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Abstract

Multi-walled carbon nanotubes (MWCNTs) are increasingly used in industry and in nanomedicine 

raising safety concerns, especially during unique life-stages such as pregnancy. We hypothesized 

that MWCNT exposure during pregnancy will increase vascular tissue contractile responses by 

increasing Rho kinase signaling. Pregnant (17–19 gestational days) and non-pregnant Sprague 

Dawley rats were exposed to 100 μg/kg of MWCNTs by intratracheal instillation or intravenous 

administration. Vasoactive responses of uterine, mesenteric, aortic and umbilical vessels were 

studied 24 hours post-exposure by wire myography. The contractile responses of the vessel 

segments were different between the pregnant and non-pregnant rats, following MWCNT 

exposure. Maximum stress generation in the uterine artery segments from the pregnant rats 

following pulmonary MWCNT exposure was increased in response to angiotensin II by 4.9 

mN/mm2 (+118%), as compared to the naïve response and by 2.6 mN/mm2 (+40.7%) as compared 

to the vehicle exposed group. Following MWCNT exposure, serotonin induced approximately 4 

mN/mm2 increase in stress generation of the mesenteric artery from both pregnant and non-

pregnant rats as compared to the vehicle response. A significant contribution of the dispersion 

medium was identified as inducing changes in the contractile properties following both pulmonary 

and intravenous exposure to MWCNTs. Wire myographic studies in the presence of a Rho kinase 

inhibitor and RhoA and Rho kinase mRNA/protein expression of rat aortic endothelial cells were 

unaltered following exposure to MWCNTs, suggesting absent/minimal contribution of Rho kinase 

to the enhanced contractile responses following MWCNT exposure. The reactivity of the umbilical 

vein was not changed; however, mean fetal weight gain was reduced with dispersion media and 

MWCNT exposure by both routes. These results suggest a susceptibility of the vasculature during 

gestation to MWCNT and their dispersion media-induced vasoconstriction, predisposing reduced 

fetal growth during pregnancy.
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Introduction

An increasing number of single- and multi-walled carbon nanotubes (SWCNTs and 

MWCNTs) are being designed and produced for various industrial and biomedical 

applications such as tracers of malignant cells, immunomodulators, contrast agents and as 

scaffolds in tissue engineering [1,2]. Pulmonary exposure to MWCNTs are reported to be 

associated with adverse effects similar to asbestos exposure [3] involving impairment in 

pulmonary functions [4] and activation of inflammatory responses in mesothelial cells [5]. 

MWCNTs are known to be taken-up by bronchial epithelial cells, increase pro-inflammatory 

cytokine production and induce cytotoxicity in in vitro studies [6,7]. When considering their 

bio-distribution, MWCNTs translocate to the lymph nodes following intratracheal 

instillation [8,9] and potentially to other extra-pulmonary organs including the liver, kidney 

and heart and contributing to various toxico-pathologies [10]. The extra-pulmonary effects 

of MWCNT exposure is reported to be associated with impairment of endothelium 

dependent relaxation in coronary arterioles [11] and increased coronary vascular tone 

enhancing indices of ischemia reperfusion injury [12]. The adverse pulmonary effects 

following occupational exposure to carbon nanotubes have been studied extensively in non-

pregnant animal models [9,13]. The consequences of MWCNT exposure on the peripheral 

vascular system are yet to be studied adequately, particularly in the unique physiological 

stage of pregnancy.

In general, exposure to MWCNTs occurs by inhalation during occupational exposures in 

industry or in research laboratories [13–15]. Potential biomedical applications could also 

expose an individual to MWCNTs primarily by the intravenous route [16]. An animal model 

study on MWCNT exposure during pregnancy reported minimal effects on fetal 

development and maternal well-being following oral exposure to 8–1000 mg/kg/day of 

MWCNTs [17]. The expansive vascular remodeling that takes place during pregnancy 

[18,19] may predispose the maternal and fetal vasculature to be sensitive to nanomaterial 

exposures by various routes (i.e. pulmonary and intravenous) where increased concentrations 

of MWCNTs may directly reach the circulation. The consequence of any changes in 

vascular reactivity can potentially negatively influence the placental blood supply, impacting 

fetal growth and development. Following acute intravenous exposure, pristine carbon 

nanotubes are redistributed to the reticulo-endothelial system [16,20] with a significant 

proportion remaining in blood [21]. This is in contrast to functionalized forms, which are 

reported to be excreted unchanged via the kidney [22,23]. It can be assumed that these 

nanotubes come in direct contact with the vascular endothelium during their circulation and 

these interactions can potentially induce changes in vascular reactivity during pregnancy by 

various mechanisms.
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Multiple vasoconstrictor agents including phenylephrine, endothelin 1, angiotensin II and 

serotonin act through Gq protein coupled receptors to regulate smooth muscle contraction in 

the vasculature. Downstream of this receptor, the RhoA/Rho kinase pathway plays a critical 

role in mediating contractile response in vascular smooth muscle cells. The active form of 

RhoA promotes activation of the Rho kinase (ROCK) that inhibits MLC phosphatase 

(MLCP) activity, the dephosphorylation of myosin and subsequent relaxation [24]. 

Alterations in the RhoA/Rho kinase pathway is reported to be involved in endothelial 

dysfunction, inflammation [25,26] and with exposure to particulate matter [27].

We hypothesized that MWCNT exposure during pregnancy would increase the contractile 

responses in uterine and placenta derived blood vessels by increasing the RhoA/Rho kinase 

activity. We also hypothesized that there will be differential effects on the contractile 

responses dependent on the route of exposure and the vascular bed location. Intratracheal 

instillation and intravenous administration were used as the two routes of exposure to 

identify these differential effects within thoracic aorta, mesenteric and uterine arterial 

segments.

Methods and Materials

MWCNT suspensions for exposure

Multi-walled carbon nanotubes (MWCNTs) were a generous gift from NanoTechLabs Inc. 

(Yadkinville, NC, USA) and the dry powder form was previously characterized [4]. The 

commercial grade, non-functionalized, hydrophobic carbon based nanotubes were 

suspended in non-polar solvents/dispersion media prior to in vivo exposure. MWCNTs for 

intratracheal instillation was suspended in 10% clinical grade surfactant (Infasurf®, ONY, 

Inc., Amherst, NY, USA), to mimic protein-lipid coating from lung surfactant, in sterile 

0.9% saline (0.9% NaCl, B. Braun Medical Inc., CA, USA) as previously described [4] to a 

concentration of 150 μg/ml and the mixture was cup-horn sonicated for 2 minutes at 65% 

amplitude for a total energy of 10,817 Joules, using a Misonix ultrasonic liquid processor 

-1510R-MTH (Branson Ultrasonics Corp. Danbury, CT, USA). This suspension will be 

referred to as “(S)-MWCNTs” and had been previously characterized by Wang et al. [4]. 

