophenotypes
Spleen and thymus samples collected from the two exper-
imental trials that did not assess immune organ histology 
were assessed for differences in immunophenotypes. 
Spleen or thymus cells were labeled with fluorescent (PE- 
or FITC-conjugated) rat IgG

2
 mAbs specific for mouse 

CD4, CD8, CD19, CD21, and MHC-II and assessed by 
flow cytometry as previously described (Peden-Adams 
et al., 2008).

SRBC-specific IgM serum titers
Five days prior to euthanasia, mice were administered 
0.1 ml of a 25% sheep red blood cell (SRBC) suspen-
sion in PBS via intraperitoneal injection (Harper et al., 
1993). Serum was collected as described above from 
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the samples to be assessed for DE-71 concentrations 
and stored at −20°C until analysis. Relative SRBC-
specific IgM serum titers were measured by ELISA, as 
described previously (DeWitt et al., 2005). Briefly, flat-
bottom ELISA microtiter plates were coated with 125 µl 
of a 2 µg/ml solution of SRBC (1.46 mg/ml stock solu-
tion diluted in phosphate buffer solution, as described 
by Temple et al. (1993), and then incubated at 4°C for at 
least 16 h. Each plate included 20 wells that were coated 
with pooled serum collected from healthy mice 5 days 
after primary immunization with SRBC; an additional 
16 wells had 100 µl phosphate buffer solution only. After 
washing, blocking of non-specific binding, and addi-
tion of serum samples (serially diluted beginning at a 
1:6 or 1:7 starting dilution), secondary antibody (goat 
anti-mouse IgM horseradish peroxidase) was added. 
Following three washes, 100 µl ABTS substrate (2,2′-
azino-di-3-ethylbenzthiazoline sulfonic acid: Sigma) 
was added to each well; the plates were incubated for 
45 min at room temperature and then read at 410 nm 
on a SpectraMax 350 plate reader (Molecular Devices, 
Sunnyvale, CA). IgM antibody titers were quantified 
using SOFTmax Pro software (Molecular Devices) to 
determine the log

2
 serum titer for an optical density of 

0.5 U from the log–log curve of optical density vs dilu-
tion (Temple et al., 1993).

Liver PBDE analysis
Liver samples were stored at −80°C until extraction. 
Concentrations of PBDEs in mouse liver were deter-
mined by a method previously described (Johnson-
Restrepo et  al., 2005; Olsen et  al., 2007). Tissues (~1 g  
wet weight) were homogenized with anhydrous sodium 
sulfate and were Soxhlet extracted using dichlo-
romethane and hexane (3:1 v/v; 400 ml). Fat content 
was determined gravimetrically from an aliquot of the 
extract. PCB congeners CB-30 and CB-204 were spiked 
as surrogate standards prior to extraction. The extracts 
were spiked with [13C]-labeled PBDE congeners as 
internal standards (Cambridge Isotope Laboratories, 
Andover, MA), and were then purified by passage 
through 6 g of multi-layer silica gel (100–200 mesh) col-
umn packed in a glass column (10 mm i.d.). The silica 
gel column was prepared by packing 2 g of silica gel, 
followed by 2 g of 40% acidic silica, and then by 2 g of 
silica gel. The silica gel bed was washed with 100 ml of 
hexane prior to loading of the sample extract. Extracts 
were then eluted with 150 mL of 25% dichloromethane 
in hexane. Samples were further subjected to lipid 
removal by treatment with concentrated sulfuric acid.

Sample extracts (2 µl) were injected into a Hewlett-
Packard (HP) 6890 gas chromatograph interfaced with 
an HP 5973 mass spectrometer (GC-MS) (Foster City, 
CA). Injections were made in the splitless mode, and 
samples were separated on a 30 m DB-5 (5% diphenyl/
dimethylpolysiloxane) analytical capillary column with a 
250 µm i.d. and a 0.25 µm film thickness. The oven tem-
perature program was set at 100°C for 1 min, and then 

