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Abstract
The analysis of highway accident data is largely dominated by traditional
statistical methods (standard regression-based approaches), advanced statistical
methods (such as models that account for unobserved heterogeneity), and data-
driven methods (artificial intelligence, neural networks, machine learning, and
so on). These methods have been applied mostly using data from observed
crashes, but this can create a problem in uncovering causality since individuals
that are inherently riskier than the population as a whole may be over-
represented in the data. In addition, when and where individuals choose to
drive could affect data analyses that use real-time data since the population of
observed drivers could change over time. This issue, the nature of the data, and
the implementation target of the analysis imply that analysts must often
tradeoff the predictive capability of the resulting analysis and its ability to
uncover the underlying causal nature of crash-contributing factors. The
selection of the data-analysis method is often made without full consideration
of this tradeoff, even though there are potentially important implications for
the development of safety countermeasures and policies. This paper provides a
discussion of the issues involved in this tradeoff with regard to specific
methodological alternatives and presents researchers with a better
understanding of the trade-offs often being inherently made in their analysis.
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1. Introduction
The implicit assumption in traditional statistical analyses is that an
appropriately estimated model will both uncover causal effects and have the
highest possible prediction accuracy. But the recent development and
application of data-driven methods, as well as issues of causality in traditional
statistical modeling, suggest that safety analysts must often, even if not always,
make a trade-off between prediction accuracy and uncovering underlying
causality. That is, models that predict well may not be the best at uncovering
causality, and models that are good at uncovering causality may not be the best
for practical prediction purposes.

There are four general methodological approaches that are potentially suitable
for the analysis of transportation safety data: traditional statistical models,
endogeneity/heterogeneity models, data driven methods, and causal inference
models.  Each of these models have an implicit trade-off between practical
prediction accuracy and their ability to uncover underlying causality.
Traditional statistical models, such as those in the Highway Safety Manual
(AASHTO, 2010), use conventional statistical methods with limited data (data
that is readily available to most safety practitioners) to predict the effect of
various safety improvements on accident risk. The traditional literature (such
as that supporting the Highway Safety Manual) claims predictive capabilities
and causal explanations, but generally lacks fundamental support for these
claims via assessments of parameter bias (for example, potential biases in
parameter estimates and estimates of standard errors). Predictive capabilities of
traditional highway-safety models are typically based on assessment of
aggregate counts (total count of accidents for example), and there is scant
support for true tests of predictability (such as tracking observational
predictions against observed counts several years ahead of the estimated
models). In fact, claims of predictive ability in many traditional models are
limited in credibility, in large part due to temporal instability in parameters
(Mannering, 2018). Similarly, claims about causal ability in the traditional safety
literature are limited because the true range of influential factors on accident
likelihoods is unknown. Missing data problems, problems of consistency of
measurement, and variation in unobserved effects due to economic, socio-
demographic and vehicle characteristics amplify the potential bias in
estimation.

To address some of the limitations above, endogeneity models (see Bhat et al.,
2014) and heterogeneity models (see Mannering et al., 2016 for a thorough
review) have been developed to extend traditional safety models by using
advanced statistical and econometric methods. Endogeneity models account
for the potential endogeneity of a safety-related variable when attempting to
extract the “true” causal effect of the variable on a primary safety outcome
variable of interest, after accommodating “spurious” associative effects or
correlation effects between the variables. Unobserved heterogeneity models
control for unobserved factors that may influence the likelihood and resulting
injury severities in accidents. Endogeneity models and heterogeneity models
are stylized, in that they are based on relatively limited datasets where the range
of the potential endogenous and explanatory variables is much larger than
widely available transportation highway data. A richer set of variables can
potentially improve predictive capability and understanding of causality;
however, the increased model complexity creates an additional burden on
model transferability and predictive validation. Model complexity also poses
challenges in estimation due to computational constraints. Estimation of
highly complex endogeneity models and heterogeneity models involves
simulation-based methods or analytic approximation methods due to the
numerical integration needed to capture unobserved effects. While there has
been substantial progress in such methods in the recent past (see, for example,
Bhat, 2018), the required estimation techniques can still present dimensionality
challenges for large accident datasets.

Data-driven methods include a wide range of techniques including those
relating to data mining, artificial intelligence, machine learning, neural
networks, support vector machines, and others. Such methods have the
potential to handle extremely large amounts of data and provide a high level of
prediction accuracy. On the downside, such methods may not necessarily
provide insights into underlying causality (truly understanding the causal
effects of specific factors on accident likelihoods and their resulting injury
probabilities).