Additionally, the MWCNTs were suspended in the dispersion media modified from Bihari et 

al. [28] for intravenous administration to coat with a vascular compartment protein. Briefly, 

this dispersion media contained 0.6mg/ml rat serum albumin (Sigma, A6272), 0.01 mg/ml 1, 

2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Sigma F-0763) in phosphate buffered 

saline (Sigma D5652 1X) and sonicated using the probe sonicator at 40% amplitude for 15 

seconds. This dispersion medium will be referred to as “DPPC/RSA”. A MWCNT 

suspension of 150 μg/ml was made with DPPC/RSA and the mixture was cup-horn 

sonicated using a Misonix ultrasonic liquid processor -1510R-MTH (Branson Ultrasonics 

Corp. Danbury, CT, USA) at 65% amplitude for 2 minutes. This intravenous suspension will 

be referred to as “(D)-MWCNTs” and was previously described by Wang et al. [29].

Sprague Dawley rats

Pregnant and non-pregnant female, 10–12 week old Sprague Dawley rats were purchased 

from Charles River Laboratories (USA). All rats were acclimated for one week in East 
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Carolina University (ECU) Department of Comparative Medicine’s animal facility, housed 

under 12 hour light/dark cycles with standard rat chow and water provided ad libitum. The 

pregnant rat arrived in the facility between 9–12 days of gestation and the body weight was 

monitored once in every three days to assess the progression of pregnancy. All animal 

handling and exposure procedures were approved by the ECU Institutional Animal Care and 

Use Committee.

MWCNT exposure and dosing

Each pregnant and non-pregnant female rat was randomly assigned to either the MWCNT 

exposure or dispersion medium control group for each route of exposure to include a 

minimum of six animals in a group. Matched gestational day pregnancies were used to 

compare vehicle vs. MWCNT effects. The pregnant rats were exposed between 17–19 days 

of gestation, compatible with the third trimester of human pregnancy (i.e. late gestational 

stage). Rats were anesthetized using 2–3% isoflurane (Webster Veterinary, USA) dispersed 

in oxygen for exposure procedures. The 150 μg/ml MWCNT suspension was administered 

as a mass based dose of 100 μg/kg by weighing each rat just before the exposure. (S)-

MWCNTs suspension or 10% surfactant was instilled intratracheally (IT) as previously 

described [4,12] for pulmonary exposure. A group of non-pregnant female rats was exposed 

to IT (S)-MWCNTs or 10% surfactant to evaluate any effect of life stage (pregnant vs. non-

pregnant) on vascular tissue contractility. Intravenous (IV) administration of 100 μg/kg (D)-

MWCNTs or DPPC/RSA was done in the pregnant rats through the tail vein using a 25G 

needle. Ten to twelve weeks old, pregnant (GD 17–19) and non-pregnant female rats were 

used as naïve controls.

Tissue and sample collection

All rats were anesthetized in a transparent sealed receptacle containing gauze soaked with 

70% isoflurane (Webster Veterinary, USA) in propylene glycol (Amersco, OH, USA), 

separated from the animal by a desiccator plate/grid prior to euthanasia. Twenty-four hours 

following administration of the MWCNTs or vehicle, the rats were subjected to a midline 

incision and euthanized by pneumothorax. Whole blood (~1 ml) was withdrawn directly 

from the maternal right ventricle. A pooled fetal blood sample was collected from three 

fetuses in each pregnant dam (blood from these three fetuses were considered as one 

sample). Maternal and fetal whole blood samples were centrifuged (20,400 × g for 20 

minutes), and serum supernatant was stored at −80°C for cytokine analysis.

Isolation of vessel segments

Three arterial beds and the umbilical vein were selected for pharmacological myographic 

studies. The uterine and mesenteric vascular beds were selected as they manifest both 

structural and functional changes during pregnancy [30,31] with the uterine vasculature 

undergoing significant remodeling [32]. The thoracic aorta was included as proximal conduit 

vessel not anticipated to undergo significant remodeling, but still may express changes in 

pharmacological responses. Both uterine horns with the vascular arcades, small intestinal 

loop with superior mesenteric arcade and thoracic aorta were carefully excised and placed in 

ice cold physiological saline solution (PSS; mM) 140 NaCl, 5.0 KCl, 1.6 CaCl2, 1.2 MgSO4, 

1.2 MOPS (3-[N-morpholino]-propane sulfonic acid), 6 D-glucose, 0.02 EDTA, and a pH of 
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7.4). Arterial segments with a length of 0.5 – 2.0 mm were isolated from the mid region of 

the main uterine artery (diameter 150–300 μm), first order mesenteric artery (diameter 150–

250 μm), and thoracic aorta (diameter 2–3 mm). Two umbilical vein segments (diameter 

400–550 μm) from umbilical cords of different fetuses implanted in the mid-uterine region 

were isolated from each dam.

Maternal and fetal serum cytokine analysis

The targets for maternal and fetal serum cytokine analysis were selected based on the 

reported cytokine targets in previous MWCNT exposure studies [4,33,34]. The selected 

serum cytokines and chemokines (IL6, IL10, TNFα, MCP1, VEGF, INFγ, and IL1β) were 

assessed using Milliplex MAP Cytokine/Chemokine Panel and Immunoassay (EMD 

Millipore MA, USA) according to the manufacturer’s directions. Assays were run using 

Luminex 100/200 (Luminex, Austin, TX) and results reported using Luminex xPONENT® 

software versions 2.3/3.1.

Bronchoalveolar lavage cytology

Twenty-four hours following exposure to MWCNTs or dispersion media, a bronchoalveolar 

lavage (BAL) was performed on adult female rats as described previously [4]. Briefly, the 

right lung was lavaged in situ three times with repeated flushes of 26.25 mL/kg body weight 

of ice-cold Hanks balanced salt solution. The BAL fluids were centrifuged and the total 

number of cells was calculated using an automated cell counter (Cellometer, Nexcelom 

Bioscience, and Lawrence, MA, USA). A sample of 20,000 cells was centrifuged using a 

Cytospin IV (Shandon Scientific Ltd., Cheshire, UK) and stained with a three-step 

hematology stain (Richard Allan Scientific, Kalamazoo, MI, USA). The differential cell 

count was determined by morphology, evaluating 300 cells per slide using light microscopy 

and each cell count is reported as a percentage of 20,000 cells.

