
Methodology to determine the extent of anaerobic 1 

digestion, composting and CH4 oxidation in a 2 

landfill environment 3 

Lizanne Obersky 
a, *

, Reza Rafiee
 a,d

, Alexandre R. Cabral 
b
, Suzanne D. Golding 

c
, William P. 4 

Clarke
 a, *

5 

a 
Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, 6 

The University of Queensland, St. Lucia, Queensland 4072, Australia 7 

b
 Geoenvironmental Group, Dept. of Civil Engineering, 8 

University of Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada 9 

c
 Earth and Environmental Sciences, 10 

The University of Queensland, St Lucia, Queensland 4072, Australia 11 

d
 Department of Environmental Sciences, Faculty of Natural Resources 12 

University of Tehran, Karaj, 31536, Iran 13 

*Revised Manuscript (clean copy)
Click here to view linked References

Obersky, L.; Rafiee, R., Cabral, A.R.; Golding, S.D. and Clarke, W.P. (2018). Methodology to determine 
the extent of anaerobic digestion, composting and CH4 oxidation in a landfill environment. Waste 
Management, 76: 364-373

http://ees.elsevier.com/wm/viewRCResults.aspx?pdf=1&docID=28001&rev=2&fileID=574585&msid={F1CF074B-7085-427C-BCAF-DA45A97A1332}
caba2501
Rectangle 



 

 

* Corresponding authors 14 

L. Obersky 15 

Tel: 0061 (0)7 336 56464 16 

Fax: 0061 (0)7 3365 4599 17 

E-mail: l.obersky@uq.edu.au   18 

W.P. Clarke 19 

Tel: 0061 (0)7 336 56464 20 

Fax: 0061 (0)7 3365 4599 21 

E-mail: william.clarke@uq.edu.au  22 

mailto:l.obersky@uq.edu.au
mailto:william.clarke@uq.edu.au


Highlights: 1 

 Composting, digestion and CH4 oxidation rates were measured in the top 1.6m of two2 

soil capped landfill profiles.3 

 Anaerobic and aerobic activity observed simultaneously in a lift of waste for 18 months4 

after placement of interim cover.5 

 Composting accounts for 30% of waste degradation for an extended period.6 

 Carbon mass balance is improved with stable isotopes (δ
13

C-CO2, δ
13

C-CH4).7 

TOC Visual Abstract: 8 

9 

*Highlights

caba2501
Rectangle 

caba2501
Rectangle 



Abstract: 23 

 An examination of the processes contributing to the production of landfill greenhouse gas 24 

(GHG) emissions is required, as the actual level to which waste degrades anaerobically and 25 

aerobically beneath covers has not been differentiated. This paper presents a methodology to 26 

distinguish between the rate of anaerobic digestion (rAD), composting (rCOM) and CH4 oxidation 27 

(rOX) in a landfill environment, by means of a system of mass balances developed for molecular 28 

species (CH4, CO2) and stable carbon isotopes (δ
13

C-CO2 and δ
13

C-CH4). The technique was29 

applied at two sampling locations on a sloped area of landfill.  Four sampling rounds were 30 

performed over an 18 month period after a 1.0m layer of fresh waste and 30-50 cm of silty clay 31 

loam had been placed over the area. Static chambers were used to measure the flux of the 32 

molecular and isotope species at the surface and soil gas probes were used to collect gas samples 33 

at depths of approximately 0.5, 1.0 and 1.5m.  Mass balances were based on the surface flux and 34 

the concentration of the molecular and isotopic species at the deepest sampling depth.  The 35 

sensitivity of calculated rates was considered by randomly varying stoichiometric and isotopic 36 

parameters by ± 5% to generate at least 500 calculations of rOX, rAD and rCOM for each location in 37 

each sampling round.  The resulting average value of rAD and rCOM indicated anaerobic digestion 38 

[Insert TOC Visual Abstract] 



 

 

and composting were equally dominant at both locations.  Average values of rCOM: ranged from 39 

9.8 to 44.5 g CO2 m-2 d-1 over the four sampling rounds, declining monotonically at one site and 40 

rising then falling at the other.   Average values of rAD: ranged from 10.6 to 45.3 g CO2 m-2 d-1.  41 

Although the highest average rAD value occurred in the initial sampling round, all subsequent rAD 42 

values fell between 10 and 20 g CO2 m-2 d-1. rOX had the smallest activity contribution at both 43 

sites, with averages ranging from 1.6 to 8.6 g CO2 m-2 d-1.  This study has demonstrated that for 44 

an interim cover, composting and anaerobic digestion of shallow landfill waste can occur 45 

simultaneously.  46 

Keywords: Aerobic degradation; methane oxidation; composting; anaerobic digestion; mass and 47 

isotope balances; landfill. 48 

Highlights: 49 

 Composting, digestion and CH4 oxidation rates were measured in the top 1.6m of two soil 50 

capped landfill profiles. 51 

 Anaerobic and aerobic activity observed simultaneously in a lift of waste for 18 months after 52 

placement of interim cover.  53 

 Composting accounts for 30% of waste degradation for an extended period. 54 

 Carbon mass balance is improved with stable isotopes (δ
13

C-CO2, δ
13

C-CH4).  55 
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1. INTRODUCTION 56 

Composting in landfilled waste is known to occur at least to the extent supported by O2 that is 57 

entrained with waste as it is placed in a landfill (Bookter and Ham, 1982, Komilis et al., 1999) . 58 

However, the actual level to which waste composts beneath covers has not been measured.  All 59 

waste in a landfill lies at some stage directly beneath a soil cover.  As this study demonstrates, 60 

neglecting aerobic activity can lead to inflated predictions of CH4 production and greenhouse 61 

emissions, particularly in cases where interim soil covers, which minimises odour, eliminates 62 

access to vermin and prevents windblown debris, but cannot eliminate atmospheric O2 diffusion 63 

to the waste layer; thus, supporting aerobic processes for an extended period of time. 64 