increased by 10°C/min to 160°C for 3 min, and increased 
by 2.5°C/min to 260°C, then held for 10 min. The inlet 
and interface temperatures were set at 270°C and 300°C, 
respectively. The MS was operated in an electron impact 
(70 eV) and selected ion monitoring mode (SIM). PBDE 
congeners were monitored at m/z 406, 408; 486, 484; 564, 
566; and 642, 644 for tri-; tetra-; penta-; and hexa-BDEs, 
respectively. Quantification was based on an external 
calibration standard. Eighteen congeners representing 
tri- through hexa-BDEs (congener # 17, 28, 51, 49, 48, 47, 
66, 102, 100, 119, 91, 99, 85, 154, 153, 139, 140, and 138) 
were quantified. The detection limit of individual PBDE 
congeners varied from 0.2–3 ng/g, wet weight. Mean 
recoveries of PCB-30 and PCB-204, spiked into samples 
prior to extraction, were 94% and 104%, respectively. 
Recovery of 13C-PBDEs spiked into samples prior to lipid 
removal ranged from 86–99%. Values for liver below the 
lower limit of quantitation (LLQ) were set to ½ LLQ for 
calculation of total PBDE (ΣPBDE).

Statistics
Data were tested for normality (Shapiro-Wilks W-test) and 
homogeneity (Bartlett’s test for unequal variances) and, 
if needed, appropriate transformations were made. For 
parametric data, a one-way ANOVA was used to determine 
differences among doses for each end-point using JMP 
4.0.2 (SAS Institute Inc., Cary, NC) in which the standard 
error used a pooled estimate of error variance. Dunnett’s 
t-test was used to compare treatment groups to the control 
group. Natural killer cell data were additionally tested by 
Kendall’s Tau for relationship analysis (p < 0.05). The dose–
response for immune end-points was assessed by regres-
sion analysis. The log transformation of the end-point was 
plotted against the log dose. The log dose needed to achieve 
50% suppression/stimulation of the immune response was 
determined from the regression equation and the inverse 
log calculated to determine the calculated ED

50
.

Results

Liver PBDE concentration
Concentrations of PBDE congeners in the liver collected 
on day 29 (24 h after the final exposure) were deter-
mined. The measured liver concentrations are presented 
in Table 3. The ΣPBDE concentration for liver ranged on 
average from 14.4 (± 1.0) to 5350 (± 634) ng/g wet weight 
or (328 [± 52.7] to 121,000 [± 24,900] ng/g lipid wt).

Body and organ mass and immune organ cellularity
There were no signs of overt toxicity in any of the animals 
as indicated by weight loss, lack of activity, lack of groom-
ing, or cloudy eyes. Mice in all groups appeared to gain 
weight equally over the course of the 28-day study (data 
not shown). Secondary immune organ mass (spleen 
and thymus) was not altered, nor was liver, kidney, or 
uterus mass (data not shown). Brain, adrenal, and lung 
mass also exhibited no statistical change as compared to 
controls (data not shown). Cellularity of the spleen and 
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thymus was not altered following treatment with DE-71 
at any of the dose levels assessed (data not shown).

Hematology, serum clinical chemistry, thyroid 
hormones, and organ histology
The only hematological parameter altered was numbers 
of peripheral blood monocytes. Monocyte numbers were 
significantly decreased in the 0.5, 5, and 50 mg/kg TAD 
treatment groups as compared to controls by 77%, 77%, 
and 92%, respectively (Figure 1). Serum clinical chem-
istry profiles (data not shown) and serum TT3 and TT4 
levels were not significantly affected by DE-71 treatment 
(Figure 2). No histological alterations were noted in any 
of the organs assessed (data not shown).

Lymphocyte proliferation, NK-cell function,  
SRBC-specific IgM
ConA- or LPS-induced lymphocyte proliferation follow-
ing exposure to 100 mg DE-71/kg TAD (3.6 mg/kg/day)  

was significantly increased over controls (Figure 3). The 
calculated effective dose values at 50% (ED

50
) for these 

increased responses were 60 mg/kg TAD and 58 mg/kg 
TAD, respectively (ConA ED

50
 = 60 mg/kg TAD = 2.14 mg/

kg/day [y = 0.2006x2 − 0.2498x + 1.8589; R2 = 0.9639];  
LPS ED

50
= 58 mg/kg TAD = 2.07 mg/kg/day [y = 0.179x2 −  

0.219x + 2.1205; R2 = 0.8576]). NK-cell activity was sig-
nificantly decreased by 80% following exposure to 
100 mg DE-71/kg TAD (3.6 mg/kg/day; Figure 4). The 
calculated ED

50
 for this response was 20 mg/kg TAD (0.71  

mg/kg/day; y = −0.1412x2 − 0.0145x + 1.4478; R2 = 0.9228) and 
the relationship between NK activity and administered DE-71 
concentration exhibited a significant negative relationship. 
Serum levels of SRBC-specific-IgM were not significantly 
altered by any treatment (Figure 5).