Wire myographic studies

The dissected vessel segments were mounted into a DMT 610M multi-channel wire 

myograph system (Danish Myo Technology, Aarhus N, Denmark) using 40 μm wires or 

pins. All vessel segments were bathed in PSS at 37°C, bubbled with medical grade air 

during the entire myographic studies. The optimal resting tension for each arterial segment 

was established at 90% of internal circumference (IC) produced at tensions equivalent to 100 

mmHg (13.3 kPa). A depolarization response with K+PSS (109 mM K+ equal molar 

substitution of Na+) was used to assess the vessel viability and segments that developed a 

stress response of greater than 1 mN/mm2 were considered viable. Endothelial viability was 

assessed by adding 3.0 μM acetylcholine during a 1 μM phenylephrine pre-contraction. Each 

segment along the arterial tree adapts to different hemodynamic conditions including blood 

pressure and autonomic innervations. Such adaptations will express different receptor 

classes and relative amounts of their subtypes, thus it is necessary to investigate different 

agonist responses in different vascular segments. All three arterial (uterine, mesenteric and 

aortic) vessel segments were subjected to cumulative concentrations of phenylephrine 

(0.001–30 μM), endothelin-1 (0.0001–1 μM) and acetylcholine (0.0001–30 μM). 

Angiotensin II (0.0001–0.1 μM) and serotonin (0.001–1 μM) was used to study the uterine 

and mesenteric arteries respectively. The force generated by each vessel segment at each 
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concentration was recorded using Lab Chart (ADI Instruments, CO, USA). The force was 

then normalized to the surface area of the vessel to determine the active stress generated in 

response to different agonists.

The umbilical vein segments were stretched and set to an IC equal to 90% of the IC when 

the wall tension is equivalent to 20 mmHg (5.1 kPa) [35]. The viability was assessed using 

K+PSS. The segments were pre-contracted with thromboxane-mimetic U46619 (1 μM) and 

subjected to cumulative concentrations of acetylcholine (0.0001–30 μM), followed by 1 μM 

sodium nitroprusside.

Cell culture, mRNA and protein quantification

Rat aortic endothelial cells (RAEC) in the in vitro studies were used to identify the 

contribution of the endothelial RhoA/Rho kinase signaling following direct exposure to 

MWCNTs suspended in different media. RAEC were purchased from Cascade Biologics 

(Eugene, OR, USA), grown with Dulbecco’s Modified Eagle Medium (DMEM) and 

cultured at >90% confluence were treated with (S)-MWCNTs or (D)-MWCNTs over a 1–10 

μg/cm2 dose range for 2–12 hours. Untreated cells, 10% surfactant treated cells and 

DPPC/RSA treated cells were used as controls. Real time-PCR was done as described 

previously [24] to identify any changes RhoA, ROCK1, ROCK2 and eNOS mRNA 

expression following 2 hours of exposure to MWCNTs. Following 12-hour in vitro exposure 

to MWCNTs or dispersion medium, In-Cell Western Assay (Li-Cor Biosciences, Lincoln, 

NE, USA) was performed to assess the changes in target protein expression [25] for RhoA, 

ROCK1, ROCK2 and eNOS. The cell media was removed and the cells were immediately 

fixed with 3% formaldehyde followed by permeabilization with 0.1% Triton-X, blocked 

with Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NE, USA). The primary 

antibodies for RhoA (1:1000), ROCK1 (1:500), ROCK2 (1:500) and eNOS (1:1000) (Santa 

Cruz Biotechnology Inc., USA and Cell Signaling Danvers, MA, USA) were added and 

plate incubated overnight. IRDye 800CW Secondary Antibodies (LI-COR Biosciences, 

Lincoln, NE, USA) were used in 1:10000 dilutions to identify target proteins. The DNA was 

stained with DRAQ5 and Sapphire 700 (Cell Signaling, Danvers, MA, USA) for cell number 

normalization. The Fluorescence was detected, quantified and analyzed using Li-Cor 

Odyssey Infrared Imaging System and software (LI-COR Biosciences, Lincoln, NE, USA).

Measurement of the fetal and placental weight

Body weights of pregnant dams were recorded just before sacrifice and the litter size was 

recorded before uterine vessel isolation. Three fetuses were isolated from each dam from the 

mid-uterine region and individual weights were measured using Ohaus Explorer Analytical 

Balance (Ohaus Corporation, NJ, USA). The blot weights of the placentae attached to the 

same fetuses were also recorded. The individual weights of the fetuses/placentae were then 

grouped according to the day of gestation at sacrifice and their mean weight was used for 

comparison between the treatment groups. Each day of gestation included the pups from at 

least 2 dams.
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Statistical analysis

Statistical analysis was done utilizing GraphPad Prism 5 software (San Diego, CA) and data 

is presented as mean ± SEM (standard error of mean). Repeated measures analysis of 

variance [36] and Bonferroni post hoc test were used to compare the concentration-

responses of different agonists and the differences were considered statistically significant if 

p<0.05. In addition, each concentration-response curve was also compared across treatment 

groups using a regression analysis by examining the best-fit values [36]. EC50 values for 

concentration-responses in myographic studies were determined using the Hill equation. A 

two tailed t test was used compare mean EC50, umbilical vein stress generation, and 

cytokine expression levels between different treatment and control groups. One way 

ANOVA and Turkey post-hoc test was used for the analysis of fetal and placental weight on 

each day of gestation.

Results

Characterization of MWCNT suspensions

The MWCNT suspension in 10% surfactant in saline [(S)-MWCNTs] has been previously 

characterized by Wang et al. [4]. MWCNTs used in this study had a mean diameter of 22.5 

± 1.3 nm with a bimodal distribution with peaks at 12.5 and 25 nm and a length range of 10–

100 μm and a surface area of 113.1 m2/g). The zeta potential of the particles in (S)-

MWCNTs suspension was −57.3 mV with a mean hydrodynamic size of 915 nm. MWCNTs 

suspended in the DPPC, serum albumin and sterile phosphate buffered saline medium [(D)-

MWCNTs] was characterized previously by Wang et al. [29] with a zeta potential of −20.8 

mV with a mean hydrodynamic size of 793 nm.

Maternal serum cytokine analysis

The mean values serum cytokine levels of pregnant and non-pregnant rats 24 hours 

following exposure to MWCNTs or dispersion media for each route of exposure are reported 

in Table 1. The baseline cytokine levels in the naïve rats were relatively higher in the non-

pregnant group compared to the pregnant group for all cytokines assessed except VEGF. In 

general, the cytokine profiles for the rats exposed to vehicle or MWCNT were lower in the 

non-pregnant group while a few changes were noted in the pregnant group. IL1β level was 

increased by five fold in the pregnant group (when compared to the naive) following IV 

DPPC/RSA. TNFα levels were increased more than six fold in the serum following exposure 

to both dispersion media (10% surfactant and DPPC/RSA) and increased with IV (D)-

MWCNTs.

