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A rudimentary question whether machine learning in general, or deep

learning in particular, could add to the well-established field of wireless com-

munications, which has been evolving for close to a century, is often raised.

While the use of deep learning based methods is likely to help build intelligent

wireless solutions, this use becomes particularly challenging for the lower layers

in the wireless communication stack. The introduction of the fifth generation

of wireless communications (5G) has triggered the demand for “network in-

telligence” to support its promises for very high data rates and extremely low

latency. Consequently, 5G wireless operators are faced with the challenges

of network complexity, diversification of services, and personalized user expe-

rience. Industry standards have created enablers (such as the network data

analytics function), but these enablers focus on post-mortem analysis at higher

stack layers and have a periodicity in the time scale of seconds (or larger).
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The goal of this dissertation is to show a solution for these challenges

and how a data-driven approach using deep learning could add to the field

of wireless communications. In particular, I propose intelligent predictive and

prescriptive abilities to boost reliability and eliminate performance bottlenecks

in 5G cellular networks and beyond, show contributions that justify the value

of deep learning in wireless communications across several different layers, and

offer in-depth analysis and comparisons with baselines and industry standards.

First, to improve multi-antenna network reliability against wireless im-

pairments with power control and interference coordination for both packetized

voice and beamformed data bearers, I propose the use of a joint beamforming,

power control, and interference coordination algorithm based on deep rein-

forcement learning. This algorithm uses a string of bits and logic operations

to enable simultaneous actions to be performed by the reinforcement learn-

ing agent. Consequently, a joint reward function is also proposed. I compare

the performance of my proposed algorithm with the brute force approach and

show that similar performance is achievable but with faster run-time as the

number of transmit antennas increases.

Second, in enhancing the performance of coordinated multipoint, I pro-

pose the use of deep learning binary classification to learn a surrogate function

to trigger a second transmission stream instead of depending on the popular

signal to interference plus noise measurement quantity. This surrogate func-

tion improves the users’ sum-rate through focusing on pre-logarithmic terms

in the sum-rate formula, which have larger impact on this rate.

ix



Third, performance of band switching can be improved without the

need for a full channel estimation. My proposal of using deep learning to

classify the quality of two frequency bands prior to granting the band switching

leads to a significant improvement in users’ throughput. This is due to the

elimination of the industry standard measurement gap requirement—a period

of silence where no data is sent to the users so they could measure the frequency

bands before switching.

In this dissertation, a group of algorithms for wireless network perfor-

mance and reliability for downlink are proposed. My results show that the

introduction of user coordinates enhance the accuracy of the predictions made

with deep learning. Also, the choice of signal to interference plus noise ratio as

the optimization objective may not always be the best choice to improve user

throughput rates. Further, exploiting the spatial correlation of channels in

different frequency bands can improve certain network procedures without the

need for perfect knowledge of the per-band channel state information. Hence,

an understanding of these results help develop novel solutions to enhancing

these wireless networks at a much smaller time scale compared to the industry

standards today.
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Chapter 1

Introduction

The creation of models that can accurately predict the future is an ardu-

ous task, if not an impossible one. Deep learning is a class of machine learning

models composed of multiple processing layers to learn representations of data

with multiple levels of abstractions [1]. These models have brought about

breakthroughs in image processing and in game playing [2]. As wireless com-

munication networks continue to evolve in terms of peak throughputs, lower

latency, and ubiquity in coverage, improving their performance and reliability

becomes imperative. Consequently, the use of deep learning in wireless com-

munication networks to improve their performance and reliability may become

possible if improvement actions are based on data-driven approaches. Combin-

ing simulations of the data-driven approach with the knowledge of the subject

matter, these learning models can offer insights and deliver results avoiding

simplified propositions. Combining these learning models with the ability of

the networks to independently identify bottlenecks and improve performance

is the essence of autonomous networks. In this introduction, I start with dis-

cussing machine learning and then pivot into deep learning. Next, I discuss

the relevant aspects of next-generation wireless networks. Then, I talk about

the use cases of deep learning in communications and the pertinent challenges.

1



I conclude this chapter with a thesis statement, proposed contributions, the

notations and abbreviations I use, and the organization of the rest of this

dissertation.

1.1 Machine Learning

Machine learning (ML) is an application of statistics whereby comput-

ers estimate complicated functions [2]. This application plays an important

role in many fields such as data mining and artificial intelligence (AI). The

term “learning” simply means the ability to predict outcomes of new observa-

tions. This is performed by the “learner.” The data used to enable learning is

based on a set of “features.” These learning features can be either 1) categor-

ical or 2) continuous. Data is often structured in a data frame known as the

“design matrix,” where each row represents a single object and the columns of

this matrix are the features that correspond to specific values for that object.

These features then undergo a phase of feature engineering, where more fea-

tures are created and others are dropped based on the understanding of the

subject matter and the problem formulation.

Several learning algorithms fall under ML: supervised learning, unsu-

pervised learning, and reinforcement learning. In order for the various algo-

rithms to output results, they need to be trained first. A trained algorithm is

called a “model.” I will briefly talk about each one of algorithm types next.

2



1.1.1 Supervised Learning

Supervised learning provides access to a set of learning features mea-

sured over a number of observations and an outcome variable (also known

as the label or the target) measured over these observations. Given its na-

ture, supervised learning is intuitively well-understood, especially when the

supervisory opinion is related to human characterization or judgement. There

are two types of supervised learning: classification and regression. In clas-

sification, the learner deals with a problem where the outcome variable is

categorical. A classification model tries to predict the value of one or more

outcomes. In regression, the learner deals with a problem where this variable

is continuous. Classification problems often occur more frequently in practice

than regression [3].

The objective of a supervised learning model is to optimize a loss func-

tion. An example of a loss function is the binary cross-entropy in binary

classification, and the mean square error (or the quadratic loss) in regression.

Not all loss functions have to be convex.

An important intuition in optimizing these loss functions is that they

should also lead to solutions that also optimize the objective of the problem

formulation. Hence, a mathematical effort is often needed to ensure that the

loss function and the problem objective do not result in contradictory solutions.
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1.1.2 Unsupervised Learning

Unsupervised learning has no information about the outcome variable.

The learner in this type categorizes inputs according to their similarities and

differences. Hence, this type of learning enables us to learn relationships and

structures from the data. Unsupervised learning can be broadly classified into

two different types of problems: clustering and association. In clustering, the

learner discovers the inherent groupings in the data. In association, the learner

uncovers rules that describe large portions of the data.

1.1.3 Reinforcement Learning

Reinforcement learning is primarily concerned with the problems that

require finding suitable actions to take in given states in order to maximize

a reward related to an objective. When these elements are combined in a

tuple, they are called “experience” [4]. Reinforcement learning agents learn

through interaction with an environment to build this experience. In this type

of algorithms, there is no dataset to learn from.

1.2 Deep Learning

Deep learning is an approach to ML that exploits its resemblance to the

human brain [2]. In this section, I discuss the deep learning algorithms cov-

ered in my dissertation: deep neural networks (DNN) and deep reinforcement

learning (DRL).
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1.2.1 Deep Neural Networks

Deep neural networks in essence are multilayer perceptrons (MLPs)

with multiple layers between the input and output nodes. MLPs are the feed-

forward deep network that maps a set of input values to output values. Feed-

forward networks approximation properties are very general and as a result,

MLPs are said to be “universal approximators” [5].

Besides being a universal approximator, DNNs have recently gained

lots of publicity with the increase in training dataset sizes, often referred to

as “big data.” With increased model sizes, aided by the availability of faster

computational power and distributed computing, DNNs enjoyed more depth

(number of connected layers) and width (the number of neurons per layer).

This increase in the total number of neurons in the DNN has unleashed the

ability of DNNs to perform complex classification tasks with high accuracy.

The total number of connections per neurons in DNN designs today have

approached the number of of connections per neurons as the brain of a cat [2].

The total number of neurons in DNNs today double in size every 2.4 years.

At this rate, a DNN is likely to have a similar number of neurons as a human

brain in the 2050s [2]. This growth makes DNN a very attractive solution to

potentially complex AI problems.

1.2.2 Deep Reinforcement Learning

The implementation of reinforcement learning can be either 1) deep

or 2) vanilla (i.e., not assisted by any deep neural networks). Vanilla RL is
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often also called a “tabular” solution [4, 6] since it uses a table to store its

experience. On the other hand, deep RL uses DNN to estimate its experience

and predict expected discounted rewards in order to select suitable actions

[7]. Deep reinforcement learning therefore resembles supervised learning in

some sense: the DNN learns from a dataset constructed from the actions

made by agent and the environment state and reward to find out the action

that leads to the best expected future reward. The introduction of DNN to

reinforcement learning as an estimator can cause convergence problems in deep

RL—a problem that tabular RL can avoid. The deep reinforcement learning

problem is the AI problem [6].

Now that I have introduced deep learning, I discuss next-generation

wireless networks hereafter. Then, I cover the deep learning use cases and the

challenges in employing it in communications.