Lymphocyte immunophenotypes
The numbers of thymic CD4/CD8 cells were not altered 
by DE-71 treatment (data not shown). In the spleen, 

Table 3.  Liver PBDE concentrations (ng/g) on both a wet weight (w.w) and lipid weight basis in female B
6
C

3
F

1
 mice following a 28-day 

oral exposure to DE-71.

 
Tissue concentration

DE-71 treatment (mg/kg TAD)
0 0.5 5.0 50 100

BDE-17 (ng/g, w.w.) < LLQa < LLQ < LLQ < LLQ < LLQ
BDE-28 (ng/g, w.w.) 
[ng/g lipid]

0.16 ± 0.14b 
[3.92 ± 3.83]

< LLQ 0.47 ± 0.09 
[12.90 ± 3.46]

3.87 ± 0.62  
[98.10 ± 10.80]

7.81 ± 0.54 
[192.00 ± 24.10]

BDE-47 (ng/g, w.w.) 
[ng/g lipid]

0.84 ± 0.62 
[19.50 ± 15.50]

6.98 ± 1.74 
[173.00 ± 26.40]

50.10 ± 13.30 
[1380.00 ± 437.00]

555.00 ± 125.90 
[14,000.00 ± 2540.00]

1,234.00 ± 178.50 
[30,500.00 ± 6450.00]

BDE-48 (ng/g, w.w.) < LLQ < LLQ < LLQ < LLQ < LLQ
BDE-49 (ng/g, w.w.) < LLQ < LLQ < LLQ < LLQ 0.87 ± 0.06
BDE-51 (ng/g, w.w.) < LLQ < LLQ < LLQ < LLQ 21.30 ± 3.27
BDE-66 (ng/g, w.w.) 
[ng/g lipid]

0.21 ± 0.25 
[5.11 ± 6.46]

< LLQ < LLQ < LLQ 1.46 ± 0.26 [36.90 ± 9.00]

BDE-85 (ng/g, w.w.) 
[ng/g lipid]

< LLQ < LLQ 3.68 ± 0.58 
[101.00 ± 20.90]

52.40 ± 5.20 
[1,330.00 ± 109.40]

73.40 ± 12.90 
[1820.00 ± 440.20]

BDE-91 (ng/g, w.w.) < LLQ < LLQ < LLQ < LLQ < LLQ
BDE-99 (ng/g, w.w.) 
[ng/g lipid]

< LLQ 11.10 ± 2.40 
[278.00 ± 42.50]

80.70 ± 12.50 
[2,200.00 ± 443.80]

1,180 00 ± 175.70 
[30,000.00 ± 2,952.00]

1,830.00 ± 186.80 
[44,980.00 ± 7,590.00]

BDE-100 (ng/g, w.w.) 
[ng/g lipid]

< LLQ 4.31 ± 0.97 
[108.00 ± 17.70]

31.10 ± 4.82 
[848.00 ± 167.80]

350.00 ± 50.40 
[8,850.00 ± 809.20]

534.60 ± 57.20 
[13,140.00 ± 2,102.00]

BDE-102 (ng/g, w.w.) < LLQ < LLQ < LLQ < LLQ < LLQ
BDE-119 (ng/g, w.w.) < LLQ < LLQ < LLQ < LLQ < LLQ
BDE-138 (ng/g, w.w.) 
[ng/g lipid]

< LLQ < LLQ < LLQ 25.90 ± 5.81 
[123.00 ± 27.70]

31.40 ± 9.90 
[149.00 ± 47.20]

BDE-139 (ng/g, w.w.) 
[ng/g lipid]

< LLQ < LLQ 6.19 ± 0.85 
[168.00 ± 22.34]

142.00 ± 13.50 
[3,610.00 ± 349.80]

201.00 ± 31.90 
[4,970.00 ± 1,147.00]

BDE-140 (ng/g, w.w.) 
[ng/g lipid]

< LLQ < LLQ < LLQ 21.40 ± 2.65 
[543.00 ± 41.70]

