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Abstract

Roux-en-Y gastric bypass (RYGB) is an effective way to lose weight and reverse type 2 dia-

betes. We profiled the metabolome of 18 obese patients (nine euglycemic and nine diabet-

ics) that underwent RYGB surgery and seven lean subjects. Plasma samples from the

obese patients were collected before the surgery and one week and three months after the

surgery. We analyzed the metabolome in association to five hormones (Adiponectin, Insulin,

Ghrelin, Leptin, and Resistin), four peptide hormones (GIP, Glucagon, GLP1, and PYY),

and two cytokines (IL-6 and TNF). PCA showed samples cluster by surgery time and many

microbially driven metabolites (indoles in particular) correlated with the three months after

the surgery. Network analysis of metabolites revealed a connection between carbohydrate

(mannosamine and glucosamine) and glyoxylate and confirms glyoxylate association to dia-

betes. Only leptin and IL-6 had a significant association with the measured metabolites. Lep-

tin decreased immediately after RYGB (before significant weight loss), whereas IL-6

showed no consistent response to RYGB. Moreover, leptin associated with tryptophan in

support of the possible role of leptin in the regulation of serotonin synthesis pathways in the

gut. These results suggest a potential link between gastric leptin and microbial-derived

metabolites in the context of obesity and diabetes.

Introduction

Obesity and type 2 diabetes (T2D) are among the top preventable causes of death worldwide

(obesity kills ~3 million yearly) [1]. The number of obese and diabetic patients doubled in less

than three decades [2,3]. The rapid rise of obesity and T2D reflects a complex interaction

between the fast-changing environment (e.g., lifestyle) and the slow adapting biology (genet-

ics). This complexity has led to diverse preventive and treatment approaches to address both

the environmental (diet and exercise) and biological (medications and surgeries) aspects of the

diseases; however, the effects of the current approaches are limited.

Roux-en-Y gastric bypass (RYGB) is a surgical procedure that creates a small pouch from

the stomach while bypassing the main portion of the stomach and most of the duodenum. The
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small pouch is connected to the jejunum forming a “Y” with the bypassed stomach and duode-

num components of the digestive tract. RYGB achieves remarkable results in addressing obe-

sity and T2D - it persistently decreases weight and hyperglycemia in most patients [4,5].

Moreover, targeted metabolomic analyses showed that RYGB reduces circulating metabolites

implicated in obesity and insulin resistance such as branch chain amino [6,7] and ceramides

[8,9]. Untargeted metabolomic analyses confirm and unveiled alterations of essential metabo-

lites by RYGB [10,11].

We conducted an untargeted metabolomics analysis of plasma from obese and obese dia-

betic patients in comparison with plasma from healthy lean women. Also, we studied the meta-

bolic alterations by RYGB in association to distinct clinical features plus nine protein and

peptide hormones and two cytokines.

Results

RYGB alters the metabolome profiles of obese patients independently of

disease state

We studied a cohort of 27 Caucasian women [12]: 18 obese (nine diabetics and nine non-dia-

betics; BMI>35 kg/m2) and nine lean subjects (BMI<25 kg/m2). We dismissed two lean sub-

jects because of incomplete data. Hereafter, we use “obese” to refer to both obese diabetic and

obese non-diabetic patients. Obese patients underwent RYGB surgery causing weight loss and

improvement of pre-diabetic/diabetic symptoms—rapid normalization of circulating insulin

(within one week) and glucose (three months) [12] S1 Fig.

To understand the effects of RYGB on metabolic activities, we profiled the metabolome of

the obese subjects one week before the surgery and one week and three months after the sur-

gery; and of the lean subjects as a control. We measured 223 (including unknowns) and

focused on 148 known metabolites (10 carbohydrates, 32 amino acids, and 80 complex lipids).

Principal component analysis (PCA) revealed a separation between obese and lean subjects

(Fig 1A). Moreover, samples from obese subjects cluster by surgical stage (pre-surgery, one

week and three months after surgery) rather than disease state (diabetic vs. non-diabetic).

Indeed, this clustering is more prominent when we excluded samples of lean subjects (Fig 1B).

Finally, we validated these observations using partial least square discriminate analysis

(PLS-DA) S2 Fig.

