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Abstract:  
 
An experimental passive methane oxidation biocover (PMOB) was constructed within the 

existing final cover of the St-Nicéphore landfill. Its substrate consisted of a 0.80-m thick 

mixture of sand and compost. The goal of this experiment was to evaluate the performance 

of the PMOB in reducing CH4 emissions when submitted to an increasing methane load. The 

CH4 load applied started with 0.3 g CH4 m−2 h−1. When the site had to be closed for the 

winter, the CH4 input was 27 g CH4 m−2 h−1. Throughout the study, practically all the CH4 

input was oxidized, absolute removal rates were linearly correlated to methane loading, and 

the oxidation zone was established between 0.6-0.8 m. These results seem to indicate that 

the upper limit potential of this PMOB to oxidize CH4 was not reached during the study 

period. Surface CH4 concentration scans showed no signs of leaks. The substrate offered 

excellent conditions for the growth of methanotrophs, whose count averaged 3.91 x 108 CFU 

g dw-1 soil.  

 

 

 

CE Database subject headings: Methane; Oxidation; Landfill; Emissions. 

 

 

 
 
 
 
 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

  3  

Introduction  

Methane is a radiatively active gas whose concentration in the atmosphere has 

increased in the last several decades due principally to the great increase in anthropogenic 

emissions (IPCC 2001); it is now estimated that as much as 19% of the CH4 anthropogenic 

emissions to the atmosphere can be attributed to landfills (IPCC 2001). A number of design 

advances, such as gas collection systems, have reduced the environmental impacts of new 

landfills. However, in small and old landfills, gas collection is not cost effective, and as a 

result all the biogas produced is allowed to escape into the atmosphere, constituting what is 

called fugitive emissions. In addition, residual emissions are expected to be released from 

landfills after gas collection systems are turned off. However low they might be, such residual 

emissions may occur for several decades. 

Methane emissions from landfills, particularly fugitive and residual emissions, can be 

reduced through microbial methane oxidation in landfill cover soils (Ait-Benichou et al. 2009; 

Hilger et al. 2000) - or biocovers. This relies principally on the activity of methane oxidizing 

bacteria, or methanotrophs, which are able to use molecular oxygen to oxidize CH4 to CO2 

and cell carbon (Hanson and Hanson 1996). Biocovers are cited in the IPCC Working Group 

III assessment report (IPCC 2007; Table SPM 3) as one of the key technologies for reducing 

fugitive landfill emissions, i.e. methane that is not captured by collection systems and 

migrates to the atmosphere.  

Previous studies conducted in situ have demonstrated the potential of biocovers to 

reduce methane emissions from landfills (e.g. Barlaz 2004; Cabral et al. 2009; Chanton and 

Liptay 2000; Humer and Lechner 1999; 2001; Jugnia et al. 2008; Stern et al. 2007; Whalen et 

al. 1990). In these studies, the substrate materials used, as well as methane loadings 
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  4  

applied, varied significantly. As part of the framework of a multidisciplinary study to assess 

the potential of passive methane oxidation biocovers (PMOB) to oxidize fugitive CH4 under 

field conditions, three PMOBs were constructed within the existing final cover at the St-

Nicéphore landfill, Quebec, Canada. Jugnia et al. (2008) analyzed the results obtained from 

PMOB-1, in which a mixture of sand and compost was used as substrate, and concluded that 

the mixture proved to be satisfactory in sustaining and promoting growth of methanotrophic 

bacteria. However, the methane loading into PMOB-1 was not controlled; as a consequence, 

it was not possible to determine the upper limit of methane loading that the biocover system 

would be able to oxidize. 

The present study presents and analyses the results obtained during the 2008 

monitoring campaign for PMOB-2 (the second system of the above-mentioned 

multidisciplinary study). For this particular PMOB, the same sand-compost mixture was used 

as substrate. However, the PMOB was lined with a geomembrane and biogas was fed 

through a gas distribution system, thereby allowing for control of the CH4 loading. According 

to the pattern of results, the maximum capacity of the system does not seem to have been 

attained.  

