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ABSTRACT 

 

 Our world is rapidly changing and its future is on our hands. Great effort is being done 

against overexploitation of natural resources, uncontrolled hunting and pollution. A 

great concerning fact is due to pollution which is causing a continuous greenhouse 

effect and new cancer cases every single day. Nowadays, it is possible to improve the 

detection of lethal elements in the environment, to fight against cancer in a smarter 

manner, with less pain and with more efficiency but, more important, to use the same 

low-cost, fast and environmentally friendly tool for these purposes and more. This 

reality is thanks to previous works and findings regarding the Magnetic Nanoparticles 

(MNPs), which are employable in a wide variety of applications such as magnetic 

recording media, resonance imaging, heavy metals ions removal and biomedicine 

(specifically in the hyperthermic treatment of malignant cells, site-specific drug delivery 

and separation of proteins and cell population). MNPs have special properties such as 

superparamagnetic, high field irreversibility, high saturation field, extra anisotropy 

contributions or shifted loops after field cooling, biocompatibility, long durability, low 

toxicity and cost.  

 

 In this context, this project intends 1) to develop through a novel synthesis method, a 

biosensor capable to detect mercury in water by irreversible inhibition of the enzyme 

Horseradish Peroxidase attached onto the surface of different coated MNPs being able 

to approximate its detections to those limits stablished by the Environmental Protecting 

Agency of the United States of America; and 2) to use these high valuable nanoparticles 

as an immunoprecipitation vehicle through the attachment of a polyclonal antibody onto 

the surface of functionalized MNPs, selective against a suppressor protein. 

 

 MNPs of about 10 nm were obtained within one minute via co-precipitation method 

enhanced by high power ultrasound. Experimental design has been used in order to 

optimize the preparation process from hours to just one minute.  

The composition, structure, size and morphology analyses of these MNPs have been 

carried out through X-ray diffraction, Fourier transform infrared spectroscopy, 

thermogravimetric analysis and scanning electron microscopy showing the correct 

achievement of the MNPs. Moreover, different coating agents have been tested in order 

to functionalize MNPs surface with the aim of attaching later biomolecules, such as 

enzymes and antibodies. 

 

Key words: Magnetic Nanoparticles (MNPs), Environmental Control, Biosensor, 

Irreversible Inhibition, Biomedicine, Immunoprecipitation, Sonocatalysis, Green 

Analytical Chemistry, Design of experiments. 
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1. Introduction 

Overview 

 Since 2005 Nanoscience and Nanotechnology were predicted to have a huge and 

important impact in all aspects of our lives1. Nowadays this prediction became a reality 

and marked the beginning of a new era. They are changing our lifestyle in the fields of 

energy, food, electronics, textile, agriculture, cosmetics, environment, medicine, 

construction, engineering, transport and telecommunications2.  

 Nanoscience can be defined as the study of materials in the nanometer scale which is 

commonly considered to be a size below one micrometer; on the other hand 

nanotechnology refers to a multidisciplinary field that aims the production, 

manipulation, use and characterization of nanomaterials3, which are defined by the 

National Science Foundation and the National Nanotechnology Initiative (NNI) as, all 

types of materials found at the nanoscale with a unit size ranging from 1 to 100 nm, in 

which, unique optic, magnetic, electronic and structural characteristics are generated4. 

Some examples of nano-sized structures are nanorods, nanowires, nanotubes, nanobelts, 

nanoribbons, nanofibers, quantum dots, hollow spheres and nanoparticles4–8 as shown in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 All of these nanosized structures can be naturally occurring or chemically, 

mechanically, physically, and biologically synthesized. Regarding their chemical 

composition, they can be classified into various categories such as: metal-based 

materials, metal oxide nanomaterials, carbon-based nanomaterials, dendrimers, quantum 

dots and nanocomposites.9 

Figure 1. Size comparison in the nanometric scale. 
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 Among all these different nanostructures and chemical compositions there are some 

specific metal oxide nanoparticles which are grabbing a lot of attention nowadays, they 

are called Magnetic Nanoparticles (MNPs).  

 A fundamental aspect of such MNPs, which is crucial for their proper applicability, is 

their synthesis. This step is considered as the most important one, for the reason that the 

characteristics of MNPs are directly related to the methods of synthesis due to the 

different sort of variables involved in each of them. There are several conventional 

methods reported on the literature for MNPs, however they are being replaced or 

enhanced by novel techniques, as is the case of the co-precipitation method boosted by 

high power ultrasound. This is a powerful technique capable of drastically reducing the 

synthesis time from hours to just minutes and consequently it reduces the applied 

energy and costs. Due to these facts and to the reduction in the use of solvents, high 

power ultrasound is recognized as an environmentally friendly technique. 

 MNPs have been already employed in electrochemical biosensors as nanosized 

supports for the immobilization of analytical biomolecules10. The immobilization of 

enzymes on the surface of these nanoparticles offers numerous advantages including 

enhancement of the enzymatic activity and reduction of the mass-transfer processes 

associated with the recognition of substrates by enzymes. MNPs also provide a 

favorable microenvironment for electrochemical devices where enzymes may exchange 

electrons directly with the transducer, improving the sensitivity and selectivity of 

electrochemical biosensors.  

 Thus, considering the potential advantages of such biosensors using MNPs with 

specific enzymes attached onto them, dangerous heavy metals can be detected in waters. 

Mercury even at small concentrations is lethal for living beings and highly risky for the 

environment, since it affects the central nervous system, kidney and livers; it can be 

easily accumulated into the surface and ground water but hardly removable from them. 

In this regard, mercury must not be found in any kind of waters above its maximum 

allowable limit of 2ppb or 2µg/L stablished by the Environmental Protection Agency 

(EPA)11. 

 Not only do heavy metals induce the malfunction of organs, but also cause cancer due 

to long-term exposure. During cancer progression, transcription factors (TP) which are 

responsible for some vital processes of cells are inactivated. This inactivation is 

typically performed by phosphorylation by a number of protein kinases (e.g., protein 
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kinase B (PKB or AKT), IkB kinase (IKK), and dual-specificity tyrosine 

phosphorylation-regulated kinases (DYRK)).  

TP activity can also be affected by modification including deacetylation and 

ubiquitination where tribbles (TRIB) pseudokinases act as modulators of substrate 

ubiquitination12–14. 

 Nowadays, efforts are being done to develop TRIB2 as a biomarker in order to detect 

the presence and progression of human melanoma with specific antibodies. With 

nanoparticles help, antibodies, drugs, enzymes or nucleotides can be bounded onto their 

surface and guided to an organ, tissue, or tumor using an external magnetic field15,16. 

 As a result of the up growing importance of these topics, the present study aims to 

obtain MNPs through the conventional co-precipitation method assisted by high power 

ultrasound and to utilize them for bio-sensing and immunoprecipitation. 

 In order to ensure the achievement of these aims, specific objectives were stablished: 

1. To synthesize MNPs by two methods: (A) conventional co-precipitation method 

assisted with high power ultrasound, and (B) co-precipitation from partially 

reduced ferric chloride aqueous solutions.  

2. To find out the best synthesis conditions for method (A) through the 

experimental design in order to get desirable sizes. 

3. To functionalize the optimized MNPs with different coating agents. 

4. To characterize the optimized and functionalized MNPs. 

5. To apply these MNPs in order to detect mercury in waters through enzyme 

irreversible inhibition. 

6. To coat the MNPs with a polyclonal antibody against human TRIB2 protein. 

7. To try these MNPs as a proof of concept experiment as immunoprecipitation 

agents against TRIB2 protein from lysates obtained from cells overexpressing it.  
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(1) 

1.1. Magnetic nanoparticles (MNPs)  

 MNPs or also called magnetic iron oxides have been studied widely for more than 

thirty years, since their very first synthesis performed by Massart on 198117. 

Nevertheless, it was from the last decade when MNPs started to gain more attention 

directly related with nanotechnology, and in consequence, their uses have increased 

exponentially due to their very unique physical and chemical properties such as 

superparamagnetism, high field irreversibility, high saturation field, extra anisotropy 

contributions or shifted loops after field cooling, their biocompatibility, long durability, 

low toxicity and low cost18–20. These properties depend on the size of the particles, their 

morphology and the structure of the material.  

 All these characteristics have been considered for different applications such as 

magnetic recording media21, ferro fluids22, magnetic resonance imaging23,24, heavy 

metals ions removal25, and biomedicine (specifically in the hyperthermic treatment of 

malignant cells26, site-specific drug delivery27 and separation of proteins and cell 

population28).  

 MNPs can either occur naturally or be synthetically produced, but nowadays MNPs are 

mainly obtained through different sort of synthetic methods. Within the employed 

techniques for their synthesis, the most common are chemical vapor deposition29, 

thermal oxidation30, polyol process31, hydrothermal32, solvothermal33 methods and iron 

salts co-precipitation34,35. 

 The conventional co-precipitation method without stabilizers was first described by 

Massart17 and involves the use of iron salts in a molar ratio of 2 Fe3+ to 1 Fe2+; these 

precursors might be FeCl2, FeCl3, Fe2(SO4)3, FeSO4, Fe(NO3)3
36 and should be mixed in 

alkaline aqueous solution   under nitrogen atmosphere and continuous stirring at 80°C. 

The chemical reaction that takes place in this system is the next one: Fe +   +  Fe + 8OH− →  Fe O +  4H O 

 This method is the most common route for magnetite production due to its simplicity 

and efficiency; nevertheless it presents some drawbacks or difficulties such as: 1) the 

particle size control, 2) broad size distribution, 3) time consuming and 4) the resultant 

mixture of nanoparticle phases, which could be ferrihydrite, akagenite (FeOOH), 

Fe(OH), hematite or maghemite37–40. 
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 Due to these problems, novel procedures are being developed in order to overcome 

these difficulties.  

1.2. Sonochemistry  

 Sonochemistry is defined as the use of ultrasound power with frequencies between 20 

kHz and 2 MHz to provide chemical, thermal and physical effects in solution41; these 

different frequencies are applied through an ultrasound probe that lead to different 

properties in the liquid. Thus, the proper selection of the frequency range will be done 

depending on the final objective. Low frequencies (20–80 kHz) lead to physical effects 

such as micro convection, shock-waves, and microjects, among others; meanwhile high 

frequencies (150–2000 kHz) promote chemical effects and the formation of hydroxyl 

radical species.  

 So, putting in contact a medium with ultrasound power is a synonym of having 

enhanced physico-chemical effects such as the increase in kinetics of chemicals 

reactions, changes in reaction mechanisms, emulsification effects, crystallization, 

precipitation, etc42,43. 

 Talking about ultrasound power is talking about frequencies producing ultrasound 

waves which originate the acoustic cavitation phenomenon and is responsible for all 

these generated effects. During the decompression phase of these power ultrasound 

waves, the molecules of a liquid might be affected by forces strong enough to 

destabilize Van Der Waals interactions and separate them from each other. Right after, 

some very small cavities are formed in the medium, these cavities tend to expand until 

the pressure is low enough to support their growth. At this stage any component of the 

reaction mixture may evaporate into the void and reduce the negative pressure bias 

between the interior of the cavity and the surrounding liquid. After some compression 

and decompression cycles, the cavity can be sustained by vapors and convert into a 

bubble with a life time enough to reach macroscopic dimensions, or implode violently 

instead, producing hot spots with extreme conditions of temperature (>5000 K) and 

pressure (>1000 atm) with a really fast cooling rate of 1010 K·s-1 44–46. 

 Through using the sonochemical approach and taking advantage of these exceptional 

conditions, a variety of new and unusual nanostructured materials, inaccessible by 

conventional methods can be obtained; for instance a more uniform size distribution can 

be achieved, as well as nanoparticles with higher surface area and improve phase purity.  
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This is the reason why high frequency ultrasound has gained much attraction for many 

applications41, especially in the sonochemical syntheses, where several green successful 

examples have been reported47–51 with a low economic and time expense52,53 as shown 

in Figure 2
54. 

 

 

 

 

 

1.3.  Green Analytical Chemistry 

 Since the introduction of the “green chemistry” concept, around the 90’s by Paul T. 

Anastas defined as the design of chemical products and processes that reduce or 

eliminate the use and generation of hazardous substances55, this  idea has gained a lot of 

importance and has become a transversal topic in all the fields of chemistry, such as 

organic, pharmaceutic, clinical or analytical, where consciousness about taking care of 

the environment and green methods that fulfill the 12 principles of Green Analytical 

Chemistry (Table 1) have been created 56. 

  

 

 

 

 

 

 

 

 

 

 

                      

  

                      Table 1.  Twelve principles of Green Analytical Chemistry. 

1 S Select direct analytical technique. 

2 I Integrate analytical processes and operations. 

3 G Generate as little waste as possible and treat it properly. 

4 N Never waste energy. 

5 I Implement automation and miniaturization of methods. 

6 F Favor reagents obtained from renewable source. 

7 I Increase safety for operator. 

8 C Carry out in situ measurements. 

9 A Avoid derivatization. 

10 N Note that the sample number and size should be minimal. 

11 C Choose multi-analyte or multiparameter method. 

12 E Eliminate or replace toxic reagents. 

Figure 2. Sonochemical synthesis of nanoparticles 
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 Sonochemical synthesis of nanoparticles is considered as a green approach due to: 1) 

the reduction of the use of non-green solvents during the sample preparation; 2) the 

amount of reagents is drastically reduced during the synthesis; 3) the minimization of 

the consumed energy; 4) the safety of the method and 5) for being environmentally 

friendly producing small quantities of residues 56,57. Thus as a result of the huge impact 

of green chemistry and all these advantages of sonochemical synthesis, several studies 

have been successfully reported 8,54,58–61. 

1.4. Functionalization of MNPs 

 The functionalization of the iron oxide nanoparticles is crucial to obtain magnetic 

colloidal ferrofluids that are stable against aggregation in both biological medium and a 

magnetic field. The stability of a magnetic colloidal suspension results from the 

equilibrium between attractive and repulsive forces. Theoretically, four kinds of forces 

can contribute to the interparticle potential in the system: Van der Waals forces, 

electrostatic repulsive forces, magnetic dipolar forces and steric repulsion forces62.  