Maternal Bronchoalveolar Lavage (BAL) cell counts

The percentages of differential cell counts in the bronchoalveolar lavage fluid are graphed in 

Supplementary Figure 1 and MWCNT induced changes in these cell counts were observed 

only in the pregnant group. The mean percentage of macrophages was 4.2% lower in the 

naïve pregnant group compared to the naïve non-pregnant group, and increased during 

pregnancy following exposure to both vehicles (by 4.8% with 10% surfactant and by 5.0% 

with DPPC/RSA) and intravenous (D)-MWCNT exposure (by 4.3%) compared to the naive. 
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In contrast, the mean epithelial cell percentage was 4% higher in the naïve pregnant group 

compared to the naïve non-pregnant group and was reduced by ~5% during pregnancy by 

following exposure to both vehicles and MWCNTs by both routes of exposure when 

compared to the naive. The percentage of neutrophils were highest following exposure to 

(S)-MWCNTs via intratracheal instillation but was less than 1% of the total BAL cell 

counts. The percentages of eosinophils were not significantly different following exposure to 

MWCNTs during pregnancy.

Responses of arterial segments 24 hours post-exposure to intratracheal (IT) instillation of 
(S)-MWCNTs or 10% surfactant in pregnant and non-pregnant female rats

The contractile responses of the vessel segments from the pregnant and non-pregnant rats 

were different following IT exposure to (S)-MWCNTs. In general, the pregnant group 

manifested increased contractile responses in multiple vascular beds that were in part 

contributed to by the dispersal media as opposed to minimal changes in observed in the non-

pregnant group.

Main uterine artery

The main uterine artery segments from pregnant and non-pregnant rats responded differently 

to the same dose of IT instilled (S)-MWCNTs. The maximum stress generation was 

increased in the pregnant group in response to phenylephrine by 2.6 mN/mm2 (+37%) 

following IT exposure to (S)-MWCNTs when compared to the naïve, but was not 

significantly increased when compared to the responses from 10% surfactant group (Figure 

1A). The response to angiotensin II following IT exposure to (S)-MWCNT during 

pregnancy was increased by 4.9 mN/mm2 (+118%), as compared to the naïve and by 2.6 

mN/mm2 (+40.7%) as compared to the 10% surfactant exposed group (Figure 1B). In 

contrast, the stress generation in response to all 3 agonists was diminished in uterine artery 

segments from non-pregnant animals following (S)-MWCNTs exposure (Figure 1B, D and 

F). The relaxation responses to acetylcholine during 30 μM phenylephrine pre-contraction 

were not different in naive, 10% surfactant and (S)-MWCNTs exposed pregnant groups 

(Figure 1G), but was diminished ~ 10% following (S)-MWCNTs exposure in the non-

pregnant group (Figure 1H). The calculated EC50 values for phenylephrine, angiotensin II, 

acetylcholine and HA-1077 were not different between the naive, 10% surfactant and (S)-

MWCNTs treatment groups. Following (S)-MWCNTs exposure in pregnant rats, calculated 

EC50 value for endothelin 1 (1.1 ± 0.3 nM) was significantly lower than the naive (3.4 ± 0.6 

nM), but not different form the 10% surfactant exposed group (2.2 ± 1.0 nM, Supplementary 

Table 1).

First order mesenteric artery

The mesenteric artery segments from both pregnant and non-pregnant rats responded in a 

similar manner following IT (S)-MWCNT exposure. The stress generations in response to 

serotonin in the first order mesenteric artery segments were increased by ~ 4 mN/mm2 

following IT (S)-MWCNTs exposure compared to 10% surfactant exposed group (Figure 2E 

and F). The contractile responses to phenylephrine or endothelin 1 and the relaxation 

response to acetylcholine were not changed following IT (S)-MWCNT exposure in the 

pregnant group (Figure 2A, C and G).
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The mesenteric artery contractile responses to all 3 agonists were diminished in the non-

pregnant rats exposed to 10% surfactant (Figure 2B, D and F), along with an impairment of 

acetylcholine dependent relaxation response (Figure 2H). Similar to the reported uterine 

vessels responses, the EC50 values of the mesenteric arteries responses following (S)-

MWCNT exposure were not different except for endothelin 1 (Supplementary Table 2). The 

EC50 for endothelin 1-mediated responses was decreased in the 10% surfactant (1.4 ± 0.4 

nM) group when compared to both naïve (5.4 ± 1.3 nM) and (S)-MWCNTs exposed group 

(5.0 ± 1.0 nM).

Thoracic aorta

The thoracic aortic segments from pregnant and non-pregnant rats responded differently to 

the IT exposure to (S)-MWCNTs. The contractile response to phenylephrine (0.001–10 μM) 

was reduced by 0.68 mN/mm2 (25.4%) in the pregnant group following (S)-MWCNT 

exposure compared to the naïve, but was not different when compared to the 10% surfactant 

exposed group (Figure 3A). The contractile response to endothelin 1 from the pregnant 

thoracic aorta segments was increased in both (S)-MWCNTs and 10% surfactant exposed 

groups when compared to the naïve. There was a noticeable relaxation response to highest 

concentration of endothelin 1 in the (S)-MWCNT exposed pregnant group (Figure 3C). In 

contrast, the contractile responses to phenylephrine and endothelin 1 were not affected by 

(S)-MWCNT or 10% surfactant exposure in the non-pregnant female rats (Figure 3B and D).

The acetylcholine (0.001–10 μM) mediated relaxation response was not different in the 

pregnant group (Figure 3E), but was increased in both (S)-MWCNTs and 10% surfactant 

exposed non-pregnant aortic segments when compared to the naïve (Figure 3F). The EC50 

values were not different for the contractile and relaxation responses following (S)-MWCNT 

exposure (Supplementary Table 3).

Responses of arterial segments 24 hours post-exposure to intravenous (IV) administration 
(D)-MWCNTs or DPPC/RSA in pregnant rats

Twenty four hours following IV administration in pregnant rats, both (D)-MWCNTs and 

DPPC/RSA increased the maximal stress generation in the main uterine artery segments to a 

similar magnitude (3 – 4 mN/mm2) when compared to naïve vessel segments with a similar 

concentration-response profile for the agonists: phenylephrine, endothelin 1 and angiotensin 

II (Figure 4A–C). The DPPC/RSA exposure elevated the baseline stress level of the uterine 

vessel segments while the (D)-MWCNTs exposure had no additional effect. The relaxation 

responses of the main uterine artery to acetylcholine were not changed by IV (D)-MWCNT 

or DPPC/RSA exposure (Figure 4D). We did not proceed to do non-pregnant comparisons in 

this exposure group as the differences in the contractile responses were attributed sole to 

DPPC/RSA suspension and not to MWCNT exposure.