26.00 ± 6.26 
[646.00 ± 193.10]

BDE-153 (ng/g, w.w.) 
[ng/g lipid]

< LLQ 3.97 ± 0.62 
[100.00 ± 21.80]

24.30 ± 5.83 
[653.00 ± 119.50]

832.00 ± 119.40 
[21,100.00 ± 2,370.00]

1,310.00 ± 214.90 
[32,400.00 ± 7,500.00]

BDE-154 (ng/g, w.w.) 
[ng/g lipid]

< LLQ < LLQ 4.50 ± 0.89 
[123.00 ± 27.70]

74.30 ± 9.21 
[1,890.00 ± 174.50]

99.20 ± 9.21 
[2,450.00 ± 474.20]

ΣPBDE (ng/g, w.w.) 14.40 ± 1.00 36.20 ± 5.37 208.00 ± 31.50 3,240.00 ± 462.70 5,350.00 ± 636.90

Lipid (%)c 4.40 ± 0.55 4.00 ± 0.74 3.70 ± 0.32 3.90 ± 0.32 4.10 ± 0.51

ΣPBDE (ng/g lipid)d 328.00 ± 52.70 910.00 ± 120.60 5,660.00 ± 1,120.00 81,600.00 ± 7,790.00 121,100.00 ± 24,870.00
aLLQ = lower than the limit of quantitation.
bData are reported as mean ± SD; Sample size for all treatments is five.
cLipid % determined gravimetrically.
d(ΣPBDE (ng/g w.w.)/% lipid) × 100.
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the only change observed in CD4±CD8± cell numbers 
was in CD4+CD8+ cells. Compared to controls, num-
bers of CD4+CD8+ cells were significantly decreased 
by 50%, 57%, and 51%, respectively, by 0.5, 5, and  

100 mg/kg TAD (Table 4). Absolute numbers of splenic 
B-cells (CD19+CD21− and CD19+CD21+) and MHC-II+ cells 
were not changed following DE-71 exposure (Table 4). 
Numbers of CD19−CD21+ cells that most likely represent 

Figure 1.  Peripheral blood monocyte counts in adult female 
B

6
C

3
F

1
 mice following oral exposure to DE-71 for 28-days. Data are 

presented as mean ± SEM. This experiment was conducted once. 
Sample size for all treatments was five. TAD = Total Administered 
Dose (daily doses are 1/28 of the TAD). *Significantly different 
from control (p ≤ 0.05).

Figure 2.  Serum total T3 (a) and total T4 (b) levels in adult female 
B

6
C

3
F

1
 mice following oral exposure to DE-71 for 28-days. Data are 

presented as mean (± SEM). This experiment was conducted once. 
Sample size for all treatments was five. TAD = Total Administered 
Dose (daily doses are 1/28 of the TAD).

Figure 3.  Splenic lymphocyte proliferation. Splenic lymphocyte proliferation in adult female B
6
C

3
F

1
 mice was measured using the tritiated 

thymidine method following oral exposure to DE-71 for 28-days. Unstimulated cpm counts were not significantly different between 
treatment groups; therefore, data are represented as the stimulation index (SI = cpm stimulated/cpm unstimulated). Data are presented 
as mean SI ± SEM. Sample size for all treatments was five. The cpm of the unstimulated wells averaged 701 ± 50 (mean [± SEM]). T-Cell 
mitogen ConA was used at a final concentration of 2.5 μg/ml; LPS from E. coli (5 μg/ml final concentration) was used to stimulate B-cells. 
This experiment was conducted three times. Data from a single experiment are shown, as results were representative of all experiments. 
TAD = Total Administered Dose (daily doses are 1/28 of the TAD). *Indicates statistical difference from controls (p ≤ 0.05). The calculated 
ED

50
s for these responses were 60 mg/kg TAD and 58 mg/kg TAD, respectively (ConA ED

50
 = 60 mg/kg TAD = 2.14 mg/kg/day [y = 0.2006x2 − 

0.2498x + 1.8589; R2 = 0.9639]; LPS ED
50

 = 58 mg/kg TAD = 2.07 mg/kg/day [y = 0.179x2 − 0.219x + 2.1205; R2 = 0.8576]).
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follicular dendritic cells were also not altered by DE-71 
treatment (data not shown). The CD4+:CD8+ ratio was not 
altered in either the spleen or thymus (data not shown).