1.3 Next-Generation Wireless Networks

The vision of next-generation wireless networks promises very high data

rates, ultra-low latency, and ubiquitous coverage [8–11]. Proliferation of con-

nected devices and demand for applications higher up in the value chain (e.g.,

industrial automation, healthcare wearables, extended reality, and mission

critical services) are already burdening existing cellular networks today. In

order for Wi-Fi 6, for example, to cater to this substantial demand in indoor

environments, Wi-Fi 6 offers larger bandwidth, interference mitigation, longer

symbol duration, and higher order modulation and code rates. Similarly, new
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radio (NR), which is the air interface of the fifth generation of wireless commu-

nications (5G), introduces technologies such as scalable air interface, massive

multiple-input multiple-output (MIMO), larger bandwidths, enhanced coor-

dinated multipoint or cell-free MIMO, advanced coding techniques, and AI-

assisted radio access networks [9,12–15]. However, these applications also elicit

demands for sophisticated radio resource management (RRM) algorithms to

ensure that the wireless impairments are predicted and circumvented before

they impact the end-user perceived quality of experience.

Several standardization entities have been working to evolve wireless

networks to the next generation. I next cover these entities and the most

recent work they have done in this space.

1.3.1 International Telecommunication Union

The International Telecommunication Union (ITU) designed the stan-

dards for prior generations of wireless communications. Under its International

Mobile Telecommunication (IMT-2020) program, members of ITU develop the

standards required to achieve 5G performance with a forward outlook to per-

formance beyond 5G [16]. ITU has three main areas of activity: radio com-

munications, standardization, and development to bridge the digital divide.

Therefore, ITU sets the vision for next generation research activities.
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1.3.2 The 3rd Generation Partnership Project

The 3rd Generation Partnership Project (3GPP) is formed by a union

of several telecommunications standard development organizations to provide

technical reports and specifications. The 3GPP project provides a complete

system description for telecommunications [17].

3GPP Release 15 standards [10] bring forth the complete set of 5G radio

standards. This release is working towards aligning 5G NR with the IMT-

2020 performance requirement. In readiness for the introduction of AI in 5G,

3GPP have introduced a set of AI-enablers for automation of next generation

wireless networks such as the “Network Data Analytics Function” [18], which

helps with analyzing 5G network problems in retrospect (i.e., post-mortem).

1.3.3 Institute of Electrical and Electronics Engineers

The Institute of Electrical and Electronics Engineers (IEEE) defines

the standards dealing with local area networks and metropolitan area networks

under the IEEE Project 802 [19]. In fact, the 802.11ay standard defines the

broadband wireless access operating at the 60 GHz mmWave frequency band

[20,21]. It is the next-generation of wireless access using Wi-Fi that promises

up to 100 Gbps through MIMO, channel bonding, improved channel access,

and enhanced beamforming training. There is no indication (as of the time

this dissertation was written) whether IEEE will submit any of its 802.11

specifications to be recognized as an IMT-2020 technology.
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1.3.4 Open Radio Access Network Alliance

The Open Radio Access Network (O-RAN) alliance is led by mobile

network operators (such as AT&T, NTT DoCoMo, and Verizon)—in contrast

with 3GPP which is led by network infrastructure vendors. This alliance is

an effort to build the next generation of radio access networks using virtual-

ization and machine intelligence. O-RAN specifications have introduced an

AI-enabled RAN intelligent controller for both non-real time and near-real

time operations [22]. The primary goal of this controller is to support tasks

both in non-real-time (i.e., intelligent radio resource management, higher layer

procedure optimization, policy optimization) and near real-time (i.e., provid-

ing ML models). In fact, both 3GPP and O-RAN are independently working

to introduce machine learning enablers to RAN with a vision of openness,

functional efficiency, and reduction in operating expenses [18, 22].

1.4 Motivating Deep Learning in Communications

The efficient realization of deep learning based algorithms in communi-

cations faces several challenges. However, there are many reasons why the use

of deep learning in communications can prove helpful in numerous ways that

outweigh the challenges. In this section, I discuss some of these reasons and

the challenges that I address in my dissertation. Further, I keep my argument

in addressing these challenges simple, often abiding by Occam’s Razor that

states: “among competing hypotheses, the simplest is the best.”
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1.4.1 Mathematical Intractability

Problems related to optimizing the sum-rate capacity are NP-hard [23].

When multiple users are being studied, non-convexity can also make the prob-

lem formulation more challenging. Therefore, the choice of convex optimiza-

tion, which is typical in such a problem (or others such as network resources

maximization), may not deliver the desired outcome. Problems of this na-

ture, and other mathematically intractable problems, make the choice of deep

learning quite interesting.

1.4.2 Legacy Radio Resource Management

RRM is a group of algorithms for controlling radio parameters (e.g.,

transmit power, load balancing, beamforming, band switching, handovers) in

the wireless network. The objective of RRM is to utilize the limited radio-

frequency spectrum resources and radio network infrastructure as efficiently

as possible [24]. Despite their increasing importance, many of the RRM pro-

cedures have only seen incremental changes over the evolution of multiple

successive industry standards.

The RRM algorithms in the 3GPP industry standards today [10, 24]

are inherited from the “legacy” RRM algorithms, where the networks were

voice-centric and as a result were simplistic and reactive in nature [25,26]. In

spite of the successive evolutions of these industry standards, the incremental

changes in the RRM algorithms form a dilemma: on the one hand, the explo-

sive expectations of what the next generation networks will offer; and on the
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other hand, the performance offered by these legacy RRM algorithms often

poses a bottleneck. Examples of this dichotomy are:

1. A requirement of a period of data transmission silence (known as the

“measurement gap” [27]) for the user equipment to estimate the channel

prior to the change to a different frequency band.

2. Use of physical layer measurements (e.g., signal strength, signal qual-

ity, channel rank) instead of the coordinates of the user equipment to

accurately estimate the channel.

3. At least two separate quantities fed by the user to the serving base station

(known as the channel state information) in order for the base station

(BS) to trigger spatial multiplexing transmission to the user: the rank in-

dicator and the quality indicator. These quantities are constrained such

that the predicted codeword retransmission rate of the next transmission

is minimized.

Both examples may have worked well in low throughput or voice-centric

networks. However, high data rates may certainly suffer as a result of these

silence periods. Furthermore, the consideration of independent transmission

rank indicator and quality indicator per transmission—instead of a surrogate

composite trigger that also handles non-linear interactions of both—can also

cause lower achievable throughputs. At high data rates, even a small percent-

age of retransmission over any codeword and any antenna can cause big loss of
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PHY MAC RLC . . . Application

User plane

PHY MAC RLC . . . RRM

Control plane

Figure 1.1: Air interface protocol stack showing the protocols covered in this dis-
sertation (shaded). PHY is the physical layer, MAC is the medium access control
layer, RLC is the radio link control layer, and RRM is the radio resource manage-
ment.

throughput—a critical feature in next-generation wireless networks. The miti-

gation of such disconnect can be resolved through introducing novel algorithms

with deep learning.

The NR air interface protocol stack is shown in Fig. 1.1. RRM falls

under what is referred to as the “control plane” in the air interface protocol

stack [10,27]. This is contrast to the “user plane” where the user traffic (e.g.,

voice or data) falls under. However, these RRM algorithms can operate across

different layers in the air interface protocol.

1.4.3 Autonomous Networks

Self-organizing network (SON) is a conglomerate of three solutions:

self-configuration, self-healing, and self-optimization [28]. The SON architec-

ture can be a centralized, distributed, or hybrid. It can be data-assisted (e.g.,

machine learning) or procedural. In any case, the trial and error accompa-
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nying the introduction of SON autonomous actions to a real network poses

a serious challenge: changing parameters and training algorithms can cause

severe degradation in performance or network-wide outages in the worst case.

However, it is obvious that the continuous and autonomous optimization that

SON offers introduces several advantages: 1) minimizing fault impact duration

and 2) reducing operational expenditure by reducing human efforts for manual

tasks. SON combined with AI to self-configure, self-monitor, and self-maintain

is often referred to as an “autonomous network.”

Challenges: Classification requires a phase of fitting the hyperparam-

eters to a dataset. Hyperparameters are the settings of the model performing

the classification. They also control the capacity of the model—its ability to

generalize its predictive results besides the training dataset. Achieving opti-

mal capacity of models is not an easy task. In fact, finding the optimal set of

hyperparameters in a deep learner is NP-hard [29]. In the case of deep RL,

episodes are run for a duration of time until convergence is achieved, which is

not guaranteed [7]. Further, finding the convergence episode with the optimal

reward is also an NP-hard problem. It is obvious that learning does not hap-

pen in no time. During the time a classifier learns the desired algorithm, or

the RL episode achieved convergence, many changes in the wireless channel

may have taken place. This would render the models invalid to the task they

were trained for.