In a column study  by Kallel et al. (2006) using municipal solid waste there was diffusion of 65 

O2 observed through the waste bed.  There is further evidence in landfill field trials that O2 can 66 

reach the waste mass, due to natural gas transport. For example, in a landfill constructed on an 67 

old quarry site in the United Kingdom, O2 levels at 10 v/v% were observed at depths of 20 m 68 

(Barry et al., 2004). At the Fiflholt landfill, in Iceland, where a final cover of 1-1.2 m (15-25 cm 69 

mulch under 1 m of sandy soil) for mature cells spanning 6-10 years, atmospheric O2 and N2 70 

were observed 80 cm in the waste (Kjeld et al., 2014), with O2 concentrations reaching 0.75 – 71 

16.25 v/v% (average of 8.14 v/v%) and, for N2, 5.85 – 73.40 v/v% (average of 46.1 72 

v/v%).1v/v%) 80 cm into the waste layer (Kjeld et al., 2014).   73 

In fact, continuous O2 migration through the surface may sustain aerobic degradation of both 74 

the organic fraction of the cover soil and within shallow waste materials.  Aerobic degradation 75 

might occur at a uniform depth in a homogeneous fine medium, but given the heterogeneity of 76 

buried waste (i.e. bagged waste or large objects) zones of aerobic and anaerobic activity will 77 
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likely be highly variable. This gives rise to mixed regions of composting and anaerobic digestion 78 

within the uppermost layers of the waste mass.  79 

Previous studies have developed carbon mass balances to define methane oxidation behaviour 80 

in landfill soil covers (Christophersen et al., 2001, Einola et al., 2009, Pedersen et al., 2011).  81 

These calculations require an estimation of gas fluxes exiting the surface (CH4, CO2), and 82 

upward fluxes from the underlying waste mass that migrates into the cover (CH4 and CO2) 83 

(Bogner and Spokas, 1993, Gebert et al., 2011, Scheutz et al., 2011). However, gas fluxes at the 84 

base of the control volume cannot be measured physically without disturbing the system. This 85 

can be overcome by assuming the fluxes of CH4 and CO2 are proportional to the concentration of 86 

these gases at the base of the cover and that total carbon flux is conserved through the soil cover.  87 

The carbon flux is not conserved however if composting is significant.  For the purposes of 88 

distinguishing composting and methane oxidation others have proposed  measuring the rate of 89 

composting in separate aerobic incubations of the soil (Scheutz et al., 2011).  Instead, the same 90 

mass balance approach can be extended to incorporate both composting and anaerobic reactions 91 

within the landfill. The determination of the simultaneous rates of anaerobic digestion, CH4 92 

oxidation, and composting in landfill has not been presented in the literature. The logical 93 

extension of the carbon balance method would be to develop a method based on mass balances 94 

of O2, CO2 and CH4 (Rafiee et al., 2017). In practice however, it is problematic to measure the O2 95 

flux into the landfill cover with conventional methods.  96 

Preliminary findings by Bogner et al. (1996) highlighted the potential use of stable isotopes to 97 

characterise aerobic and anaerobic mechanisms in landfills. Bogner et al. (1996) concluded that 98 

CH4 oxidation was the most significant aerobic process, but that it was still plausible for the 99 

composting of organic matter to occur in parallel. Stable isotopes have since been applied 100 
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extensively in landfills to analyse CH4 oxidation (Cabral et al., 2010, Cabral and Capanema, 101 

2012), with different soil types (Chanton and Liptay, 2000), climatic zones (Chanton et al., 102 

2010), soil texture and porosity (Gebert et al., 2013)  and modes of gas transport (De Visscher et 103 

al., 2004). 104 

It is hypothesised that the rate and extent of anaerobic digestion, CH4 oxidation and 105 

composting within the soil cover and the fresh waste immediately below the cover can be 106 

determined by the combination of stable isotope and mass balances for carbon species (CH4 and 107 

CO2). This is readily obtained from surface flux measurements and sampling of gas and isotope 108 

composition through the soil and waste profile to a nominated depth in the field environment. 109 

This paper documents the rates of activity derived 4 to 18 months after a layer of fresh waste was 110 

placed, compacted and subsequently covered with an interim soil layer of thickness (30 - 50 cm).  111 

The calculated rates are lumped values for the combined soil layer and shallow waste zone.  112 

Whether this measured activity occurs in the soil or the shallow waste is not distinguished.     113 

2. MATERIALS AND METHODS114 

2.1 Description of field site115 

The experimental site was located on a sloped edge (3:1 vertical to horizontal) of a municipal116 

solid waste landfill in Ipswich, Queensland, Australia (27°39'32.18"S, 152°49'39.77"E).  A fresh 117 

waste lift was placed over this area in August-September 2014 and was progressively covered 118 

with 30-50 cm of silty clay loam (interim cover) as the waste was placed. The lift was placed 119 

above pre-existing landfill lifts deposited from 2008 to 2009.  Five sampling locations were 120 

selected at varying distances from the crest of the slope (Figure 1).  121 
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122 
Figure 1. Plan and elevation schematic of field site and installed equipment 123 

2.2 Field sampling and gas analysis 124 

At each selected site, gas samples were collected from a static chamber and nest of soil gas 125 

probes. Gas fluxes (CH4 and CO2),
 
gas composition profiles (CH4, CO2, N2, O2) and isotopic 126 

abundance profiles (δ
13

C for CH4, CO2 and δ
2
H – CH4) were monitored in four sampling127 

campaigns, performed 4 to 18 months after the waste and interim cover were placed.  One 128 

sampling campaign was performed in each of the four climatic seasons.  129 

Gas sampling probes were constructed of stainless steel (SS) 12 mm internal diameter tubes. 130 

The top of each spear was fitted with a septa and aluminium crimp and a conical tip at the base.  131 