 Developing coating strategies, chemically improves the stability of the magnetic 

nanoparticles. The nature of the coating has to be optimized to simplify the process and 

to effectively prevent any aggregation and sedimentation of the superparamagnetic 

nanoparticles. The surface of MNPs can be stabilized in an aqueous dispersion by the 

adsorption of different coating agents such as polymers (e.g. polydopamine and 

chitosan), carboxylic acids (e.g. citric acid, isonipecotic acid and 3-mercaptopropionic 

acid), phosphates (e.g. dihexadecyl phosphate, polyvinylalcohol phosphate(PVAP)) 

among many others63. The coating agents must be chosen according to the final 

application of the MNPs. 

 Dopamine (DA) is a catecholamine neurotransmitter related to many physiological 

processes and neurophysiological disorders such as schizophrenia, Parkinson's and 

Alzheimer's diseases, as well as several social and addiction behaviors64,65.  

 In addition to its biomedical relevance, DA has been recently proposed as a novel 

organic coating material. DA can be self-polymerized (Figure 3) in aerated basic 

solutions, forming an adherent poly(dopamine) (PDA) film over a wide variety of 

organic and inorganic surfaces66,67. The reactive quinones at the surface of PDA films 

could be used as anchoring points for further chemical modification and/or 

immobilization of biologically active macromolecules (antibodies, enzymes, etc.)66. 
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Chitosan is a nontoxic, alkaline and hydrophilic copolymer of N-acetyl-glucosamine 

and glucosamine units linked by β-(1,4)-glycosidic bonds (Figure 4), and has good 

biocompatibility, biodegradability, mucoadhesivity and low toxicity. 

 Chitosan has three types of reactive functional groups, which are amino groups, 

primary and secondary hydroxyl groups at the C-2, C-3, and C-6 positions, respectively. 

These groups allow a variety of chemical modifications of chitosan that include, among 

others, acylation, N-phthaloylation, tosylation, reductive alkylation, O-

carboxymethylation, N-carboxyalkylation, silylation and graft copolymerization68. 

 

 

 

  

 

 

 

 

 
 Carboxylic acids (Figure 5) are organic compounds containing a highly polar 

functional group (carboxyl (COOH))69. They are of crucial 

importance to develop stable MNPs under physiological 

conditions (blood pH≈7.2-7.4, salt concentration≈0.15M)70 to 

be used in  biomedicine.  

 Carboxylates may be adsorbed on the surface of the MNPs 

by coordinating via the carboxylate functionality. In the case 

of polycarboxylic acids, such as citric acid, coordination via 

Figure 3. Self-polymerization of Dopamine 

Figure 4. Chemical structure of chitosan 

Figure 5. Chemical structure 
of a carboxylic acid. 
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one or two of the carboxylate functionalities may occur, depending upon steric necessity 

and the curvature of the surface. This leaves at least one carboxylic acid group exposed 

to the solvent, which should be responsible for making the surface hydrophilic and 

negatively charged62. Nonetheless, there are compounds with only one of these 

functional groups (e.g. isonipecotic and mercaptopronionic acid) which, depending on 

the final purpose, it is desired to leave it free in order to further attach other molecules 

to it. In this sense, it is expected that the linkage process would be coordinated by the 

other available functional groups (-NH and –SH, respectively) as reported in other 

researches71,72. 

1.5. Characterization techniques 

 MNPs must be morphologically and structurally characterized. The morphological 

characterization techniques (Dynamic Light Scattering and Scanning Electron 

Microscopy), are used to elucidate the shape and size of the nanocrystals. 

 On the other hand, the structural characterization techniques (X-ray diffraction, fourier 

transform infrared spectroscopy and thermogravimetric analysis) are used to confirm 

and determine the MNPs phase (composition) as well as the surface content, in case any 

exists. 

1.5.1. Dynamic Light Scattering (DLS) 

 DLS also called photon correlation spectroscopy (PCS) or quasi-elastic light scattering 

(QELS) analysis is a common technique performed as a routine in order to have a first 

contact with the sizes of the MNPs.  

 However, this size is larger than the obtained by other techniques because the 

hydrodynamic radius is taken into account 62,73. A light from a laser diode is coupled to 

the sample through an optical beam splitter in a probe assembly.  The interface between 

the sample and the probe is a sapphire window at the probe tip. The sapphire window 1) 

reflects the original laser back through the beam splitter to a photodetector, to act as a 

reference signal for detection, offering heterodyne detection; and 2) let the laser pass 

through it in order to be scattered by the particles which are in suspension but moving 

under Brownian motion. The laser is frequency-shifted according to the Doppler effect 

relative to the velocity of the particle. Light is scattered in all directions including 180 

degrees backwards. This scattered, frequency-shifted light is transmitted through the 

sapphire window to the optical splitter in the probe to the photodetector. These signals 
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of various frequencies combine with the reflected signal of un-shifted frequency 

(Controlled Reference) to generate a wide spectrum of heterodyne difference 

frequencies.  

 The power spectrum of the interference signal is calculated with dedicated high speed 

FFT (Fast Fourier Transform) digital signal processors. The power spectrum is then 

inverted to give the particle size distribution74,75. The general scheme of this technique 

is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.2. Electron Microscopy (EM) 

 EM is one of the most used techniques to scan across the surface of the specimen and 

gather information about it. This technique has replaced the light source with high 

energy electron beam which produces large numbers of signals. EM splits mainly in two 

sorts of methodologies, Scanning Electron Microscopy (SEM) and Transmission 

Electron Microscopy (TEM). These techniques chase different objectives which are 

directly related to the electron beam source. SEM provides information on morphology, 

surface characteristics, compositional information and atomic arrangement, while TEM 

allows observing the internal structure of solids and gives access to microstructural or 

ultrastructural details.  

 The general mechanism of the electron microscope is to make an accelerated beam of 

electrons influence, from energies ranging from hundreds of eV to dozens of KeV, on a 

sample. Such electron beam, before reaching the sample, passes through a series of 

apertures and magnetic lenses that allow focusing on the surface of the sample. Figure 

7 shows the specific SEM mechanism, where the electron gun emits a beam of 

accelerated electrons between 5 and 30 keV. The condensing lenses and the objective 

lens direct and focus the electron beam so that an electron beam as small as possible is 

incident on the sample. 

Figure 6. Scheme of DLS. 
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 Next, the scan coils sweep this fine beam of electrons over the sample, point by point 

and line by line. The secondary electrons that are ripped out of the sample are collected 

and amplified for each position of the probe by the secondary electron detector. Finally, 

it is represented on a screen where the brightest areas represent the zones of the sample 

from which more secondary electrons have been removed, and as the process is carried 

out, point by point, the result is an image.  

 

 

 

 

 

 

 On the other hand, TEM mechanism is almost the same, and it is represented on Figure 

8, where again, a series of lenses focuses the high energy electron beam to form a small 

spot, or probe, incident upon a thin, electron-transparent sample. The aim of the lens 

system is to provide enough demagnification of the finite-sized electron source in order 

to form an atomic-scale probe at the sample. The objective lens provides the final, and 

largest, demagnification step. Scan coils are arranged to scan the probe over the sample 

in a raster. 

 

 

 

 

 

 

 

 

 

 

                                                    Figure 8. Scheme of TEM technique 

Figure 7. Scheme of SEM mechanism 
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 Finally, and where the main difference lies on between SEM and TEM, is the detection 

of the scattered electrons, which are in this case the elastic and inelastic scattered 

electrons as shown in Figure 9. Once detected, they are plotted as a function of probe 

position to form a magnified image.75  

 

. 

 

 

 

 

 

 

 

Figure 9. Main difference among SEM and TEM techniques. 

TEM has a subdivision named Scanning Transmission Electron Microscopy (STEM) in 

which the electron beam is focused to a fine spot (with the typical spot size 0.05 – 

0.2 nm) and then scanned over the sample in a raster illumination system constructed so 

that the sample is illuminated at each point with the beam parallel to the optical axis as 

shown in Figure 10. The rastering of the beam across the sample makes STEM suitable 

for analytical techniques such as Z-contrast annular dark-field imaging (ADF), and 

spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy76. 

 

 

 

 

 

 

 

 

 
Figure 10. Scheme of STEM mode 
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1.5.3. X-Ray Diffraction (XRD) 

 All materials are built-up of individual atoms and nearly all materials have some degree 

of order or periodicity in the arrangement of those atoms called crystallinity.  

A crystal is a solid composed of atoms arranged in a pattern, which is periodic in three-

dimensional directions. With help of XRD crystalline phases can be identified, 

quantified, and their atomic structure can also be determined.  

 When a X-ray beam reaches a solid material, part of that beam is scattered in all 

directions because of the associated electrons with the atoms or ions that it finds on the 

path, but the rest of them can promote the diffraction phenomenon, which takes place if 

there is an ordered arrangement of the atoms and if the conditions that are given by the 

Bragg’s Law are fulfilled. It relates the wavelength of the X-rays and the interatomic 

distance with the angle of the diffracted beam incidence. The general scheme of this 

technique is shown in Figure 11. 

 

 

 

 

   

 

 
 The diffractograms provide information about the crystallinity of the sample, the 

phases that are present and allow estimating the crystallite or grain size of the sample by 

applying the Scherrer equation77 (equation 2). 

 

 

 

 Where: τ: means size of the ordered (crystalline) domains, K: dimensionless shape 

factor (typically about 0.9, but varies with the actual shape of the crystallite), λ: X-ray 

wavelength, β: line broadening at half the maximum intensity (FWHM) and θ: Bragg 

angle. 

Figure 11. Scheme of XRD technique. 

(2) 
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           1.5.4. Fourier Transform Infrared Spectroscopy (FTIR) 

 Vibrational spectroscopies, such as infrared spectroscopy, are known to be a versatile 

and rapid technique to capture a snapshot of the overall chemical structures in a 

measured sample. FTIR can provide a direct means to observe the interactions occurring 

at the surface during adsorption and to determine the structure of the adsorbed species. 

 FTIR spectroscopy mainly consists of a source, beam splitter, a fixed mirror and a 

moving mirror. The source emits light in the IR region (0.8-15.38 µm)78 when 

electricity passes through it. The beam splitter divides the incident IR light into two. 

The mirrors are aligned so as to reflect the light waves in a direction that would allow 

recombination of the waves at the beam splitter.  

 The movable mirror is capable of moving along the axis, away from and towards the 

beam splitter. One part of the light passes through the beam splitter and is reflected by a 

stationary mirror back to the beam splitter. The other part of the light is reflected on to 

the moving mirror, which in turn reflects the light back to the beam splitter. The two 

reflected beams from the mirrors recombine at the beam splitter.  

 The difference in distance travelled by the two light beams, created due to the 

movement of the mirror, is called the optical path difference (OPD) or optical 

retardation. The recombined beam passes through the sample and is finally detected by 

the detector79. The general scheme of this technique is shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

1.5.5. Thermogravimetric Analysis (TGA) 

 Thermogravimetric analysis (TGA) is an analytical technique used to determine the 

composition of materials and to predict their thermal stability and its fraction of volatile 

components by monitoring the weight/mass change (loss or gain) that occurs as the 

Figure 12. Scheme of FTIR technique. 
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sample is heated at a constant rate with a Thermo Gravimetric Analyzer (TGA) or 

thermobalance80, as shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

1.6. Experimental design 

 Experimental design or Design of experiments (DOE) is a very useful statistic tool that 

whenever possible, should be used during the research projects. It consists of an 

efficient procedure for planning some experiments, so that the obtained data can be 

representative and analyzed in order to get valid and objective information about the 

entire system81. It is possible to classify DOE according to different criteria. One of 

them is when we are interested in identifying the sources of variation in the behavior 

which is being studied, and another one, in identifying the cause-effect relationship82. 

 If the objective is to study simultaneously the effect of two or more factors on some 

behavior, factorial design can be used. The resulting combinations of categorical 

predictors are known as treatments. Thus, the simplest factorial design contains at least 

four treatments since there can be two categorical predictors each with two levels.  

 The main advantage of this type of design is that the effects of the categorical 

predictors and their possible interactions can be simultaneously measured83.  

 Interaction means that the effect of a categorical predictor over the response variable 

might depend on the particular level of another categorical predictor84. 

 When DOE is applied the use of replication, randomization and blocking should be 

performed, in order to achieve a valid interpretation of the results, avoid confounding 

effects as well as experimental errors83.  

Figure 13. Thermogram of a sample showing the weight loss (%) as temperature is increased. 
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Our observations/experiments must be sufficiently replicated so that we can obtain 

consistent results. In addition to this requirement, our replications have to be statistically 

independent that one data point cannot predict another. The factors that cannot be 

observed are known as confounding factors and the may influence the behavior of 

interest, thus randomization is applied in order to ensure that every experimental unit 

has the same probability of being selected. 

 Blocking or matching consists of gathering the experimental units together into larger 

units according to a common characteristic; in this way statistically unwanted sources of 

variation can be removed by dividing inter-individual variation into variation between 

and within blocks.85–87 
 DOE specifically response surface methodology (RSM) has been used for different 

applications just like enzymatic esterification88, selection of nutrient levels89 and in the 

syntheses of nanoparticles60 within others. This lies in its main advantage which 

consists in reducing the number of experiments that need to be carried out90 and with 

such information, understanding of the interacting factors is obtained, as well as their 

optimization during the synthesis of nanomaterials91-92. 

 
1.7. Enzymatic inhibition of Horseradish Peroxidase (HRP) 

 The Population Division of the United Nations Department of Economic and Social 

Affairs (UN DESA) states that in 2011, the global population surpassed 7 billion and it 

is expected to reach 9 billion by 2045. This predictable population growth is also related 

to the eminent increment of industrial, mining and agricultural activities which may lead 

to more intense water pollution mainly by heavy metals.  

 Despite some heavy metals (iron, copper, manganese and zinc) in small quantities are 

essential for a healthy life, some others even at low concentrations can cause serious 

problems such as those affecting the central nervous system (Hg2+, Pb2+, As3+); the 

kidneys or liver (Cu2+,Cd2+, Hg2+, Pb2+); or skin, bones, or teeth (Ni2+, Cu2+, Cd2+, 

Cr2+)93. The long-term exposure to them may also have carcinogenic effects in humans 

and animals94. 