In sum, PCA indicates that the metabolome of obese patients was different from that of

lean subjects. RYGB affected the metabolome of obese diabetic and obese non-diabetic simi-

larly. Moreover, each surgical stage correlates with specific metabolites.

Network analysis unveil a connection between glyoxylate and hexosamines

To understand the association between the measured metabolites, we constructed an informa-

tion-theory-based metabolite network (Fig 2). The network is structured into modules of

strongly interconnected lipids, amino acids, and carbohydrates. Interestingly, one module

connects hexosamines (mannosamine and glucosamine) to members of the glyoxylate cycle

(glyoxylate, oxalate, and succinate and fumarate). We inspected the response of these metabo-

lites to RYGB. As expected, mannosamine and glucosamine dropped in response to RYGB in

diabetic patients (P = 0.02). Oxalate, succinate, and fumarate did not respond to RYGB and

did not exhibit any significant difference between diabetic and none-diabetic obese patients

(P = 0.27, 0.32, 0.93, respectively). Glyoxylate showed a trending decrease in response to

RYGB (though not statistically significant); however, glyoxylate was higher in diabetic com-

pared to none-diabetic obese patients (P = 0.008).
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Metabolites correlate with leptin and IL-6

In addition to the metabolic profiling and network analysis, we evaluated the metabolic alter-

ations associated with the following parameters: fasting plasma glucose (FPG); C-peptide; free

fatty acid (FFA); five hormones (Adiponectin, Insulin, Ghrelin, Leptin, and Resistin); four

peptide hormones (GIP, Glucagon, GLP1, and PYY); and two cytokines (IL-6 and TNF). For

simplicity, we will refer to these measurements as “clinical features.”

To investigate the associations between the metabolites and the clinical features, we con-

ducted orthogonal partial least square (OPLS) analysis. 5 out of 14 clinical features (FPG, BMI,

weight, leptin, and IL-6) associated with at least one metabolite and 70 metabolites associated

with at least one clinical feature (VIP> = 1.5, Q2(cum)> = 0.4 and R2Y> = 0.5; Fig 3). We vali-

dated the robustness of the OPLS models by the row permutation test [13] S3 Fig. Also, we

checked whether it could capture expected associations. Indeed, FPG linked with carbohy-

drates (mannosamine, glucosamine, and glucose) and 1,5 anhydrosorbitol (1,5AG); the latter

is consistent with depletion of 1,5AG at hyperglycemia [14]. Furthermore, we confirmed
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Fig 1. Principal component analysis and partial least square discriminant analysis of metabolomics profiles (148

metabolites and 25 patients). Projection of metabolic data a) PCA using all subjects, it shows patients correlate with

surgical condition b) same as (a) but excluding lean; eclipses represent 95% confidence interval. For visualization, only

scattered metabolites are labeled.

https://doi.org/10.1371/journal.pone.0198156.g001
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associations of FPG, weight, and BMI to plasma amino acids [15–17]; and BMI and body

weight to complex fatty acids and lipids [18].

Fig 2. Metabolic network. Association network between metabolites. Red edges indicate positive correlation (Spearman>0.2); blue indicates negative correlation

(Spearman<-0.2); and gray are indicative of possible association but no significant correlation. Node size correlates with node degree.

https://doi.org/10.1371/journal.pone.0198156.g002
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Fig 3 shows that leptin lacks association with carbohydrates, but has a strong association

with amino acids (e.g., leucine and tryptophan), complex fatty acids (e.g., gamma-linolenic and

eicosapentaenoic acids) and lipids. Also, IL-6 is independent of carbohydrates and amino acids

but correlates with various complex fatty acids and lipids (e.g., ceramide and palmitic acid).

Leptin and IL-6 response to RYGB

Leptin is a hormone secreted by adipose tissues and by gastric mucosa[19]. It regulates food

intake [20] and enhances energy expenditure [21]. Leptin is a hormone linked to fat stores and

diseases such as anorexia nervosa, obesity, and Alzheimer’s [22,23]. Before the surgery, we

found fasting plasma leptin higher in obese patients compared to obese diabetic patients

(P = 0.004) and compared to lean (P = 3.35e-5) subjects. Also, leptin in obese diabetic patients

was comparable to that of leans subjects (P = 0.12). Leptin declined immediately (1 week) after

RYGB surgery (nondiabetic, P = 6.32e-6; diabetic, P = 0.005) and fell below the level in lean

subjects after three months (nondiabetic, P = 0.06; diabetic, P = 0.003).