An increase in contractile response in the mesenteric artery segments was seen at higher 

concentrations of phenylephrine following (D)-MWCNT exposure (supplementary Figure 

2A). All other contractile/relaxation responses of the mesenteric artery and aortic segments 

were not significantly different between the (D)-MWCNTs or DPPC/RSA exposure groups 

(supplementary Figures 2B–D and 3A–C). Unlike in the uterine artery, DPPC/RSA did not 
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have a significant effect on the baseline stress level of the mesenteric artery or thoracic aorta. 

The EC50 values for all responses are reported in supplementary Tables 1–3 and were not 

different with the exception for endothelin 1, where the EC50 was reduced in the in the 

thoracic aortic segments following (D)-MWCNTs (13.3 ± 5.1 nM) or DPPC/RSA (12.4 

± 5.1 nM) exposure when compared to the naïve (71.9 ± 17.8 nM, Supplementary Table 3).

Contribution of Rho kinase activity on the vascular tissue contractility following exposure 
to MWCNTs

Maintenance of stress in the presence of Rho kinase inhibitor—Minor 

differences were observed in the relaxation responses to cumulative concentrations of the 

Rho kinase (ROCK) inhibitor, HA1077, during the stable phenylephrine pre-contraction for 

segments from all three vascular beds, regardless of the pregnancy state or route of exposure 

to the MWCNT (Figure 5 and Supplementary Figure 4). The EC50 values for the 

concentration responses are reported in Supplementary Tables 1–3 and were not significantly 

different following MWCNT exposure except within the IV (D)-MWCNT exposure group 

during pregnancy (2.6 ± 0.2 μM compared to 1.8 ± 0.3 μM in the DPPC/RSA exposed 

group).

RhoA, ROCK and eNOS mRNA and protein expression in rat aortic endothelial 
cells—The mRNA expression of RhoA, ROCK1, ROCK2 and eNOS was not significantly 

changed in RAEC with 2–12 hour treatment with (S)-MWCNTs or (D)-MWCNTs when 

compared to untreated cells and vehicle controls (data not shown). Similarly, the protein 

expression of RhoA, ROCK and eNOS were not changed with 12 hours in vitro exposure to 

10 μg/cm2 of (S)-MWCNTs or (D)-MWCNTs as assessed by the In-cell Western Assay 

(Supplementary Figures 5 and 6).

Changes in the fetal components following MWCNT exposure

Changes in umbilical vein contractility—The reactivity of the umbilical vein (vessel 

from the placenta to the fetus) was assessed following both IT and IV administration. Stress 

generation during K+PSS and 1 μM of thromboxane mimetic (U46619) stimulations were 

not significantly different in umbilical vessel segments between MWCNT exposed (by either 

exposure route) and naïve animals (Figure 6A–D). The umbilical vein segments did not 

respond to acetylcholine and the relaxation response to 1μM sodium nitroprusside with a 

stable U46619 pre-contraction was not different following MWCNT exposure (Figure 6E 

and F).

Changes in fetal and placental weight—Mean weights of pregnant dams at the time 

of sacrifice were not significantly different between treatment groups (mean ± SEM): (S)-

MWCNTs 298.2 ± 12.0 g (n=6), 10% surfactant 291.0 ± 10.8 g (n=6), (D)-MWCNTs 305.8 

± 7.8 g (n=6), DPPC/RSA 333.4 ± 24.9 g (n=6), and naïve 287.2 ± 10.9 g (n=10). The mean 

and range of litter size were also not different between the exposure groups: (S)-MWCNTs 

10.7 (8–13), 10% surfactant 10.5 (10–11), (D)-MWCNTs 9.8 (9–11), DPPC/RSA 10.5 (9–

12) and naïve 10.6 (8–13). Mean weights of the fetuses are reported in Figure 7A and B, 

after grouping them according to gestational day (GD). The mean fetal weight was reduced 

at GD 19 following MWCNT and dispersion media exposure by both routes and was evident 
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across all gestational days studied following intravenous exposure. Gross external 

morphological abnormalities were not seen in the fetuses. An increase in the mean placental 

weight was observed following MWCNT exposure by both routes on GD 18 (Figure 7C and 

D).

Fetal serum cytokine analysis

The cytokines levels in the fetal serum were not significantly changed following exposure to 

MWCNT or dispersion media by either route of administration and are reported in Table 2.

Discussion

Twenty hours post exposure to MWCNT by either intratracheal or intravenous 

administration resulted in a limited alteration in isolated blood vessel segments’ responses to 

various pharmacological agents. The intratracheal instillation of 100 μg/kg of (S)-MWCNTs, 

was of note for we observed an increase in the contractile response to angiotensin II in the 

main uterine artery when compared to the response from the non-pregnant state. This 

increase in of stress generation of the uterine artery following MWCNT exposure was 

confined to the late gestational stage. Minimal changes in the contractile responses due to 

MWCNT exposure were seen in vessel segments from the other vascular beds studied in 

both pregnant and non-pregnant state. The enhanced contractile responses were not 

associated with comparable changes in relaxation responses with Rho kinase inhibition, 

suggesting that mechanisms other than RhoA/Rho kinase may underlie alterations in 

contractile responses. To our knowledge, this is one of the first attempts to identify 

pregnancy related changes in the contractile responses of several vascular tissues following 

exposure to MWCNTs by different routes.

The physiochemical characteristics of the suspensions of the MWCNTs are important in 

understating any delivery characteristics. According to Henderson et al, the pulmonary 

responses are similar in response to particle exposure by either inhalation or instillation, 

provided similar lung burdens [37]. Intratracheal instillation has been suggested to deliver 

less well dispersed MWCNTs to the lung epithelium resulting in fewer adverse effects when 

compared to short term inhalational exposure [34,38]. On the other hand, instillation exposes 

the animal to an acute, higher concentration of nanoparticles compared to inhalational 

exposure over a long period [34], bypassing the nasal cavity. Accounting for these 

conditions, the results from our IT exposure might be used to speculate on the outcomes of 

long term inhalational exposure. Exposure levels have been identified in laboratory and 

industrial facilities [15] handling MWCNTs. Current proposed guidelines by the National 

Institute for Occupational Safety and Health (NIOSH) limits nanotube exposure to 7 μg/m3 

[39] and a human occupational exposure of 5 mg/m3 during a 8-hour day and 40-hour work 

week equate to approximately 20 μg of SWCNT aspiration in a mouse model [40]. A recent 

publication by Erdely et al. [41] identified a mean airborne mass concentration of 10.6 

μg/m3 MWCNTs across eight different facilities that handle carbon nanotubes in the United 

States, which was calculated to correspond with a human alveolar deposition of 4.07 μg/day 

[41]. In a study designed to mimic such conditions while weighing and moving dry 

materials, MWCNT were found to range from 4,514–123,403 particles/L of air [42]. 
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Considering that average tidal volume in humans is 500 mL of air and average respiration 

rate is 12 breaths a minute (i.e. with a resting respiratory minute volume of 5 L/min), 

humans breathe approximately 360 L air/hour on average, this could result in a deposition of 

1,625,040 – 44,425,080 MWCNT particles into the lungs in 1 hour. Based on calculations 

from flow-cytometry data (not shown), a 100 μg MWCNT exposure mass translated to 

approximately 743,000 particles per rat. Employing these most recent occupational exposure 

values (10.6 μg/m3 [41]) it would require between 3–107 hours of constant occupational 

exposure to achieve a similar dosing used in our studies. Considering these conditions, and 

compared to other inhalational/instillation studies [13], 100 μg/kg dose used in the current 

study is a moderate - high dose. We choose to use an equivalent dose of MWCNTs in our IV 

exposure model to identify any effects of exposure to the same mass based dose of 

MWCNTs by two different routes. Future dose response studies including both low and high 

levels of exposure during pregnancy may be beneficial before applying these findings for 

regulatory purposes.