Discussion

This is the first study to examine the effects of a PBDE 
technical mixture (DE-71) on traditional National 
Toxicology Program tiered immunotoxicity test end-
points (hematology, histology, organ weights, T-cell sub-
populations, NK cell activity, lymphocyte proliferation, 
and SBRC-specific IgM production) following the 28-day 
oral exposure experimental design described by the 
USEPA Health Effects Test Guidelines for Immunotoxicity 
(OPPTS 870.7800). While a few rodent studies have 
previously assessed immune modulation following 
exposure to DE-71 (Fowles et al., 1994; Kodavanti et al., 
2010), Bromkal 70-5DE (containing 60% penta-BDE 
and 40% hexa-BDE; Darnerud and Thuvander, 1999), 
BDE47 and BDE85 (Fernlöf et al., 1997), and deca-BDE 
(Teshima et al., 2008; Wantanabe et al., 2008, 2010a, b), 
this study demonstrated that exposure to DE-71 led to 
decreased numbers of peripheral blood monocytes and 
splenic CD4+CD8+ T-cells and suggested that immune 
function may be modulated at environmentally relevant 
concentrations.

The current study identified changes in the distribu-
tion of immunological cells and in cell function, but 
did not detect alterations in total T3 or T4 serum levels. 
Alterations in circulating levels of thyroid hormones are 
generally considered a sensitive toxicological endpoint 
following PBDE exposure in humans and experimental 
models (Fowles et al., 1994; Zhou et al., 2001; Darnerud 
et al., 2007; Turyk et al., 2008; Dallaire et al., 2009). To our 
knowledge, an acute oral exposure to 0.8 mg/kg DE-71 in 
female C57Bl/6 mice was the lowest concentration ever 
reported to modulate thyroid hormones. This concentra-
tion was associated with a decrease in total and free T4 
serum levels, but immune function was not altered by 
any of the acute exposures (0.8–500 mg/kg DE-71; Fowles 
et  al., 1994). However, Fowles et  al. (1994) did observe 
decreased SRBC-specific IgM production and decreased 
thymus mass when the mice were given 1000 mg/kg 
DE-71 TAD (71.4 mg/kg/d) for 14 days. Total and free T4 
were more sensitive endpoints as they were decreased by 

Figure 4.  Splenic natural killer (NK) cell activity. Splenic NK 
activity in adult female B

6
C

3
F

1
 mice was measured using a 

standard chromium release method following oral exposure to 
DE-71 for 28 days. Data are presented as mean (± SEM). Sample 
size for all treatments was five. LU = lytic units. This experiment 
was conducted twice. Data from a single experiment are shown, 
as results were representative of both experiments. *Indicates 
statistical difference from controls (p ≤ 0.05). The calculated  
ED

50
 for this response was 20 mg/kg TAD (0.71 mg/kg/day; 

y = −0.1412x2 − 0.0145x + 1.4478; R2 = 0.9228). Additionally, a 
significant decreasing relationship was observed with increasing 
DE-71 dose (Tau b = −0.57; p < 0.05). TAD = Total Administered 
Dose over the course of 28 days (daily doses are 1/28 of the TAD).

Figure 5.  SRBC-specific IgM titers. SRBC-specific IgM titers in 
adult female B

6
C

3
F

1
 mice were measured by ELISA following oral 

exposure to DE-71 for 28 days. Data are presented as mean (± SEM). 
This experiment was conducted once. Sample size for all treatments 
was five, with the exception of 0.5 mg/kg TAD samples (n = 4). 
TAD = Total Administered Dose (daily doses are 1/28 of the TAD).

Table 4.  Splenic lymphocyte sub-populations in adult B
6
C

3
F

1
 mice following oral exposure with DE-71 for 28 days.