Materials and methods  

 Biocover setup  

PMOB-2 (Fig. 1) measures 2.75m (W) × 9.75m (L) and follows a 3.5% slope. It was 

constructed within the existing final cover of the St-Nicéphore landfill, in an area where the 

waste mass is approximately 5-years old. PMOB-2 included a 0.80-m thick layer of substrate 

underlain by a 0.10-m thick gas distribution layer (GDL) consisting of 6.4-mm net gravel and 

0.3 m of 12.7 mm net gravel. The substrate layer consists of a mixture of 5 volumes of 
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mature compost (before sieving through 12 mm industrial sieve) and 1 volume of coarse 

sand (D10 = 0.07mm; D85 = 0.8mm; Cu= 4.3). More details on the compost and the mixture 

can be found in Jugnia et al. (2008). The substrate layer was placed in four 0.2-m layers and 

compacted with a vibrating plate to obtain layers with an average dry unit weight of 8.4 kN m-

3 and total porosity (n) equal to 0.63. The specific gravity (Gs) of the sand-compost mixture is 

equal to 2.24. 

PMOB-2 was lined using a 1-mm thick HDPE geomembrane (GM), which was 

protected from tearing by a geotextile sheet. As a consequence, the biocover section was 

hydraulically isolated from the rest of the existing landfill cover, permitting the gas flow 

boundary conditions to be controlled, while maintaining the same atmospheric boundary 

conditions as the rest of the existing landfill cover. A drainage system was installed at the 

lowest point to evacuate infiltrating waters. The experimental plot was thermally shielded 

from the outside environment by 0.15-m thick polystyrene along its sides. The goal was to 

prevent lateral migration of moisture due to thermal gradients.  

Instrumentation and Initial Conditions 

Temperature probes (HOBO U12, from Onset) and water content capacitance sensors 

(ECH2O EC-5, from Decagon Devices) were installed at four depths throughout the cover at 

each of the four monitoring points (Fig. 2). The temperature and water content probes were 

connected to data loggers. At the same points, aluminum tubes equipped with a septum at 

the top end were inserted in the soil at 6 different depths (7 in some cases), in order to 

determine gas profiles (Fig. 3). Meteorological data, including precipitation, atmospheric 

pressure and wind speed were recorded continuously by a weather station installed near the 

experimental plot.  
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In the beginning of the study period (May to November 2008), the experimental plot 

was totally covered with thick vegetation, which frequently had to be removed manually in 

order to access the gas probes.  

Gas Loading  

The experimental plot was fed with biogas extracted from a well installed in the waste 

mass (Fig. 2). It was decided to use natural biogas from the site to maintain actual in situ 

conditions, i.e. the actual biogas mixture. We also wanted to keep intact the natural ratio of 

the stable isotopes 13C and 12C and content of odor-causing components of the biogas (for 

further investigations on odor control). The biogas loading (or fluxes) fed into the system was 

controlled by means of a valve. In the beginning of the study period, the CH4 loading was 

measured using a rotameter, with readings being made once or twice a week. Subsequently, 

the CH4 loading was monitored using a mass flow meter (Sage model SID-050-DC-24-DIG-

GAS) connected to a data acquisition system. Samples for evaluation the CH4 and CO2 

concentrations were taken from the well and end-cap of feed system. 

Over the study period, the CH4 load applied ranged from 0.3 g CH4 m-2 h-1 to 27 g CH4 

m-2 h-1. The lower CH4 loading value adopted corresponds to what is considered ad hoc as a 

residual loading that one would expect to find at the base of a landfill cover decades after 

closure of the site (0.5 l CH4 m-2 h-1; or 0.3  g CH4 m-2 h-1; Stegmann et al. (2007)).  