Previous studies with inhalational exposure to MWCNTs for 24–168 hours have identified a 

maximal impairment of endothelium dependent relaxation in coronary arterioles at 24 hours 

[11]. Therefore, the 24-hour post-exposure time point in this study should be conducive to 

identify changes in the contractile responses in extra-pulmonary vascular beds. Even during 

intravenous exposure, MWCNTs redistribute mainly to the lung and liver tissues [43] as 

pulmonary and hepatic circulations may be functioning as a filters during the first pass 

metabolism. The pulmonary responses to MWCNT deposition in such circumstances may be 

initiating the inflammatory cascade, contributing to changes in the contractile responses.

Several factors including the properties of MWCNT suspensions, route of exposure, 

pulmonary/systemic inflammatory response, pregnancy related physiological changes and 

sensitivity of the vascular bed may contribute to the differential contractile responses of 

vascular tissues that we have observed in this study. The reported zeta potentials of (S)-

MWCNTs and (D)-MWCNTs suggest that both suspensions have a relatively good stability 

with minor agglomerate formation. The minor differences in the hydrodynamic size and zeta 

potential in different suspensions may not alone contribute significantly to modification of 

the vessel behavior via MWCNT exposure, as seen in different routes of exposure.

Previously reported distribution of MWCNTs following intravenous administration suggests 

that majority of the particles are distributed in the lungs following their first pass in 

circulation [23]. On the other hand, these particles are primarily distributed in the lungs 

following intratracheal instillation/pulmonary exposure [44]. Considering these distribution 

patterns by both routes, we chose to study the immune mediated pulmonary responses by 

analyzing the cell counts in a broncoalveolar lavage. We report a pregnancy related increase 

in the BAL cell counts suggesting an inflammatory response, reported as higher percentages 

of macrophages with both dispersion media and (D)-MWCNTs and the increased 

neutrophils with (S)-MWCNT exposure. Comparable changes in neutrophil and eosinophil 

counts were seen with pulmonary exposure to increasing doses of (S)-MWCNTs in a male 

mouse model [4]. These pulmonary responses following exposure to dispersion media or 

MWCNTs are also compatible with changes in the cytokine profiles, increased vascular 

tissue contractility and reduction in the fetal weight gain. The changes in the maternal serum 
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cytokine levels reported in our study does not indicate any preferential immune response as 

IFNγ (Th1), IL6 and IL10 (Th2) levels are not affected following exposure to MWCNTs by 

either route of administration. The increase in TNFα levels appears to be robustly influenced 

by both dispersant media (10% surfactant and DPPC/RSA) rather than MWCNTs and may 

potentially induce a Th1 type response, which can be detrimental during pregnancy (36). 

This conclusion is also supported by the reduction in fetal weight seen with both (D)-

MWCNTs and DPPC/RSA. An increase in IL1β level was seen with both 10% surfactant 

and DPPC/RSA suggesting an immunological response to both dispersion media, which was 

down-regulated by the addition of MWCNTs. Previous studies have reported both Th1 and 

Th2 type immune responses following acute exposure to MWCNTs with increased levels of: 

TNFα, IL1β, IL6, IL10, and MCP1 (33, 38) early after exposure and reported to wane over 

time (39), supporting the low levels we measured at 24 hours post-exposure.

The overall stress generation in segments of the main uterine artery, from the naïve pregnant 

rats was lower compared to the response from naive non-pregnant rats, a response reflecting 

normal vasodilatory vascular behavior associated with pregnancy [18,19]. However, the 

uterine artery did present with an augmented response to Angiotensin II. Angiotensin II 

mediated responses are altered in the uterine vasculature during adverse pregnancy states 

such as pre-eclempsia where the AT1 receptor mediated constrictor function of angiotensin 

II predominates over the AT2 receptor mediated vasodilatory function [45,46]. The increased 

in contractility observed in the gestational uterine artery segments in our study could be 

mediated by alteration of either/both AT1 and AT2 receptor function following MWCNT 

exposure. Additionally, the calculated EC50 values for endothelin 1 were different in 

segments from all three vessels studied, suggesting an altered sensitivity to endothelin 1 or 

changes in endothelin receptor distribution with pregnancy. In contrast to the non-pregnant 

group, a significant increase in the contractile responses was evident only with the pregnant 

uterine artery segments, following (S)-MWCNT exposure. These observations suggest that 

pregnancy may render the uterine vasculature more susceptible to MWCNT exposure 

induced changes in contractility. Therefore, our observation of an increase in the contractile 

response or shifts in EC50 values following (S)-MWCNT exposure suggests there may be an 

adverse pregnancy outcome following pulmonary MWCNT exposure during pregnancy.

Compared to the uterine vasculature, the overall stress generation of mesenteric artery and 

thoracic aortic segments in response to contractile stimulation were not significantly 

different between naïve pregnant and non-pregnant animals. This relationship was not 

altered following MWCNT exposure by either route. The only difference in responses was 

observed at higher concentration of serotonin in the mesenteric artery, where we observed a 

higher stress generation/lower relaxation response following (S)-MWCNT exposure that 

could be mediated by alteration in the serotonin receptor profiles following MWCNT 

exposure. We interpret the contrast in response of the vessels from the different vascular 

beds to be related to the limited extent of remodeling that occurs in the mesenteric artery and 

thoracic aorta with pregnancy and renders them less vulnerable to the influence of MWCNT 

exposure.