IL-6 is a cytokine secreted by immune, fat and muscle cells. IL-6 responds to various

stresses [24]and acts as both pro and anti-inflammatory agent [25]. Circulating IL-6 correlates

with insulin resistance [26]. As expected [27], IL-6 is elevated in obese compared to lean sub-

jects and the trend remains higher after three months (nondiabetic, Ppre = 0.04, P3months =

0.09; diabetic, Ppre = 0.02, P3months = 0.02). IL-6 does not change in respond to RYGB (non-

diabetic, P1week/pre = 0.77, P3months/pre = 0.59; diabetic, P1week/pre = 0.51, P3months/pre = 0.89).

Discussion

We profiled the metabolome of obese diabetic and obese non-diabetic patients before RYGB,

and one week and three months after RYGB, and of lean subjects. The metabolome profile of

obese is distinct from that of lean patients. RYGB affected the metabolome of both obese

groups similarly, confirming previous report [11]. Each surgical stage correlated with specific

metabolites. For instance, 3-hydroxybutyrate correlates with the one-week post-surgery, possi-

bly because of the beta-oxidation of fats due to the change in diet; i.e., from Optifast 800

(Novartis Nutrition Group, Vevey, Switzerland) to Bariatric Advantage Meal Replacement

(Bariatric Advantage, Irvine, CA) after surgery [12]. The 2-hydroxybutyrate may reflect pro-

duction of glutathione due to the oxidative stress arising from the surgical procedure. The ery-

thro-dihydrosphingosine or sphinganine is consistent with its role in regulating CD-95

mediated apoptosis of T-cells [28], possibly, contributing to post surgery recovery. Metabolites

of microbial origin (indole-3-propionic acid, 3-indolesulfuric acid, hippuric acid and glyco-

chenodeoxycholate acid) [29–31] correlated with the three months post-surgery; which sug-

gests a change in the gut microbial population. Indeed, metagenomics sequencing before and

after three months RYGB surgery showed a reduction of Firmicutes and Bacteroidetes and an

increase of Proteobacteria and Verrucomicrobia [32]. Moreover, in in-vitro models, increasing

indole-3-propionic acid reduced inflammation and intestinal permeability and altered the glu-

cose/fructose transporter GLUT5 mRNA transcription [33].

Our network analysis showed an association between carbohydrates (mannosamine and

glucosamine) and glyoxylate. Mannosamine and glucosamine are substrates for O-linked pro-

tein glycosylation and precursors for sialic acids which are important in N-linked protein gly-

cosylation. O-linked glycosylation and the hexosamine biosynthetic pathway have been

Metabolites are ordered based on hierarchical clustering. For clarity, only part of metabolite name and unique IDs are

shown. The full description of a metabolite can be queried by the ID in S1 Table.

https://doi.org/10.1371/journal.pone.0198156.g003
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implicated in causing insulin resistance [34]. The hexosamines were elevated in diabetic patients

and decreased in response to RYGB. We speculate that the alteration of gut microbes may, in

part, contribute to the decrease in circulating hexosamines through altered breakdown of

mucin within the intestine. The glyoxylate was elevated in diabetic patients which supports the

suggested glyoxylate link to [35,36]. Glyoxylate is produced through the glyoxylate cycle which

is an anabolic pathway that converts acetyl-CoA to glyoxylate and succinate in plants, bacteria,

and invertebrates [37]. The succinate is used to produce cellular carbohydrates, and the glyoxy-

late is converted to malate to complete the abbreviated metabolic cycle. Change in glyoxylate

levels could reflect alterations of the microbiome; indeed, Proteobacteria is higher in the micro-

biome of diabetic patients compared to non-diabetic patients [38]. Although Proteobacteria
increased after RYGB, this increase is reported for non-diabetic patients; and the effects of