Finally, causal-inference models explicitly recognize that accidents are only
observed for a portion of the driving population and that this can lead to
erroneous interpretations of findings (more on this below). Causal-inference
models have rarely been applied in the accident analysis literature, but such
approaches in other fields base these models on time series data to identify
causal effects. However, causal-inference models have weak predictive
capabilities because, among other reasons, they typically are not based on
individual-accident level data and thus address a limited number of
explanatory variables. Besides, the time-series nature of these models, while
supposedly providing more basis for inferring causality, raises additional issues
about the possible presence of uncontrolled factors that change during the
intervening periods of time thereby potentially tainting the presence and
estimated extent of causation.

Fig. 1 presents a graphic of the trade-offs associated with these methods
regarding predictive capability, causal inference capability and big data
suitability (the ability of the methods to address problems that involve large
amounts of data) The choice of one method over another often involves several
important considerations that go beyond a simple tradeoff between prediction
and causality. Each of these four methods (data-driven versus causal versus
traditional versus endogeneity/heterogeneity models) involve different levels of
data. In addition, the application of the model (modeling purpose) needs to be
considered as well. For example, endogeneity models and heterogeneity
models would seem to be superior to traditional models in both prediction and
causality; however these models typically use highly detailed datasets, and the
models are complex in their application. In contrast, traditional safety models
have relatively modest data requirements that are easy to apply, but their utility
comes at the expense of a loss of predictive capability and lack of insight into
causal influences (with the added risk of biased inference).
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Fig. 1. Current modeling trade-offs between relative big-data suitability, predictive
capability and causality/inference capability.

With extremely large datasets (big data) such as those that might be available in
naturalistic driving studies, traditional models, advanced
endogeneity/heterogeneity models, and causal effect models can be challenging
to estimate, often making data-driven methods the preferred approach. In fact,
data-driven methods can cover a wide range of data sizes, but, with smaller data
sizes, the advantages of other methods to uncover causality tend to be preferred
among analysts. Also, data driven methods may not be adequately
complemented with domain expertise, resulting in inference driven primarily
by statistical reasoning. The advent of artificial intelligence (AI) methods and
the explosive growth of AI potentially opens the door for introducing some
level of “automated” domain expertise to fine-tune data driven models that are
developed strictly by statistical reasoning. But, at the end, human judgement
and domain expertise are still likely to be needed in some form, especially in
the context of driving the formulation of models of causal inference, since
directional relationships between variables are formulated based on apriori
knowledge of influential factors. As an example, in big data problems studying
the impact of factors affecting fatality likelihoods, sample size is a significant
issue. Fatalities on average occur at the rate of roughly 0.6 percent of all
reported accidents. To extract meaningful policy, very large amounts of driving
data are required to develop a sample size of non-traditional variables (for
example, relating to impaired driving, access to taverns, breweries and pubs
along commuter routes and proximity of these locations to drivers’ residences).
In a purely data-driven model, this insight will not be extracted because the
database may not initially contain distances from breweries, taverns and pubs
to commuter routes. If one were to estimate a model of fatality likelihoods,
domain expertise helps fine-tune a data driven model to include distances and
therefore measures of “access” to undesirable effects, since the likelihood of
alcohol-impaired driving has a well-known causal effect on fatalities. There is
also anecdotal and published evidence in the literature that correlates higher
fatality rates with robust economic outlook. The contextual awareness value of
domain expertise is therefore lacking in models that are developed on pure
statistical reasoning. Therefore, it can be reasoned that big data models (and
data driven models in general) could potentially suffer from a model-based
data-definition disconnect which can cause issues relating to the identification
of relevant variables and potential “missing data” issues. While some of this
disconnect may be addressed by automated and trained AI systems, human
involvement by way of domain expertise and judgment will still remain a
requirement.