DE-71 mg/kg  
TAD

CD4−CD8+ 
(cells × 107)

CD4−CD8− 
(cells × 108)

CD4+CD8+ 
(cells × 106)

CD4+CD8− 
(cells × 107)

CD19+CD21− 
(cells × 107)

CD19+CD21+  
(cells × 108)

MHC-II+  
(cells × 108)

0 2.50 ± 0.20 1.40 ± 0.10 2.40 ± 0.39 5.30 ± 0.30 1.30 ± 0.20 1.10 ± 0.10 1.30 ± 0.10
0.5 1.90 ± 0.20 1.20 ± 0.10 1.20 ± 0.18* 4.60 ± 0.70 1.30 ± 0.20 0.90 ± 0.10 1.10 ± 0.10

5.0 1.80 ± 0.50 1.10 ± 0.30 1.00 ± 0.51* 4.20 ± 1.00 0.90 ± 0.20 0.80 ± 0.20 1.00 ± 0.20

50 2.00 ± 0.20 1.30 ± 0.10 1.50 ± 0.18 4.70 ± 0.50 1.10 ± 0.30 0.90 ± 0.10 1.20 ± 0.10
100 2.30 ± 0.30 1.50 ± 0.10 1.10 ± 0.09* 5.20 ± 0.60 1.20 ± 0.20 1.10 ± 0.10 1.40 ± 0.10

TAD, Total administered dose (daily dose is 1/28 of the TAD).
Note: Data are reported as absolute numbers of cells calculated as: (percent gated/100) × total spleen cellularity. Data are reported as 
mean ± SEM. Sample size for each treatment group is five. This experiment was conducted twice. Data from a single experiment are 
shown, as results were consistent between both experiments.
*Value significantly different from control (p ≤ 0.05).
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250 mg/kg DE-71 TAD (17.9 mg/kg/day) (Fowles et  al., 
1994).

In the current study, T- and B-cell proliferation and 
NK cell activity were significantly different from control 
mice at a 100 mg/kg TAD. These effects were observed 
at a total DE-71 concentration that is 100-fold less  
than the immune effects previously reported by Fowles 
et  al. (1994). Strikingly, the LOAEL (0.5 mg/kg TAD; 
0.018 mg/kg/day) that we report (as indicated by both 
decreased peripheral blood monocyte numbers and 
decreased numbers of splenic CD4+/CD8+ cells) is 2000-
fold lower than previously reported immune effects. 
In addition, in the current study, immune parameters 
(changes in cell numbers and function) were affected 
while thyroid hormone levels were not altered, suggest-
ing that in B

6
C

3
F

1
 mice given PBDE, immune function 

is a more sensitive end-point than thyroid hormone 
levels in PBDE-exposed C57BL/6 mice. Although these 
differences may be strain-related, they are more likely 
related to duration and frequency of exposure. The 
current data suggest that lower daily doses for a longer 
duration result in immune alterations that were not 
previously detected.

Although peripheral blood monocytes were signifi-
cantly decreased beginning at the 0.5 mg/kg treatment, 
it is unclear if this would lead to deficits in disease 
resistance. Monocytes are a relatively small fraction of 
immune cells in peripheral circulating blood, but are 
important in innate immune surveillance. There were 
no concomitant decreases in the numbers of splenic 
MHC-II+ cells in the current study. The MHC-II marker, 
however, is found on dendritic cells and B-cells, as well 
as on macrophages (monocytes that have infiltrated 
tissue). Further studies should assess the numbers of 
macrophages in the spleen using a more specific mac-
rophage cell surface marker such as F4/80, and exam-
ine macrophage function (e.g., phagocytosis, nitric 
oxide production).

Both CD4+ and CD8+ splenic sub-populations were 
decreased with the 0.5, 5, and 100 mg/kg DE-71 TAD; 
however, there was no concomitant effect on this lym-
phocyte sub-population in the thymus. The classic 
pathway of T-cell maturation is that T-cells mature in 
the thymus from CD4+CD8+ cells to either CD4+CD8− or 
CD4−CD8+ cells, which then migrate to the periphery 
and secondary immune organs. The presence of extra-
thymic CD4+CD8+ T-cells has been largely disregarded 
(Zuckermann, 1998). Early studies indicate that mice 
exhibit a sub-set of intraepithelial lymphocytes (IEL) 
that exhibit both CD4+ and CD8+ that appear to be 
mature T-cells rather than immature cells (reviewed in 
Zuckerman, 1999). In humans, CD4+CD8+ T-cells seem 
to be important in tumor regulation (Desfrancois et al., 
2009, 2010). Additionally, CD4+/CD8+, a distinct mac-
rophage sub-set, has been identified in rats that exhibit 
cytotoxic tumor killing capacity (Baba et  al., 2006, 
2008). CD4 is constitutively expressed on macrophages 
and monocytes from humans and rats (Jeffries et  al., 

1985; Wood et  al., 1985; Baba et  al., 2006), but this 
has not been confirmed in mice (Baba et  al., 2006). 
Furthermore, increased numbers of CD4+CD8+ T-cells 
have been noted in lymph and bronchoalveolar lavage 
fluid from mice following exposure to viruses (Periwal 
and Cebra, 1999; Hillemeyer et  al., 2002) and studies 
suggest that CD4 expression on CD8 T-cells enhances 
the response to viral and alloantigens in mice (Kitchen 
et al., 2005).