Several approaches are taken to mitigate the time required for learning

to happen. First, the computational architecture as I explained earlier. Com-
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putational power implies the use of graphics processing units among multi-core

central processing units with ample memory size. Second, proper initialization

of models or the use of learning efficient algorithms such as deep RL to avoid

the task of finding non-trivial initialization values. Third, the invalidation of

the learned model after a certain time has passed. Fourth, in cases where a

relationship between statistics in a wireless network is exploited (e.g., spatial

correlation between channels in different frequency bands), the use of a small

proportion of the measurements to train a deep learning model can overcome

the time constraint keeping decisions relevant and near real-time, as I show in

Chapter 4. Finally, the distributed training in models where one model exists

per network entity can reduce the training complexity through a divide and

conquer approach, which directly improves the training time.

1.5 Deep Learning in Communications Use Cases

The basis of communication in wireless networks is built on traditional

probabilistic models (e.g., channel, noise, interference) [30]. Machine learning,

and by inheritance deep learning, is changing this model-driven approach to

a data-driven approach. In this data-driven approach, simulations lead to

learning the models from extensive datasets available from field measurements

from real networks or ray-tracing. This can help form a holistic understanding

of the true wireless system instead of resorting to modeling some aspects of

it. While data from field measurements is clearly preferred, generating such

dataset is highly non-trivial.
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Furthermore, the use of deep learning in communication can be broadly

classified by their response time as near real-time and non-real time. In fre-

quently changing wireless conditions, constraints about the data collection

time and the invalidation of prior learned models need to be imposed. In

addition, constraints about where the computational platforms reside with

regards to the network (e.g., edge vs center) become important. Often, a hier-

archical computational architecture is introduced in communication networks,

where the training of the decision making model takes place in a central lo-

cation. This central location then pushes a copy of this trained model to the

network edge to be applied to the users.

Deep learning in communications can also be classified by the type of

analysis offered following [31] as

1. Descriptive: offers insights about the use case by looking into the past.

2. Predictive: understands the future and allows decisions to be made in

anticipation.

3. Prescriptive: provides advice about possible outcomes.

While descriptive analysis has its applications in communications such

as root cause analysis, the focus in my dissertation is on the latter two. Fur-

thermore, I do not use unsupervised learning techniques in my dissertation

since I use labeled datasets and environments with a defined objective to im-

prove. Thus, I use deep learning classifiers and deep reinforcement learning in
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the solution of my proposed problems. In my dissertation, I focus on the 3GPP

NR and LTE air interfaces in the wireless communication networks. The air

interface is the interface between the user equipment and the base station.

1.6 Dissertation Summary

To summarize, I have contributed to the problem formulation of the

radio resource management and physical layer algorithms to improve the per-

formance of the next-generation wireless communications using deep learning.

Also, because the contributions in my dissertation use various deep

learning algorithms to enhance the wireless networks performance, my focus is

on offering depth in the motivation, the comparison with other algorithms, and

the analysis of the results. Explaining the results of deep learning algorithms—

and ML in general—is notoriously challenging because 1) trained deep learning

models are often inexplicable and hence treated as black boxes and 2) data

features are further complicated through the complex approach when extracted

and combined.

1.6.1 Thesis Statement

In this dissertation, I defend the following thesis statement:

Next-generation wireless networks will require intelligent predictive and

prescriptive abilities to disrupt the reactive legacy standards in order to boost

reliability and eliminate performance bottlenecks.
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1.6.2 Summary of Contributions

For the use of predictive abilities in next-generation wireless networks, I pro-

pose the following contributions:

• Gap-free band switching : using deep learning and exploiting the cor-

relation between channels based on the coordinates of served UEs, I

develop a novel algorithm to eliminate the measurement gap during the

band switching procedure. I predict whether a band switching request

between sub-6 GHz or mmWave frequency bands would lead to better

end-user throughput, and grant the switch request only if so.

• Surrogate MIMO trigger function: using deep learning classification with

the codeword retransmission rates, the received signal power, the re-

ceived signal to interference plus noise ratio (SINR), and the MIMO

transmission rank (i.e., the degree of freedom gain), I build a surrogate

function of these quantities to trigger coordinated multipoint—a form

of network distributed MIMO. This trigger function can improve the

throughput of users served by the distributed MIMO network through

exploiting the impact of pre-logarithmic terms instead of the SINR.
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For the prescriptive abilities to eliminate performance bottlenecks, I propose

the following contribution:

• Downlink power control and interference coordination: I introduce power

control and interference coordination using deep RL. This work is mo-

tivated by the exploitation of semi-persistent scheduling in voice and

user-specific beamforming in data, both of which provide a virtual sense

of dedicated channels.

To make my contributions easy to refer to, I provide an overview which

captures the contribution title, the problem, the goal, the parameters, and the

approach. The contributions are numbered in the order they appear in this

dissertation.
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Contribution 1: Joint Beamforming, Power Control, and Interference Coor-

dination

• Problem:

- User served by a BS receives interference from neighboring base station.

- BS serving the user causes interference to other users.

• Goal: Improve the SINR from serving BS to user.

• Parameters:

- Beamforming (BF) to create a virtual sense of a user-specific channel

for data.

- Power control (PC) to control the transmit power of the serving BS

towards a user.

- Interference coordination (IC) to control the transmit power of the

neighboring BS.

- User spatial coordinates.

• Approach:

- Perform binary encoding of BF, PC, and IC actions in a string of bits

to enable joint actions.

- If SINR of all users improve, then reward actions. This resolves the

race between base stations attempting to control power and interference

levels simultaneously.

- Compare proposed solution with brute force solution.
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Contribution 2: Improving Downlink Coordinated Multipoint Performance

with Deep Learning

• Problem:

- Industry implementations trigger coordinated multipoint based on user

SINR, which leads to low throughput.

• Goal: Develop triggering function to improve the user throughput.

• Parameters:

- Block error rate (BLER) target for codeword reception error.

- Channel state information to help derive transmission rank.

• Approach:

- Train a classifier to learn the relationship between the reported mea-

surements and the BLER.

- If a user is predicted to have a BLER lower than the target, configure

rank-2 transmission.

- Compare with SINR-based trigger.
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Contribution 3: Deep Learning Predictive Band Switching in Wireless Net-

works

• Problem:

- Users want to switch to a different frequency band if they expect to

get higher throughput.

- Switching between frequency bands requires a “measurement gap”

which reduces user throughput.

• Goal: Improve user throughput by exploiting the spatial correlation to

eliminate the measurement gap.

• Parameters:

- Band switch request threshold which defines the rate below which the

user requests a band switch.

- Band switch grant threshold which defines the rate above which the

user request is granted.

- Percentage of users in sub-6 GHz or millimeter wave vs total users.

- User spatial coordinates.

• Approach:

- Employ a data-driven approach using a ray-tracing dataset.

- Use deep learning to rank the downlink channel quality based on the

users’ coordinates.

- Grant a band switch if predicted to improve the user throughput (no

need for the gap).
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1.7 Notation and Abbreviations

This dissertation uses the following notation: boldface lower case a and

upper case A symbols represent column vectors and matrices, respectively.

The i-th column vector of the matrix A is denoted by ai. Calligraphic letters

A are for sets. The cardinality of a set is | · |. The transpose and Hermitian

transpose operators are (·)> and (·)∗. A⊗B is the Kronecker product of A and

B. The trace of a matrix is Tr(·). The expectation operator is E[·]. Probability

is denoted by P[·]. The := symbol means equal by definition. The indicator

function 1[·] is equal to one if the condition in the brackets is true and zero if

false. [·]i,j is the element in row i and column j of a matrix. #(y = c) denotes

the number of elements in y the values of which is equal to c. The `p-norm of

a vector x is given by ‖x‖p with an implied subscript for the Euclidean norm.