The alterations in contractile responses reported in this study (in response to angiotensin II 

and serotonin) are similar to the potentiation of stress generation reported with other 
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cardiovascular pathologies, linked with elements of calcium sensitization and regulation of 

the contractions by RhoA/Rho kinase pathway [47,48]. As reported in Figure 5 and 

Supplementary Figure 4, there were only minor differences in the sensitivity to Rho kinase 

inhibition in all three vascular beds following exposure to MWCNTs or dispersion media by 

either route of exposure. Thus a response compatible with action of Rho kinase as being 

responsible for the augmented contractile responses was not evident with MWCNT 

exposure. Additionally, the lack of changes in Rho associated proteins and eNOS in rat 

aortic endothelial cells exposed to MWCNTs in vitro would suggest that this pathway is not 

mediating changes in the endothelial cell contribution to the augmented stress through 

regulation of eNOS as reviewed by Yao et al. [25] and Satoh et al. [48]. Thus in aggregate 

these data suggest that the rho kinase signaling was not a primary mechanism responsible 

for augmented stress generation observed following MWCNT exposure. Other mechanisms 

postulated to enhance force generation can include generation of reactive oxygen species 

[49], increased oxidative stress [50] and enhanced cyclooxygenase signaling [51]. SWCNTs 

have shown to increase oxidative stress and alter the mitochondrial signaling following 

intrapharyngeal instillation [52]. MWCNTs may also affect the cardiovascular functions by 

comparable mechanisms but have yet to be fully investigated.

Previous in vitro studies including proteomics analysis have shown that cellular functions 

and pathways comprising generalized gene transcription and protein translation are affected 

by direct exposure to MWCNTs [33,53]. Alternatively, the changes in the vascular system 

may be mediated through bronchial epithelial cell release of pro-inflammatory cytokines 

into circulation, such as IL6 and IL8 [6]. MWCNTs can also translocate following 

pulmonary exposure via instillation and reach the extra-pulmonary sites [8,54], including the 

vasculature leading to a local inflammatory response. Our previous in vitro studies done 

with human aortic endothelial cells indicate increased expression of endothelial 

inflammatory markers following exposure to (S)-MWCNTs [33] and may support a 

mechanism for cytokine production which can influence vascular tissues.

When trying to understand the IT exposed MWCNT induced changes, it is important to 

recognize that 10% surfactant used as a vehicle for suspending the MWCNTs also induces a 

notable increase in stress generation in response to agonist stimulation compared the 

constrictive responses from naïve animal group. We suggest that (S)-MWCNTs may have a 

combined effect of both MWCNTs and surfactant and this effect is clearly demonstrated in 

response to angiotensin II in the main uterine artery segments during pregnancy. However, 

synthetic lung surfactant based suspensions are established for studying pulmonary exposure 

effects of MWCNTs [55] and we chose to use the same for our study and were surprised to 

see such a vascular response effect. The responses seen with intravenous exposure to 

MWCNTs appear to be due to properties of the dispersant medium rather than due to 

nanotubes as DPPC/RSA significantly increases the baseline stress generation. The different 

media for the two routes of exposure were selected to simulate the biological media that area 

related to the exposure routes and were speculated to have no/minimal effects on vascular 

contractile responses. The dispersant medium is known to affect the cellular uptake of the 

nanoparticles [56] and presumed to impact overall cellular function. The dispersant media 

are known to contribute to the composition of protein or lipid corona associated with the 
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nanoparticles in the biological systems [57,58]. It may be likely that the corona on these 

MWCNT is different enough to mask a significant MWCNT effect.

Neither MWCNTs nor dispersion medium induced significant changes in contractile 

responses of umbilical vein segments, suggesting that these exposures may only be affecting 

the maternal side of the circulation. However, detrimental effects were seen in the mean fetal 

weight following MWCNT exposure via both routes along with a significant contribution by 

the dispersion media alone. The IV exposure to (D)-MWCNTs appeared to be more effective 

at reducing the fetal growth earlier in gestational exposure window studied, whereas the 

weight reduction following IT exposure is mainly attributed to dispersion media. The 

placental transfer of the nanoparticles is affected by multiple factors including the particle 

size, dispersion medium, and the stage of the pregnancy [59] which could contribute to 

effects on fetal growth. Additionally, fetal microvessel dysfunction following exposure to 

engineered nanomaterials which was recently proposed by Stapleton et al. [11] may be a 

possible underlying explanation for our observations of reduced fetal weight despite the 

absence of augmented contractile responses in umbilical circulation. Stapleton et al. [11] 

used the fetal tail artery as a representative vessel from the fetal microcirculation and 

reported decreased responses in both endothelium dependent and independent relaxation 

[60]. Their findings suggests the applicability of the Barker Hypothesis (i.e. the relation 

between retarded growth in early life and risk of adult disease is due to long term effects on 

physiology and metabolism imposed by an adverse environment during critical periods of 

development) to explain the changes observed in the fetus following maternal nanoparticle 

exposure [60,61]. This hypothesis may also hold true for our MWCNT exposure scenario, 

suggesting that the differences in the fetal weight gain may be a reflection of limited blood 

supply due to increased contraction observed in the uterine vascular segments.

Conclusions

In conclusion, the observations in this study suggest that vascular contractility may change 

following MWCNT exposure depending on multiple factors, including life stage (pregnant 

or non-pregnant), route of exposure, MWCNT dispersion media and the target vascular bed. 

Multiple agonist-mediated responses are differentially affected between the pregnant and 

non-pregnant stages with a significant increase in the stress generation of the uterine artery 

in response to angiotensin II confined to the pregnant stage. These agonists alter the 

contractile mechanism through various signaling cascades and we assessed the contribution 

RhoA/Rho kinase pathway in mediating these responses. We were unable to demonstrate 

that the RhoA/Rho kinase signaling cascade was significantly altered in response to 

MWCNT exposure and could not account for the augmented contractile responses, 

suggesting that other pro-constrictor mechanisms are likely to be involved. Our comparisons 

with naïve rats revealed a significant influence of the dispersion media on vascular tissue 

contractility and fetal weight gain, suggesting MWCNT exposure in isolation has no/

minimal effects under the exposure scenarios applied in this study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

5HT Serotonin

Ach Acetylcholine

ANG II Angiotensin II

ANOVA Analysis of Variance

BAL Bronchoalveolar Lavage

(D)-MWCNTs MWCNT suspended in DPPC and RSA based medium

DPPC1 2-dipalmitoyl-sn-glycero-3-phosphocholine

DPPC/RSA DPPC RSA and Phosphate Buffered Saline-based Medium

GD Gestational Day

EC50 Half-maximal Effective Concentration

Enos Endothelial Nitric Oxide Synthase

IL1β Interleukin 1 Beta

IL6 Interleukin 6

IL10 Interleukin 10

IFNγ Interferon, gamma

IT Intratracheal Instillation

IV Intravenous administration

MCP1 Monocyte Chemotactic Protein-1

MWCNT Multi-walled Carbon Nanotube

NP Non-pregnant

P Pregnant

PAI1 Plasminogen Activator Inhibitor-1

PE Phenylephrine

PSS Physiological Saline Solution

RAEC Rat Aortic Endothelial Cells

(S)-MWCNTs Multi-walled Carbon Nanotubes dispersed in 10% surfactant
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TNFα Tumor Necrosis Factor, alpha