 Since they are widespread pollutants which are released into the surface and ground 

water, it is important their monitoring as a critical issue in environmental protection, as 

well as disease prevention and treatment95. This is the reason why EPA of the United 

States of America fixed the maximum allowable concentration limits for mercury which 

are 2ppb or 2µg/L, equal to 10nM in water for human consumption11. 
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 Recent progress in nanotechnology has created a huge potential to build highly 

sensitive and low cost electrochemical (bio) sensors for heavy metals detection used in 

industry, medicine, biology, environmental and food chemistry. In particular MNPs are 

used for the immobilization of enzymes on their surfaces which also provides favorable 

microenvironment for electrochemical devices, where enzymes may exchange electrons 

directly with the transducer, improving the sensitivity and selectivity of electrochemical 

biosensors96. In this sense, the best mechanism to work with a biosensor whose target is 

a heavy metal, specifically mercury, is to take advantage of mercury toxicity, as it 

inhibits the enzymatic activity of HRP among others97. This enzyme is a peroxidase 

type which is present in the horseradish plant, and it is used in different organic and 

inorganic oxidation experiments. 

 The HRP enzyme uses hydrogen peroxide as an oxidizing agent to produce an 

oxidation-reduction reaction of a colored substrate which is measurable by 

spectrophotometric methods, determining the change of color of these chromogenic 

substrates. The responsible of this catalytic process is the heme group of the enzyme, 

which generates highly oxidizing intermediaries that are reduced to oxidize the 

substrate98. In order to follow up the HRP activity it is necessary to use a substrate of 

the peroxidase which acts as electron donor. When these components are oxidized by 

the enzyme in presence of peroxide, a characteristic change can be detected with 

spectrophotometry measuring the absorbance at a specific wavelength that varies 

according to the employed chromogenic substrate99. 

 In this specific case, the colored component which is used to follow up the HRP 

activity is 2,2´-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)  (ABTS) that in the 

presence of hydrogen peroxide, undergoes oxidation to the ABTS radical100. The 

formed radical can be quantified within the wavelength range from 400 to 800 nm, as its 

spectrum presents two absorption bands, one of them around 417 nm and another one at 

735 nm. 

 

 

 

 

 

 Figure 14. Production of ABTS from the enzymatic oxidation due to peroxidase. 
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 Thus, this will be useful to indirectly find the mercury concentration by the inhibition 

of the HRP enzyme. This fact means that: 1) in the absence of mercury, the obtained 

absorbance values will be notorious, whilst 2) in the presence of mercury the 

absorbance values will decrease on account of the enzyme inhibition. So, with these 

variations of the absorbance values and color, it is possible to indirectly determine the 

mercury concentrations in the samples. 

  
1.8. Medical application of MNPs 

 The quickly growing area of nanotechnology has led to important advances in material 

sciences, and non-invasive diagnostic methods have led to the development of a new 

class of drug delivery and therapeutic modalities. Among these materials, MNPs have 

shown to be a great contender in several areas of biomedical and clinical research. 

 Some of the reasons refer to their low general toxicity and high biocompatibility due to 

the existence of metabolic pathways for iron oxide magnetic nanoparticles absorption, 

decomposition and excretion by cells in human body101–103. Since MNPs can be 

monitored using their magnetic fields with magnetic field detectors, they have been 

used in medicine and biomedicine for applications such as biomolecular separations104, 

treatment of hyperthermia in cancer105, as contrast agents in magnetic resonance 

imaging (MRI)106,107 and targeted drug delivery (TDD)108. TDD systems are reported to 

improve the bioavailability of poorly water-soluble drugs and boost the therapeutic 

efficacy of cancer treatments through the use of sophisticated target-selective 

nanomedicines based on carriers and carrier conjugates with different biologically 

active molecules109. 

 1.8.1. Cancer 

According to the International Agency for Research on Cancer (IARC) from the World 

Health Organization (WHO), the global cancer burden is estimated to have risen to 18.1 

million new cases and 9.6 million deaths in 2018. One in 5 men and one in 6 women 

worldwide develop cancer during their lifetime, and one in 8 men and one in 11 women 

die from the disease110. Due to this big concerning fact, researchers and clinicians 

worldwide are developing new materials and strategies to be used in cancer therapy111. 

This effort will be determinant to minimize the side effects of conventional 

chemotherapy, prevent and detect cancer during earlier stages. 
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 1.8.2. Tribbles 2 (TRIB2) 

 Protein kinases and phosphorylation modulate all aspects of eukaryotic cell biology 

and, together with members of the ubiquitin system, have become highly significant for 

mechanistic drug targeting112.  

 The three TRIB pseudokinases (TRIB1, TRIB2, and TRIB3) represent a prominent 

subbranch of eukaryotic pseudoenzymes. TRIB proteins derive their name from the 

single metazoan fly gene “Tribbles” (Trbl), which encodes a pseudokinase with 

developmental roles in this model genetic organism. These proteins are fundamental 

regulators of cell cycle, differentiation, metabolism, proliferation and cell stress. They 

also fold to position protein “substrates” and control the E3 ligase-dependent 

ubiquitination of the eukaryotic protein kinase; and  integrate and modulate signals 

flowing into and through canonical mitogen-activated protein kinase (MAPK) and AKT 

modules14. 

 Recent data confirmed that TRIB2 protein expression is also cell cycle-regulated in 

human cells, positioning it as a potential modulator of CDC25 phosphatases, which it 

degrades through a ubiquitin- and proteasome-dependent mechanism113. However, the 

TRIB gene family in humans has been implicated in many different cancers, but 

especially in melanoma114, lung115, liver116, and acute leukemias117   

 The main mechanism of these diseases is still in process of being dissected. 

Nonetheless, a major mechanistic function of TRIBs in cancer cells appears to be the 

inappropriate association of TRIB proteins with substrate degradation and stability 

networks, leading to a subsequent imbalance in timely regulation of crucial 

transcriptional networks. For example, TRIB2-mediated degradation of the transcription 

factors forkhead box O (FoxO) is known to have an oncogenic role in the development 

of melanoma. FoxO transcription factors are evolutionarily conserved proteins that 

coordinate gene expression programs known to control a variety of cellular processes 

such as cell cycle, apoptosis, DNA repair and protection from oxidative stress114.  

 In this context, the present research aims to detect the presence of TRIB2 in an 

osteosarcoma cell line using MNPs functionalized with different coating agents and 

anti-TRIB2 antibody employing immunoprecipitation, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and Western Blot as supporting 

immunological techniques.  
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2. Experimental 

2.1. Instrumentation 

 All the instrumentation and software used during this research is listed on the table 

below. The first column shows the name of the equipment or software; the second 

column shows the name of the company, and the third column indicates the purpose of 

each device. 

Name Company Purpose 

Statgraphics Centurion XVI 

statistical software 

StatPoint Technologies Inc, 
Warrenton, Virginia, USA 

Optimization of the synthesis 
through experimental design 

Software Origin Pro 8 SR0 
OriginLab Corporation, 
Northampton, MA, USA Data treatment 

Software DigitalMicrograph Gatan Inc, USA 

Q700 Sonicator 
QSonica Sonicators, Newtown, 

Connecticut,  USA 
MNPs synthesis 

Method A 
Nanotrac Wave II Q Microtrac, GmbH, Germany 

Characterization stage 

Nova NanoSEM 450 FEI, ThermoFisher, USA 
Talos F200X TEM FEI, Thermo Fisher, USA 

D8 Advance-A25 Twin-twin Bruker, USA 
IR Affinity-1S WL Shimadzu, Japan 

FTIR Tensor 27 Bruker, USA 
TGA Q50 V20.13 TA Instruments, USA 

UV-Vis spectrophotometer  

model V-650 
PG Instruments, UK Enzymatic Inhibition studies 

Nutating mixer Labnet International, New Jersey 
Total protein extraction 

Centrifuge VWR CT15RE Hitachi Coki, Japan 
Micro plate reader GloMax, 

Multi detection system. 
Promega, Spain. Total protein quantification 

Bio-Rad power source Bio-Rad, USA. 
SDS-page 

Running process 

Thermo Shaker TS-100 BioSan, USA 
SDS-page 

Sample preparation 
Software Chemidoc, Lab 4.0 Bio-Rad, USA Protein detection 
Molecular Imager, Chemidoc Bio-Rad, USA Protein detection 

Table 2. List of software and pieces of equipment used during this research. 

 

2.2. Materials 

 During the present research several materials were used in each of the different stages. 

Such materials are presented in the following table, where their name, purity (when 

applicable), enterprise and purpose are mentioned. 

Name Purity/Concentration Company Purpose 

Ferrous chloride tetrahydrate 

(FeCl2·4H2O) 
≥ 99 % Merck, Germany 

MNPs synthesis 
Method A 

Ferric chloride hexahydrate 

(FeCl3·6H2O) 
98-102 % 

Panreac Quimica, 
Spain 

Ammonia solution (NH3) 30 % (w/w) 
Panreac Quimica, 

Spain 
Dopamine hydrochloride 

(C8H11NO2) 
- 

Sigma-Aldrich, 
Germany 

Functionalization 
of MNPs 
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3-Mercaptopropionic acid 

(C3H6O2S) 
≥ 99 % 

Sigma-Aldrich, 
Germany 

synthesized by 
Method A 

Isonipecotic acid (C6H11NO2) 97 % 
Sigma-Aldrich, 

Germany 
Citric acid (anhydrous) 

(C6H8O7) 
≥ 99.5 % 

Fluka Analytical, 
USA 

Horseradish Peroxidase (HRP) - Sigma-Aldrich, USA Biosensor 
Mercury(II) chloride (HgCl2) ≥ 99.5 % Sigma-Aldrich, USA. 

Enzymatic 
inhibition studies 

2,2´-Azino-bis(3-

ethylbenzothiazoline-6-

sulfonic acid) diammonium 

salt (C18H18N4O6S4) (ABTS) 

≥ 98 % Sigma-Aldrich, USA 

Hydrogen peroxide 30 % 
Panreac Quimica, 

Spain 
Ultrapure water - Millipore, USA Solvent 

 Ethanol 96 % 
Alcoholes del sur, 

Spain 
Solvent 

Acetone - 
Alcoholes del sur, 

Spain 
Solvent 

Ferric chloride hexahydrate 

(FeCl3·6H2O) 
 

Panreac Quimica, 
Spain 

MNPs synthesis 
Method B 

Ammonia solution (NH3) 25 % w/w 
Panreac Quimica, 

Spain 

Sodium sulfite (Na2SO3) 98 % 
Fisher Chemical, 

UK 
Hydrochloric acid (HCl) 37 % w/w Analar 
Sodium citrate tribasic 

dehydrate (C6H9Na3O9) 
99 % 

Sigma-Aldrich, 
Spain 

Functionalization of 
MNPs synthesized 
by Method A and B 

Chitosan (C6H11NO4)n ≥ 75 % (deacetylated) 
Sigma-Aldrich, 

Portugal 
N-Ethyl-N′-(3-

dimethylaminopropyl)carbodii
mide hydrochloride (EDAC) 

> 98 % 
Sigma-Aldrich, 

Japan  

Tris - 
Fisher Scientific, 

China CST Buffer used in 
protein extraction 

Sodium chloride (NaCl)  ≥ 99.5 % Merck, Germany 
Triton X-100 - Amresco, USA 

Total protein 
extraction 

Sodium fluoride (NaF) - 
VWR International, 

Belgium EC 
Ethylenediaminetetraacetic acid 

(EDTA) (C10H16N2O8) 
99-101 % 

Sigma-Aldrich, 
USA 

Ethylene glycol-bis-(β-

aminoethyl ether)-N’,N’,N’,N’-
tetraacetic acid (EGTA) 

99 % 
AppliChem, 

Germany 

Sodium Pyrophosphate - Santa Cruz, USA 
β-Glycerolphosphate 

(β-G-P) 
≥ 97 % Santa Cruz, USA 

Sodium orthovanadate 

(Na3VO4) 
99.98 % 

Sigma-Aldrich, 
USA 

Calyculin A ≥ 98 % Santa Cruz, Dallas 
Protease Inhibitors Cocktail 

(PIC) 
- 

Sigma-Aldrich, 
USA 

Laemmli 6x - 
Sigma-Aldrich, 

USA 
Total protein 
quantification Glycerol ≥ 99 % 

Sigma-Aldrich, 
USA 

Bromophenol blue - Santa Cruz, USA 
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Sodium dodecylsulfate (SDS) 95 % 
Applichem, 
Germany 

β-Mercaptoethanol ≥ 98 % 
Sigma-Aldrich, 

Japan 

Tris - 
Sigma-Aldrich, 

USA 

SDS-page 
Running and 
stacking gel 
preparation 

Acrylamide 40 % 
Fisher Bioreagents, 

USA 

Sodium dodecylsulfate (SDS) 95 % 
Applichem, 
Germany 

Ammonium Persulfate (APS) ≥ 98 % 
Sigma-Aldrich, 

Japan 
Tetramethylethylenediamine 

(TEMED) 
≥ 99 % Santa Cruz, USA 

Running Buffer - 
Sigma-Aldrich, 

USA 

SDS-page 
Running process 

Glycine ≥ 99 % 
Sigma-Aldrich, 

Belgium 

Sodium dodecylsulfate (SDS) 95 % 
Applichem, 
Germany 

Blue protein Marker 

 MB 17601 
- NzyTech, Portugal 

Bradford reagent - NzyTech, Portugal 
Total protein 
quantification 

Coomassie Brilliant Blue < 5 % BIO RAD, USA Antibody disclosure 

Nitrocellulose membrane - Amersham, UK Protein transfer 

Methanol 20 % VWR, France Transfer Buffer 
used in protein 

transfer Glycine ≥ 99 % Sigma-Aldrich, 
Belgium 

Milk - Nestlé, Portugal Blocking step 
Green Fluorescent Protein 

(GFP) antibody 

(sc-8334) 

- 
Santa Cruz (8334), 

USA 

Antibody 
incubation 

Actin 

(sc-1616) 
- Santa Cruz, USA 

Glyceraldehyde 3-phosphate 

dehydrogenase  

(GAPDH) 

(sc-25778) 

- Santa Cruz, USA 

Anti TRIB2 antibody - 
Homemade,  

UAlg Portugal 
Immunoprecipitation 

Secondary anti rabbit antibody 

(NA934V) 
- Amersham, UK 

Protein detection 
Luminol > 97 % 

Sigma-Aldrich, 
USA 

p-Coumaric acid ≥ 98 % Sigma-Aldrich, UK 
Hydrogen peroxide (H2O2) 30.5 % VWR, France 

Dimethyl sulfoxide (DMSO) ≥ 99.9 % 
Fisher Chemical, 

Portugal 
 

Table 3. Reagents used during this project. 
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2.3. Synthesis procedure 

Bare Magnetic Nanoparticles 

Method (A) Co-precipitation method assisted by high power ultrasound. 