As indicated in Table 1, the study was subdivided into four periods corresponding to 

the four different CH4 loadings. In the 1st period, the CH4 loading was steadily increased from 

0.3 to 8 g CH4. m-2.h-1, which was the maximum that could be monitored by the rotameter 

installed. During the 2nd period, the 8 g CH4. m-2.h-1 loading rate was maintained for several 

months to verify the stability of the system. Thereafter, all through the 3rd period, a mass flow 
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meter allowing monitoring of higher loadings was installed and the loading was again steadily 

increased up to 16 g CH4. m-2.h-1. During the 4th period, the goal was to steadily increase the 

loading again so as to double the latter value. However, the experimental site had to be 

closed for the winter in early November, when the loading was equal to 27 g CH4 m-2.h-1. As 

will be shown, the PMOB was capable of oxidizing all of the methane under this flux rate. 

This means that an upper limit on the amount of methane oxidation possible with this PMOB 

was not inferred in this study.  

Gas Concentration Profiles and Emission Measurements 

Emission measurements included CH4 surface fluxes and surface scans of CH4 

concentration. CH4 surface fluxes were measured following the static chamber method, at 

five permanent different points on the experimental plot (Fig. 2). The perimeter of the 

Plexiglas® chamber was sealed with a bentonite paste to prevent dilution of the gas inside 

the chamber by atmospheric air. CH4 concentrations within the chamber were monitored 

every 10 seconds over a 6 minute interval using a portable FID (TVA 1000B, Thermo 

Scientific) equipped with a data acquisition system. Fluxes (f) were calculated according to 

the equation:  

                                                                 V Cf
A t

             (1)                              

where f is the CH4 flux (mg/m²/s); V is the chamber volume (m³); A is the internal surface 

area (m²); and C/ t represents the slope of the plot relating change in gas concentration to 

time (mg/m³/s). The test was considered acceptable when the determination coefficient was 

equal or superior to 80% (R2 ≥ 0.8), as recommended by the U.S. Environmental Protection 

Agency (2003) for control of gas emissions from landfills.  
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CH4 surface concentration scans were made using the FID, following a pre-defined 

path inside the PMOB. Gas samples were obtained continuously every 5 seconds, with a 

probe maintained at a distance of approximately 1 cm above the surface. The data was then 

used to define iso-concentration curves by kriging.  

CH4, CO2 and O2 concentration profiles within the PMOB were established from gas 

samples collected from the aluminum gas probes and analyzed in situ using a portable gas 

meter (Columbus Instruments Inc.) equipped with infrared sensors able to detect CO2 and 

CH4 on a scale from 0 – 100 vol% and an electrochemical sensor calibrated to detect O2 from 

0-21 vol%. The N2 concentrations were obtained from the difference between 100% and the 

sum of the concentrations of CO2, CH4 and O2. At various dates, the actual concentrations of 

N2 were determined using a gas chromatograph (Micro GC 3000 A, Agilent). 

Methanotroph Count  

A previous study performed with samples from PMOB-1 (Cabral et al. 2007) showed 

that on average, the number of methanotrophic bacteria decreased quite abruptly within the 

first 0.4 m of depth from the surface. Based on these results, it was decided in the beginning 

of the 2008 monitoring season not to sample PMOB-2 for methanotroph count below the 

depth of 0.4 m. Substrate samples were collected monthly at three different points of the 

PMOB. The samples were taken from the uppermost part of the substrate (0-0.1, 0.1-0.2, 

0.2-0.3 and 0.3-0.4 m) using PVC coring tubes (internal diameter = 0.5 m).  Equal volumes of 

samples from the same depths were mixed to form composite samples that were used 

for methanotroph counts.    

The cores were kept at 4ºC and methanotroph counts were performed following the 

most probable number (MPN) method within 24 hours. For this, soil slurries from the 
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composite samples were serially diluted in 96-well plates (microtiter) containing ammonium 

mineral salts medium. Fresh soil (5 g) was suspended in 45 ml of a mineral salts medium 

(Heyer 2002) and shaken for 1 hour. Two hundred μl of this suspension was placed in the 

first well of a 96-well microtiter plate which consists of 12 wells. Serial 10-fold dilutions were 

performed from the second well to the 11th well with transfers of 20 μl to the next wells, 

containing 180 μl of mineral medium, using a multichannel pipettor. The 12th well contained 

only mineral medium and was used as the control. Thereafter, the plates were incubated for 

4 weeks at 25ºC in gastight jars containing 18% CH4 in air. After incubation, all plates were 

read using a microplate reader and the MPN calculated from the dilution factor and dry 

weight of the soil. 