Finally, an M -by-N matrix whose elements are non-negative integers, real, or

complex numbers is ZM×N+ , RM×N , or CM×N , respectively. The abbreviations

used in this dissertation are summarized in Table 1.1.
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Table 1.1: Summary of abbreviations and acronyms

3GPP 3rd Generation Partnership Project

BLER Block Error Rate

BS Base Station

CDF Cumulative Distribution Function

CoMP Coordinated Multipoint

CQI Channel Quality Indicator

CSI Channel State Information

DFT Discrete Fourier Transform

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

FDD Frequency Division Duplex

FPA Fixed Power Allocation

JBPCIC Joint Beamforming Power Control and

Interference Coordination

LOS Line of Sight

LTE(-A) Long Term Evolution (-Advanced)

MAC Medium Access Control

MIMO Multiple Input Multiple Output

ML Machine Learning

NLOS Non-Line of Sight

NR New Radio

O-RAN Open Radio Access Network

OFDM Orthogonal Frequency Division Multi-

plexing

PHY Physical Layer

PRB Physical Resource Block

QoE Quality of Experience

RAN Radio Access Network

RL Reinforcement Learning

ROC Receiver Operating Characteristic

RRM Radio Resource Management

RSRP Reference Symbol Received Power

SGD Stochastic Gradient Descent

SINR Signal to Interference plus Noise Ratio

SNR Signal to Noise Ratio

SON Self-Organizing Networks

SVM Support Vector Machine

TTI Transmit Time Interval

UE User Equipment

ULA Uniform Linear Array

UPA Uniform Planar Array

VoLTE Voice over Long Term Evolution

ZF Zero-Forcing
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1.8 Organization

The remainder of this dissertation is as follows: In Chapter 2, I use

reinforcement learning to perform joint beamforming and power control for

data bearers and power control and interference coordination for voice users,

all of which are PHY layer procedures. Then, in Chapter 3, I show the ability

of deep neural networks to learn when to trigger coordinated multipoint and

exceed the performance of the algorithmic industry standards. I do so through

a surrogate trigger function which I create using a data-driven simulation

approach. Next, I move up the air interface protocol stack and extend the

band switching procedure across frequency bands to a eliminate measurement

gaps required for band switching in cellular networks in Chapter 4. Finally,

concluding remarks and suggestions for future work are in Chapter 5.
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Chapter 2

Joint Beamforming, Power Control, and

Interference Coordination

In Chapter 1, I have introduced deep learning, next-generation wireless

networks, the use cases of deep learning in wireless communications, and the

problems realizing these use cases in practice. In this chapter†, I show how

disrupting the conventional way power control and interference coordination

is done for voice bearers can bring forth enhanced user performance. Further,

I show that deep learning can achieve significant execution speedup compared

to brute force algorithms without compromising the user performance.

Beamforming focuses a wireless signal in a specific direction. As a

result, beamforming can offer better downlink coverage to the users served by

a base station supporting it. When the beamforming is applied to a certain

user, it is called user-specific beamforming. User-specific beamforming for data

bearers, analogous to semi-persistent scheduling for packetized voice bearers,

brings about an important benefit: a virtual sense of a dedicated channel,

†This chapter is based on the work in the following submitted journal paper: F. B.
Mismar, B. L. Evans, A. Alkhateeb “Deep Reinforcement Learning for 5G Networks: Joint
Beamforming, Power Control, and Interference Coordination,” IEEE Transactions on Com-
munications, 2019, available through IEEE Early Access. This work was supervised by Prof.
Brian L. Evans. Prof. Ahmed Alkhateeb (Arizona State University) provided important
ideas about the application of beamforming that greatly improved the work.
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where the base station can control the power it is transmitting to that user,

by controlling the power of the physical resource blocks that are involved in

the beamforming. When the power transmitted to the same resource blocks

at the same time belong to a different user, this power becomes interference

and needs to be coordinated.

2.1 Overview

In this chapter, I formulate the joint design of beamforming, power

control, and interference coordination as a non-convex optimization problem

to maximize the signal to interference plus noise ratio (SINR) and solve this

problem using deep reinforcement learning. By using the greedy nature of

deep Q-learning (defined in Section 1.2.2) to estimate future rewards of ac-

tions and using the reported coordinates of the users served by the network,

I propose an algorithm for voice bearers and data bearers in sub-6 GHz and

millimeter wave (mmWave) frequency bands, respectively. The algorithm im-

proves the performance measured by SINR and sum-rate capacity. In realistic

cellular environments, the simulation results show that my algorithm outper-

forms the link adaptation industry standards for sub-6 GHz voice bearers. For

data bearers in the mmWave frequency band, my algorithm approaches the

maximum sum rate capacity, but with less than 4% of the required run time.

26



2.2 Introduction

The massive growth in traffic volume and data rate continues to evolve

with the introduction of the fifth generation of wireless communications (5G).

Also evolving is enhanced voice call quality with better reliability and improved

codecs. Future wireless networks are therefore expected to meet this massive

demand for both the data rates and the enhanced voice quality. In an attempt

to learn the characteristics of inter-cellular interference and inter-beam inter-

ference, I propose an online learning based algorithm based on a reinforcement

learning (RL) framework. I use this framework to derive a policy to maximize

the end-user SINR and sum-rate capacity. The importance of reinforcement

learning in power control has been demonstrated in [32–34]. Power control in

voice bearers makes them more robust against wireless impairments, such as

fading. It also enhances the usability of the network and increases the cellu-

lar capacity. For data bearers, beamforming, power control, and interference

coordination, can improve the robustness of these data bearers, improve the

data rates received by the end-users, and avoid retransmissions.

A major question here is whether there exists a method that (1) can

jointly solve for the power control, interference coordination, and beamform-

ing, (2) achieve the upper limit on SINR, and (3) avoids the exhaustive search

in the action space for both bearer types. The aim of this chapter is to pro-

pose an algorithm for this joint solution by utilizing the ability of reinforcement

learning to explore the solution space by learning from interactions. This al-

gorithm applies to both voice and data bearers alike. Furthermore, I study the
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overhead introduced as a result of passing information to a central location,

which computes the solution through online learning.

2.2.1 Related Work

Performing power control and beamforming in both uplink and down-

link was studied in [35–38]. A jointly optimal transmit power and beamforming

vector was solved for in [38] to maximize the SINR using optimization, but

without regards for scattering or shadowing, which are critical phenomena in

millimeter wave (mmWave) propagation.

The industry standards adopted the method of almost blank subframe

(ABS) to resolve the co-channel inter-cell interference problem in LTE where

two base stations (BSs) interfere with one another [27]. While ABS works well

in fixed beam antenna patterns, the dynamic nature of beamforming reduces

the usefulness of ABS [39].

An online learning algorithm for link adaptation in multiple-input multiple-

output (MIMO) bearers was studied in [32]. The algorithm computational

complexity was comparable to existing online learning approaches, but with

minimal spatial overhead. Interference avoidance in a heterogeneous network

was studied in [34]. A Q-learning framework for the coexistence of both macro

and femto BSs was proposed. The feasibility of decentralized self-organization

of these BSs was established where the femtocells interference towards the

macro BSs was mitigated. The use of a Q-learning framework was also pro-

posed in [33]. The framework focused on packetized voice power control in a
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Figure 2.1: Performing joint beamforming and power control on the signal from
the serving base station while coordinating interference from the other BS. The
decisions are computed at a central location, which can be one of the L BSs. The
measurements from the UEs are relayed to the central location over the backhaul.

multi-cell indoors environment. It exploits the use of semi-persistent schedul-

ing [40], which establishes a virtual sense of a dedicated channel. This channel

enabled the power control of the downlink to ensure enhanced voice clarity

compared to industry standards, which are based on fixed power allocation.

Joint power control in massive MIMO was introduced in [35]. This

approach led to a reduced overhead due to a limited exchange of channel state

information between the BSs participating in the joint power control. The joint

power control scheme led to enhanced performance measured by the SINR. In

the uplink direction, power control with beamforming was studied in [36]. An

optimization problem was formulated to maximize the achievable sum rate of

the two users while ensuring a minimal rate constraint for each user. Using

reinforcement learning to solve the problem for the uplink is computationally
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expensive and can cause a faster depletion of the user equipment (UE) battery.

I on the other hand focus on the downlink and on interference cancellation

alongside power control and beamforming.

Over the last two years, the use of deep learning in wireless communica-

tions was studied in [37,41–47]. The specific use of deep reinforcement learning

to perform power control for mmWave was studied in [37]. This approach was

proposed as an alternative to beamforming in improving the non-line of sight

(NLOS) transmission performance. The power allocation problem to maxi-

mize the sum-rate of UEs under the constraints of transmission power and

quality targets was solved using deep reinforcement learning. In this solu-

tion, a convolutional neural network was used to estimate the Q-function of

the deep reinforcement learning problem. In [41], a policy that maximizes

the successful transmissions in a dynamic correlated multichannel access envi-

ronment was obtained using deep Q-learning. The use of deep convolutional

neural networks was proposed in [42] to enhance the automatic recognition of

modulation in cognitive radios at low SINRs.

In [46], deep neural networks were leveraged to predict mmWave beams

with low training overhead using the omni-directional received signals collected

from neighboring base stations. In [47], the authors generalized [46] by map-

ping the channel knowledge at a small number of antennas to an SINR-optimal

beamforming vector for a larger array, even if this array was at a different fre-

quency at a neighboring BS. The use of adversarial reinforcement learning

in beamforming for data bearers was proposed in [48], where an algorithm to
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Table 2.1: Literature comparison

Reference Bearer Band Objective Procedure∗ Algorithm†

[35] data unspecified downlink SINR PC convex optimization
[36] data mmWave uplink sum-rate BF, PC convex optimization
[37] data mmWave dowlink SINR, sum-rate PC DRL
[43] data unspecified uplink power, sum-rate PC DNN
[44] data unspecified downlink throughput PC DNN
[45] data unspecified SINR, spectral efficiency PC CNN
[46] data mmWave downlink achievable rate BF DNN
[47] data mmWave and sub-6 downlink spectral efficiency BF DNN
[48] data unspecified downlink sum-rate BF adversarial DRL
[49] voice sub-6 downlink SINR PC tabular RL
[50] data mmWave downlink sum-rate BF, IC DNN
[51] data unspecified downlink SINR BF DNN

Proposed voice and data mmWave and sub-6 downlink SINR BF, PC, IC DRL

∗ PC is power control, IC is interference coordination, and BF is beamforming.
† DRL is deep reinforcement learning, CNN is convolutional neural networks, DNN is deep neural networks.

derive antenna diagrams with near-optimal SINR performance was devised.