 MNPs were synthesized using a co-precipitation method35 enhanced by a high 

frequency sonochemical probe (Q700 Sonicator) equipped with a 13-mm titanium tip, 

that provides a maximum power of 600 W. Briefly, a stoichiometric mixture of 0.005 

moles (0.99 g) of FeCl2·4H2O and 0.01 moles (2.70 g) of FeCl3·6H2O were dissolved in 

50 ml of distilled water and kept under nitrogen atmosphere for 2 minutes. The mixture 

was directly irradiated for 2 more minutes with the sonicator probe at a frequency of 20 

kHz, operated at 50% of its total amplitude under nitrogen atmosphere in order to mix 

the salts solution. Right after this time, 4ml of NH3 solution were poured dropwise into 

the mixture producing an instant change in color. The ultrasound irradiation continued 

for 3 more minutes after the addition of the basic solution. The total time of the entire 

reaction was 5 minutes.  

The black precipitate was washed with distilled water using magnetic precipitation and 

decantation until a neutral pH was obtained. The black precipitate was further dried in 

an oven at 60°C overnight. 

 Optimization of method (A) using DOE. 

 Response surface methodology (RSM), specifically factorial design at 3 levels and 2 

factors (32) (See Table 4) was used to optimize the method and minimize the response 

(obtain smaller particle sizes). 

 Since pH values and temperature can affect the system by increasing the particle 

size118,119, they were kept at 11.05 and 30-38°C, respectively.  

 

 

 

 

Table 4. Experimental field definition 

 The quantities of the reagents were kept the same as previously described. The iron salt 

mixture was kept under a moderate nitrogen atmosphere for 1 minute, after this time it 

was directly irradiated with the sonicator probe at a frequency of 20 kHz, operated at 

20, 40 and 60% of its total amplitude.  

Factor Low Level  
(-1) 

Centre point 
(0) 

High level 
(+1) 

Amplitude (%) 20 40 60 
Time (min) 1 3 5 
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 Right after the ignition of the probe, 4ml of NH3 solution were poured into the mixture 

within 10 seconds producing an instant change in color. The total time of the entire 

reaction varied as shown in Table 4 and the final temperature of each experience was 

kept within 30-38°C using an ice bath from the beginning, with the initial mixture of the 

salt precursors. The black precipitate was cleaned as described above. 

Method (B) Co-precipitation from partially reduced ferric chloride aqueous solutions. 

 MNPs were synthesized using a precipitation method from partially reduced ferric 

chloride aqueous solutions120. Briefly, 30 mL of a 2M FeCl3 stock solution, prepared by 

dissolving 16.22g of iron salt in 2M HCl, were diluted with an equal volume of 

deionized water. Afterwards, 20 mL of a 1M Na2SO3 were added under stirring. Just 

after the mixing of Fe3+ and SO3
2-, the color of the solution altered from light yellow to 

red, indicating the formation of a complex ion. Meanwhile, an ammonia solution was 

prepared by the dilution of 50.8 mL of concentrated ammonia to a final volume of 800 

mL. The former solution was quickly poured into the diluted ammonia solution, under 

vigorous stirring, as soon as its color changed back from red to yellow again, as the 

complex decomposed to Fe2+ and SO4
2-. A black precipitate formed immediately, but 

stirring was continued for 30 min. A permanent magnet was applied to the beaker 

containing the suspension, and a black powder could be seen to quickly settle on the 

bottom. The supernatant was discarded and fresh water was added to the beaker. After 

decantation, the precipitate was washed once with an acidic solution (pH 3-4), then with 

distilled water until neutral pH, once with ethanol, and finally left to air dry 

overnight121. 

  

 

 

 

 

 

 

Figure 15. General syntheses schemes of method A and B performed in this research. 
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       2.4. Functionalization of the MNPs 

 Different coating agents were used to functionalize the MNPs; these were 

polydopamine (PDA), chitosan (CS), citric acid (ACS), isonipecotic acid (ISNPA), 3-

mercaptopropionic acid (MPA) and sodium citrate (SC). To make a layer of 

polymerized dopamine onto the MNPs surface, it was necessary to disperse 500 mg of 

the MNPs powder in 25 mL of a 10 mM (47 mg) solution of dopamine previously 

prepared in PBS (pH 8.5).  

 This was maintained for 3 hours under continuous agitation at 60 rpm. It is important to 

remove as much oxygen as possible from the PBS, putting it through an ultrasound bath 

before dissolving the dopamine to avoid its oxidation. After 3 hours, the cleaning 

process was performed with PBS (pH 8.5) using magnetic precipitation and decantation 

in order to remove the unreactive polydopamine. PDA@MNPs were dried for 5 days at 

60°C and carefully grinded. 

 Chitosan was added onto the surface of the MNPs in a very similar manner to 

polydopamine. However, a 10 mM (42.3 mg) chitosan solution in 25 mL of water at pH 

3 was prepared for 2 hours approximately and, upon complete dissolution, the pH 

further adjusted to 5.2. Right after the last adjustment, 500 mg of MNPs powder were 

immediately added into the chitosan solution, and maintained under magnetic stirring 

overnight. The cleaning process was carried out with distilled water until a neutral pH; 

then, further dried at 60°C for 5 days and equally grinded as the PDA@MNPs. 

 The carboxylate groups were obtained from citric acid (ACS), 3-mercaptopropionic 

acid (MPA), isonipecotic acid (ISNPA) and sodium citrate (SC) following a previous 

described methodology122. MNPs (400 mg) were re-suspended in 55 ml of different acid 

solutions (0.02g/mL, pH 5.2) of ACS, MPA, ISNPA and SC, respectively. This mixture 

was heated at 80°C under continuous reflux for 6 h. The final products were washed 

with distilled water (ISNPA, SC) and acetone (ACS, MPA) three times and collected by 

magnetic precipitation and decantation; further dried overnight at 60°C and carefully 

grinded. The general schemes of these functionalization processes are shown in Figure 

16. 
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      2.5. Characterization of the MNPs 

 MNPs were synthesized using two different co-precipitation methodologies, method A 

and method B; and further functionalized with different coating agents. Bare MNPs 

synthesized by method B were characterized elsewhere121. CS and SC coated MNPs 

were characterized by FTIR. Bare MNPs synthesized by method A and further 

functionalized, were characterized by the following techniques: 

 DLS to have a first contact regarding the size of the newly synthesized MNPs 

and make a proper decision on what MNPs to choose in order to continue 

working with. 5 mg of MNPs powder were re-suspended in 5 mL of distilled 

water. On one hand, 1 mL of these mixtures was directly analyzed with 

Microtrac Nanotrac Wave particle analyzer II Q. 

 SEM to get a preliminary idea about topology and size of the MNPs and 

qualitative composition of the samples. This analysis was performed by a 

Scanning electronic microscope FEI, Nova NanoSEM 450.  

The MNPs powder was placed onto the surface of the aluminum samplers and 

introduced into the microscope. 

 TEM to get a more accurate particle size of MNPs and determine their internal 

structure. The analysis was carried out with a Transmission electron microscope 

Talos F200X TEM (Thermo Fisher Scientific). MNPs were directly deposited 

from a solution onto Cu-amorphous C grids. No other preparation was needed. 

Figure 16. Functionalization schemes with the different coating agents. 
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 XRD to determine the composition of the phases and estimate the crystallite 

size. The XRD patterns were registered with Bruker-D8 Advance-A25 Twin-

Twin equipment using Bragg-Brentano geometry with Lynxeye detector. 

 FTIR to analyze the chemical nature of the obtained MNPs. The IR spectrums 

were registered in solid phase with KBr pellets, in a Shimadzu, IRAffinity-1S 

WL or a Bruker Tensor 27, from 4000 to 400 cm-1. 

 TGA to determine the fraction of volatile components of MNPs. The analysis 

was carried out using a TGA Q50 V20.13 with fixed parameters such as 

Nitrogen gas (40 mL/min), air (60 mL/min). The temperature range was 

stablished to be from 25 to 900°C with increments of 10°C/min and diminutions 

of 30°C/min at the end. 

       2.6. HRP. Immobilization of the enzyme onto the surface of the MNPs 

 Synthesized and further functionalized MNPs by method A were used to attach onto 

their surfaces the HRP enzyme in order to carry out enzymatic inhibition studies. 50 mg 

of PDA@MNPs were dispersed in 2.5 ml in a HRP solution (0.5mg/ml) prepared in 

PBS (pH 7.4) under gently stirring at room temperature for 3 hours. 

 After this time, MNPs were cleaned using magnetic precipitation and decantation with 

PBS (pH 7.4) in order to remove the excess of unreactive enzyme.  

 However, in this occasion MNPs were not dried, but re-dispersed in 1ml of PBS (pH 

7.4). This dispersion was kept at 4°C and used within 2 weeks to avoid loss of activity. 

  
       2.7. Immobilization of the antibody onto the surface of MNPs. 

 Synthesized and further functionalized MNPs by methods A and B were used to attach 

onto their surfaces the antibodies in order to carry out immunoprecipitation studies. Five 

mg of MNPs (bare and coated MNPs) were used in each experience to test whether the 

antibody linked onto the surface or not. MNPs were dispersed in 500 ml of PBS (pH 

5.6) and sonicated for 10 minutes. Five mg of N-Ethyl-N′-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDAC) were added into the previous solution (except for 

the MNPs functionalized with PDA, in which case EDAC was not necessary). Finally, 

50 µl of the antibody solution were poured into the prepared solution and kept under 

magnetic stirring at room temperature overnight. The same procedure was follow for a 

different experience but this time the last prepared solution was kept at 4°C under 

mechanical movement with a nutating mixer. 
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 After this time, MNPs were cleaned using magnetic precipitation and decantation with 

PBS (pH 5.6) in order to remove the excess of unreacted antibody. However, in this 

occasion MNPs were not dried, but re-dispersed in 1ml of PBS (pH 5.6). This 

dispersion was kept at 4°C and further tested to prove the presence of the antibody onto 

the surface of MNPs, as it will be described on subsection 2.9.3.  

       2.8. Enzymatic inhibition study 

 These analyses were carried out using synthesized MNPs from method A coated with 

polydopamine. The measurements were done with a spectrophotometer model V-650 in 

the absorbance mode from 800 to 400 nm. For time issues it was only possible to assess 

PDA@MNPs. However, we plan to include the other coating results within an article 

we want to publish. 

 In first place, interferences for PBS, hydrogen peroxide and MNPs were investigated in 

order to avoid overlapping with the ABTS spectrum.  

 ABTS solution was daily prepared in PBS (pH 6) previously subjected to nitrogen 

stream for 10-15 minutes to remove the oxygen and avoid its oxidation. 

 For this purpose, different concentrations of the different components (see Table 5) 

were prepared in a total volume of 1.5 ml and further vortexed for 10 minutes. The 

absorbance was immediately measured in the specific range. 

 

 

 

 

Table 5. Concentration of the different components used to measure their interferences 

 The second part of the enzymatic study aimed to create a calibration curve by adding 

mercury in successive concentrations (0.06, 0.05, 0.04 and 0.03 ppm) with the other 

components as shown in Table 6. 

Table 6. Different solutions and their specific quantities used to perform the calibration curve 

Component Concentration 
ABTS 0.3 mg/mL 

MNPs@PDA/HRP 0.25 mg/mL 
H2O2 0.3 % v/v 

 Blank 0.03 0.04 0.05 0.06 
HgCl2 - 2.9 µL 3.8 µL 4.83 µL 5.80 µL 
PBS 1027.5 µL 1024.6 µL 1023.7 µL 1022.7 µL 1021.7 µL 

MNPs@PDA/HRP 7.5 µL 
ABTS 450 µL 
H2O2 15 µL 

Total Volume 1500 µL 
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 To complete this part of the study ABTS, H2O2 and PDA/HRP@MNPs were mixed in 

the same concentration as described in Table 6 in a total volume of 1.5 mL.  

 The mixture was first sonicated for 2 minutes with an ultrasonic bath and further mixed 

with the desired mercury volume and vortexed for 8 minutes. Right after this time 

MNPs were magnetically precipitated and the supernatant was analyzed, using a cell 

with Milli-Q water as a reference. 

       2.9. Immunoprecipitation. 

Immunoprecipitation (IP) is one of the most useful immunological techniques in which 

we can determine the presence and quantity of an antigen, the relative molecular weight 

of a polypeptide chain, its synthesis and degradation, the interaction with proteins, 

nucleic acids or other ligands. During this research project, the immunoprecipitation 

assays using different coated MNPs, were performed on an osteosarcoma cell line 

(U2OS) that has been manipulated to overexpress exogenous TRIB2 protein coupled to 

a Green Fluorescent Protein (GFP) on the N-terminus, as well as a parental cell line 

which did not contain the TRIB2 protein. The formed immune complexes were then 

denatured and resolved using SDS-PAGE and further analyzed with tools that include 

western blot123. 

          2.9.1. Total protein extraction  

To obtain the total cell protein extract we used two confluent 10cm plates of each cell 

line (U2OS parental cell line and U2OS-TRIB2-GFP). We collected the cell pellet, 

washed with PBS 1X and centrifuged at 1100 rotations per minute (rpm) for 4 minutes. 

We discarded the supernatant and the following procedures were always performed on 

ice to preserve the integrity of the extracted proteins.  

 Protein extraction was made using Cell Signalling Buffer buffer-CST (1M Tris pH 

7,5M NaCl), 5% Triton X-100, 1M NaF, 0.5M EDTA, 0.5M EGTA, 200mM Sodium 

Pyrophosphate, 1M β-G-P, 100mM OVO4, 0.1 mg/μL Calyculin A and 0.1 mg/μL 

Protease inhibitor cocktail). 200 uL of CST was added to the cell pellet and the samples 

were homogenized by pipetting up-and-down and with vortex. Next, the samples were 

incubated for 20 minutes on a nutating mixer at 4 ºC. Afterwards, they were centrifuged 

at 15000 rpm for 20 minutes at 4 ºC. Lastly, the supernatant was transferred to a new 

Eppendorf tube. 
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           2.9.2. Total protein quantification 

 The total amount of protein present in our samples was accessed using the Bradford 

method which is a very sensitive, simple and fast technique based on a colorimetric shift 

that is measured by absorbance.  

 By comparing the absorbance of our samples with the absorbance of a protein with a 

known concentration (Bovine Serum Albumine - BSA), we can determine the protein 

concentration of our samples using a linear standard protein curve. Serial dilutions on 

Figure 17 were obtained from a BSA stock solution at 2000µg/µL. 