Samples were drawn through four perforated holes at the tip of the spear. Probes were installed 132 

at four depths at site 1 (0.57, 0.62, 1.35, and 1.84 m) and site 5 (0.71, 1.05, 1.30, and 1.57 m). At 133 

sites 2, 3 and 4 only one probe was installed to track gas composition within the waste (1.65 m at 134 

site 2; 1.33 m at site 3 and 1.51 m at site 4).  135 

[Insert Figure 1] 
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A short-circuiting test was performed using helium as a tracer gas with a Laco Technologies 136 

Gas Check G3 leak detector and 3L aluminium shroud placed as a collar over each probe , 137 

sealing a radius of 150mm ground surface around the probe (see Supplementary materials, 138 

section A.1). The dilution factor due to short-circuiting was calculated by the concentration of 139 

helium detected in the gas probe sample divided by the helium concentration in the shroud. 140 

Based on soil probe guidelines, dilution values less than 5-10% indicate negligible short-141 

circuiting (Ma et al., 2012).  142 

The static chambers were fabricated with SS 316 and had a conical geometry (15L, height of 143 

0.2m, cross-sectional area of 0.28m
2
) designed to prevent the formation of stagnant headspace144 

zones (Dever, 2006). Each static chamber was seated on a circular anchor plate that was 145 

hammered into the cover soil, which ensured samples were collected from the same locations 146 

throughout the study period. A CO2 infrared gas analyser (EGM-4, PP Systems) system was used 147 

to measure CO2 concentrations on site during static chamber experiments. To avoid creating a 148 

vacuum in the chamber, gas that was drawn through the EGM-4 was circulated back into the 149 

chamber. The flux of the gas species was calculated from the concentration data (C in ppmv) 150 

plotted versus sampling time (t in minutes). The CH4 and CO2 data typically observed a linear 151 

relationship, with the rate of accumulation of each species (dC/dt) in the chamber expressed as 152 

the slope of the fitted line. The gas fluxes were calculated as:  153 

F [g/m
2
d] = PVMU/ATR (dC/dt)                      (1)154 

where P = chamber pressure [atm]; V = chamber volume [L]; M = molar mass [g/mol]; U = 155 

0.00144 [L min/μL d]; A = chamber area [m
2
]; R = 0.08205 [atm L/mol K]; T = chamber156 

temperature [K]; dC/dt = concentration of gas [ppmv] per unit time [min].     157 
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The slope of the fitted line (dC/dt) was determined by linear regression of the measured 158 

concentrations versus time sampled. Gas fluxes were considered to be reportable if there was a 159 

95% confidence (p<0.05) in the correlation between the gas concentrations and time, in a similar 160 

fashion to other studies (Barlaz et al., 2004, Abichou et al., 2006, Bogner et al., 2011).  161 

All gas samples were collected using gas-tight syringes (SGE Australia) and stored in serum 162 

bottles (30mL and 50mL sizes) sealed with 20 mm butyl rubber septa (Rubber BV) and 163 

aluminium crimps rather than the commonly used evacuated vials. Gas samples were large 164 

enough to first flush the bottle before filling with the sample based on recommendations by 165 

Sturm et al. (2015) (see Supplementary materials section A.2, Table S.2 for flush and injection 166 

ratios for each sampling type). Eby et al. (2015) identified that serum bottles provide the best 167 

reliability for isotope sampling, with minimal fractionation effects during storage and transport.  168 

Molecular gas composition was analysed by gas chromatography (GC) using three replicate 169 

injections into a Shimadzu GC-8A FID with 100/120 mesh ShinCarbon ST micropacked column 170 

for CO2 and CH4 analysis and three replicate injections into a Shimadzu GC-8A TCD with 171 

80/100 mesh Mole Sieve 5A column for O2 and N2 analysis. Calibration for both GCs was 172 

performed using external gas standards obtained from British Oxygen Company (BOC).  173 

The isotopic abundances for all samples were determined in the Stable Isotope Geochemistry 174 

Laboratory, University of Queensland, using an Isoprime/Agilent Gas Chromatograph-175 

combustion-isotope ratio mass spectrometer (GC-c-IRMS). The δ
13

C and δ
2
H values (per176 

mil, ‰) were normalised to the Vienna Pee Dee Belemnite (VPBD) and VSMOW scales 177 

respectively, following a 2-point normalisation for δ
13

C and δ
2
H using a combination of 178 

international reference gases (Oztech: δ
13

CO2: -40.75‰, -3.59‰ and δ
2
H: -125‰, -365‰) and 179 

laboratory CH4 and CO2 standards. The reproducibility for δ
13

C is ± 0.3 ‰ and for δ
2
H ± 4.0 ‰ 180 
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at one standard deviation. Additional details on the analytical equipment, procedure and 181 

calibration can be found in (Baublys et al., 2015).    182 

2.3 Determination of isotopic parameters for key processes 183 

Microorganisms typically metabolise the lighter isotopic forms of key substrates, which gives 184 

rise to preferential effects called isotopic fractionation. The degree to which lighter isotopic 185 

forms are preferentially metabolised is characteristic for each biochemical process (Kendall and 186 

McDonnell, 2012). The characterisation of fractionation factors is usually performed via the 187 

Rayleigh approach by closed system incubations with samples at field conditions (Coleman et 188 

al., 1981, Liptay et al., 1998).  189 

The fractionation factor for CH4 oxidation has been shown to be dependent on temperature 190 

(Scheutz et al., 2009).  A correlation for the effect of temperature on the degree of fractionation 191 

for CH4 oxidation in a clay soil was developed by Chanton and Liptay (2000): 192 

 (2) 193 

where     is the adjusted fractionation factor, T is the temperature of the cover   . 194 

In anaerobic digestion, this process is described by two parameters: the apparent fractionation 195 

factors for stable carbon and hydrogen isotopes (Whiticar, 1999) . The isotopic composition of 196 

the biogas produced will depend on the isotopic composition of the organic solids and the 197 

preferential uptake by the dominating methanogenesis pathway.  The fractionation factor for the 198 

anaerobic digestion reaction in terms of the carbon system is: 199 

(3)200 
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where        
and are the stable isotopes of 