There was no reference to power control or interference coordination. Voice

bearers in the sub-6 GHz frequency band was studied in [49] but only in a

single co-located BS environment, in contrast with this chapter where I study

voice in a multi-access network with multiple BSs. Joint beamforming and

interference coordination at mmWave was performed in [50] using deep neu-

ral networks, which require knowledge of the channel to make decisions. The

performance of deep neural networks on beamforming was studied in [51] but

without the use of reinforcement learning. Table 2.1 shows how my work

compares with earlier work.
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2.2.2 Motivation

In this chapter, I provide an answer to the question whether a method

exists that can perform the joint beamforming, power control, and interference

coordination by introducing a different approach to power control in wireless

networks. In such a setting, it is not only the transmit power of the serving

BS that is controlled as in standard implementations, but also the transmit

powers of the interfering base stations from a central location as shown in

Fig. 2.1. As a result of this apparent conflict, a race condition emerges, where

the serving BS of a given user is an interfering BS of another user. The reason

why I choose deep reinforcement learning (DRL) is as follows:

1. The proposed solution does not require the knowledge of the channels

in order to find the SINR-optimal beamforming vector. This is in con-

trast with the upper limit SINR performance, which finds the optimal

beamforming vector by searching across all the beams in a codebook

that maximizes the SINR (and this requires perfect knowledge of the

channel).

2. The proposed solution minimizes the involvement of the UE in sending

feedback to the BS. In particular, the UE sends back its received SINR

along with its coordinates, while the agent handles the power control

and interference coordination commands to the involved BSs. Industry

specifications [27] require that the UE reports its channel state informa-

tion which is either a vector of length equal to the number of antenna
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elements or a matrix of dimension equal to the number of antenna ele-

ments in each direction. In my case, I achieve a reduction in the reporting

overhead by using the UE coordinates instead.

3. The implementation complexity of brute force SINR performance mes-

sage passing for joint beamforming, power control, and interference co-

ordination commands when multiple BSs are involved is prohibitive.

4. Having explicit power control and interference coordination (PCIC) com-

mands sent by the UE to the serving and interfering BSs requires a mod-

ification to the current industry standards [40]. These standards today

only require the serving BS to send power control commands to the UE

for the uplink direction.

2.2.3 Contributions

In finding a different approach to power control in wireless networks,

this chapter makes the following specific contributions:

• Formulate the joint beamforming, power control, and interference coor-

dination problem in the downlink direction as an optimization problem

that optimizes the users’ received SINR.

• Resolve the race condition between the involved base stations in sub-

exponential times in the number of antennas. The race condition is

handled by a central location (similar to coordinated multipoint [52])

based on the user reported downlink SINR and coordinates.
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• Show how to create a deep reinforcement learning based solution where

multiple actions can be taken at once using a binary encoding of the

relevant actions performed by the BS, which I define in Section 2.9.1.

2.3 Network, System, and Channel Models

In this section, I describe the adopted network, system, and channel

models.

2.3.1 Network Model

I consider an orthogonal frequency division multiplexing (OFDM) multi-

access downlink cellular network of L BSs. This network is comprised of a

serving BS and at least one interfering BS. I adopt a downlink scenario, where

a BS is transmitting to one UE. The BSs have an inter-site distance of R and

the UEs are randomly scattered in their service area. The association between

the users and their serving BS is based on the distance between them. A user

is served by one BS maximum. The cell radius is r > R/2 to allow overlapping

of coverage. Voice bearers run on sub-6 GHz frequency bands while the data

bearers use mmWave frequency band. I employ analog beamforming for the

data bearers to compensate for the high propagation loss due to the higher

center frequency.
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2.3.2 System Model

Considering the network model in Section 2.3.1, and adopting a multi-

antenna setup where each BS employs a uniform linear array (ULA) of M

antennas and the UEs have single antennas, the received signal at the UE

from the `-th BS can be written as

y` = h∗`,`f`x` +
∑
b6=`

h∗`,bfbxb + n` (2.1)

where x`, xb ∈ C are the transmitted signals from the `-th and b-th BSs, and

they satisfy the power constraint E[|x`|2] = PTX,` (similarly for b). The M × 1

vectors f`, fb ∈ CM×1 denote the adopted downlink beamforming vectors at

the `-th and b-th BSs, while the M × 1 vectors h`,`,h`,b ∈ CM×1 are the

channel vectors connecting the user at the `-th BS with the `-th and b-th

BSs, respectively. Finally, n` ∼ Normal(0, σ2
n) is the received noise at the user

sampled from a complex Normal distribution with zero-mean and variance σ2
n.

The first term in (2.1) represents the desired received signal, while the second

term represents the interference received at the user due to the transmission

from the other BSs.

Beamforming vectors: Given the hardware constraints on the mmWave

transceivers, I assume that the BSs use analog-only beamforming vectors,

where the beamforming weights of every beamforming vector f`, ` = 1, 2, ..., L

are implemented using constant-modulus phase shifters, i.e., [f`]m = ejθm . Fur-

ther, I assume that every beamforming vector is selected from a beamsteering-

based beamforming codebook F of cardinality |F| := NCB, with the n-th

35



element in this codebook defined as

fn := a(θn)

=
1√
M

[
1, ejkd cos(θn), ..., ejkd(M−1) cos(θn)

]>
,

(2.2)

where d and k denote the antenna spacing and the wave-number, while θn

represents the steering angle. Finally, a(θn) is the array steering vector in the

direction of θn. The value of θn is obtained by dividing the antenna angular

space between 0 and π radians by the number of antennas M .

Power control and interference coordination: Every BS ` is as-

sumed to have a transmit power PTX,` ∈ P , where P is the set of candidate

transmit powers. I define the set of the transmit powers as the power offset

above (or below) the BS transmit power. My choice of the transmit power set

P is provided in Section 2.9.1. This choice of P follows [40].

Power control and interference coordination take place over a semi-

dedicated channel. For voice, this is facilitated through the semi-persistent

scheduling, which creates a virtual sense of a dedicated channel as I have

mentioned in Section 2.2. For data bearers, the use of beamforming provides a

dedicated beam for a given UE, through which power control and interference

coordination takes place.

2.3.3 Channel Model

In this chapter, I adopt a narrow-band geometric channel model, which

is widely used for analyzing and designing mmWave systems [53–55]. With

this geometric model, the downlink channel from a BS b to the user in BS `
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can be written as

h`,b =

√
M

ρ`,b

Np
`,b∑

p=1

αp`,ba
∗ (θp`,b) , (2.3)

where αp`,b and θp`,b are the complex path gain and angle of departure (AoD) of

the p-th path, and a(θp`,b) is the array response vector associated with the AoD,

θp`,b. Note that Np
`,b which denotes the number of channel paths is normally a

small number in mmWave channels compared to sub-6 GHz channels [56,57],

which captures the sparsity of the channels in the angular domain. Finally,

ρ`,b, represents the pathloss between BS b and the user served in the area of

BS `. Note that the channel model in (2.3) accounts of both the LOS and

NLOS cases. For the LOS case, I assume that Np
`,b = 1.

I define PUE[t] as the received downlink power as measured by the UE

over a set of physical resource blocks (PRBs) at a given time t as

P `,b
UE[t] = PTX,b[t]

∣∣h∗`,b[t]fb[t]∣∣2 (2.4)

where PTX,b is the PRB transmit power from BS b. Next, I compute the

received SINR for the UE served in BS ` at time step t as follows:

γ`[t] =
PTX,`[t]|h∗`,`[t]f`[t]|2

σ2
n +

∑
b6=` PTX,b[t]|h∗`,b[t]fb[t]|2

. (2.5)

This is the received SINR that I will optimize in Sections 2.6 and 2.7.

2.4 Problem Formulation

My objective is to jointly optimize the beamforming vectors and the

transmit power at the L BSs to maximize the achievable sum rate of the users. I
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formulate the joint beamforming, power control, and interference coordination

optimization problem as

maximize
PTX,j [t], ∀j

fj [t], ∀j

∏
j∈{1,2,...,L}

γj[t]

subject to PTX,j[t] ∈ P , ∀j,

fj[t] ∈ F , ∀j,

γj[t] ≥ γtarget.