The discussion above raises an important issue. If the goal of big data
modeling is to provide added insight, then the burden of proof lies in the
quality of statistical information extracted from those models. In this sense,
big-data modeling is not merely an exercise in techniques that accommodate
large amounts of data or simply draw associations among variables, but the
predominant burden of proof lies in the ability of these models to provide
higher-quality inference (“big” inference). The example of drunk-driving
fatalities described above is one example of big inference that can be limited
without a basic understanding of the sources of unobserved heterogeneity.
Another example of limited inference from big data relates to not adequately
making efforts to disentangle causation from correlation, leading to a
comingling of the two that can lead to misinformed policy actions (more on
this later). These issues can be described as limited big inference in the absence
of model-based data definitions using domain expertise. On the other hand,
big-data inference can bring in variables that can serve as a source of
heterogeneity due to scale. For example, if one were to estimate driving risk
models based on naturalistic driving datasets, several non-traditional fine-
resolution variables can become available for modeling, such as lane offsetting
variables or vehicle kinematic measures such as pitch, yaw and roll.

Fig. 1 suggests that the future of big data applications in traffic safety modeling
lies at the intersection of strong domain knowledge and quality of extraction of
statistical information, and this intersection is heavily influenced by methods
that attempt to uncover, to the extent possible, causal effects (after controlling
for sources of correlation) and unobserved heterogeneity. Therefore, as a
baseline for further evaluation of big data and data driven models, endogeneity
models and heterogeneity models can potentially serve as useful tools for both
model selection and model definition purposes.

Given the above discussion, with data size and application limitations, what are
the potential consequences of trading off predictive capability to understand
causality and what factors will compromise our understanding of causality to
get better predictive capabilities? Various aspects of this tradeoff are discussed
in the following sections, after first discussing causality considerations in safety
modeling. In the rest of this paper, we do not discuss causal inference models
because, as already indicated, these models have rarely been applied in the
accident analysis literature and are not typically based on individual-accident
level data.

2. Causality versus other explanations in relationships
The difference between causality and other possible relationship structures
involving variables will always be important from a policy action perspective
and from the behavioral perspective of improving safety. This is an issue that
has been long discussed and remains an important consideration as we enter a
“big data” landscape. One possible reason for causality being incorrectly
inferred may simply be the fact that the sample being used in safety analysis is
itself not representative of the larger population, and thus a relationship
estimated for a specific sample may not reflect “true” causal relationships in
the larger population. For example, the use of observed accidents, and
particularly data conditioned on an accident having occurred, can be
potentially problematic for both accident occurrence likelihood and injury-
severity statistical modeling because individuals involved in accidents may not
be a random sample of the population.  That is, the fact that less-safe drivers
will be over-represented could potentially present a transference problem of
the relationship to the population at large. Further, less-safe drivers may be
particularly over-represented in specific types of accidents. To see the problem
more clearly, consider a statistical model of the resulting accident-injury
severities on a mountain pass. A study of this problem may conclude that high
snow accumulations increase the resulting injury-severities in crashes. Injury
severity will be known only after a crash has occurred, so it is conditional on a
crash having occurred. However, due to the substantial increase in risk
involved in driving in snow-related conditions, some drivers may choose to
take other modes of travel or avoid traveling adverse weather. Thus, it is
possible that the individuals who continue to drive over the mountain pass in
adverse conditions are self-selected drivers with risk profiles significantly
different from the driving population as a whole. This makes the interpretation
of the high-snow-accumulation variable challenging. The variable’s estimated
parameter could be picking up the actual effect of the snow or merely picking
up the unique risk characteristics of the drivers who continue to drive in snowy
conditions. It is also possible this effect could be much more subtle than this
extreme weather case. For example, safe drivers may avoid dangerous roadway
sections or dangerous intersections with specific types of traffic controls by
choosing alternate routes than drivers with less of a concern for safety (see, for
example, Bhat et al., 2014). In such situations, estimating models on observed
crash data will tend to overstate the risk of dangerous roadway segments and
intersections because these roadways tend to have drivers with higher risk than
the overall driving population. Some studies have considered only severe
accidents (such as fatalities) thereby potentially compounding the problem
because the sample is further restricted making less-safe drivers even more
over-represented in the sample.

Another possible, and broader, reason why causality is co-mingled with other
associative effects is that many of the explanatory variables used in accident-
likelihood and injury-severity models could be viewed as endogenous, causing
inconsistent parameter estimates and compromising the interpretation of the
statistically estimated parameters (Washington et al., 2011, Abay et al., 2013).
For example, seat belt use may be endogenous to injury severity. In other
words, individuals who do not wear seat belts may be overrepresented in severe
injuries (conditional on an accident), but this may be because those who do not
wear seat belts are intrinsically aggressive drivers and this aggressive driving
itself may contribute to severe injuries. Thus, one may have to consider seat
belt use as an endogenous variable to determine the true causal engineering
benefit of seat belt use in preventing serious injuries conditional on an
accident. Importantly, such considerations are not merely esoteric scholarly
pursuits, but are very germane to assessing the potential effectiveness of
various countermeasures and selecting priority measures. In the next few
sections, we discuss the ability to investigate causality effects from different
types of data/methods.