13
C in CO2 and CH4 produced by the 201 

anaerobic region of the ecosystem. In this study, gas sampled at the deepest depth, which marked 202 

the base of the control volume were used to calculate    .  203 

In contrast, composting organisms have no preferential bias towards 
12

C or 
13

C (O'Leary, 1981,204 

Corbett et al., 2013).   Therefore, the ratio of 
13

C-CO2 and 
12

C-CO2 in the gas produced from205 

composting reflects the ratio of these isotopes in the organic carbon substrate (O'Leary, 1981, 206 

Corbett et al., 2013).It is difficult to determine the direct measurement of the organic carbon 207 

signature in waste due to heterogeneity. Instead, waste was sampled from the fresh lift at the 208 

field site and incubated under composting assay conditions, with the carbon isotopic composition 209 

of headspace gas CO2 sampled from three incubations (33) as described by Rafiee et al. (2017).  210 

2.4 Mass and isotope balances 211 

The control volume for the mass balance includes the soil cover and the top 1.6 m of waste 212 

beneath the cover as presented in Figure 2. Despite the landfill being a complex system with an 213 

array of biochemical processes, to gain an insight into aerobic and anaerobic degradation, this 214 

was simplified. Three different reactions are proposed to occur in these layers, namely anaerobic 215 

digestion (rAD), CH4 oxidation (rOX) and composting (rCOM).  Anaerobic digestion was treated as 216 

a lumped process, rather than a combination of by acetoclastic and hydrogenotrophic 217 

methanogenesis mechanisms, as it was desired to identify the overall rate of anaerobic activity.  218 

In addition, the composting activity described by the mass balance is predominately related to 219 

the aerobic degradation of the waste, with the contribution of soil respiration considered to be 220 

minimal. At this particular landfill, the interim soil cover was composed of relatively sterile and 221 

coarse material. Furthermore, CO2 uptake by photosynthesis was not addressed in this 222 

formulation because the interim cover at this landfill site had no to limited vegetation present.  223 
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The described rates (rAD, rOX and rCOM) have been previously estimated in laboratory reactors 224 

that contained packed beds of waste overlain with soil sourced from the same landfill (Rafiee et 225 

al., 2018). These rates were determined from the measurement of the net fluxes of CH4, CO2, O2 226 

and 13C-CO2 with mass balances for each of these four components.  The mass balance equations227 

comprised an overdetermined system for the 3 unknowns, rAD, rOX and rCOM.  Therefore, the rates 228 

were estimated as fitting parameters, optimised by Excel Solver ® with the Generalised 229 

Reduction Gradient nonlinear algorithm to minimise the Root Mean Square Error, with the 230 

constraint that all rates were positive.  231 

232 
Figure 2. Required data to estimate rAD, rOX and rCOM over control volume 233 

O2 uptake cannot be measured in the field, because drawdown in O2 cannot be measured 234 

within static chambers.  Instead, balances were developed for the molecular (CH4 and CO2) and 235 

isotope species (
13

C-CO2 and 
13

C-CH4).  The surface fluxes measured by the static chamber236 

method were assumed to be steady over the 15-minute measurement period, implying that the 237 

[Insert Figure 2] 



10 

measured gas fluxes reflect reaction rates at the time, with negligible mass transfer delays.  238 

Therefore, the steady state condition was assumed for the mass balances.  The general mass 239 

balance equation is (Eq. 4):   240 

(4) 241 

where is the flux of species i into the fresh lift base of waste [g m
-2 

d
-1

],  is the flux of 242 

species i at the surface of the cover [g m
-2 

d
-1

] and  is the net generation rate of species 243 

i as a result of n reaction processes, rate [g m
-2 

d
-1

] describes the n reactions that species i is 244 

either produced or consumed in, with  referring to the stoichiometric coefficient of species 245 

affiliated with the specific reaction. 246 

Reaction rates were expressed in terms of CO2 [g CO2 m
-2

d
-1

] as it is a common product in the247 

three reaction processes. The dissolution of CO2 due to moisture was not an effect as at steady 248 

state conditions the water would be saturated with CO2. The normalised stoichiometric 249 

coefficient    can be expressed on a mass basis (Eq 5): 250 

   (5) 251 

where ai is the stoichiometric coefficient of species i [mol];  is the stoichiometric 252 

coefficient of CO2 [mol]; MWi is the molecular weight of species i [g];  is the molecular 253 

weight of CO2 [g]. The normalised stoichiometric equations for the three reactions are: 254 

Anaerobic digestion:       (6) 255 

CH4 oxidation:  (7)256 
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Composting:  (8) 257 

For the development of isotope balances, the fractional abundance (F) notation was used (Fry, 258 

2003). For example, 
13

F designates the fractional abundance of 
13

C = 
13

C/ (
13

C + 
12

C). This can259 

also be defined in terms of the δ notation and isotopic ratios (R), as follows (Eq. 9):  260 

(9) 261 

Carbon isotopic balances (eq. 10) were developed in a similar way to standard mass balances 262 

(Eq 4), with isotopic flows in (13Fin,i) and out (13Fout,i) of the system defined by gas samples263 

collected at these points. An additional consideration for each biochemical reaction (rj) is 264 

whether there is an associated isotopic value (13Freaction) or fractionation factor (         ) to265 

account for the consumption or production terms.   266 

     (10) 267 

The flux into the base of the control volume cannot be measured directly.  Conservation of 268 

carbon flux through the control volume cannot be assumed, as in calculation for CH4 oxidation in 269 

soil covers, because gaseous carbon is generated from the compositing and anaerobic digestion 270 

reactions.  The carbon flux at the base of the control volume could be calculated as a complex 271 

function of the total carbon flux at the base, and the rates of reaction that yield gaseous carbon 272 

within the control volume, rAD and rCOM.  273 

Instead, a formulation is proposed which considers that the flux of each component at the base 274 

of the control volume expressed as a mass fraction (X) and a total mass flow of landfill gas, (JLFG,275 