 

 

 

 

 

 

 

 We prepared a set of tubes containing a 1:10 dilution (5μL of sample in 45μl of H2O) 

of our samples. Following, we loaded 5μL of each test sample (1:10 dilution) and 

standard curve sample into a 96 well plate (in duplicated) and added 250μL of Bradford 

to each well. 

 The absorbance was measured on a microplate reader using I-control software. Using 

the absorbance and the linear standard curve: y = mx + b, where y = absorbance at 595 

nm and x = protein concentration; protein concentration was calculated for each of our 

test samples. Following, the protein concentration was normalized for all test samples 

using the extraction buffer to ensure that we load the same amount of protein in all 

samples for the following procedures. Additionally we added Laemmli 6x (0.2M 

TrisHCl), pH 6.8, 40% glycerol, 0.04% Blue Bromophenol, 0.3M SDS, 20% β-

Mercaptoethanol. Laemmli is a protein-loading buffer that allows the visualization of 

the samples during the run (due to the presence of Blue Bromophenol) and 

simultaneously increases sample density for proper loading (due to glycerol) allowing 

the migration across the gel. The SDS present in the Laemmli charges the samples 

negatively, so the proteins can migrate to the positive pole, being separated according to 

their size. Lastly, we heated the samples at 95 ºC in a thermo shaker for 5 minutes.  

A                       B                      C                     D                      E                     F                       G 

Figure 17. Standard curve BSA serial dilutions. 
Letters A to G refer to seven different BSA concentrations namely A (2mg/mL), B (1.00 mg/mL), C (0.8 mg/mL), D 
(0.6 mg/mL), E (0.3 mg/mL), F (0.15 mg/mL) and G (0 mg/mL). These serial dilutions were used to create a stantard 
curve in order to calculate the concentration of the extracted protein. The measurements were performed in the 
absorbance mode. 
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This step allowed for denaturation of the proteins so that they can migrate on the gel 

when applying an electric stimulus. Samples were immediately loaded on a gel or stored 

at -20 ºC. 

           2.9.3. SDS-page 

 SDS-PAGE is a very high resolution method for protein separation and categorization, 

routinely used for the estimation of protein subunit molecular weights. The fundamental 

concept relies on the basis that charged particles migrate toward the electrode of 

opposite sign under the influence of an externally applied electric field. The movements 

of the particles are retarded by interactions with the surrounding gel matrix, which acts 

as a molecular sieve. The opposing interactions of the electrical force and molecular 

sieving result in differential migration rates for the constituent proteins of a 

sample124,125.  

In this regard, SDS-PAGE was performed to detect the presence of the antibody on the 

surface of MNPs and, as the assessment process by the Western Blot technique. 

In general, all the gels were made in the same manner, as described in the next 

paragraph. 

Proteins were separated according to their molecular weight, in a SDS-PAGE; 0.4M 

Tris pH 8.8, 10% acrylamide, 0.1% SDS, 0.1% Ammonium Persulfate (APS), 0.15% 

TEMED). 

To obtain optimal protein resolution, a stacking gel was placed over the top of the 

running gel. This allowed proteins in a loaded well to be concentrated into one tight 

band during the first few minutes of electrophoresis, before entering the running portion 

of the gel. The stacking gel was prepared with 0.1M Tris pH 6.5, 3.8% acrylamide, 

0.08% SDS, 0.1% APS, 0,1% TEMED. The stacking gel had large sized pores allowing 

proteins to migrate freely and get stacked at the interface between the stacking and the 

running gel. This allows proteins to start migration at the same time.  

A 10% running gel was used since the size of the proteins of interest was within the 

separation range of this gel (70 to 20 kDa). The percentage of acrylamide present in the 

gel determines the speed of migration and the degree of separation between the proteins.  

Three microliters of the blue protein marker was loaded directed onto the gel. All other 

samples volume was adjusted with laemmli and CST buffer to a total of 25ul.  The first 

sample was the positive antibody control in a mixture of 0.2µL of antibody, 4µL of 

Laemmli and 21µL CST. The second sample was the negative control of the Bare 

MNPs. 
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 This mixture was prepared from 200µL of MNPs dispersion (5mg/mL); the supernatant 

of MNPs was removed using an external magnetic field, and MNPs were re-suspended 

in 21μL of CST buffer and 4µL of Laemmli were also added. Sample number three and 

four were prepared in the same manner than sample number two; the difference among 

them was the temperature used to attach the antibody onto the MNPs. Sample number 

three refers to functionalized MNPs whose antibodies were attached at room 

temperature, whilst antibodies of functionalized MNPs of sample four, were attached at 

4°C. After this preparation, samples were heated to 95°C for 5 minutes and finally 

loaded into their respective wells in the gel. After loading the samples, the 

electrophoresis was performed in SDS-PAGE running buffer (0.02M Tris, 0.025M 

Glycine, and 0.003M SDS) using the BIO-RAD power source initially at 75V until 

proteins enter the running gel and then at 150V. 

Once the electrophoresis was completed, the gels were removed from the plates and 

washed with tap water three times for five minutes each. We incubated the gels with 

50mL of commasie brilliant blue for one hour. The gels were washed with tap water for 

three times, five minutes each, and the final washing step was left overnight. We 

imaged the gels using a molecular imager, Chemidoc. 

            2.9.4. Immunoprecipitation 

 For the immunoassays, 200μL of three different dispersed MNPs (SC/Ab@MNPs, 

PDA/Ab@MNPs and CS/Ab@MNPs) from a previous solution (5mg/mL; see 

subsection 2.7) were incubated with two different protein extracts at two different 

concentrations from different cell lines (U2OS parental and TRIB2-GFP). The 

immunoprecipitations were performed separately for each of the different coated MNPs 

and for the different protein concentrations, in two different Eppendorf Tubes of 2mL 

and, the general scheme is represented on Figure 18. 

 

 

 

 
 

 

 

Figure 18. General scheme of the immunoprecipitation process. 
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 The first immunoprecipitation was performed using the SC/Ab@MNPs with a protein 

solution 4μg/mL. The other two immunoassays were done using PDA/Ab@MNPs and 

CS/Ab@MNPs with a protein solution 2μg/mL each. 

 Initially, the supernatant of MNPs contained in the 200μL was carefully removed with 

a pipet using an external magnetic field. Right after, 150μL of the respective protein 

solution were added to the precipitated MNPs and incubated at 4 ºC using a nutating 

mixer overnight to allow an appropriate interaction. The following day, we pipetted 

40μL of supernatant and mixed with 10μL of Laemmli 6x (0,2M TrisHCl pH 6.8, 40% 

glycerol, 0.04% Blue Bromophenol, 0.3M SDS, 20% β-Mercaptoethanol). This fraction 

corresponds to the flow through (FT). The rest was removed using an external magnetic 

field. Through this process the TRIB2-GFP molecules linked to the nanoparticles 

surface by means of the antibody–antigen interaction were collected at the Eppendorf’s 

surface, close to the external magnet, and separated from the extract. MNPs were 

washed with 250μL of CST for three times. 

 Once the supernatant was removed, MNPs were mixed with 5μL of Laemmli 6x and 

20μL of extraction buffer CST in order to have a proper mixture to perform the SDS-

PAGE.  Finally, 50μL of the initial extracted protein solution were placed in duplicate in two 

different Eppendorf tubes and mixed with 10μL of Laemmli. This fraction refers to the whole 

extract (WE). The previous prepared samples were heated at 95ºC for 5 minutes, loaded and ran 

on a 10% polyacrylamide gel. 

 2.9.5. Western blot 

Western blot is often used to identify specific proteins from a complex mixture of 

proteins extracted from cells separated according to their molecular weight. 

 After the immunoprecipitation and electrophoresis were completed, the Western Blot 

was performed as follows. 

  2.9.5.1. Protein transfer 

 A wet-transfer was performed into a nitrocellulose membrane. The SDS-PAGE transfer 

buffer contained 20% methanol, 0.05M Tris and 0.05% Glycine. The transference was 

performed using a BIO-RAD power source at 75V for 90 minutes. 

                      2.9.5.2. Blocking step 

The blocking step prevents the binding of the antibodies to unspecific proteins existing 

in the membrane surface. We used a 5% non-fat milk solution made in TBS-Tween. The 

proteins present in this solution blocked the unoccupied sites on the membrane, thus 

reducing background at detection time and improving the signal-to-noise ratio of the 
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assay. This incubation was made at room temperature for one hour with agitation. 

                      2.9.5.3. Antibody incubation 

 After blocking, the membrane was incubated overnight at 4 ºC using a roller mixer with 

primary rabbit antibodies such as Green Fluorescent Protein (GFP) that binds to the 

target TRIB2-GFP protein; and other two primary antibodies, actin and Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH). 

              2.9.5.4. Protein detection 

 This step allows the detection of the relative abundance of the target protein -TRIB2. 

Once the primary antibody incubation was done, the membrane was washed with TBS 

tween three times, five minutes each to remove the excess of unreactive primary 

antibody. Then, the membrane was incubated with a secondary rabbit antibody for one 

hour which was previously prepared in 5% non-fat milk dissolved in TBS tween. 

Following, the membrane was washed again with TBS tween three times, five minutes 

each to remove the excess of unreactive secondary antibody. The membrane was further 

incubated for 5 minutes in enhanced chemiluminescence (ECL; 1.25mM Luminol) 

diluted in Dimethyl Sulfoxide (DMSO), 0.2mM p-coumaric acid diluted in DMSO, 

0.1M Tris pH 8.5, 0.01% H2O2. The enzyme coupled to the secondary anti rabbit 

antibody is oxidized in the presence of peroxide, producing and excited state product 

that emits luminescence, which was detected using the software Image Lab 4.0 of 

Chemidoc. 
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3. Results and discussion 

3.1. Synthesis 

 As stated in subsection 1.1, the common co-precipitation method has some drawbacks 

when synthesizing MNPs. This was the main reason why this research group decided to 

improve the procedure by assisting it with high power ultrasound (Method A), which is 

based on the decomposition of a solution containing the precursors and reducing or 

stabilizing agents with ultrasound irradiation. This methodology provides a unique 

medium in which reactions take place in a more efficient and effective way.  

 This was positively confirmed through the syntheses carried out during this research: 

the applied energy was minimized and better used, the synthesis time was drastically 

reduced to one single minute, the simplicity of the synthesis increased by using the high 

power ultrasound approach (see Figure 19) what leads us to save time, and the amount 

of reagents employed was enormously decreased being able to reduce costs and protect 

the environment.  

Besides all these advantages, it was possible to obtain uniform particle size distributions 

of 10 ± 3 nm according to predefined factors which will be discussed in the next 

subsection. On the other hand, method “B”, provided good particle sizes of 15 nm121 

very close to those obtained by method “A”.  

As conclusion, it can be said that traditional techniques are very good for producing 

large amounts of MNPs; however they are time-consuming, they need much more 

reagent volumes and the energy requirement is higher. That is the reason new 

methodologies such as methods A and B are being developed. Both of these techniques 

are good and useful when synthesizing MNPs with some differences among them, but at 

the end those differences try to fulfill the same objective. A clear example of this is that 

both methodologies aim to avoid the oxidation of iron, but method A does it through the 

use of nitrogen flow whilst in method B sulfite is used to provide a reductive 

environment, thus preventing oxidation. At the end, despite both of them have proved to 

be useful in synthesizing MNP, method A minimized the use of time, reagents, energy 

and thus their cost. 
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3.2. Optimization of method A. 

 Based on the RSM, 32 factorial design for two independent factors, 18 experimental 

syntheses were performed. This design implied 9 experiments in duplicate, carried out 

in random order to eliminate any potential source of error. Table 4 and 7 demonstrates 

the experimental field definition and experimental matrix, respectively.  

 The MNPs obtained from the 18 syntheses were characterized by DLS technique, 

which has been demonstrated to be a useful technique for this purpose (immediate and 

routine analysis)60. The size distributions showed Gaussian shape; however the 

weighted mean which refers to the hydrodynamic radio was used [size (nm)]; due to it 

was necessary to obtain a unique value as the response instead of a size distribution.  

 

 

 

 

 

 

 

 

 

 The hydrodynamic radio represented as size duplicate mean [x (nm)] and its 

corresponding %RSD are shown in Table 8. In this regard, MNPs with different sizes 

from 33 to 60 nm were synthesized. 

Experiment Amplitude 

(%) 
Time 

(min) 
1 +1 (60) +1 (5) 
2 -1 (20) -1 (1) 
3 0 (40) 0 (3) 
4 1 (60) -1 (1) 
5 -1 (20) 1 (5) 
6 1 (60) 0 (3) 
7 0 (40) 1 (5) 
8 -1 (20) 0 (3) 
9 0 (40) -1 (1) 

Table 7. Experimental matrix 

Figure 19. Simple comparison between a traditional co-precipitation method (left picture) and 

co-precipitation assisted by high power ultrasound (right picture) 
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 The highest mean values (60 and 58 nm) were obtained in Exp.3 (A: 40%, t: 3min.) and 

1 (A: 60%, t: 5min) with also high values of RSD (7 and 9%, respectively). On the other 

hand, the smallest mean values were for Exp.9 (A: 40%, t: 1min) and 4 (A: 60%, t: 

1min); however Exp.4 had a big RSD (9%) as in Exp. 1, where the same amplitude of 

60% was used, what can lead to think that this amplitude is so strong that produces a 

wide variation in the nanoparticle sizes distribution, which is also confirmed with Exp. 

6 (A: 60, t: 3min, RSD: 17%). This aspect could be further supported due the fact that 

experiments 2, 5, 7 and 9 with amplitudes of 20 and 40 % had good reproducibility of 

4%. 

 Regarding Exp.9, which had the smallest value for particle size and the same amplitude 

than Exp. 3, which had the biggest value, it can result strange. Nevertheless, reaction 

time among these two experiments was different. Exp.3 was performed for 3 minutes 

whilst Exp.9 for only 1 single minute, what could be the influential factor between these 

2. The difference in sizes despite of the same amplitude might be due to the reason that 

the more time the reaction last, the more the nanoparticles agglomerate. 