VEGF Vascular Endothelial Growth Factor
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Figure 1. Changes in the contractile responses of the main uterine artery following intratracheal 
instillation (IT) of MWCNTs
The changes in the contractile responses as assessed by wire myography of the main uterine 

artery from 17 – 19 days pregnant (A, C, E and G) and non-pregnant female (B, D, F and 

H) Sprague Dawley rats, 24 hours following intratracheal instillation of 100 μg/kg of (S)-

MWCNTs or 10% surfactant. The stress generation in response to cumulative concentrations 

of phenylephrine (PE; A and B), angiotensin II (ANG II; C and D) and endothelin 1 (ET-1; 

E and F) are plotted. The percentage relaxation from a 30 μM phenylephrine pre-stimulation 
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stress level in response to cumulative concentrations of acetylcholine (Ach; G and H) is 

graphed. * indicates p < 0.05 compared to 10% surfactant while #indicates p < 0.05 
compared to naïve using repeated measures ANOVA (n = 5 – 7). The p values were derived 

following the comparison of each concentration response curve across treatment groups 

using a regression analysis by examining the best-fit values.
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Figure 2. Changes in the contractile responses of the mesenteric artery following intratracheal 
instillation (IT) of MWCNTs
The changes in the contractile responses were assessed by wire myography of the first order 

mesenteric artery from 17 – 19 days pregnant (A, C, E and G) and non-pregnant female (B, 

D, F and H) Sprague Dawley rats, 24 hours following intratracheal instillation (IT) of 100 

μg/kg of (S)-MWCNTs or 10% surfactant. The stress generation in response to cumulative 

concentrations of phenylephrine (PE; A and B), endothelin 1 (ET-1; C and D) and serotonin 

(5HT; E and F) are plotted. The percentage relaxation from a 30 μM phenylephrine pre-

stimulation stress level in response to cumulative concentrations of acetylcholine (Ach; G 
and H) is graphed. * indicates p < 0.05 compared to 10% surfactant while # indicates p < 
0.05 compared to naïve using repeated measures ANOVA (n = 4 – 7).The p values were 
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derived following the comparison of each concentration response curve across treatment 

groups using a regression analysis by examining the best-fit values.
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Figure 3. Changes in the contractile responses of the thoracic aorta following intratracheal 
instillation (IT) of exposure to MWCNTs
The changes in the contractile responses were assessed by wire myography of the thoracic 

aorta from 17 – 19 days pregnant (A, C and E) and non-pregnant female (B, D and F) 

Sprague Dawley rats, 24 hours following intratracheal instillation of 100 μg/kg of (S)-

MWCNTs or 10% surfactant. The stress generation in response to cumulative concentrations 

of phenylephrine (PE; A and B) and endothelin 1 (ET-1; C and D) are plotted. The 

percentage relaxation form a 10 μM phenylephrine pre-stimulation stress level in response to 

cumulative concentrations of acetylcholine (Ach; E and F) is graphed. * indicates p < 0.05 
compared to 10% surfactant while # indicates p < 0.05 compared to naïve using repeated 

measures ANOVA (n = 4 – 8). The p values were derived following the comparison of each 

concentration response curve across treatment groups using a regression analysis by 

examining the best-fit values.
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Figure 4. Changes in the contractile responses of the main uterine artery following intravenous 
administration (IV) of MWCNTs
The changes in the contractile responses were assessed by wire myography of the main 

uterine artery segments from 17 – 19 days pregnant (A, B, C and D) Sprague Dawley rats, 

24 hours following intravenous administration of 100 μg/kg of (D)-MWCNTs or DPPC/

RSA. The stress generation in response to cumulative concentrations of phenylephrine (PE; 

A), angiotensin II (ANG II; B) and endothelin 1 (ET-1; C) are plotted. The percentage 

relaxation from a 30 μM phenylephrine pre-stimulation stress level in response to cumulative 

concentrations of acetylcholine is graphed (Ach: D). # indicates p < 0.05 compared to naïve 
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using repeated measures ANOVA (n = 5 – 8). The p values were derived following the 

comparison of each concentration response curve across treatment groups using a regression 

analysis by examining the best-fit values.
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Figure 5. Changes in stress generation in the presence of a Rho kinase inhibitor following 
intratracheal instillation (IT) MWCNTs
The reduction in stress generation is reported as the percentage relaxation from a 

phenylephrine (30 μM for uterine/mesenteric arteries and 10 μM for aorta) pre-stimulation 

stress level in response to cumulative additions of a Rho kinase inhibitor (HA1077). All 

responses were assessed by wire myography, 24 hours following intratracheal instillation of 

100 μg/kg of (S)-MWCNTs or 10% surfactant from 17 – 19 days pregnant (A, C and E) and 

non-pregnant female (B, D and F) Sprague Dawley rats. Panels A and B: main uterine 
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artery; C and D: first order mesenteric artery; E and F: thoracic aorta. # indicates p < 0.05 
compared to naïve using repeated measures ANOVA (n = 4 – 6). The p values were derived 

following the comparison of each concentration response curve across treatment groups 

using a regression analysis by examining the best-fit values.
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Figure 6. Changes in contractile responses of the umbilical vein following maternal exposure to 
MWCNTs
The changes stress generation in the umbilical vein segments were assessed by wire 

myography in response to 109 mM K+ depolarization (A and B) and 1 μM thromboxane 

agonist (U46619, B and D) 24 hours post-exposure to intratracheal instillation (IT) of 100 

μg/kg of (S)-MWCNTs or 10% surfactant (A and C) or intravenous administration (IV) of 

(D)-MWCNTs or DPPC/RSA (B and D), from 17 – 19 days pregnant Sprague Dawley rats 

(n = 12). The percentage relaxation in response to sodium nitroprusside (SNP) following 

U46619 (1 μM) pre-contraction in the umbilical vein 24 hours post-exposure to intratracheal 
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instillation of (S)-MWCNTs or 10% surfactant (E) or intravenous administration of (D)-

MWCNT or DPPC/RSA is graphed (F) (n = 12).
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Figure 7. Changes in the fetal and placental weight following exposure to MWCNTs
Changes in fetal (A and B) and placental (C and D) weight 24 hours post-exposure to 

intratracheal instillation (IT) of 100 μg/kg of (S)-MWCNTs or 10% surfactant (A and C) or 

intravenous administration (IV) of (D)-MWCNTs or DPPC/RSA (B and D) in 17 – 19 days 

pregnant Sprague Dawley rats. Three pups/placentae were weighed from each dam included 

in the study and the number of pups/placentae are indicated within each bar. * indicates p < 
0.05 when compared using one way ANOVA and Turkey post-hoc test. GD = day of 

gestation
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