Results and Discussion  

Methane Removal Efficiency  

 
Fig. 4 shows the evolution with time of the oxidation efficiency, CH4 loading and emission 

rate. It can be observed that the CH4 loading increased steadily up to mid-July, when it was 

left constant for a while. The associated outflow remained always close to nil or below 

detectable limits, which results in almost 100% efficiencies. By mid-September, the CH4 

loading was increased rapidly and a relatively higher outflow was measured on Oct. 3. But 

the system responded very well and the calculated efficiencies increased back again after 

Oct. 3 to values very close to 100%.  

In Fig. 5, the relationship between CH4 loading and absolute CH4 removal rates can be 

observed. The CH4 removal rate is equal to the difference between methane loading and 

surface emission.  Fig. 5 shows that the absolute CH4 removal rate increased with the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

  10  

increasing loading; and the high determination coefficient obtained (R2 = 0.99) indicates that 

the variability in the mass of CH4 being supplied to the gas distribution layer below the 

biocover was the sole contributor to the variability in the CH4 removal rate. Consequently, it is 

possible to anticipate that the maximum possible removal rate for this particular biocover was 

not reached at the end of this study. 

Typical scans of methane concentrations at the surface of PMOB-2 are shown in Fig. 6. 

Due to the high oxidation efficiency of the biocover (Fig. 4), recorded concentrations of CH4 

at the surface remained quite low throughout the study; and were below the maximum 

concentration allowed by the Quebec landfill regulations, i.e. 500 ppm. The observed low 

concentrations of CH4 along the PMOB-2’s perimeter, as well as variability in the locations of 

registered peaks, can be interpreted as an indication that the seal along the interface 

between the substrate and the geomembrane was good enough to prevent gas leaks. As a 

consequence, the surface point measurements can be considered representative of the 

entire surface of the PMOB.  

Gas profiles representative of the four periods into which the study was subdivided, 

are shown in Fig. 7. The profiles relative to the 1st period (Fig. 7a) showed that CH4 was 

practically absent throughout the profile. The only plausible explanation for this observation is 

that CH4 was being completely oxidized; even as deep as the interface between the 

substrate and the gas distribution layer (0.82 m). Indeed, N2 concentrations at 0.82 m were 

similar to those found in atmospheric air, which means that the air supply – thus O2 – was not 

a limiting factor. Nonetheless, the low O2 concentrations deep down can be related to the fact 

that O2 was immediately consumed as it became available.  

The concentration of CH4 at the bottom of PMOB-2 (0.82 m) gradually increased with 

the increase in the CH4 inflow applied. Concurrently at this depth, there was a decrease in N2 
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concentration, which means that the O2 supply necessary for biotic degradation of CH4 also 

decreased. The CH4 concentrations normally found in landfill biogas (in the vicinity of 55%; 

Bogner et al. 1995; Börjesson et al. 2001) were observed at the bottom of PMOB-2, only 

when the CH4 loading reached 27 g CH4  m−2 h-1 (Fig. 7d).  

The steep declines in CH4 concentrations shown in Fig. 7 b, c, d indicate that the 

oxidation front would be located quite deep in the PMOB (near a depth of 0.60 m) throughout 

the last three periods of CH4 loadings. Humer and Lechner (2001) found, in a field test where 

sewage sludge and MSW compost were used as substrate, that the maximum CH4 oxidation 

zone extended from 0.4 and 0.9 m deep. 

It can be hypothesized that the presence of N2 deep down for an extended period of 

time was enough of a proof that the incoming biogas was being diluted. However, it can be 

observed in Fig. 7 that the CO2 concentration deep down was similar for periods 3 and 4. For 

this to happen CO2 production must have taken place, otherwise the CO2 would have been 

diluted to the same extent as the CH4.  