3. Causality and the nature of traditional accident data
Of all the many safety-related studies that have been undertaken over the years,
those that are based on police-reported accident data have formed the primary
basis for developing statistical models to help guide specific safety-related
highway and traffic-control improvements. Over the years, the analyses of these
data have become increasingly sophisticated, evolving from simplistic
regression analyses to highly sophisticated endogeneity/heterogeneity
methods. Although the front-line statistical methods used to analyze these data
are the mainstay of academic journals, from an application perspective, the
culmination of this research is embodied in the Highway Safety Manual
(AASHTO, 2010). The Highway Safety Manual approach is based on police-
reported vehicle accident data, and has used that empirical basis to provide a
practical and readily accessible way of quantifying the likelihood of safety-
related impacts of specific highway improvements.

With regard to the likelihood of accidents, using police-reported accident data,
studies commonly seek to model the number of accidents occurring on a
highway entity, such as a segment of highway or intersection, over some
specified time period using count-data or other statistical methods (Lord and
Mannering, 2010). Explanatory variables may include roadway characteristics
such as traffic volume, lane widths, pavement friction, highway grade and
curvature, and so on. Regarding the injury severity of accidents (occupant
injury levels such as no injury, possible injury, evident injury, disabling injury,
and fatality), discrete-outcome statistical methods are typically applied
(Savolainen et al., 2011). Information on injury severity is available only after an
accident has occurred (thus conditioned on an accident having occurred).
Using data conditioned on the fact that an accident has occurred, the
explanatory variables can be expanded from the highway-segment data used in
the accident-likelihood models to include accident-specific variables such as
seat-belt use, blood-alcohol level of drivers, weather conditions at the time of
the accident, and so on.

As discussed earlier, the use of observed accidents, and particularly data
conditioned on an accident having occurred, can be potentially problematic.
For sure, the possibility of such selectivity would make the interpretation of the
parameters difficult, specifically for weather-related parameters and more so
for some modes of highway travel (for example, motorcyclists are particularly
likely to self-select in rain and snow as discussed in Mannering, 2018). More
importantly, for forecasting with models estimated with traditional police data
and even other real-time data, anything that would shift the self-selectivity of
road users in adverse weather or on unsafe routes would result in inaccurate
predictions. As examples of this self-selectivity shift, newer vehicles with
advanced safety features may make drivers more confident in adverse weather
conditions, thus changing the mix of drivers in such conditions. Regarding
route choice, safe drivers may seek to avoid dangerous roadway segments and
intersections, but as congestion increases, they may alter their travel routes as
they trade off time and safety and this, in turn, could change the mix of drivers
on specific roadway segments.

Methods to attempt to control for self-selectivity and related considerations are
discussed in the next section. Data requirements and econometric complexities
to implement these procedures for accident data analysis can be formidable
obstacles. To circumvent data barriers, many economists have sought more
simplistic causal-inference approaches to address identification issues and
uncover causality, particularly with the application of ordinary least-squares
regressions to choice applications (Dale and Krueger, 2002). This is generally
done by using control variables such as indicator variables and fixed effects,
with the intent of achieving the equivalent of a randomized trial where self-
selectivity and endogeneity can be strictly eliminated (Angrist and Pischke,
2009, Angrist and Pischke, 2015, Angrist and Pischke, 2017). However, the
generalizability of the fixed-effects results can be questionable, and even in a
truly randomized trial likely temporal shifts in observed behavior can make
prediction problematic with ongoing temporal variations inducing unknown
errors in fixed effects (Mannering, 2018). In the relatively complex non-linear
models of the likelihood and severity of highway crashes that include many
explanatory variables relating to roadway characteristics, traffic conditions,
weather conditions, and vehicle and driver characteristics, identification of
control variables and their incorporation into the model is much more
challenging than the more aggregated-data methods applied by economists to
address this problem. In addition, predictive application can be quite limited
because the variables used as controls may also be of interest for predictive
purposes. It is important to note that even analyses that consider the likelihood
of an accident, such as accident frequency models, that typically include
roadway characteristics and do not include any driver characteristics, are still
potentially affected by selectivity. For example, safe drivers may choose to avoid
roads with certain characteristics so the observed accidents on specific roads
may not be drawn for a random sample of the driving population. Thus, an
estimated parameter for a dangerous curve could theoretically be over stated
since high-risk (more accident-likely) drivers may be overrepresented on that
curve.