(2.6)

where γtarget denotes the target SINR of the downlink transmission. P and F

are the sets of candidate transmit powers and beamforming codebook, respec-

tively as stated earlier. This problem is a non-convex optimization problem

due to the non-convexity of the first two constraints. The `-th BS attempts

to solve this problem to find optimal PTX,` and f` for the UE served by it at

time t. I solve this optimization problem at a central location by searching

over the space of the Cartesian product of P × F . The optimal solution to

this problem is found through an exhaustive search over this space (i.e., by

brute force). The complexity of this search is known to be exponential in the

number of BSs. I discuss this and the overhead of the communication to a

central location in Section 2.7.

Next, I provide a brief overview on deep reinforcement learning in Sec-

tion 2.5 before delving into the proposed algorithm in Sections 2.6 and 2.7.
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Figure 2.2: The agent-environment interaction in reinforcement learning.

2.5 A Primer on Deep Reinforcement Learning

In this section, I describe deep reinforcement learning (DRL), which is

a special type of reinforcement learning [7]. Reinforcement learning (defined

in Section 1.1.3) is a machine learning technique that enables an agent to

discover what action it should take to maximize its expected future reward

in an interactive environment. The interaction between the agent and the

environment is shown in Fig. 2.2. In particular, DRL exploits the ability of

deep neural networks to learn better representations than handcrafted features

and act as a universal approximator of functions. I have described DRL in

Section 1.2.2.

Reinforcement learning elements: Reinforcement learning has sev-

eral elements [4]. These elements interact together, and are as follows:

• Observations : Observations are continuous measures of the properties of

the environment and are written as a p-ary vector O ∈ Rp, where p is the

number of properties observed.

• States : The state st ∈ S is the discretization of the observations at time

step t. Often, states are also used to mean observations.
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• Actions : An action at ∈ A is one of the valid choices that the agent can

make at time step t. The action changes the state of the environment from

the current state s to the target state s′.

• Policy : A policy π(·) is a mapping between the state of the environment

and the action to be taken by the agent. I define my stochastic policy

π(a | s) : S ×A → [0, 1].

• Rewards : The reward signal rs,s′,a[t; q] is obtained after the agent takes an

action a when it is in state s at time step t and moves to the next state s′.

The parameter q ∈ {0, 1} is the bearer selector, which is a binary parameter

to differentiate voice bearers from data bearers.

• State-action value function: The state-action value function under a given

policy π is denoted Qπ(s, a). It is the expected discounted reward when

starting in state s and selecting an action a under the policy π.

These elements work together and their relationship is governed by the

objective to maximize the future discounted reward for every action chosen

by the agent, which causes the environment to transition to a new state. The

policy dictates the relationship between the agent and the state. The value of

the expected discounted reward is learned through the training phase.

If Qπ(s, a) is updated every time step, then it is expected to converge to

the optimal state-action value function Q?
π(s, a) as t→ +∞ [4]. However, this

may not be easily achieved. Therefore, I use a function approximator instead
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aligned with [7]. I define a neural network with its weights at time step t as

Θt ∈ Ru×v as in Fig. 2.3. Also, if I define θt := vec (Θt) ∈ Ruv, I thus build

a function approximator Qπ(s, a;θt) ≈ Q?
π(s, a). This function approximator

is neural network based and is known as the Deep Q-Network (DQN) [7].

Activation functions, which are non-linear functions that compute the hidden

layer values, are an important component of neural networks. A common

choice of the activation function is the sigmoid function σ : x 7→ 1/(1+e−x) [2].

This DQN is trained through adjusting θ at every time step t to reduce the

mean-squared error loss Lt(θt):

minimize
θt

Lt(θt) := Es,a
[
(yt −Qπ(s, a;θt))

2
]

(2.7)

where yt := Es′ [rs,s′,a + γmaxa′ Qπ(s′, a′;θt−1) | st, at] is the estimated function

value at time step t when the current state and action are s and a respectively.

The process of interacting with the environment and the DQN to obtain a

prediction and compare it with the true answer and suffer a loss Lt(·) is often

referred to as “online learning.” In online learning, the UEs feedback their

data to the serving BS, which in turns relays it to the central location for

DQN training. This data represent the state of my network environment S,

as I explain further in Section 2.9.

DQN dimension: I set the dimension of the input layer in the DQN

to be equal to the number of states |S|. The dimension of the output layer is

equal to the number of actions |A|. For the hidden layer dimension, I choose

a small depth since the depth has the greatest impact on the computational
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complexity. The dimension of the width follows [58] as I show further in

Section 2.9.1.

Deep reinforcement training phase: In the training phase of the

DQN, the weights θt in the DQN are updated after every iteration in time t

using the stochastic gradient descent (SGD) algorithm on a minibatch of data.

SGD starts with a random initial value of θ and performs an iterative process

to update θ using a step size η > 0 as follows:

θt+1 := θt − η∇Lt(θt). (2.8)

The training of the DQN is facilitated by “experience replay” [59].

The experience replay buffer D stores the experiences at each time step t.

An experience et is defined as et := (st, at, rs,s′,a[t; q], s
′
t). I draw samples

of experience at random from this buffer and perform minibatch training on

the DQN. This approach offers advantages of stability and avoidance of local

minimum convergence [7]. The use of experience replay also justifies the use

of off-policy learning algorithms, since the current parameters of the DQN are

different from those used to generate the sample from D.

I define the state-action value function estimated by the DQN Q?
π(s, a)

as

Q?
π(st, at) := Es′

[
rs,s′,a + γmax

a′
Q?
π(s′, a′)

∣∣∣∣ st, at], (2.9)

which is known as the Bellman equation. Here, γ : 0 < γ < 1 is the discount

factor and determines the importance of the predicted future rewards. The
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next state is s′ and the next action is a′. My goal using DQN is to find a

solution to maximize the state-action function Q?
π(st, at).

Often compared with deep Q-learning is the tabular version of Q-

learning [4]. Despite the finite size of the states and action space, tabular

Q-learning is slow to converge is because its convergence requires the state-

action pairs to be sampled infinitely often [4,60]. Further, tabular RL requires

a non-trivial initialization of the Q ∈ R|S|×|A| table to avoid longer conver-

gence times [49]. However, deep Q-learning convergence is not guaranteed

when using a non-linear approximator such as the DQN [7]. I discuss tabular

Q-learning in Section 2.6.

Policy selection: In general, Q-learning is an off-policy reinforcement

learning algorithm. An off-policy algorithm means that a policy can be found

even when actions are selected according to an arbitrary exploratory policy [4].

Due to this, I choose a near-greedy action selection policy. This policy has

two modes:

1. exploration: the agent tries different actions at random at every time

step t to discover an effective action at.

2. exploitation: the agent chooses an action at time step t that maximizes

the state-action value function Qπ(s, a;θt) based on the previous expe-

rience.

In this policy, the agent performs exploration with a probability ε and

exploitation with probability of 1− ε, where ε : 0 < ε < 1 is a hyperparameter
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Figure 2.3: Structure of the deep Q-network used for the implementation of the
algorithms with two hidden layers each of dimension H. Here, (u, v) = (H, 2),
|S| = m, and |A| = n.

that adjusts the trade-off between exploration and exploitation. This trade-off

is why this policy is also called the ε-greedy action selection policy. This policy

is known to have a linear regret in t (regret is the opportunity loss of one time

step) [61].

At each time step t, the UEs move at speed v and the agent performs

a certain action at from its current state st. The agent receives a reward

rs,s′,a[t; q] and moves to a target state s′ := st+1. I call the period of time in

which an interaction between the agent and the environment takes place an

episode. One episode has a duration of T time steps. An episode is said to

have converged if within T time steps the target objective was fulfilled.

In my DQN implementation, I particularly keep track of the UE co-
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ordinates. When UE coordinates are reported back to the network and used

to make informed decisions, the performance of the network improves [62].

Therefore, UE coordinates need to be part of the DRL state space S.

2.6 Deep Reinforcement Learning in Voice Power Con-
trol and Interference Coordination

In this section, I describe my proposed voice power control and inter-

ference coordination reinforcement learning algorithm as well as the baseline

solutions which I compare my solution against. First, I describe the fixed

power allocation algorithm, which is the industry standard algorithm today,

and then the implementation of the proposed algorithm using tabular and deep

implementations of Q-learning. Finally, I explain the brute force algorithm.

2.6.1 Fixed Power Allocation

I introduce the fixed power allocation (FPA) power control as a baseline

algorithm that sets the transmit signal power at a specific value. No inter-

ference coordination is implemented in FPA. Total transmit power is simply

divided equally among all the PRBs and is therefore constant:

PTX,b[t] := Pmax
BS − 10 logNPRB + 10 logNPRB,b[t] (dBm). (2.10)

Here, NPRB is the total number of physical resource blocks in the BS

and NPRB,b is the number of available PRBs to the UE in the b-th BS at the

time step t.
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FPA with adaptive modulation and coding is the industry standard

algorithm [40]. In this standard algorithm, the BS fixes its transmit power

and only changes the modulation and code schemes of the transmission. This

change is known as the “link adaptation.” Link adaptation takes place based

on the reports sent by the UE back to the BS (i.e., the SINR and received

power). Since the BS transmit power is fixed, the link adaptation takes place

based on either periodic or aperiodic measurement feedback from the voice UE

to the serving BS. This results in an improved effective SINR and a reduction

in the voice packet error rate. There is no measurement sent to the interfering

BS based on FPA.