Although some information exists regarding extra-
thymic CD4+/CD8+ cells, their origin, function, and 
importance are just beginning to come to light and 
much is still unknown. The observed decrease in 
splenic CD4+CD8+ cells following DE-71 treatment indi-
cates a cell sub-population was modulated. However, 
the importance of this finding in light of the scarcity 
of information on this cell population is unclear. It is 
possible that since CD4+CD8+ macrophages have been 
identified in rats, this decrease might be associated 
with deficits in peripheral blood monocytes; however, 
to our knowledge no CD4+CD8+ macrophages have 
been identified in mice (Baba et al., 2006). Increases in 
susceptibility to RSV following GD10-PND21 exposure 
to deca-BDE (Wantanabe et al., 2010b) suggest that the 
decreases in splenic CD4+CD8+ cells could be linked to 
increased viral susceptibility. Perhaps the decrease in 
CD4+CD8+ cells (assumed to be T-cells) indicates defi-
ciencies in protection from viral pathogenesis. However, 
caution is warranted in making that assumption since 
in 5-week-old female BABL/c mice, no increase in RSV 
titer was observed following a 28-day exposure to a TAD  
of ~52,800 mg/kg DBDE (Watanabe et  al., 2010a). As 
the current study assessed DE-71, a penta-DBE mixture 
rather than deca-BDE, additional studies are required 
to better characterize this CD4+CD8+ population in the 
spleen and assess tumor and viral host resistance to 
confirm potential links.

The LOAEL (0.5 mg/kg TAD; 0.018 mg/kg/day, 500 ppb 
TAD) in this study was established by both decreased 
peripheral blood monocyte numbers and decreased 
numbers of splenic CD4+CD8+ cells. As this dose was the 
lowest DE-71 concentration tested, the NOAEL could not 
be determined. Our LOAEL is similar to the upper ranges 
of ΣPBDE serum levels reported in Schecter et al. (2005) 
and Windham et  al. (2010) (366 and 855 ppb, respec-
tively). Using the mean human serum values presented 
in Table 2 to calculate a margin of exposure (MOE), which 
is the ratio of the NOAEL (or LOAEL in the absence of a 
NOAEL) in an animal study to exposure levels estimated 
in the human population, we obtain a range of 0.9–12.3. 
Calculation of the MOE with the NOAEL, were it available, 
would further decrease the MOE. MOE values less than 
100 may serve as an alert for further testing (Faustman 
and Omenn, 2001). Estimated serum levels of BDE-47 
based on the liver:serum ratio of 11.4:1 for B

6
C

3
F

1
 mice 

reported by Sanders et al. (2006) indicate that treatment 
concentrations fall within ranges reported in humans 
(Table 5). Taken together, this suggests a possible risk of 
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immunotoxicity at current human exposures. Data on the 
mechanism of the observed effects along with utilization 
of a parallelogram approach (Selgrade et al., 1995) would 
decrease uncertainty and provide information needed to 
better assess human health risk.

This study comprises the first assessment of tra-
ditional immunotoxicity measures as defined by the 
USEPA Health Effects Test Guidelines for Immunotoxicity 
(OPPTS 870.7800) and suggests that DE-71 can modulate 
immune function at environmentally relevant concen-
trations. Numbers of peripheral blood monocytes and 
splenic CD4+CD8+ T-cells were decreased at the lowest 
dose tested. These effects occurred at concentrations 
where thyroid hormones were not modulated. In fact, no 
changes in thyroid hormones were noted at any DE-71 
concentration tested in the current study. Based on these 
findings and reported PBDE concentrations in humans 
and wildlife, continued investigation is warranted to 
determine the effects and mechanisms of PBDEs on 
immunity and health parameters at low exposure con-
centrations to better predict risk.
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