The potential bias that selectivity introduces and the effect it may have on
prediction is not fully understood, though evidence of the potential biases due
to ignoring self-selection has been presented in Shin and Shankar (2013) in an
analysis of accident severity likelihoods. But, as pointed out in Mannering
(2018), the issue is likely to be very context dependent. For instance, because
everyone has a chance of being involved in an accident (even the safest drivers),
it may be that an accident data sample collected just so happens to include the
full spectrum of individuals from the safest to the least safe. In addition, when
considering the injury severities in an accident, it is not clear whether the
drivers observed in accidents will have more severe injuries, less severe
injuries, or about the same injuries relative to drivers not observed in
accidents. For example, drivers frequently appearing in accident data bases may
get involved in more accidents of lower-injury severity than those less
frequently involved in accidents. It is also important to note that in the cases
just mentioned, the resulting injury severities are fundamentally different from
traditional endogeneity applications that often have an outcome determined by
a choice. In the case of vehicle accidents, once various driver actions are taken,
the resulting injury severity is determined by physics where forces are
transferred through the vehicle to its occupants (though even the physics
involved in the crash are influenced by underlying risk profiles of the driver
including vehicle choice and other factors). However, endogeneity of variables
in accident data, where the self-selection is based on a choice (such as wearing
seat belts or not, or whether a motorist decides to drive at all or not in severe
weather, or where traffic engineers choose to place specific types of traffic
control devices, or where engineers decide to place additional lighting), is likely
to be a more serious issue, as has been demonstrated by Eluru and Bhat, 2007,
Oh and Shankar, 2011, and Bhat et al. (2014).

What is clear, is that selectivity of any form (based on human choice or
otherwise) should certainly be considered in the interpretation of any model
results that use traditional accident data (data that only includes accident-
involved individuals), and even naturalistic driving and observed traffic data
since selectivity on safe and less-safe routes could be a factor.

4. Endogeneity, unobserved heterogeneity and causality
As just discussed, traditional statistical approaches to the analysis of highway
safety data (based on observed accident data) have struggled with a variety of
statistical issues, most notably endogeneity bias and omitted variables bias,
because traditional statistical methods are often estimated with limited data for
practical reasons. Despite these limitations, traditional models have the
advantage of being accessible and easily applicable, and they have had a
measurable real-world impact on highway safety practice. Nonetheless,
traditional methods can be substantially enhanced in their value by
recognizing elements of endogeneity and unobserved heterogeneity.

Endogeneity considerations (including those involving self-selectivity as
discussed earlier) may be handled in one of two broad ways (for more details,
please see Bhat and Eluru, 2009). One approach is based off Heckman’s seminal
work in the 1970s (Heckman, 1979), and has been extended to numerous
transportation applications that have been undertaken over the years (for
reviews see Mannering and Hensher, 1987, Washington et al., 2011). In
particular, using variations of Heckman-style methods, transportation
applications have considered a number of issues in this regard, such as
selectivity bias corrections for vehicle usage models (Mannering and Winston,
1985, Mannering, 1986a, Mannering, 1986b, Oh and Shankar, 2011, Shin and
Shankar, 2013), which are needed because, for example, individuals that own
newer vehicles (which are capable of being driven more with fewer repairs) are
a non-random, self-selected sample of higher-use vehicle owners. There has
also been work with selectivity-bias corrections for average speed by route
(Mannering et al., 1990), with the idea being that drivers attracted to specific
routes are a non-random sample (for example, faster drivers may be more likely
to take freeways and slower drivers may be more likely to take arterials). The
basis of the Heckman-style approach is to start with a probabilistic model that
captures the selectivity process and then to incorporate the probability of the
outcomes under consideration to correct the bias in the model that estimates
the magnitude of the outcome. In the case of safety research, this would
presumably start with a model that considered individuals’ overall probability
of being accident involved (or, following the weather-related example earlier,
the probability of a motorist driving in adverse weather), and then use this to
correct statistical models to the overall frequency and severity of crashes as
gathered from observed accidents. However, classic Heckman-style selectivity
corrections are manageable because the equation being corrected is a simple
linear model with a continuous variable (vehicle usage in miles driven per year,
average speed in miles per hour, etc.). In the analysis of accident data, the
likelihood of an accident and its resulting injury severities are typically
modeled using non-linear count-data and discrete outcome models (Lord and
Mannering, 2010, Savolainen et al., 2011), which makes a Heckman-style
selectivity correction (using control function approaches) an econometric
challenge, particularly if unobserved heterogeneity and other more advanced
econometrics are involved in the model as well (Mannering and Bhat, 2014,
Mannering et al., 2016).