The results presented above are quite different from those obtained for PMOB-1 

(Rannaud et al. 2009), which differed from PMOB-2 only by the fact that it was not lined with 

a geomembrane. As a consequence, the gas distribution layer sits directly upon the waste 

mass and the biogas loading cannot be determined.  Indeed, typical gas profiles for PMOB-1 

show that CH4 concentrations were usually high deep down (as compared to PMOB-2) and, 

with the exception of some short periods of draught, they remained high along the entire 

profile (Rannaud et al. 2009). Given the fact that the degrees of saturation of PMOB-1 and 2 

were within the same range for all depths during the study period (see discussion below), one 

can conclude that very high upward biogas loadings in PMOB-1 (roughly estimated to be in 
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the order of 400 g CH4 m−2 h-1) must have prevented the downward migration of atmospheric 

O2, thereby precluding CH4 oxidation.  

In addition, in the beginning of the 2008 study period, the CH4 loading applied to 

PMOB-2 was nil and thick vegetation (canary grass, peas, etc.) had developed on its surface. 

Given the fact that vegetation is known to increase rhizosphere-related microbial activity (e.g. 

Denier van der Gon 1996; Hilger and Humer 2003; Stralis-Pavese et al. 2004; Tanthachoon 

et al. 2008), it is highly possible that the establishment of vegetation had a positive impact on 

the performance of PMOB-2. However, this discussion is beyond the scope of the present 

paper, and no particular investigation was made concerning this matter.  

Degree of Saturation within the Biocover 

The evolutions of the degree of water saturation (Sr) within PMOB-2 and precipitation, 

during the study period, are presented Fig. 8. Only the average Sr values obtained for the two 

sub-layers, i.e. from 0.2 to 0.4 m and 0.6 to 0.8 m, are presented. The Sr values were 

calculated using volumetric water content data and the porosity (n = 0.63). As a crosscheck, 

these Sr values were compared to those obtained from a Sr vs suction plot (water retention 

curve of the material; data not shown), where suction measurements were obtained from 

tensiometers installed on the experimental plot (Fig. 3). A t-test analysis (results not shown) 

revealed no statistically significant difference between the two sets of data, i.e. between the 

calculated degrees of saturation and the degrees of saturation corresponding to measured 

suction values.  

The degree of saturation of the substrate in PMOB-2 was sensitive to variations in the 

precipitation level. Indeed, peaks in precipitation levels associated with Sr values higher than 

85% were observed after rainfall intensities equal to or greater than 20-25 mm/day; or 
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following continuous precipitation events. Otherwise, Sr values during the present study 

averaged 61.5 ± 3.5% at the topmost part of the PMOB (surface to 0.4 m deep) and 74.7 ± 

4.8% within the bottom-most part (0.4 to 0.8 m). These average degrees of saturation values 

in the PMOB were then lower than 85%, which corresponds approximately to the degree of 

saturation value beyond which air becomes occluded in fine grained soils (Brooks and Corey 

1966; Nagaraj et al. 2006). In addition, according to Nicholson et al. (1989), Yanful (1993), 

Aachib et al. (2004) and Cabral et al. (2004), gas fluxes become quite low when the value of 

Sr approaches 85%. Simulations performed by Rannaud et al. (2009) with Sr values in the 

vicinity of 85% resulted in very limited, to no penetration of O2, irrespective of the loadings 

applied. It can thus be inferred that high Sr would result in extremely low O2 concentrations 

even at shallow depths, which would induce a significant decrease in microbial oxidation 

activity.  

No correlation was found between Sr and the methane oxidation rate in the present 

study. It can thus be inferred that Sr values observed were within the optimal range for CH4 

oxidation to occur under the field conditions prevailing in PMOB-2.  

It is relevant to note that the biocover substrate used in this experiment retains more 

moisture than most mineral soil covers; its volumetric water content varied between 32.0 and 

63.0%, with this latter value occurring only very sporadically. Stern et al. (2007) concluded 

that biocover cells were more successful in oxidizing CH4 when the retention times were long 

enough and desiccation was avoided as much as possible.    