2.6.2 Tabular Reinforcement Learning

I use a tabular setting of Q-learning (or “vanilla” Q-learning) to im-

plement the algorithm for voice communication. In a tabular setting, the

state-action value function Qπ(st, at) is represented by a table Q ∈ R|S|×|A|.

There is no neural network involvement and the Q-learning update analog of

(2.9) is defined as:

Qπ(st, at) := (1− α)Qπ(st, at) + α
(
rs,s′,a + γmax

a′
Qπ(s′, a′)

)
(2.11)

where Qπ(st, at) := [Q]st,at . Here, α > 0 is the learning rate of the Q-learning

update and defines how aggressive the experience update is with respect to

the prior experience. Computationally, the tabular setting suits problems with

small state spaces, and maintaining a table Q is possible.
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2.6.3 Proposed Algorithm

I propose Algorithm 1 which is a DRL-based approach. This algorithm

performs both power control and interference coordination without the UE

sending explicit power control or interference coordination commands. This

use of the DQN may provide a lower computational overhead compared to the

tabular Q-learning depending on the number of states and the depth of the

DQN [49]. The main steps of Algorithm 1 are as follows:

• Select an optimization action at a time step t.

• Select a joint beamforming, power control, and interference coordination

action.

• Assess the impact on the effective SINR γ`,eff[t].

• Reward the action taken based on the impact on γ`,eff[t] and its distance

from γtarget or γmin.

• Train the DQN based on the outcomes.

Power control for the serving BS b is described as

PTX,b[t] = min(Pmax
BS , PTX,b[t− 1] + PCb[t]). (2.12)

I add one more condition for the interference coordination on the interfering

BS ` as

PTX,`[t] = min(Pmax
BS , PTX,`[t− 1] + IC`[t]) (2.13)
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where the role of the BS (serving vs interfering) can change based on the UE

being served. IC and PC commands are actually the same, but the role of

the BS makes one an interferer (which needs coordination) and the other a

server (which needs power control). I model the PCIC algorithm using deep

Q-learning as shown in Algorithm 1. My proposed algorithm solves (2.6).

Different from [33], I use the effective SINR γ`,eff[t] (i.e., the SINR

including coding gain) for all three voice algorithms where the adaptive code

rate β is chosen based on the SINR γ`[t]. I use an adaptive multirate (AMR)

codec and quadrature phase shift keying modulation for voice. I choose to fix

the modulation since voice bearers do not typically require high data rates [33].

This effective SINR γ`,eff[t] is the quantity I optimize in Algorithm 1.

For FPA, the run-time complexity is O(1). For tabular Q-learning

PCIC, the run-time complexity is O(|Svoice||Avoice|) [49], where Svoice,Avoice

are the state and action sets for voice bearers. Deep Q-learning can have a

run time orders of magnitude slower than the tabular version.

Since one of the L BSs also serves as a central location to the surround-

ing BSs in my proposed algorithm, the overhead due to transmission over the

backhaul to this central location for a total of NUE UEs in the service area is

in O(gLNUE), where the periodicity g is the number of measurements sent by

any given UE during time step t [11].
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Figure 2.4: Downlink joint beamforming, power control, and interference coordi-
nation module.

2.6.4 Brute Force

The brute force PCIC algorithm uses an exhaustive search in the Eu-

clidean space P per BS to optimize the SINR. This algorithm solves (2.6) and

is the upper limit of the performance for jointly optimizing the SINR for the

voice bearers in my problem.

2.7 Deep Reinforcement Learning in mmWave Beam-
forming Power Control and Interference Coordina-
tion

In this section, I present my proposed algorithm and quantify the

changes in the SINR as a result of the movement of the UEs and optimization

actions of the RL-based algorithm.

2.7.1 Proposed Algorithm

I propose a DRL-based algorithm where the beamforming vectors and

transmit powers at the base stations are jointly controlled to maximize the
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Algorithm 1: Deep Reinforcement Learning in Joint Beamforming

and PCIC (JBPCIC)

Input: The downlink received SINR measured by the UEs.
Output: Sequence of beamforming, power control, and interference

coordination commands to solve (2.6).
1 Initialize time, states, actions, and replay buffer D.
2 repeat
3 repeat
4 t := t+ 1
5 Observe current state st.
6 ε := max(ε · d, εmin)
7 Sample r ∼ Uniform(0, 1)
8 if r ≤ ε then
9 Select an action at ∈ A at random.

10 else
11 Select an action at = arg maxa′ Qπ(st, a

′;θt).
12 end
13 Compute γ`,eff[t] and rs,s′,a[t; q] from (2.17).
14 if γ`,eff[t] < γmin then
15 rs,s′,a[t; q] := rmin

16 Abort episode.

17 end
18 Observe next state s′.

19 Store experience e[t] , (st, at, rs,s′,a, s
′) in D.

20 Minibatch sample from D for experience ej , (sj , aj , rj , sj+1).
21 Set yj := rj + γmaxa′ Qπ(sj+1, a

′;θt)
22 Perform SGD on (yj −Qπ(sj , aj ;θt))

2 to find θ?

23 Update θt := θ? in the DQN and record loss Lt
24 st := s′

25 until t ≥ T
26 until convergence or aborted
27 if γ`,eff[t] ≥ γtarget then rs,s′,a[t; q] := rs,s′,a[t; q] + rmax

objective function in (2.6). The use of a string of bits as an action register

enables us to jointly perform several actions concurrently.

First, selecting the beamforming vector is performed as follows. The
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agent steps up or down the beamforming codebook using circular increments

(n+ 1) or decrements (n− 1)

n 7→ fn[t] : n := (n± 1) mod M (2.14)

for BSs b and ` independently. I monitor the change in γ` as a result of the

change in the beamforming vector. I use a code gain of unity in computing

γ`,eff for the data bearers (i.e., γ`,eff = γ`).

When the beamforming vectors are selected for a given UE, the agent

also performs power control of that beam by changing the transmit power

of the BS to this UE (or the interference coordination of other BSs). The

selection of the transmit power is governed by (2.12) and (2.13), both of which

define the set P .

For proposed algorithm, the run time of the deep reinforcement learning

is significantly faster than the brute force algorithm for all antenna sizes M as I

show in Section 2.9.3. Also, the reporting of the UE coordinates (i.e., longitude

and latitude) to the BS instead of the channel state information reduces the

reporting overhead from M complex-valued elements to the two real-valued

coordinates and its received SINR only. If I assume that the reporting overhead

for M complex-valued elements is 2M , then for reporting the UE coordinates,

I achieve an overhead reduction gain of 1− 1/M .

I call my algorithm the joint beamforming, power control, and interfer-

ence coordination (JBPCIC) algorithm.
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Table 2.2: Reinforcement learning hyperparameters

Parameter Value Parameter Value
Discount factor γ 0.995 Exploration rate decay d 0.9995
Initial exploration rate ε 1.000 Min. exploration rate (εvoice

min , ε
bf
min) (0.15,0.10)

Number of states |S| 8 Number of actions |A| 16
Deep Q-Network width H 24 Deep Q-Network depth 2

2.7.2 Brute Force

The brute force beamforming and PCIC algorithm uses an exhaustive

search in the Euclidean space P × F per BS to optimize the SINR. As in

the voice bearers brute force algorithm, this is also the upper limit in the

performance for jointly optimizing the SINR in my problem. While the size

of P can be selected independently of the number of the antennas in the ULA

M , the size of F is directly related to M . Similar to the brute force algorithm

for voice bearers, this algorithm solves (2.6) and may perform well for small

M and small number of BSs L for data bearers. However, I observe that with

large M the search time becomes prohibitive. This is because the run time for

this algorithm in O((|P||F|)L) = O(ML), which is much larger than the run

time for the proposed algorithm, as I show in Section 2.9.3.

2.8 Performance Measures

In this section I introduce the performance measures I use to benchmark

my algorithms.
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Table 2.3: Joint beamforming power control algorithm – radio environment pa-
rameters

Parameter Value
Base station (BS) maximum transmit power Pmax

BS 46 dBm
Cellular geometry circular
Propagation model (voice, bf) (COST231, [63])
Antenna gain (Gvoice

TX , Gbf
TX) (11, 3) dBi

Max. number of UEs per BS N 10
Probability of LOS (pvoice

LOS , p
bf
LOS) (0.9, 0.8)

Number of transmit antennas (Mvoice,Mbf) (1,{4, 8, 16, 32, 64})
Downlink frequency band (2100 MHz, 28 GHz)
Cell radius r (350, 150) m
User equipment (UE) antenna gain 0 dBi
Inter-site distance R (525, 225) m
Number of multipaths Np (15, 4)
UE average movement speed v (5, 2) km/h
Radio frame duration (T voice, T bf) (20, 10) ms

2.8.1 Convergence

I define convergence ζ in terms of the episode at which the target SINR

is fulfilled over the entire duration of T for all UEs in the network. I expect that

as the number of antennas in the ULA M increase, the convergence time ζ will

also increase. In voice, convergence as a function of M is not applicable, since

I only use single antennas. For several random seeds, I take the aggregated

percentile convergence episode.