BASE).   JLFG, BASE becomes an additional variable and a unique solution can be found for rAD, rOX, 276 
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rCOM and JLFG, BASE from the four mass balances. Solutions are considered only when rAD, rOX and 277 

rCOM > 0.  The full set of equations is: 278 

 
 
 
 
 

             

                          

                                     
            

  

                                               
            

  
 
 
 
 
 

  

   

    

   

         

  

 

 
 
 
 
 

            

            

              
              

              
               

 
 
 
 

    (11) 279 

where all terms have been previously defined.  280 

2.5 Model application  281 

The field observations and input parameters required to apply mass balances are summarised 282 

in Tables 1 and 2. It is difficult to obtain precise stoichiometries of biochemical processes in a 283 

dynamic and heterogeneous environment like a landfill. For the reaction stoichiometries of 284 

composting, anaerobic digestion and CH4 oxidation, averages were adopted from the proof of 285 

concept laboratory study by Rafiee et al. (2017). The average stoichiometries and Fsolid applied in 286 

the model are shown in Table 2. For the application of the model, the field data obtained from 287 

Sites 1 and 5 was utilised.    288 

To determine the uncertainty in the calculated rates and test the robustness of the model, a 289 

±5% perturbation was applied to the all model parameters (reaction stoichiometries        , 290 

        and isotopic terms of Fsolid for composting, and fractionation factors αAD and αOX). In 291 

particular, with the sensitivity analysis conducted, the two pathways of methanogenesis were 292 
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considered by performing mass balances with a range of isotopic fractionation factors for 293 

anaerobic digestion that covered both the hydrogenotrophic and acetoclastic pathways. 294 

 A uniform distribution population for each parameter was generated using SIMLAB® with 295 

500 entries per parameter (Supplementary materials, section A.3). Combinations of perturbated 296 

values were chosen randomly, from the uniformly distributed populations of each model 297 

parameter over the ±5% range to equally weight extreme and mean values.  298 

Table 1. Field observations and independently determined parameters utilised in mass balance  299 

Parameter Type Source 

              Gas flux of CH4 at the surface Chamber 
a
 

              Gas flux of CO2 at the surface Chamber 
a
 

            Gas composition CH4 at lift base Soil gas probe 
a
  

          
  Gas composition CO2 at lift base Soil gas probe 

a
 

            
    Carbon isotope CH4 at lift base Soil gas probe 

a
 

            
    Carbon isotope CO2 at lift base Soil gas probe 

a
 

              
    Carbon isotope CH4 at surface Chamber 

a
  

              
    Carbon isotope CO2 at surface Chamber 

a
 

αOX Fractionation factor: CH4 oxidation Soil temperature 
b
  

αAD Fractionation factor: digestion Soil gas probe  
c
 

a 
obtained by gas sampling; 

b
 defined by clay-temperature regression equation (Eq. 2) 

c 
defined 300 

by apparent fractionation factor equation (Eq. 3) for carbon based on probe  4 data   301 
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Table 2.   Average values of stoichiometric parameters applied in the mass balance model  302 

Parameter Type Source Value 

         Coefficient CH4:  CH4 oxidation Reactor 
a 
 0.970 

         Coefficient CH4: digestion Reactor 
a 
  0.461 

Fsolid Carbon isotope CO2 produced from 

composting of MSW  

Batch 
b
 0.01084  

a 
Based on (Rafiee et al., 2018); 

b
 Based on (Rafiee et al., 2017).   303 

3. RESULTS AND DISCUSSION: 304 

3.1 Differentiation of activity types based on isotopic data 305 

Table 3 summarises the variations with time of molecular and isotopic gas compositions at the 306 

soil surface and at the deepest spear in the waste, i.e. 1.84 m and 1.57 m depth from the top of 307 

the waste layer at site 1 and site 5, respectively. Compositional data from sampling probes were 308 

corrected by the dilution factors from short-circuiting testing as described (Table S.1 309 

Supplementary materials). Overall, the impact of short-circuiting, ranged from 1-15%, which 310 

was accounted for in analyses.  Given the packing density of the waste at the facility, settlement 311 

of the waste mass was anticipated to be minimal and as such the conditions of the soil gas probes 312 

were not expected to deteriorate in the remainder of the experimental study. 313 

The predominant reactions within the control volume can be interpreted directly from the data 314 

in Table 3, where the boundary conditions at the base of the waste lift and at the surface of the 315 

landfill are examined. The compositional gas trends within the waste at both sampling sites are 316 

similar.  The isotopic abundance varied between approximately-55.4‰ to -59.5‰ (
13

δC-CH4) and 317 

-279‰ to -306‰ (
2
δH-CH4), which is comparable to expected ranges for deep landfill 318 
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environments (Hackley et al., 1996, Chanton et al., 2005). This seems to indicate that anaerobic 319 

digestion was the predominant activity within the waste zone of the control volume (Whiticar et 320 

al., 1986, Whiticar, 1999).  For static chamber samples obtained at the soil surface, the molecular 321 

composition had relatively equal CH4 and CO2 volume fractions. The emitted value of δ
13

C-CH4 322 

varied by less than 15% at both sites which would imply constant fractionation associated with 323 

anaerobic digestion(Chanton et al., 2007).  324 

The 
13

δC-CO2 values at both monitored sites revealed some additional information about 325 

processes within the control volume. The emitted δ
13

C-CO2 values from the soil surface evolved 326 

from -1.1 ‰ to +12.0 ‰, while δ
13

C-CO2 values from the waste layer remained within a 327 

narrower range, i.e. between 15.1 and 18.2 ‰ across the two sites and over all sampling events.  328 

These isotopic shifts are consistent with results reported by Baedecker and Back (1979) and 329 

(Hackley et al., 1996) who found that δ
13

C-CO2 values for young (<1 – 2 years), intermediate (2 330 

– 7 years) and mature (7 – 12 years) landfill cells ranged from -5.1 ‰ to +12.4 ‰, +15‰, and 331 