Temperature within the Biocover 

Characteristic values of temperature obtained from the temperature probes placed in 

PMOB-2 indicated that temperatures in the top part of the PMOB (0.10 - 0.25 m) exceeded 
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the outside air temperature (Fig. 9). The combined effects of the warm landfill gas supplied 

and the heat generated by microbial activity are at the origin of this difference in temperature. 

However, when the air temperature started to drop, the bottom of the PMOB (0.45 – 0.70 m) 

became warmer than the top (Fig. 9), which is directly affected by outside weather conditions. 

As shown in Table 2, there was only a small difference between average temperature 

values measured near the surface (20.1˚C at 0.10 m) and deeper into the substrate (18.7 ˚C 

at 0.75 m). Gebert and Gröngröft (2006), who employed a much coarser substrate, obtained 

higher temperatures at the bottom of their biofiltre experiment in the field. These authors 

suggested that the top layer is subjected to considerably higher, but also to considerably 

lower temperatures, presumably inducing higher and lower oxidation rates, than in the 

deeper layers. In the present study, the active oxidation zone seems to be located between 

0.60 – 0.80 m, exactly within the region where a more constant temperature regime was 

observed (Fig. 9). The high temperatures at the top layers during the warmer months can be 

partly explained by aerobic activity and oxidation of organic matter. When the outside 

temperature started to drop, the bottom of the PMOB became warmer than the top (Fig. 9).  

A statistical analysis performed using soil temperature and methane removal rate data 

led to an unusual negative correlation (-0.9; p>0.001) between the two variables. Usually, 

methane removal rates (or for that matter, oxidation rates) increase with the increase in 

temperatures (e.g. Börjesson et al. 2004). In the present case, the statistical analysis does 

not reflect the physical phenomena, because the CH4 loading was being increased precisely 

during the time of the year when the air temperature was starting to fall, causing a decrease 

in soil temperature, particularly near the surface (Fig. 9; the average temperature at the 

bottom of the PMOB was almost the same throughout the experiment). Nevertheless, despite 
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the decrease in soil temperature and the increase in CH4 loading, almost 100% of the CH4 

was still being oxidized. 

Gebert et al. (2003) claim that, during the winter, biofilters and biocovers may still be 

operated successfully, since, as the temperature in the soil drops, the methanotrophic 

population composition can adapt.  

Methanotrophs and CH4 Abatement  

As shown in Fig. 10, the mean number of methanotrophs did not decrease 

considerably with depth, ranging from 7.82 ± 4.45 108 CFU g_dw-1 near the surface (0- 0.10 

cm) to 1.73 ± 1.14 x 108 CFU g_dw-1 soil at the bottom (0.3 – 0.4 m). These densities are in 

the upper range of values reported in the literature and are comparable to those found by 

Gebert et al. (2003) (1.3 x 108 to 7.1 x 109 cells g_dw-1) for a biofilter that was able to oxidize 

80 g CH4 m-3 h-1, with absolute removal rates linearly correlated to the amount of methane 

entering the filter (such as illustrated in Fig. 5). Such uniform distribution profiles of 

methanotrophs suggest that the first 0.4 m of PMOB-2 offered optimal growth conditions. As 

mentioned previously (discussion relating to Fig. 7), air penetrated deep into the PMOB and, 

as a result, the molecular O2 required by methanotrophs for CH4 oxidation was not a limiting 

factor. Therefore, under the conditions that prevailed within PMOB-2 during this study, it is 

plausible to presume that the number of methanotrophs within the bottom layer (0.4 – 0.8 m; 

where samples were not collected from for microbial analyses) was as high as in the top 

layer. This would support the statement made previously that the potential removal rate 

obtained for PMOB-2 has possibly not been reached during this study. 