Another approach to handling endogeneity is inspired by the work of
Heckman, 1974, Lee, 1983. Rather than use a two-step Heckman type approach,
this second approach models the potential endogenous variable jointly with
the outcome of interest. While this second approach has been used in a general
transportation context for a long time (see Hamed and Mannering, 1993, Bhat,
1996, Bhat, 1998), the approach has only been relatively more recently applied
to models in the safety literature (Eluru and Bhat, 2007, Bhat and Eluru, 2009,
Oh and Shankar, 2011, Spissu et al., 2009, Pinjari et al., 2009, Abay et al., 2013,
Bhat et al., 2014). Thus, for example, by modeling seat belt use as well as injury
severity in a joint model system (allowing for correlation in the error terms of
the underlying equations determining these discrete outcomes, say because of
aggressive/risky driving behavior), one can estimate the remaining “true” causal
effect of seat belt use on injury severity (addressing also the situation that
aggressive drivers are likely to be over-represented in accident-only data).
Importantly, through the use of copula methods employed in some of the
more recent applications listed earlier of the joint approach, a variety of
parametric distributions may be used to characterize the nature of the joint
distribution of the errors in the joint system. While the Heckman-type control
function approach is generally considered to be more robust to miss-
specification of the error distributions, this issue is at least assuaged in the
joint model system by testing different distributions forms through copulas
and selecting the best fit copula (see Mannering and Bhat, 2014). Further, the
joint model system is estimated in a “one-shot deal” and does not incorporate
corrections for the standard errors as needed in the second step of Heckman-
type methods. The joint model approach also technically does not need the a
priori identification of an instrument variable that affects the selection
equation (seat belt use in the example above) but not the outcome equation
(injury severity) because identification is facilitated through the assumed
parametric distribution of the error terms. However, for stability purposes,
having at least one variable affecting the selection equation but not the
outcome equation is helpful even in the joint model approach, and such
exclusion restrictions can be determined through empirical estimations.

While endogeneity models attempt to account for self-selectivity and related
broader jointness issues, heterogeneity models (including random parameters
models, latent class models and others) recognize the presence of countless
factors that are unlikely to be observed by the data analyst (unobserved
heterogeneity) and that influence accident likelihoods and resulting injury
severities, despite the presence of a large number of potential explanatory
variables. Because heterogeneity models have been the focus of an entire paper
recently in the safety field (see Mannering et al., 2016), we do not expend too
much space discussing the motivation and methods for such models here. But,
using the random parameters application as an example, these heterogeneity
models allow the effect of explanatory variables to vary from one accident to
the next and from one roadway to the next in (or other units of observation for
accident analysis, such as drivers, counties, vehicles, etc.). This can account for
a vast variety of unobserved factors and can also potentially mitigate the
selectivity issue (that riskier drivers will be over-represented) by giving
different parameter values to different observations. However, restrictive
distributional assumptions are often made, and prediction can be challenging
due to the complexity of the models and the observation-specific estimated
parameters. In the process of incorporating unobserved heterogeneity through
random-parameter type specifications, it is important that observed
heterogeneity not be given less attention. From a causality and policy insight
perspective, it is critical that all sources of observed heterogeneity (through
observed exogenous variables) be tested and specified first, and unobserved
heterogeneity, as referred to in our label of “heterogeneity models”, be
included to recognize the inevitable presence of the moderating effect of
unobserved factors after accommodating for the presence of observed
heterogeneity, rather than in-lieu of observed heterogeneity.

5. Data driven methods, big data and causality
Due to the structure of the models and estimation procedures, traditional
statistical models and endogeneity/heterogeneity models have difficulties in
processing very large amounts of data (big data). There are a number of data
driven methods that have been applied to the analysis of accident data with the
intent of uncovering correlations and developing accurate predictive models.
Still, the field of accident analysis is ripe for additional applications of non-
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