 

Table 8. Experimental design results 
 
 Thus, according to these results which were used to have a first contact regarding how 

these variables affected the particle size distribution; if small particle size is wanted by 

this novel approach (high power ultrasound), slow amplitude and short periods of time 

should be selected.  The experimental design allows comparing effects with more than 

one factor, as well as the effects of each factor separately. When comparing effects with 

more than one factor, if results are statistically different, an interaction between the 

analyzed factors takes place126,127. Once the particle sizes were obtained (response 

Experiment 
Replicate 1 
(size, nm) 

Replicate  2 
(size, nm) 

x ±  SD  

(nm) 
RSD 

(%) 
1 61 54 58 ± 5 9 
2  47 50 49 ± 2 4 
3 63 57 60 ± 4 7 
4 34 38 36 ± 3 9 
5 40 38 39 ± 2 4 
6 37 47 42 ± 7 17 
7  37 39 38 ± 2 4 
8  49 56 53 ± 5 9 
9  34 32 33 ± 2 4 



 Master Erasmus Mundus Quality in Analytical Laboratories 

 

45 Q.F.B Christian H. Pérez Beltrán                                                                        September 2019 

 

value), an influence study of the different factors over this response was performed. 

Such study is shown on Table 9. 

 

 

 

 

 

 

 Those variables whose p-value is below 0.05 are considered statistically significant 

with 95% confidence value. It can be observed how two interactions, AB (amplitude 

and time) and BB (quadratic interaction of time) are considered statistically significant. 

On the other hand amplitude, time and quadratic interaction of amplitude have p-values 

above 0.05, which are considered to not affect the response value. 

 The fourth column shows the F-value, a quotient between the different half squares and 

the mean error of the analysis. Because this parameter consists of a quotient between 

variances, the most significant effects will be those whose ratio between variances is 

much greater than the unit, while F values close to one imply little difference between 

variances126. It is proved how the strongest effects according to this column, AB and 

BB, match with the reasoned ones from the column of the p statistical parameter. 

 The analysis of variance (ANOVA) was performed at a significance level of 95 %. The 

results of ANOVA are represented in Figure 20.  

 This figure shows the standardized effects of the principal factors and its interactions 

from the most to the less important factor. To evaluate which of them are statistically 

significant, a t-value of 2.0796 is critical (vertical line in Figure 20).  

 

 

 

 

 

 

 

 

Source Sum of squares Half square F p-value 

A:amplitude 60.75 60.75 2.41 0.1486 

B:time 96.3333 96.3333 3.83 0.0763 

AA 110.25 110.25 4.38 0.0604 

AB 480.5 480.5 19.09 0.0011 

BB 961 961 38.17 0.0001 

Total error 276.944 25.1768 
  

Total correlation 1988.5    
Table 9. ANOVA results, 95% confidence value 

Figure 20. Standardized Pareto Diagram for particle size. 
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 ANOVA results also verified once again that AB and BB were the factors that 

influence the most over the particle size. The quadratic relation of time showed a 

negative correlation in the response, which means that the longer the reaction time, the 

bigger the particle size whereas the interaction between amplitude and time showed a 

positive correlation, meaning that this interaction minimize the response value. 

 ANOVA also allows calculating the adjustment of the mathematical model generated 

from the experimental data. For this case, 86.07% of the system total variance was 

explained by the mathematical model generated from factors variance.  

 The present research was done for a unique response (R1), which was to minimize the 

particle size. According to experimental data of this response, the regression equation 

was presented to predict the relationship of response value and the amount of defined 

factors. The fitted model on the particle size of samples can be presented as follows:  

R1 = 54.625 - 1.51875*A + 16.9167*B + 0.013125*AA + 0.19375*AB - 3.875*BB 

 Where R1 is the particle size (nm) of the synthesized MNPs, A and B are the defined 

factors amplitude (%) and time (minutes), respectively; AA and BB are the quadratic 

interactions of amplitude and time, respectively; and AB is the interaction between 

amplitude and time. All these factors can take any value between the low and high 

levels according the experimental matrix (see Tables 4 and 7). 

 The optimum calculated values for amplitude and time from this equation were 50.50% 

and 1 min, respectively. Nevertheless, it must be remembered that there was still a 13.93 

% of the system total variance that the mathematical model could not explain. 

 In this regard, the independent effects presented by amplitude and time were also 

studied. Figure 21 shows the two different profiles where, the particle size is 

represented on the “Y” axis and each of the different tested values for amplitude and 

time on the “X” axis. 

 

 

 

 

 

 

 

 Figure 21. Main effects for particle size. 



 Master Erasmus Mundus Quality in Analytical Laboratories 

 

47 Q.F.B Christian H. Pérez Beltrán                                                                        September 2019 

 

 The right negative parable on Figure 21 shows how one minute of reaction time 

produces smaller particle size than five minutes, which was predicted by the 

mathematical model and fitted well with the experimental data. The left positive parable 

refers to the different amplitude values used in the syntheses.  

 These results matched well to the experimental data previously discussed; higher 

amplitude values resulted in bigger particle sizes and lower values in smaller particle 

sizes. However, it can be observed that before the center of the parable there was a 

possibility to decrease a little bit more the particle size, what apparently does not match 

well with the amplitude value of 50.50 % from the mathematical model.  

 Since results from the previously described paragraph did not seem to match with the 

mathematical model, it was decided to study the interaction among these two main 

factors. Figure 22 represents the estimated response profile obtained for minimum and 

maximum time values, over the range of amplitude values. This figure proves once 

again how 5 minutes reaction time had a continuous and increasing important effect 

over the particle size as amplitude was elevated. On the other hand, high amplitude 

values around 50% for one minute seemed to provide smaller particle sizes and as the 

amplitude was decreasing the particle size was increasing. 

 However, it is noteworthy to observe the intersection point, between amplitude values 

around 35 to 40, which lead us to think that the optimum amplitude value is around this 

range. In this sense, it was decided to perform extra syntheses with an amplitude value 

stablished at 50% according to the suggestion of the mathematical model; and further 

characterized in order to compare particle sizes obtained from syntheses with amplitude 

values of 40 and 50%. The discussion of these results is described in subsections 3.3.1 

and 3.3.2. 

 

 

 

 

 

 

 

 

 

 

Figure 22. Interaction plot among time and amplitude, for particle size. 
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3.3. Characterization of the MNPs 

3.3.1. DLS 

 Several syntheses with different conditions during the optimization of method A were 

performed in order to test whether these conditions influence the particle size of the 

synthesized MNPs. Such MNPs were measured in first place with DLS to have a first 

idea of their particle sizes, using this technique as fast and routine analysis60. From 

Table 8, experiment number 9 (amplitude: 40%, time: 1 minute) gave the smallest 

particle size (33±2nm) with a good relative standard error of 4 percent. Thus, during the 

first contact these conditions seemed to be the best ones; however DOE was suggesting 

amplitude: 50.50% and time: 1 minute. For that reason two more syntheses were 

performed with such conditions. Further characterization was also performed in order to 

compare hydrodynamic radios and be sure about the previous results among particles 

sizes obtained by different amplitudes within 1 minute. Figure 23 shows their different 

particle size distributions by DLS. 

 

 

Figure 23. Different particle size distributions of MNPs with their respective mean size and 

standard deviation; synthesized each of them for 1 minute but with different amplitudes. 
a) Amplitude: 40%; x: 33 ± 2 nm, b) Amplitude: 50%; x: 54 ± 13 nm, c) Amplitude: 60%; x: 36 ± 3 nm. 
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 When comparing the results of the new synthesis with amplitude: 50% versus the 

others previously stablished, it came out that synthesis with amplitude of 40% (a) had a 

better Gaussian distribution than b) and c), and besides that, smaller mean particle size, 

as expected. The new synthesis (b) had the highest mean particle size and highest SD 

(54 ± 13 nm) when it was expected to be at least between them or below synthesis with 

amplitude value of 40% due to DOE suggested that the optimum amplitude value was 

50%; however, it must be remembered that DLS it is just an approximate technique and 

that is why, electron microscopy should be used in most of the studies. 

3.3.2. EM 

 Electron Microscopy is a powerful tool in the study of nanostructured materials; from 

there the importance to analyze by EM the bare MNPs synthesized by method A. 

 DOE explained the 86.07 % of the system total variance during the optimization of the 

synthesis. It suggested that the optimum amplitude value was 50%. Thus, its synthesis 

was properly carried out and firstly characterized by DLS. This result, from the last 

subsection did not match well compared with the others two (40 and 60%). In this 

sense, MNPs synthesized with different amplitudes values of 40, 50 and 60% were 

analyzed through SEM in order to assess which one of them gave the smaller particle 

size and if these values fitted well with the mathematical model.  

          3.3.2.1. SEM results 

 Figure 24 shows the images and histograms with their statistician charts (N: number of 

counted particles, x: average size of the population and SD: standard deviation) of the 

different syntheses previously described. The obtained statistics from the SEM images 

were performed by measuring as many MNPs as possible with Digital Micrograph 

software, in order to have more representative results. In most of the cases more than 

100 counts were done. 

 From Figure 24, it can be observed SEM images (a.1, b.1 and c.1) with very well 

defined and spherical MNPs obtained through co-precipitation method assisted by high 

power ultrasound. However the size distribution and mean particle size is different in all 

of them, being the best one the represented by histogram a.2 whose synthesis was 

performed with an amplitude value of 40%, producing uniform size distribution around 

13 ± 3 nm. The other two histograms (b.2 and c.2) show wider distribution and bigger 

particle size around 14 and 15 ± 3 nm, respectively. In this sense, and clarifying the 

results of DOE and DLS (subsections 3.2 & 3.3.1, respectively) previously discussed 
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regarding the optimum amplitude value, it can be said that by a minimum difference of 

1 nm, the amplitude value that produces smaller particle sizes is the amplitude 40%. In 

this regard, the mathematical model presented in this work (subsection 3.2) is 

considered to properly explain the 86.07 % of the system total variance. However, it 

was decided to keep the amplitude value = 40% for future syntheses due to a more 

uniform size distribution is achievable, less energy is consumed during the synthesis 

and smaller particle sizes are obtained.  
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Figure 24. SEM images of MNPs synthesized at different values of amplitude and 1 min of time:  
a.1) 40% b.1) 50% and c.1) 60%. Corresponding histograms and statistician charts are showed for 
each of them in a.2), b.2) and c.2), respectively. (N: counts, X: average size, SD: standard deviation) 
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 MNPs synthesized under conditions of amplitude: 40% and time: 1 min, were 

functionalized with PDA, ACS, MPA and ISNPA as described in subsection 2.4. Once 

again and in order to make sure they have been functionalized, coated MNPs were 

analyzed by SEM to test if there was an increment in their sizes. Images, histograms and 

statistician charts are shown in Figure 25. 

 It must be remembered from Figure 24, a.2, that the mean particle size obtained for 

bare MNPs is 13 ± 3 nm. Histograms a.2, b.2, c.2 and d.2 from Figure 25 show higher 

mean particle sizes of functionalized MNPs (16, 16, 15 & 14nm, respectively) and 

uniform size distribution. These increments on size are attributed to the correct coating 

process where the corresponding functional groups of each coating agent linked onto the 

surface of the bare MNPs, which also produces a good stability among them. 

SEM images a.1, b.2, c.2 and d.2 from Figure 25 still show well defined and spherical 

MNPs, a bit bigger though, due to their coating layer. 

 The SEM images of MNPs synthesized by method B are shown somewhere else 121. 

Nevertheless, the produced MNPs had diameters of about 15 nm with regular shape. 

Moreover some agglomeration is also shown what can be explained due to the large 

reaction time of the synthesis. Nonetheless, the size of such MNPs is within the range of 

sizes obtained by method A (13 ± 3 nm). 

 In conclusion, it was possible to corroborate by SEM means, what amplitude gave the 

best particle sizes and size distributions (amplitude: 40%). It was also confirmed that the 

coating step or functionalization was performed properly due to an increment of the 

initial size of bare MNPs (from 13 to 16, 16, 15 and 14 ± nm). And finally, both 

synthesis methods are comparable. However method A possesses interesting and useful 

advantages, mainly related to saving time and cost significantly.  
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A) PDA@MNP 

B) ACS@MNP 

C) MPA@MNP 

D) ISNPA@MNP 

1 2 

1 2 

1 2 

1 2 

Figure 25. SEM images of different functionalized MNPs synthesized at amplitude 40% and 1 min of 
time.  A.1)PDA@MNPs, B.1)ACS@MNPs, C.1)MPA@MNPs and D.1)ISNPA@MNPs. Corresponding 
histograms and statistician charts are showed for each of them in A.2), B.2), C.2) and D.2), respectively.  
(N: counts, X: average size, SD: standard deviation). 
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  3.3.2.2. STEM and TEM results 

 Transmission electron microscope Talos F200X TEM equipment was employed for 

taking TEM micrographs at 200 kV using the scanning/transmission (STEM) mode with 

a high-angle annular dark-field (HAADF) detector and the high resolution mode 

(HREM). Scanning-transmission electron microscopy (STEM) characterization was 

performed with FEI Nova NANOSEM 450 (resolution = 1 nm). However, in this case, 

the micrographs were taken at 30 kV, with the sample previously deposited onto a 

copper-carbon grid, and at several modes: high-angle annular dark-field (HAADF), 

bright field (BF) and dark field (DF) modes. For these studies only bare MNPs and 

PDA@MNPs were analyzed by both methodologies due to time issues. Table 10 

contains the data extracted from STEM images in Figure 26 as well as from TEM 

images in Figures 28 and 30. 

Nanostructures Average size 

(nm) 
SD 

(nm) 
Distribution 

range (nm) 
Range with 

more % 
Variance of 

sample 
Bare MNPs (STEM) 10 2 4-13 6-13 (90%) 3.63 
PDA@MNPs (STEM) 11 2 7-18 9-16 (94%) 4.69 
Bare MNPs (TEM) 11 2 7-16 8-15 (94%) 4.23 

PDA@MNPs (TEM) 11 2 6-20 8-16 (94%) 6.05 
Table 10. Comparative table of particle sizes. 

 As it can be seen, in all cases, independently of the measuring technique employed, 

MNPs possess an average size of about 10 ± 2 nm, being more than 90% of the particles 

with a size between 6 and 13 nm. Besides, STEM technique does not provide 

information regarding the covering of MNPs with PDA, since the size obtained for both 

EM techniques is similar to the size obtained for non-covered MNPs. The small 

differences in the distribution range can be attributed to variability during 

measurements. It is noteworthy to mention that the size of MNPs and PDA@MNP 

nanostructures is very difficult to be measured in some cases due to agglomeration of 

the nanoparticles for their magnetic character. 