Comparison of Biocover Performance to Methane Removal Rates Found for Other 
Biofilters and in Landfill Covers 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

  16  

  Table 3 presents the CH4 removal rates for several biofilter and biocover studies. The 

performance of the 0.8-m thick PMOB investigated in the present study, during which a 

removal rate of 27 g CH4 m−2 h−1 (or 33.8 g CH4 m−3 h−1) was achieved under relatively low 

air temperatures (Fig. 9), is much higher than those found for the other selected landfill 

covers. However, the reported removal rates in Table 3 were limited to the low CH4 loadings 

to which the covers were submitted in the field. It is therefore possible that higher removal 

rates might have been achieved had higher loadings be applied (unfortunately, monitoring 

had to be terminated because the site had to be closed for the winter). PMOB-2 was the only 

biocover in the list submitted to controlled CH4 loading (biofilters are always submitted to 

controlled loadings). 

The performance of PMOB-2 also compares rather well with the biofilters presented in 

Table 3, which were, with the exception of the one performed by Gebert and Gröngröft 

(2006), tested under the controlled conditions prevailing in the laboratory. Furthermore, if the 

compost added to the mixture used as substrate for PMOB-2 had not been sieved (as was 

the case with the sewage and waste compost used in Humer and Lechner’s (2000) biocover 

study), a higher air-filled porosity would have been obtained, and the substrate would have 

been even more aerated, further facilitating CH4 oxidation.  

Final comments and conclusions 

An experimental biocover constructed on top of the existing final cover at the St-

Nicéphore landfill was tested under increasing CH4 loadings. The results show that practically 

all the CH4 provided to the system was oxidized, with a maximum removal rate of 27 g m−2 

h−1 attained at the end of the study period, when the experimental site had to be closed for 

the winter. At this moment, a sharp decrease in temperature near the surface of the substrate 
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was being registered, while the air temperature varied widely during the day (reaching 0ºC 

during the night), and the temperature deeper into the PMOB decreased, but not as steeply 

as near the surface. 

The results also show that the absolute removal rates were linearly correlated to CH4  

loading, that the methanotrophs were present in great numbers near the surface, and that the 

oxidation zone was established between 0.6-0.8 m. In this bottom-most zone, we did not 

perform counts of methanotrophs, but we anticipate that they were present in great numbers 

given the conditions prevailing at these depths. All this leads to the conclusion that the 

maximum potential of PMOB-2 to oxidize CH4 has not been reached. This is of great 

importance when considering that the oxidation rate attained far exceeds what has been 

considered as the residual loading one would expect to find at the base of a landfill cover 

decades after closure, i.e. 0.3 g CH4 m-2 h-1.   
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Table 1 – CH4 loadings applied to PMOB-2 for each period 

 

Time (in 2008) Load (gCH4 m-2 h-1) 

May to Mid-July ~ 0.3 to 8 

Mid-July to September ~ 8 

September to October ~ 16 

October to November ~ 27 
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Table 2 -  Minimum (Min), maximum (Max) and average temperature values within 

BOPM-2   

 

Depth from Surface (m) Average, °C MAX, °C MIN, °C 
0 (air) 16.2 26 0 

10 20.1 28.8 5.2 
25 19.9 25.3 8.5 
45 19.4 23.7 9.1 
70 18.6 22.3 8.3 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 
Table 3 – Methane removal rates by biofilters and landfill (bio)covers 

 

Reference Substrate 
material System Temp. (°C) 

 
CH4 removal rate 

(g m−3 h−1 for biofilters) 
(g m−2 h−1 for biocovers) 

 
Whalen et al. 
(1990) 

Loamy landfill 
cover Biocover 25 2  

Jones and 
Nedwell (1993)  

Humic landfill 
cover Biocover 22 0.3  

Kightley et al. 
(1995)  

Sandy landfill 
cover Biocover 20 5–7  

Humer and  
Lechner (2000)  

Sewage 
sludge and 

waste 
composts 

Biocover 18 1–16  

Stern et. Al 
(2007) 