+16 ‰ to +12.4 ‰, respectively.  It was expected that that the δ
13

C-CO2 signature for freshly 332 

landfilled organic waste would reflect values ranging from -10 ‰ to -30 ‰, which are typical of 333 

terrestrial plants (O'Leary, 1981, Corbett et al., 2013). Once methanogenesis is well established, 334 

constant input of isotopically heavy 
13

C-CO2 causes an increase in the δ
13

C-CO2 signature from 335 

the initial values that are representative of composting alone (Hackley et al., 1996) . The increase 336 

with time in δ13
C-CO2 values suggests that there is a diminishment in the proportion of aerobic 337 

activity and an establishment of anaerobic digestion.  338 
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Table 3. Gas composition at mass balance boundaries: the soil surface and within the waste* 339 

Campaign Layer Site 1 Site 5 

CO2 

[%] 

CH4 

[%] 

δ
13

C-CO2 

[‰] 

δ
13

C-CH4 

[‰] 

δ
2
H-CH4 

[‰] 

CO2 

[%] 

CH4 

[%] 

δ
13

C-CO2 

[‰] 

δ
13

C-CH4 

[‰] 

δ
2
H-CH4 

[‰] 

Jan’15 Surface 0.32 0.33 6.3 -54.5 n.d 0.37 0.41 -0.5 -49.7 n.d 

 Waste 13.4 34.0 n.d n.d n.d 25.9 38.3 16.6 -55.4 n.d 

Sept’15 Surface 0.41 0.45 0.7 -59.0 n.d 0.15 0.12 -1.1 -67.4 n.d 

 Waste 33.9 50.2 15.1 -59.4 -305 34.5 50.4 18.2 -59.3 -282 

May’16 Surface 0.29 0.39 4.3 -55.2 n.d 0.24 0.32 9.7 -57.0 n.d 

 Waste 31.8 47.4 16.5 -59.5 -306 34.2 48.0 17.6 -59.1 -283 

June’16 Surface 0.20 0.15 9.1 -54.0 n.d 0.23 0.22 12.0 -55.2 n.d 

 Waste 34.5 52.9 16.8 -59.5 -305 35.2 50.3 17.0 -59.0 -279 

*
Results presented here reflect the boundary conditions utilised for the mass balance model at the bottom of the waste lift (spear 4) and at the landfill surface 340 

(static chamber). The measurement of gas concentrations from the waste layer are average values of three replicates from spear 4 depth; surface measurements 341 
are average values of duplicates for static chamber experiments; depth 0m = surface of landfill. For additional data relating to the spear profiles at study site refer 342 
to Supplementary materials section A.6 for O2 gas composition and precision indicated in Supplementary materials section A.6, full gas composition and 343 
precision presented in thesis; precision for δ

13
C ±-0.3‰, δ

2
H±-3‰ at 1 standard deviation. The standard deviation in the relative error of CO2, CH4 was less than 344 

10%. 345 
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3.2 Evolution of surface gas fluxes  346 

The CH4 and CO2 flux trends at sites 1 and 5 are summarised in Table 4.  All CH4 gas fluxes, 347 

with the exception of the June’16 measurement at site 1, can be classified as high (i.e. fluxes >25 348 

g CH4 m
-2

d
-1

, based on the classification system proposed by Abichou et al. (2006).  The CO2 349 

fluxes are around 100 g CO2 m-2 d-1
 during the entire monitoring period. These persistently high 350 

levels of CO2 gas flux could be indicative of aerobic behaviour within the waste mass. In 351 

particular, the CO2 gas flux observed in Jan ’15 (221 g CO2 m-2 d-1
) is characteristic of windrow 352 

composting facilities (250 – 2900 g CO2 m-2 d-1; (Andersen, 2010) ).  The only other study that 353 

has monitored the evolution of gas composition from a freshly placed waste layer was performed 354 

by Bogner et al. (2011), who suggested that the CO2 fluxes observed from soil covered fresh 355 

waste (50 - 250 g CO2 m-2 d-1) was indicative of aerobic respiration activity occurring. 356 

Table 4. Summary of gas fluxes at primary locations for model 357 

Campaign Site 1 Site 5 

CH4 Flux 

[g CH4 m-2 d-1
] 

CO2 Flux 

[g CO2 m-2 d-1
] 

CH4 Flux 

[g CH4 m-2 d-1
] 

CO2 Flux 

[g CO2 m-2 d-1
] 

Jan’15 n/a n/a 90 ± 20 221 ± 49 

Sept’15 47 ± 6 158 ± 11 30 ± 2 79 ± 60 

May’16 54 ± 1 143 ± 39 79 ± 58 162 ± 99 

June’16 12 ± 2 91 ± 44 93 ± 21 186 ± 40 

Note: ± denotes the 95% confidence interval based on non-zero flux hypothesis test similar to  358 

Barlaz et al. (2004).   359 
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3.3 Isotope fractionation factors based on heuristics from field data 360 

The fractionation factors for CH4 oxidation and anaerobic digestion, OX and AD are listed in 361 

Table 5. Values of OX were calculated using Eq 2, which is a function of temperature only.  OX 362 

for Jan ’15 was significantly lower than other values, due to the much higher temperature 363 

prevailing in Jan ’15 (31.0 °C). For the process of anaerobic digestion, calculation of the 364 

Whiticar (1999) apparent carbon fractionation factor (αAD), expressed in Eq 3, revealed that, at 365 

site 1 and 5, the dominant methanogenesis pathway was CO2 reduction (hydrogenotrophic), 366 

rather than acetoclastic methanogenesis as αAD > 1.065.  367 

Table 5. Fractionation factors used in the mass balance model 368 

Campaign Site 1 Site 5 

T [°C] αOX αAD T [°C] αOX αAD 

Jan’15 n.d. n.d. n.d. 31.0 

±0.5 

1.029 ± 

0.001 

1.076 ± 

0.020 

Sept’15 25.7 

±0.5 

1.031 

±0.001 

1.078 

±0.022 

21.5 

±0.5 

1.033 ± 

0.001 

1.082 ± 

0.019 

May’16 26.1 

±0.5 

1.031 

±0.001 

1.082 

±0.020 

25.8 

±0.5 

1.031 ± 

0.001 

 