 Regarding morphology, from SEM and STEM micrographs on Figures 24, 25 and 26, 

MNPs are predominantly spherical.  
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 Regarding TEM analysis, the first analyzed sample was bare MNPs. HREM image on 

Figure 27 (A) shows its planar distance, which was about 2.99 Å. Moreover, the Digital 

Diffraction Patterns (DDP) built from the previous HREM image allowed us to 

corroborate the composition of the magnetic nanoparticles. The distance between planes 

(interplanar spacing) in the reciprocal lattice was about 2.40Å and 3.385Å for planes 

[222] and [220], respectively, as seen in Figure 27 (B), which are very close to the 

typical planes of magnetite phase (Fe3O4)
128. The HAADF image on Figure 28 (A) 

represents a MNPs cluster, whose compositional mapping is reported in same figure 

with letter B. In this map, the green dots represent O atoms, while Fe atoms can be seen 

as red dots. As it can be observed from both images, they can be clearly overlapped, 

corroborating the composition of the MNPs. 

 

Figure 26. STEM images of bare MNPs and PDA@MNPs using DF mode 
A.1) Bare MNPs and B.1)PDA@MNPs. Corresponding histograms and statistician charts are showed for both of 
them in A.2) and B2), respectively. (N: counts, X: average size, SD: standard deviation) 

1 

1 2 

2 
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Concerning EDS analyses, Figure 28 (C), it can be seen that the composition of the 

sample is: C, Cu, O and Fe; the first two associated to the grid, and the last two to the 

sample (Fe3O4 MNPs). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. A) TEM micrograph of MNPs taken at HREM mode, B) Digital Diffraction 
Pattern (DDP) built from A. 

Figure 28. TEM analysis of bare MNPs. A) TEM micrograph of a MNPs cluster taken at 
HAADF mode, B) Compositional mapping from image A and C) EDS spectrum of image 
letter A 
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 PDA@MNPs were the second sample analyzed through TEM. The micrograph at 

HREM mode was taken first, and consequently the DDP was built from the previous 

micrograph. The planar distance measured from the HREM image was about 2.94Å as 

shown in Figure 29 (A),  whilst the interplanar spacing  was about 3.388Å  for plane 

[220] as observed in Figure 29 (B), which is very close to the distance of 2.97Å 

corresponding to the [2 2 0] family planes of face-centered cubic (FCC) crystals from 

magnetite phase (Fe3O4)
128. 

 

 

 

 

 

 

 

 

The HAADF image letter A on Figure 30 represents a MNPs cluster, whose 

compositional mapping is reported in same figure with letter B. In this map, the green 

dots represent O atoms, while Fe atoms can be seen as red dots and C as blue dots. 

Origin of C atoms can be either contamination or PDA cover. As it can be observed 

from both images, they can be clearly overlapped, corroborating the composition of the 

MNPs. The EDS spectrum of this sample represented by letter C on Figure 30, shows 

that the composition of C and O (semi-quantitatively) seems to be higher than for bare 

MNPs, since the peaks corresponding to these two atoms are more intense, suggesting 

that in this case, the excess of C and O atoms belong to the PDA cover surrounding the 

clusters of MNPs. 

 

 

Figure 29. A) TEM micrograph of PDA@MNPs taken at HREM mode,  

B) Digital Diffraction Pattern (DDP) built from A 
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          3.3.3. XRD 

 The crystalline arrangements of the bare and coated MNPs were characterized by XRD. 

All diffractograms showed a similar aspect (number and position of the peaks) as can be 

appreciated in Figure 31. The diffraction peaks of {220}, {311}, {400}, {422}, {511} 

and {440} reflect the MNPs crystal with a cubic inverse spinel structure with oxygen 

forming a face centering closed (fcc) packing and Fe cations occupying interstitial 

tetrahedral and octahedral sites40 as can be observed in Figure 32; and they match well 

with those of the bulk Fe3O4 (Powder Diffraction File (PDF) No. 88-0315, 2002129). 

 Their main reflections are shown in Table 10, proving that all the synthesized particles 

were magnetic and that after the functionalization of the particles, they did not change 

their structure. 

 

 

 

Figure 30. TEM analysis of PDA@MNPs. A) TEM micrograph of a MNPs cluster 
taken at HAADF mode, B) Compositional mapping from image A and C) EDS spectrum 
of image letter A 
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The particle diameter can be estimated using Scherrer equation. The sizes were 

calculated from the most intense reflection (Bragg angle, 2θ ≈ 35.5°) shown in Table 

10.  

 
 
 

Figure 31. Diffractograms of the synthesized and functionalized MNPs, and the pattern card 

Figure 32. Structure of Magnetic Nanoparticles. 
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Table 10. Main reflections of MNPs (Pattern and different samples). 

As observed in Table 11, the particle sizes obtained from Figure 31 through Scherrer 

equation fit well with that obtained from SEM analyses. Sizes are almost the same in all 

of them, except for bare MNPs, which is exactly the same, what could suggest a 

predominantly monocrystalline structure of the synthesized MNPs.  

 It can also be proved until now by XRD means, as well as with SEM, that bare MNPs 

have a similar particle size and were properly functionalized without losing their 

superparamagnetic properties and can be used in the proposed applications. 

 Nevertheless, further characterization with FTIR and TGA were performed to evaluate 

whether the expected ligands of the coating agents could be found or not. 

 

Sample K 
Dimensionless 
Shape factor 

λ 
X-ray 

 wavelength 

(nm) 

β 
FWHM 

(degrees) 

2θ 
Bragg angle 

(degrees) 
 

Particle size 
(nm) 

τ 
(Scherrer 
equation) 

SEM 

Bare MNPs 

0.9 0.15406 

0.65 35.63 13 13 

PDA@MNPs 0.59 35.62 14 16 

ACS@MNPs 0.54 35.46 15 16 

MPA@MNPs 0.65 35.47 14 15 

ISNPA@MNPs 0.64 35.63 13 14 

 

Table 31. Different particle sizes for the synthesized and functionalized MNPs obtained by XRD 

and SEM analyses. 

Sample   h k l 220 311 400 422 511 440 

PDF No. 
 88-0315, 2002. 

2ϴ 

(degrees) 30.1 35.5 43.1 53.5 57.1 62.7 

Bare 

MNPs 

2ϴ 

(degrees) 
30.2 35.6 43.2 53.5 57.2 62.8 

PDA@ 

MNPs 

2ϴ 

(degrees) 
30.2 35.6 43.2 53.6 57.2 62.9 

ACS@ 

MNPs 

2ϴ 

(degrees) 
30.3 35.4 43.1 53.4 57.0 62.6 

MPA@ 

MNPs 

2ϴ 

(degrees) 
30.1 35.5 43.1 53.6 57.1 62.7 

ISNPA@ 
MNPs 

2ϴ 

(degrees) 
30.2 35.6 43.3 53.7 57.3 62.8 
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           3.3.4. FTIR 

 FTIR absorption spectra were performed to investigate the composition of the 

synthesized MNPs, in addition to examine and prove the proper coating of their surfaces 

detecting the functional groups due to ligands. Figure 33 shows the FTIR spectrum of 

bare MNPs where a broad band can be observed in the zone of low frequencies (600 cm-

1) corresponding to the characteristic vibrations of Fe-O (570-60020,121,130). It is 

noteworthy the splitting-up of this peak what is attributed to the symmetry degeneration 

on the octahedral B sites130 and the split of the energy levels of the quantized MNPs131. 

 Moreover, the bands appearing at 3433 and 1629 cm-1 are assigned to the stretching and 

bending vibrations, respectively, of the surface hydroxyl groups and adsorbed water 

molecules121,132. 

 On the other hand Figure 34 represents the FTIR spectra of coated MNPs with the 

different acids, where the objective was to find the characteristic bands of the carboxylic 

groups. In fact, two bands around 1400-1420 and 1580-1600 cm-1 can be observed in all 

spectra, which can be assigned to the specific symmetric and asymmetric stretching 

vibrations of the carboxylate group (COO-)133, respectively. However, in the spectra of 

ACS and MPA there is a small band at 1713 cm-1, which may be attributed to the 

presence of some protonated carboxylic groups (COOH)134, since the pKa´s of ACS are 

3.13, 4.76, and 6.40, and that of MPA is 4.34, and the final pH of the solutions where 

these functionalization were performed were 5.4 and 5.2, respectively. Additionally the 

characteristic broad band of MNPs is kept in the zone of low frequencies, what 

demonstrates that the coating agents were bonded to the surface of the MNPs as the 

esterification occurs between the carboxyl group from acid molecules and the hydroxyl 

groups on the surface of the MNPs, without transforming them. 

 

 

 

 

 

 

Figure 33. IR spectrum of the synthesized bare MNPs. 
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The last two evaluated coating agents were PDA and CS. Their spectrum are presented 

in Figure 35 where the characteristic broad bands of MNPs still appears at 600 cm-1 in 

both the functionalized MNPs. Colored in violet, the PDA@MNPs spectrum shows 

three more bands apart from the band at 600 cm-1. The band at 1047 cm-1 is assigned to 

the ring breathing of ortho-disubstituted benzene rings, while the bands at 1490 and 

1630 cm-1 are considered to be present due to the indoline structure of the 

polydopamine135 as exemplified in Figure 4. On the other hand, colored in orange, the 

CS@MNPs spectrum presents three more bands as well, but attributed to different 

groups. The bands at 3427-3423 and 1633 cm-1 are assigned to the stretching and 

bending vibrations of the surface hydroxyl groups and adsorbed water molecules, 

respectively.121Additionally, the band at 1385 cm-1 was associated to water 

crystallization. According to these results, it was not possible to observe the 

characteristic bands of chitosan which were expected around at 1652 and 1594 cm-1 for 

amides I and II, respectively, as well as at 1080 cm-1 which represents the glycosidic 

linkage121,136. 

 The presence of the characteristic band due to the specific vibrations of Fe-O were 

observed around the 600 cm-1 in all FTIR analyzed samples, as well as the characteristic 

bands for each of the coating agents except for chitosan, concluding and affirming, that 

Figure 34. IR spectra of bare and functionalized MNPs with carboxyl 
groups. (SC@MNPs, ACS@MNPs, MPA@MNPs and ISNPA@MNPs). 
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the obtained nanoparticles were properly synthesized and functionalized with PDA, 

ACS, MPA, ISNPA and SC. 

 

 

 

 

 

 

 

 

         3.3.5. TGA 

 In order to study the thermal stability of the synthesized nanomaterials, 

thermogravimetric analyses were performed and measured by percent mass loss as 

temperature increased as shown in the thermogram from Figure 36. It is observed that 

bare MNPs around 13 ± 3 nm, had a minimum mass loss of 4%, mainly attributed to 

desorption of water molecules within the crystallite structure137. Thus, it was expected 

to have mass losses above 4% in each of the following samples, since particle sizes 

obtained by SEM and XRD analyses were higher for the coated MNPs than the 

uncoated ones; the bigger the particle size the bigger mass loss should be. 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. . IR spectra of bare and functionalized MNPs with 

polydopamine (PDA@MNPs) and chitosan (CS@MNPs) 

Figure 36. Thermograms of bare and functionalized MNPs. PDA, ISNPA, MPA and ACS. 
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 According to Table 12 and Figure 36, ACS@MNPs presented a mass loss of 21% 

what indicates once again that MNPs were functionalized properly with this coating 

agent and fits well with the particle size previously obtained by SEM and XRD studies 

(16 and 15 nm, respectively). The same occurs for MPA@MNPs but in fewer amounts. 

It presented a mass loss about 9% which is also attributed to the covering agent, and as 

expected the mass loss was less than the obtained by ACS@MNPs as well as the 

particle size (SEM 15nm, XRD 14nm).  

 

 

 

 

 

 

Table 12. Weight loss (%) from the different samples obtained by TGA analysis. 

 
 The particle size obtained by SEM once the MNPs were functionalized with ISNPA 

was 14 nm which was the smallest after the coating step; therefore a smaller mass loss 

was expected. In fact, that happened; ISNPA@MNPs only had a mass loss of 6% what 

fits well with the previous result. On the other hand, PDA@MNPs were expected to 

have a similar mass loss to ACS@MNPs since their particle sizes after the 

functionalization was practically the same (see Figure 25 a.2 & b.2); however this did 

not occur, PDA@MNPs only had 6% mass loss what could be attributed to the high 

porosity of such coating agent according to the literature; obtaining large thickness but 

with high porosity138.  

 These mass losses occurred mainly within the temperature range from 100 to 400°C 

where some effects take place such as decomposition of the physisorption (120-300°C) 

and the chemisorption (>440°C) of the coating agent on the surface of the MNPs132.   

 

3.4. Enzymatic inhibition study 

 The first aim of this study was to test if there was any interference among the different 

compounds used in the assays which may overlapped with the main signal. The 

absorbance had to be in a lineal range, and its value below 1. 

 The absorbance spectrums of all the compounds are shown in Figure 37. Either the 

PBS or H2O2 did not influence in the total absorbance.  

MNP % Mass loss 

Bare MNP 4 
PDA-MNP 6 

ISNPA-MNP 6 

MPA-MNP 9 

ACS-MNP 21 
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The concentration of the MNPs was 0.25 mg/mL in order to avoid interferences, 

keeping a significant concentration of enzyme. 

 On the other hand the concentration of ABTS was 0.3 mg/mL to maintain the 

absorbance value within the linearity. Its absorbance spectrum in Figure 37 shows two 

main peaks at 417 and 736 nm. 

 

 

 

 

 

 

 

 

 

 

 

 The second objective of this inhibition enzymatic study was to prove how mercury is 

capable to inhibit the activity of HRP enzyme attached onto the surface of the 

functionalized PDA@MNPs. A possible inhibition scheme is presented by Figure 38. 

 

 

 

 

 

 

 

  To address these experiments, in first place, the ABTS signal (blank) was measured 

after 10 minutes of reaction (ABTS, H2O2 and PDA/HRP@ MNPs). Figure 39 shows 

an intense signal on the absorbance (light blue line) due to an oxidation of ABTS 

molecules. Secondly, mercury (0.060 ppm) was introduced into the system in a different 

solution. After the same ten minutes when mercury was introduced into the reaction 

system, the absorbance of such solution was measured. On Figure 39 it is possible to 

appreciate how the absorbance value of the ABTS signal is decreased.  

Figure 37. Absorbance spectrums of the different components, measured to test 

whether there was interferences among them or not. 