Pre-
composted 

yard or garden 
waste placed 

Biocover 25.7 ± 8.8 2 

Sly et al. (1993) Glass tubes Biolfilter - 21  
Figueroa (1996) Compost Biolfilter 43 50  
Streese and 
Stegmann (2003) Compost Biolfilter 30 65  

Wilshusen et al. 
(2004)  Compost Biolfilter Room 

temperature 4.1  

Melse and Var 
der Werf (2005)  

Compost -
perlite Biolfilter 12 11–15  

Gebert and 
Gröngröft (2006) Expanded clay Biolfilter 

3 – 24 
(avg 12 °C° in 

the soil) 
Max 80  

This study 
(PMOB-2) Sand/Compost Biocover See Fig. 9 

27 
(maximum not reached; 
test discontinued when 
site had to be closed for 

the winter)  
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Fig. 4. Oxidation efficiency, methane loading and emissions as determined from surface emissions 
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Fig. 5. Methane removal rates as a function of CH4 loading 

Figure 5
Click here to download Figure: EEENG-360 Cabral et al - Fig 5.pdf



0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

0
15
30
45
60
75
90
105
120
135
150
165
180
195
210
225
240
255
270
285
300
315
330
345
360

ppm CH4

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

(a) Period 1 (b) Period 2 (c) Period 3 (d) Period 4

Slope 
3.5%

Max = 102 ppm

Max = 101 ppm

Max = 362 ppm

Max = 369 ppm

Fig. 6. Representative surface scans of CH4 concentrations for each loading period  

Figure 6
Click here to download Figure: EEENG-360 Cabral et al - Fig 6.pdf



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CH
4

O
2

CO
2

N
2

Gas Concentration%

S
U
B
S
T
R
A
T
E

 (a) Period 1 

0 20 40 60 80 100
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Gas Concentration%

S
U
B
S
T
R
A
T
E

 (b)Period 2 

0 20 40 60 80 100
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Gas Concentration%

S
U
B
S
T
R
A
T
E

 (c) Period 3 

0 20 40 60 80 100
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Gas Concentration%

S
U
B
S
T
R
A
T
E

 (d) Period 4 

Fig. 7. Representative gas profiles for each CH4 loading period 

Figure 7
Click here to download Figure: EEENG-360 Cabral et al - Fig 7.pdf



0

5

10

15

20

25

30

35

40

16
-M

ay

23
-M

ay

30
-M

ay

6-
Ju

n

13
-J

un

20
-J

un

27
-J

un

4-
Ju

l

11
-J

ul

18
-J

ul

25
-J

ul

1-
A

ug

8-
A

ug

15
-A

ug

22
-A

ug

29
-A

ug

5-
S

ep

12
-S

ep

19
-S

ep

26
-S

ep

3-
O

ct

10
-O

ct

17
-O

ct

24
-O

ct

31
-O

ct

2008

P
re

ci
pi

ta
tio

n 
(m

m
 d

-1
)

10

20

30

40

50

60

70

80

90

100

D
eg

re
e 

of
 s

at
ur

at
io

n 
(%

)

precipitation

degree of saturation sand-compost (0.2-0.4 m)
degree of saturation sand-compost (0.6-0.8 m)

Sr = 85%

Fig. 8. Evolution of (a) precipitation and degree of saturation in the PMOB-2 in 2008. 

Figure 8
Click here to download Figure: EEENG-360 Cabral et al - Fig 8.pdf



0

5

10

15

20

25

30

22-May 11-Jun 1-Jul 21-Jul 10-Aug 30-Aug 19-Sep 9-Oct 29-Oct

2008

Te
m

pe
ra

tu
re

 (°
C

)

Tair taken from  the Envir. 
Canada database, because of 
problems with weather station 

o

CH4 influx loads
1 to 8 g m-2 h-1 8 g m-2 h-1 16 g m-2 h-1 27 g m-2 h-1

Tair (  C)

Top layer (0.10 - 0.25 m)

Bottom layer (0.45 - 0.70 m)
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Fig. 10. Distribution with depth of the mean values of methanotroph counts within PMOB-2 
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