1.065 ± 

0.019 

June’16 23.8 

±0.5 

1.032 

±0.001 

1.081 

±0.020 

23.7 

±0.5 

1.032 ±0.001 1.081 ± 

0.020 

Note: Temperature values presented were maximums measured at each monitoring location 369 

with a portable temperature probe. Error was propagated for calculated fractionation factors. 370 
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3.4 Model application to uppermost layer of waste  371 

Figure 3 presents the distribution of solutions for rAD, rOX and rCOM for sites 1 and 5, from 4-18 372 

months after waste placement. The rates are expressed in terms of CO2 production [g CO2 m-2 d-
373 

1
]. Outliers (indicated by the symbol ‘+’ in Figure 3) were defined as lying outside of ±2.698σ of 374 

the overall mean value for each rate, for the 500 simulations.  The summary statistics for rOX, 375 

rCOM, rAD and JLFG, BASE are shown in Tables 6-8.376 



20 

Figure 3. Distribution of rOX, rCOM and rAD predicted by the mass balance method for (a) Site 1 and (b) Site 5. No data was collected for Site 1 in January 2015. Outliers indicated by “+’ defined by the ±2.698σ 377 

constraint. 378 

[Insert Figure 3] 
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The results in Figure 3, Tables 6 and 7 clearly indicate that CH4 oxidation (rOX), whose average 379 

rates ranged from 1.6 to 8.6 g CO2 m-2 d-1, was the least important of the three reactive processes. 380 

rAD spanned averages from 10.6 to 45.3 g CO2 m-2 d-1 at site 5 and is less pronounced at site 1.  381 

The lower level of rAD behaviour in site 1 was anticipated, since site 1 is located close to the crest 382 

of the landfilled slope, where it is more likely that desiccation cracks provided a pathway for O2 383 

migration into the waste mass, therefore sustain aerobic activity.  384 

It is difficult to make comparisons with CH4 oxidation efficiencies determined in landfill cover 385 

systems, as this depends on the CH4 load entering the cover, the age of the waste lift and the 386 

geophysical characteristics of the cover. The rOX values predicted by the mass balance technique 387 

can be expressed in units of CH4 consumption (g CH4 m
-2

d
-1

), by using the average 388 

stoichiometric ratio        . This results in a CH4 consumption rate at site 1 and 5 spanning 389 

from 0 – 4.7 g CH4 m
-2

d
-1

. It is encouraging that the CH4 oxidation rates predicted by the mass 390 

balance are similar to those found by Einola et al. (2009)  (2.7- 4.8 g CH4 m
-2

d
-1

) for a bio-cover 391 

with peat and sludge compost (40:60v/v%) submitted to low biogas loads of 0.7 – 2.7 g CH4 m
-

392 

2
d

-1
.  393 

The CH4 load to the base of the control volumes were estimated from the predicted inlet gas 394 

flux average (JLFG, BASE) and the measured gas composition at the base of the waste lift (Table 3). 395 

The CH4 loads for sites 1 and 5 ranged from 31 to 98 g CH4 m
-2

d
-1

, which was similar in nature to 396 

flux activity described in daily and intermediate covered waste in other studies Bogner et al. 397 

(2011). Since the mass balance method was applied to the shallowest layer of waste on a lift, it is 398 

understandable that the oxidation capacity of the system is poor (0-40%) when rOX is evaluated 399 

against the initial CH4 load.     400 
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For both sites, the mass balance model indicated that the aerobic activity diminished towards 401 

the end of the trial, with rAD becoming a more dominant process. rCOM had a unique trend at each 402 

location. At site 1, composting was more pronounced towards the middle of the monitoring 403 

period (between Sept’15 and May’16), and peaked with a mean of 27.1 g CO2 m-2 d-1
 17 months 404 

after waste placement (May’16). There was a rapid decrease in rCOM during the last monitoring 405 

month (June’16), with the average composting rate decreasing to 8.1 g CO2 m-2 d-1
.  406 

Table 6. Summary of rOX, rCOM and rAD values calculated for Site 1  407 

Month Mean Rate ± Uncertainty [g CO2 m-2 d-1
] Number of valid solutions 

rOX ± rCOM ± rAD ± 

Sept'15 4.6 0.6 20.6 1.6 20.9 2.8 139 

May'16 7.2 0.5 27.1 1.3 20.0 1.4 302 

June'16 2.1 0.3 8.1 0.8 15.0 1.3 99 

Table 7. Summary of rOX, rCOM and rAD values calculated for Site 5  408 

Month Mean Rate ± Uncertainty [g CO2 m-2 d-1
] Number of valid solutions 

rOX ± rCOM ± rAD ± 

Jan'15 8.6 1.0 44.5 2.4 41.9 3.5 170 

Sept'15 5.9 0.3 9.8 0.7 10.6 1.4 145 

May'16 1.8 0.3 1.3 0.8 18.0 5.0 5 

June'16 1.6 0.4 3.1 1.2 45.3 30.3 18 

At site 5, rCOM had a maximum average of 44.5 g CO2 m-2 d-1, 
4 months after waste placement 409 

(Jan’ 15) and decreases exponentially with time, levelling off at 1.3 g CO2 m-2 d-1
 from May’ 16. 410 
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This is consistent with the source of O2 being dominated by air that was entrained with the waste 411 

at placement.  The residual level of rCOM after May ’16 could be indicative of composting as the 412 

result of ongoing O2 migration through the soil cover into the waste layer.  413 

The predicted JLFG, BASE values are all positive (Supplementary materials, section A.5, Figure 414 