Figure 38. Inhibition of HRP enzyme attached onto the surface of MNPs caused by mercury. 
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 Considering this result, it is evident how mercury affects the reaction, what indicates 

that this harmful metal is a peroxide enzyme inhibitor reducing irreversibly and 

significantly its catalytic activity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 In this sense, different absorbance measurements at 417 nm were carried out according 

to Table 6 to elaborate a calibration curve which can be appreciated in Figure 40.  

 

Table 6. Different solutions and their specific quantities used to perform the calibration curve 

Concentration of each sample was represented on the “x” axis, and the absorbance 

difference with respect to the reference value (blank) on the “y” axis.  

Once the calculations were done, it came out that the correlation coefficient (R2) is 

0.9936 what it means that the lineal adjustment is quite good. The Limit of Detection 

and Quantification (LOD and LOQ) were also calculated with values of 0.004 and 0.013 

ppm, respectively, which are very close to the official limit according to EPA (2ppb = 

0.002 ppm). Hence, this methodology is rather interesting and after improvement, can 

be proposed to determine mercury in natural waters. 

 Blank 0.03 0.04 0.05 0.06 

HgCl2 - 2.9 µL 3.8 µL 4.83 µL 5.80 µL 

PBS 1027.5 µL 1024.6 µL 1023.7 µL 1022.7 µL 1021.7 µL 

PDA/HRP@MNPs 7.5 µL 

ABTS 450 µL 

H2O2 15 µL 

Total Volume 1500 µL 

Figure 39. Reduction of the ABTS signal due to irreversible inhibition of HRP 
enzyme by mercury. 
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3.5.  MNPs and Biomedicine 

 Another important aspect of this research was to apply the various MNPs synthesized 

and functionalized along this project to biomedical studies, in order to assess if they 

were able to detect a specific protein-TRIB2. In this context, MNPs were first coated 

with a specific homemade anti-TRIB2 antibody, analyzed to confirm the antibody 

attachment onto the MNPs and further applied to an immunoprecipitation assay. These 

results are presented in the next subsections. 

3.5.1. Immobilization of the antibody onto the surface of MNPs 

 This part consisted on the attachment of the anti-TRIB2 antibody onto the surface of 

diverse MNPs (described on subsection 2.7) and their further corroboration through 

SDS-PAGE using Commasie brilliant blue. It is remarkable to remember from 

subsections 2.7 and 2.9.3, that all the attachment processes were performed in duplicate, 

one at room temperature and the other one at 4°C. In this context, Figure 41 represents 

the binding evaluation of all the functionalized MNPs, which were coated during this 

project as described on subsection 2.4. The numbers on the left of each gel represent the 

pattern of the blue protein marker (with protein sizes taken from Figure 42). The first 

column refers to the band of the anti-TRIB2 polyclonal antibody. Lane 2 refers to the 

negative control for the MNPs where nothing should be observed due to the inexistence 

of antibody. 

Figure 40. Calibration curve created from the enzymatic inhibition study at 

wavelength 417nm. 

y = 6.2332x - 0.1159 

R² = 0.9936 
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  Lane 3 and 4 represent the band of the polyclonal antibody attached at 

different temperature over different coated MNPs. Analyzing lane 1 

from  Figure 41 we can observe that the antibody has an intense band 

between 72 and 60 kDa. Thus, bands on lanes 3 and 4 which are at the 

same level were attributed to the antibody. Nonetheless, bands on lane 

three are somehow more intense than those on lane four. This same 

behavior was present in all of the evaluations as shown in the same 

Figure 41. 

 Figure 41 (F), shows binding efficiency of TRIB2 antibody to bare 

MNPs and SC@MNPs. This experiment was performed in order to 

assess whether the homemade anti-TRIB2 antibodies were able or not 

to attach onto the surface of uncoated MNPs. It was found that the antibody could also 

attach onto the surface of MNPs with any sort of coating agent. This might be due to the 

hydroxyl groups negatively charged present onto the surface of MNPs which interacts 

with a positive area of the antibody producing the union. However, it was also found 

that the amount of antibody attached onto the coated MNPs, in this case SC@MNPs, 

was more intense than the amount present onto the uncoated ones. Thus, the coating 

agents can significantly increase the attachment of the antibody to the MNPs. 

Figure 41. SDS-PAGE with Coomassie brilliant blue for the evaluation of the antibody attachment over 
different functionalized MNPs. Different coated MNPs were used to bind anti-TRIB2 antibody onto their surfaces. 
(A) Polydopamine@MNPs, (B) Citric acid@MNPs, (C) Mercaptopropionic acid@MNPs, (D) Isonipecotic 
acid@MNPs, (E) Chitosan@MNPs and (F) Sodium cirate@MNPs. Lane 1 refers to the polyclonal TRIB2 antibody. 
Lane 2 refers to the negative control in which bare MNPs were used. Lane 3 and 4 from gels A to E refer to MNPs 
conjugated with TRIB2 antibody. The linking process from lane 3 was carried out at room temperature and the one 
from lane 4 at 4°C. Thus, bands appearing on these two columns of each gel are attributed to the anti-TRIB2 antibody 
attached onto the MNPs surface. Lane 2 from gel F refers to bare MNPs employed to make the linking process whilst 
MNPs employed on column number five were SC@MNPs. Both of them presented antibody attachment at room 
temperature. Numbers on the left of each gel make reference to the blue protein marker. 

Figure 42. Blue 
protein marker 
pattern. 
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 With these results, it was found that this specific homemade TRIB2 polyclonal 

antibody is stable and binds better to coated MNPs at room temperature than to 

uncoated MNPs at 4°C. For this reason, the following immunoprecipitation experiments 

were performed with TRIB2-MNPs obtained at room temperature. 

            3.5.2. Immunoprecipitation reactions results 

 After certifying the antibody was present onto the surface of the different MNPs, three 

immunoassays were performed. The first one was employing SC/Ab@MNPs and a 

protein solution 4μg/mL, the second and third ones were using PDA/Ab@MNPs and 

CS/Ab@MNPs with protein solutions 2μg/mL each. The reason for using these 

different MNPs and different protein concentrations was to compare the behavior of the 

three different coating agents which had different composition and to assess if the 

MNPs could still detect the suppressor protein by decreasing the initial concentration 

50%. The results of the immunoassays are shown in Fig. 43.  

 

Figure 43. IP-WB assays results for three independent immunoprecipitation experiments 

employing different coated MNPs. 
A, B and C refer to three independent immunoassays. Sodium citrate/Antibody coated MNPs were used 
in A. Polydopamine/Antibody coated MNPs were used in B. Chitosan/Antibody coated MNPs were used 
in C.  Two different cell lines were tested (U2OS parental and TRIB2-GFP). Three primary antibodies 
(GFP, Actin and GAPDH) and fractions were evaluated. “IP” fraction makes reference to 
immunoprecipitation, “FT” to flow through and “WE” to whole extract. The signal of these fractions was 
at 72kDa for GFP antibody whilst the signal of Actin and GAPDH were at 45 and 36kDa, respectively. 
IPs A and B expressed the target protein while IP C did not.  The WE results confirmed the high 
selectivity presented by the homemade antibody. 
. 

 The previous IP-WB confirmed the identity of the IP bands corresponding to the 

antibody-antigen complex components. The tested samples by IP-WB were two protein 

extracts from two isogenic cell lines; an osteosarcoma cell line which expressed the 

target protein (TRIB2-GFP) and the parental cell line which did not overexpressed the 

target protein.   In addition to the immunoprecipitated fraction, we also collected two 

more fractions for each of the three IPs. The flow-though (FT) and the whole cell lysate 

extract (WE).  
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We used the GFP antibody as an alternative method to detect TRIB2 presence, since 

TRIB2 is fused to GFP in this cell line. Actin and GAPDH proteins refer to 

housekeeping genes which protein levels are stably expressed. The expression analysis 

of these proteins allowed us to confirm that the same amount of protein is loaded in 

each lane and variations on the binding affinity of TRIB2 to the different MNPs are 

significant. 

 In this context, Figure 43 displays the outcomes for the three IPs, FT and WE. IP 

coded with letter C did not show the corresponding band at 72 kDa attributed to the 

presence of TRIB2 antigen, which might be explained as a matter of human error during 

the managing of the Western Blot. However, on IPs A and B it is possible to observe the 

expected band at 72 kDa. In fact, we can appreciate how the band of the IP A is a bit 

more intense than the one from the IP B. This is perfectly understandable due to the 

different concentration in the initial protein solution. In the same regard, it is also 

noticeable how the band which is showed up on FT from IP A is less intense than the 

one from the IP fraction, what lead us to think that most of the TRIB2 was detected by 

SC/Ab@MNPs and the excess was removed, which is the one that appears on the FT. A 

similar thing occurred in IP B; nonetheless the FT section from this experiment did not 

present the band which is attributable to a complete TRIB2 detection by 

PDA/Ab@MNPs that is possibly explained by virtue of having less concentration of 

this suppressor protein and more antibodies to react with. The last evaluated fraction is 

the WE. Three primary antibodies were employed, GFP, actin and GAPDH which 

interacted with their specific proteins from the protein extract. Using GFP antibodies we 

demonstrated that TRIB2 reacted with our polyclonal antibodies, due to these two 

proteins were linked. On the other hand, with the use of actin and GAPDH we showed 

that both protein extracts had the same molecules and that our antibodies were able to 

differentiate and react selectively with TRIB2 no matter the content of the extract. With 

this final evaluation it was possible to demonstrate how the antibody attached on the 

coated MNPs was able to detect in a selective and specific manner with high efficiency 

the target protein –TRIB2. 
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4. Conclusions 

 

  During this project, conventional co-precipitation method was assisted by high 

power ultrasound, optimizing the reaction time that, to the best of our 

knowledge, this was the first time in which MNPs are synthesized within one 

single minute with great properties and with very low energy requirements 

(≈2840J, 47.33W, and 0.87W/cm3). 

 
  The design of experiment permitted us to find out the best conditions 

(amplitude 40%, time: 1 min.) that affect the size and the size distribution of the 

nanoparticles. The presence of interactions between factors has also been shown. 

 
  It was also possible to obtain very uniform magnetite particle sizes through this 

high power ultrasound-based approach (10 ± 2 nm). 

 
  Proper functionalization of the MNPs has been successfully carried out using 

different molecules: polydopamine, citric acid, 3-mercaptopropionic acid, 

isonipecotic acid, and sodium citrate. 

 
  Several characterization techniques were employed, such as DLS, SEM, TEM, 

STEM, TGA, DRX and FTIR which confirmed the attainment of a novel 

synthesis process producing excellent MNPs. 

 
  Regarding the analytical application of this novel HRP-functionalized MNPs, it 

is noteworthy to mention that despite of time issues, it was possible to find a 

linear relationship between inhibitor concentration and absorbance that allowed 

showing a decrease in the enzyme catalytic activity in the presence of the 

analyte. It was shown that HRP is irreversibly inhibited by mercury being able to 

have some promising results aligned to those from EPA. 

 
 The immunoprecipitation assays allowed us to confirm the efficacy of the MNPs 

binding to TRIB2 antibody and validate their functionality. From the three 

coated MNPs (SC,PDA,CS@MNPs) two of them (SC,PDA@MNPs) efficiently 

immunoprecipitated TRIB2 in our biological system. 
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  We have been successful on imunoprecipitating TRIB2 in cell lines that 

exogenously overexpress TRIB2, which means that TRIB2 protein levels are far 

more abundant than in normal biological setting.  

 

 Some future studies, which could be interesting to develop, might be the 

standardization of the proposed mercury detection method by the irreversible inhibition 

of HRP enzyme. It would be a good idea to continue these inhibition studies by the 

same element but with the other coated MNPs (ACS, MPA and ISNPA), since time was 

not enough for those experiments. In the same direction, a different analyte could be 

assessed with the different MNPs or a different enzyme could also be used for the 

irreversible inhibition. Moreover, further characterization with a vibrating-sample 

magnetometer (VSM) and through Mösbouer spectroscopy could be done in order to 

gather even more information about our MNPs.  

 It would be also of great interest to continue testing the efficacy of these MNPs in the 

endogenous TRIB2 protein. Additionally, these set of experiments have been performed 

with high concentration of TRIB2 antibody. It would be very important to titrate the 

amount of TRIB2 antibody needed as well as the amount of MNPs used in each IP 

experiment to reduce costs associated with this procedure. With this approach we would 

find the minimum detectable concentration of TRIB2 that the MNPs can react with. 
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 Magnetic nanoparticles (MNPs) have been widely studied for a very long time, leading 
to know their importance and potential applications in many fields due to their special 
properties such as superparamagnetic, high field irreversibility, high saturation field, 
extra anisotropy contributions or shifted loops after field cooling, biocompatibility, long 
durability, low toxicity and cost [1-2]. 
 All these properties have promoted their use in magnetic recording media, ferrofluids, 
magnetic resonance imaging, heavy metals ions removal and biomedicine (specifically 
in the hyperthermic treatment of malignant cells, site-specific drug delivery and 
separation of proteins and cell population [3]). Among the techniques employed for the 
synthesis of magnetite the most common are chemical vapor deposition, thermal 
oxidation, polyol process, iron salts co-precipitation, hydrothermal and solvothermal 
methods [4-5]. Co-precipitation is the most usual way for magnetite production due to 
its simplicity, low cost, high yield and efficiency. However, it presents some 
difficulties, such as the particle size control, broad size distribution, high time 
consuming and the non-unique nanoparticle phases obtained, which can be ferrihydrite, 
akagenite (FeOOH), Fe(OH), hematite or maghemite. 
 On the other hand, the use of high power ultrasound has gained much attraction for 
many applications [6], especially in the sonochemical syntheses. Through using this 
green approach, a more uniform size distribution can be achieved, as well as, higher 
surface area and improved phase purity. 
 Therefore, this study is focused on the synthesis via co-precipitation method of 
magnetic nanoparticles by using a high power sonochemical approach, where MNPs of 
about 13 nm are obtained within one minute with all its enhanced characteristics. 
 Experimental design has been used in order to optimize the preparation process from 
hours to just one single minute. The composition, structure, size and morphology 
analyses of these MNPs have been carried out through X-ray diffraction, Fourier 
transform infrared spectroscopy, thermogravimetric analysis and scanning electron 
microscopy showing the correct achievement of the desired MNPs. Moreover, different 
coating agents have been tested in order to functionalize MNPs surface. The attachment 
of the enzyme horse radish peroxidase and of the antibody against a suppressor protein 
is tested and evaluated to detect mercury on water and to detect TRIB2. 
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