RYGB on microbiome of diabetic patients is required. The gut microbial origin of glyoxylate is

consistent with nutrients-depleted environment expected in the lower gut. The microbial glyox-

ylate shunt is expected to be active in such environment, and the fuel for the shunt could be ace-

tate produced by commensal gut microbes. In a long-term study of the effects of bariatric

surgery, gut microbiota composition for Escherichia, Klebsiella, and Salmonella, among other

species, increased in women who had RYGB versus obese women [39]. This same study showed

that glyoxylate and dicarboxylate metabolism was enriched in vertical banded gastroplasty

patients versus obese women but not for RYGB patients. The ability of any of these bacteria to

degrade intestinal mucin was not discussed. Alternatively, glyoxylate could arise from glycine

and hydroxyproline catabolism in the liver [40], although, our network analysis did not show a

correlation of glyoxylate with glycine or hydroxyproline while a correlation with oxalate was

observed. The network analysis allows for possible biochemical interpretation, but as previously

mentioned glyoxylate, succinate and oxalate measured in the plasma did not respond to RYGB;

although glyoxylate was higher in diabetic compared to non-diabetic patients.

Leptin declined immediately after RYGB and fell below the level in lean subjects after three

months. Indeed, other studies reported similar decline one [41], two [42] and three [43] weeks

after the RYGB. The decrease in stomach secreted leptin due to RYGB alteration of the stom-

ach’s physiology is speculated to cause this immediate response [42]. Gastric epithelial cells

adapted to high-fat diet by increasing gastric leptin secretion in fasting mice [44]. Therefore, it

is possible that adaptation to a new diet after RYGB may cause a decrease in gastric leptin.

Also, gastric leptin (both protein [45] and mRNA) is higher in obese compared to lean sub-

jects, and changes in gastric leptin precede changes in plasma leptin [44]. Circulating leptin, in

part, originates from gastric leptin, most notably after food intake [19]. In sum, leptin drops in

response to RYGB before any significant weight loss. This response could be due to decreases

of gastric leptin secretion caused by the changes in the physiology of the stomach [42] or the

changes in diet or both.

OPLS analysis shows that leptin correlated with several amino acids, including branched-

chain amino acids. This is consistent with the observation that leucine-supplemented diet

given to ob/ob mice for two weeks increased plasma leptin [46]. In rats, leucine-deficient diet

reduced leptin response to meals (diet deficient in other amino acids did not alter leptin

response to meals) [47]. Leucine enhances leptin sensitivity in rats on a high-fat diet [48] and

regulates leptin translation (rather than transcription) in adipose tissues in rats. Moreover,

plasma total cysteine positively correlates with leptin in a Hispanic cohort (the correlation is

partially independent of fat mass) [49] and alanine stimulated leptin expression in rats [50].

The leptin association to tryptophan was unexpected. For example, tryptophan composition

in diet yielded inconsistent leptin responses in pigs [51]. Recently, gastric leptin was proposed

to regulate serotonin synthesis pathways through a mechanism involving increased expression

of tryptophan hydroxylase-1 (TPH1; a rate limiting enzyme that converts tryptophan to

Metabolic and hormonal alterations induced by Roux-en-Y gastric bypass
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serotonin) in the gut of obese subjects (similar to gastric leptin). Also, oral administration of

leptin increased expression TPH1 in the intestine of leptin-deficient mice [44]. One hypothesis

is that the association between circulating leptin and tryptophan may be partially explained by

gastric leptin regulation of the tryptophan-serotonin pathways in the gut.

Another possible explanation of the leptin-tryptophan association could be through the aryl

hydrocarbon receptor (AHR). AHR has been implicated in mice to play a significant role in obe-

sity [52]. Tryptophan-derived indole metabolites (kynurenine, tryptamine, indole-3-acetic acid,

indole-3-aldehyde and indole-3-acetaldehyde) have been shown to modulate AHR [53]. Several

tryptophan-derived indole metabolites were observed in this study. We observed kynurenic acid

decreased after RYGB which is in agreement with suggested kynurenine acid association with

higher BMI [54]. Furthermore, Fig 3 showed associations between leptin, weight, and BMI and

3-indoxylsulfate and indole-3-propionic acid. Interestingly, removal of gut microbes by antibi-

otic treatment increases tryptophan and reduces tryptophan-related metabolites (i.e., serotonin

and indole derivatives) in circulation and decreases weight gain. Xu et al. reported that, under a

high-fat diet, AHR-deficient mice produced less leptin than wild-type mice. They suggested that

the difference is due to the reduced amounts of epididymal white adipose tissue; however, the

effects on the gut microbiome were not investigated [55]. Moreover, mice exposed to 2, 3, 7,