S.6), which is anticipated as the pre-existing waste lifts would likely be contributing a gas 415 

production flux of CO2 and CH4 from anaerobic digestion. Site 1 appears to have consistent 416 

average JLFG, BASE values, with site 5 observing no clear trends in behaviour. The number of 417 

solutions that were retained towards the end of the analysis declined because rOX and rCOM 418 

became relatively small compared to rAD, leading to a high proportion of solutions to the mass 419 

balances that violate the constraint of rAD, rOX and rCOM > 0. Furthermore, the actual reactions 420 

occurring in the waste and in the soil, are likely to vary from the assumed stoichiometry. This 421 

effect will be more pronounced for composting and anaerobic digestion where the amount of O2 422 

consumed in composting (de Bertoldi et al., 1983)  and the production ratio of CH4/CO2 in 423 

anaerobic digestion will be different for fats, carbohydrates and protein (Mata-Alvarez et al., 424 

2000). 425 

Table 8. Summary of JLFG, BASE average values calculated for Site 1 and 5   426 

Month Mean Flow ± Uncertainty [g LFG m-2 d-1
] 

Site 1 Site 5 

Jan'15 n.d 446 ± 6 

Sept'15 182 ± 4 105 ± 2 

May'16 185 ± 2 269 ± 2 

June'16 126 ± 2 286 ± 3 
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 427 

3.5 Supporting evidence of ongoing aerobic activity at field site   428 

 Despite the differences in location on the working face and waste composition, the mass 429 

balance calculations presented herein revealed that aerobic activity forms a large proportion of 430 

early phase activity (4-18 months) in the uppermost layer of waste at this landfill site. It is 431 

particularly noteworthy that the results in Figure 3 clearly indicate that anaerobic activity can 432 

occur simultaneously with aerobic reactions, such as CH4 oxidation and composting and that 433 

these processes continue to co-exist for an extended time (12-18 months). For site 5, a 434 

comparable magnitude of rCOM and rAD is present for the first 12 months to (Sept’15). The 435 

average values for rCOM and rAD for site 1 suggest that composting and anaerobic digestion are 436 

ongoing at similar rates 18 months after waste placement. This ongoing level of aerobic activity 437 

within the waste layer may reflect the difficulty of compacting soil covers on landfill slopes.   438 

Indeed, O2 levels were consistently observed at 2-5 v/v% at points in the soil cover and waste 439 

layers from January 2015 to September 2016, at all sampling locations (Obersky et al., 2015) . 440 

For the last two months of monitoring, the trends in O2 were examined dynamically, with full 441 

distribution presented in Supplementary materials, section A.6. Site 5 had reduced levels of O2 442 

ingress to 0.4 - 0.6 v/v% and these appeared to stabilise.  In contrast, site 1 had variable levels of 443 

O2, with fluctuations from 0.53 – 1.50 v/v% across the May and June 2016 campaigns. Given 444 

this supply of O2 into the shallow waste, it is plausible that ongoing composting could occur in 445 

parallel with anaerobic digestion, for a sustained period (>18 months).    446 

The contribution of composting and anaerobic digestion to the degradation of the shallow waste 447 

can be converted to a chemical oxygen demand (COD) basis rather than CO2 basis (g CO2 m
-2 

d
-

448 
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1
) as indicated in Table 9 and 10 below. 449 
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Table 9.  Composting and anaerobic digestion degradation of waste for Site 1  450 

Month Mean Rate of O2 Consumption [g COD m-2 d-1] Percentage of waste degraded by  

[%] 

rOX rCOM rAD COM AD 

Sept’15 17.8 15.0 38.6 28.0 72.0 

May’16 27.9 19.7 36.9 34.8 65.2 

June’16 8.1 5.9 27.7 17.6 82.4 

 451 

Table 10.  Composting and anaerobic digestion degradation of waste for Site 5 452 

Month Mean Rate of O2 Consumption [g COD m-2 d-1] Percentage of waste degraded by  

[%] 

rOX rCOM rAD COM AD 

Jan’15 33.4 32.4 77.3 29.5 70.5 

Sept’15 22.9 7.1 19.6 26.7 73.3 

May’16 7.0 0.9 33.2 2.8 97.2 

June’16 6.2 2.3 83.6 2.6 97.4 

 453 

For example, with anaerobic digestion, the conversion is achieved by multiplying the 454 

degradation rate (g CO2 m
-2 

d
-1

) by the stoichiometric coefficient         and the COD of CH4 455 

(4.0 g COD/g CH4). Expressing rCOM on a COD basis requires the stoichiometric relationship 456 

between O2 consumption and CO2 production in the composting reaction.  For the purposes of 457 

these calculations, it is assumed the degradable organic waste has the composition of cellulose.  458 

It is evident that in the first 12 months after waste placement composting comprises 459 

approximately 30% of waste degradation and gasified COD conversion, with this value declining 460 
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for the last two sampling rounds. These percentages are indicative of the activity observed at the 461 

time of sampling, rather than a cumulative degradation percentage.  462 

The mass balance model has indicated for site 1 and 5 that rCOM was of a similar rate to rAD on 463 

the basis of CO2 production for at least the first year after waste placement, equivalent to 464 

approximately 25% of the COD depletion being attributable to composting over the same period. 465 

This is contrary to the conceptualisation of early age (1-2 years) landfill behaviour formulated in 466 

the IPCC model (IPCC, 2006)  and landfill gas generation models like LANDGEM (Thorneloe 467 

et al., 1999)  where composting is either neglected or only considered as a rapid short term 468 

process during the first stage of landfill degradation. This study highlights that CH4 oxidation, 469 

composting and anaerobic digestion are significant in newly developed waste lifts. 470 
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SUPPORTING INFORMATION AVAILABLE  481 

A.1 Short circuiting testing configuration and correction factors, A.2  Sample flush 482 

technique, A.3 Parameters generated by Simlab ® for use in mass balance, A.4 Oxygen 483 

composition information for profile in field trial, A.5 JLFG, BASE results for site 1 and 5, A.6 484 

Dynamic oxygen profiles in field trial. 485 

This material is available free of charge via the Internet at http://pubs.acs.org.  486 
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