8-tetrachlorodibenzofuran, an AHR ligand, stimulated lipogenesis [56]. We report a decrease in

the AHR ligand, kynurenic acid, after RYGB surgery. Shin et al. in exploring the role of NRF2

(NF-E2 p45-related factor 2) pathway reported that it activated the AHR signaling cascade

resulting in an inhibition of adipogenesis [57]. This negative regulation by AHR of adipogenesis,

the authors reported was consistent with previous literature for one of the roles of AHR. Sum-

marizing the present work, these data support the suggested correlation between leptin, body

weight and the microbiome [58–61], however, whether leptin directly affects the microbiome

and indole-mediated AHR signaling needs further investigation.

In this study, IL-6 did not respond to RYGB. Previous studies were contradictory regarding

IL-6 response to RYGB. After RYGB: IL-6 increased within the first week and remained high

at three months and decreased after one year [41]; IL-6 decreased after six months [27] and

one year [62]; and IL-6 did not change within three weeks [63], one month [62], three months,

six months [63] and one years [64]. These inconsistent results may reflect complex inflamma-

tory patterns among obese and diabetic patients in response to uncontrolled environmental

influences. Our observation that IL-6 correlates with various lipids (e.g., ceramide and palmitic

acid), but not carbohydrates or amino acids, is consistent with the lipid signaling and IL6-me-

diated stress responses crosstalk in metabolic diseases [57].

Conclusion

We have presented our analysis of untargeted metabolomics of plasma from obese and obese

diabetic female patients in comparison with plasma from healthy lean women and associated

the metabolic alterations by RYGB to distinct clinical features. What stands out in our results

is the strong connection with the microbial metabolites at three months post-surgery and the

connection between leptin and tryptophan and indole-related metabolites. The microbiome

connection is consistent with metagenomics analyses of RYGB patients before and after sur-

gery, and the leptin connection opens a new avenue of consideration.

Methods

Cohort, RYGB surgery procedure, and clinical data measurements

The cohort and the procedure of RYGB surgery are described in [12]. All clinical features were

measured as part of that study, but we are reporting them for the first time.
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Metabolomic profiling

The metabolome was profiled by Metanomics Health (Berlin, Germany) using their broad 4

phases profiling approach of gas chromatography-mass spectrometry (GC-MS) and liquid

chromatography-mass spectrometry (LC-MS/MS) [65,66].

Statistical analysis

R 3.2.4 was used for statistical analysis. “ropls” package [67] was used for PLS-DA and OPLS

analysis. Values outside the 1.5 interquartile range were discarded as outliers. Figures were

generated using ggplot2, and pheatmap of R. Two-sided t-test was used for all comparisons.

Network analysis

Scores based on information variation over minimum spanning tree was computed between

metabolites. Insignificant links were removed after calculating expected scores based on 1000

stochastic simulations. The network was visualized using ggnet2.

Supporting information

S1 Fig. Decrease in weight, fasting insulin and fasting glucose after RYGB. a) Barplot shows

the number of subjects participated in the study. b) Boxplot shows the age distribution of the

participants; diabetic participants are significantly older than the others c) Boxplot shows a sig-

nificant weight loss of patients after RYGB. d) Same as (c) but for BMI. e) Barplot shows a sig-

nificant drop of fasting insulin levels within the first week. f) shows a significant decline in

fasting glucose levels within the first week of RYGB. We defined outlier points by the values

outside the 1.5 interquartile range. We omitted outliers from the analysis. This figure is a

representation of previously published data [12].

(EPS)

S2 Fig. Partial least square discriminant analysis of metabolomics profiles (148 metabo-

lites and 25 patients). Projection of metabolic data a) PLSDA using all subjects, it shows a cor-

relation between samples of the same surgical condition b) same as (a) but excluding lean

subjects; eclipses represent 95% confidence interval.

(EPS)

S3 Fig. Permutation tests for orthogonal partial least square analysis. Boxplots show the

distribution of Q2 and R2 for 1000 models. Each model generated after the rows of the meta-

bolic data were randomly permuted.

(EPS)

S1 Table. Metabolome data. Metabolites relative quantification levels.

(XLSX)
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