2.8.2 Run time

While calculating the upper bound of the brute force algorithm run-

time complexity is possible, obtaining a similar expression for the proposed

deep Q-learning algorithm may be challenging due to lack of convergence and
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stability guarantees [7]. Therefore, I obtain the run time from simulation per

antenna size M .

2.8.3 Coverage

I build a complement cumulative distribution function (CCDF) of γ`,eff

following [64] by running the simulation many times and changing the random

seed, effectively changing the way the users are dropped in the network.

2.8.4 Sum-Rate Capacity

Using the effective SINRs, I compute the average sum-rate capacity as

C =
1

T

T∑
t=1

∑
j∈{`,b}

log2(1 + γj,eff[t]) (2.15)

which is an indication of the data rate served by the network. I then obtain

the maximum sum-rate capacity resulting from computing (2.15) over many

episodes.

2.9 Simulation Results

In this section, I evaluate the performance of my RL-based proposed

solutions in terms of the performance measures in Section 2.8. First, I describe

the adopted setup in Section 2.9.1 before delving into the simulation results

in Sections 2.9.2 and 2.9.3.

2.9.1 Setup

I adopt the network, signal, and channel models in Section 2.3. The

users in the urban cellular environment are uniformly distributed in its cov-
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erage area. The users are moving at a speed v with both log-normal shadow

fading and small-scale fading. The cell radius is r and the inter-site distance

R = 1.5r. For the voice bearer, I set the adaptive code rate β between 1:3 to

1:1 based on reported SINR and use an AMR voice codec bitrate of 23.85 kbps

and a voice activity factor ν = 0.8. The users experience a probability of line

of sight of pLOS. The bandwidth of both the voice and data bearers is equal

to one resource block. The rest of the parameters are shown in Table 2.3. I

set the target effective SINRs as:

γvoice
target := 3 dB,

γbf
target := γbf

0 + 10 logM dB (2.16)

where γbf
0 is a constant threshold (i.e., not dependent on the antenna size). I

set the minimum SINR at −3 dB below which the episode is declared aborted

and the session is unable to continue (i.e., dropped).

The hyperparameters required to tune the RL-based model are shown

in Table 2.2. I refer to my source code [65] for further implementation details.

Further, I run Algorithm 1 on the cellular network with its parameters in

Table 2.3. The simulated states S are setup as:

(s0
t , s

1
t ) := UE`(x[t], y[t]), (s2

t , s
3
t ) := UEb(x[t], y[t]),

s4
t := PTX,`[t], s5

t := PTX,b[t],

s6
t := f`[t], s7

t := fb[t],

where (x, y) are the Cartesian coordinates (i.e., longitude and latitude) of the

given UE.
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To derive the actions A, I exploit the fact that F and P each has

a cardinality that is a power of two. This enables us to construct the binary

encoding of the actions using a string of bits in a register a as shown in Fig. 2.5.

With bitwise-AND, masks, and shifting, the joint beamforming, power control,

and interference coordination commands can be derived. I choose the following

code:

1. When q = 0:

• a[0,1] = 00: decrease the transmit power of BS b by 3 dB.

• a[0,1] = 01: decrease the transmit power of BS b by 1 dB.

• a[0,1] = 10: increase the transmit power of BS b by 1 dB.

• a[0,1] = 11: increase the transmit power of BS b by 3 dB.

• a[2,3] = 00: decrease the transmit power of BS ` by 3 dB.

• a[2,3] = 01: decrease the transmit power of BS ` by 1 dB.

• a[2,3] = 10: increase the transmit power of BS ` by 1 dB.

• a[2,3] = 11: increase the transmit power of BS ` by 3 dB.

2. When q = 1:

• a[0] = 0: decrease the transmit power of BS b by 1 dB.

• a[0] = 1: increase the transmit power of BS b by 1 dB.

• a[1] = 0: decrease the transmit power of BS ` by 1 dB.

• a[1] = 1: increase the transmit power of BS ` by 1 dB.

56



2
IC`[t]

2
PCb[t]

1
fb[t]

1
f`[t]

1
IC`[t]

1
PCb[t]

at ∈ A

q = 0:

q = 1:

Figure 2.5: Binary encoding of joint beamforming, power control, and interference
coordination actions using a string of bits in a register a for different bearer types
(q = 0 for voice bearers and q = 1 for data bearers).

• a[2] = 0: step down the beamforming codebook index of BS `.

• a[2] = 1: step up the beamforming codebook index of BS `.

• a[3] = 0: step down the beamforming codebook index of BS b.

• a[3] = 1: step up the beamforming codebook index of BS b.

Here, I can infer that P = {±1,±3} dB offset from the transmit power.

The choice of these values is motivated by 1) aligning with industry standards

[40] which choose integers for power increments and 2) maintaining the non-

convexity of the problem formulation (2.6) by keeping the constraints discrete.

The actions to increase and decrease BS transmit powers are implemented as

in (2.12) and (2.13). I introduce 3-dB power steps for voice only to compensate

for not using beamforming, which is aligned with the industry standards of

not having beamforming for packetized voice bearers [40].

The reward I use in my proposed algorithms is divided into two tiers:

1) based on the relevance of the action taken and 2) based on whether the

target SINR has been met or the SINR falls below the minimum. I start with
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defining a function p(·) which returns one of the elements of P based on the

chosen code. Here, p(00) = −3, p(01) = −1, p(10) = 1, p(11) = 3. Next, I

write the received SINR due to the aforementioned encoded actions in a as

γ
a[0],a[3]

b and γ
a[1],a[2]

` for BSs b and `, respectively.

I further write the joint reward for both voice and data bearers as

follows:

rs,s′,a[t; q] :=

(
p(a[0,1][t])− p(a[2,3][t])

)
(1− q)+(

γ
a[0][t],a[3][t]

b + γ
a[1][t],a[2][t]

`

)
q

(2.17)

where q = 0 for voice bearers and q = 1 for data bearers. I reward the agent

the most per time step when a joint power control and beamforming action

is taken for data bearers and when a joint power control and interference

coordination takes place for a voice bearer. I abort the episode if any of the

constraints in (2.6) becomes inactive. At this stage, the RL agent receives a

reward rs,s′,a[t; q] := rmin. Either a penalty rmin or a maximum reward rmax

is added based on whether the minimum γmin has been violated or γtarget has

been achieved as shown in Algorithm 1. Here, it is also clear that for data

bearers the agent is rewarded more for searching in the beamforming codebook

than attempting to power up or down. However, for voice bearers, I reward

the agent more if it chooses to power control the serving BS b than if it chooses

to control the interference from the other BS `.

In my simulations, I use a minibatch sample size of Nmb = 32 training

examples. With |A| = 16, the width of the DQN can be found using [58] to

be H =
√

(|A|+ 2)Nmb = 24. I refer to my code [65] for details.
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2.9.2 Outcomes

1. Convergence: I study the normalized convergence under (2.16) where

γbf
0 = 5 dB. Every time step in an episode is equal to one radio subframe,

the duration of which is 1 ms [11]. During this time the UE is likely to

be using a sub-optimal selection of beam obtained from a prior iteration.

This would cause the UE throughput to degrade by a factor as I show in

Section 2.9.3. As the size of the ULAM increases, the number of episodes

required converge increases with minimal effect of the constant threshold

γbf
0 since M � γbf

0 . This is justified since the number of attempts to

traverse the beamforming codebook increases almost linearly with the

increase of M .

2. Run time: I study the normalized run time and observe that as the

number of antennas M increase, so does the run-time complexity for the

proposed algorithm. This is justified due to the increase in the number

of beams required for the algorithm to search through to increase the

joint SINR.

3. Coverage: for voice bearers I observe that the coverage as defined by

the SINR CCDF improves everywhere. For data bearers, the coverage

improves where the SINR monotonically increases with the increase in

M which is expected because the beamforming array gain increases with

an increase in M .
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Figure 2.6: Coverage CCDF plot of γvoice
eff for different voice power control and

interference coordination algorithms.

4. Sum-rate: the sum-rate capacity increases logarithmically as a result of

the increase of M , which is justified using (2.5) and (2.15).

2.9.3 Figures

Fig. 2.6 shows the CCDF of the effective SINR γeff for the voice PCIC

algorithms all for the same episode. This episode generates the highest reward.

Here I see that the FPA algorithm has the worst performance especially at the

cell edge (i.e., low effective SINR regime), which is expected since FPA has no

power control or interference coordination. The tabular implementation of my

proposed algorithm has better performance compared with the FPA. This is

since power control and interference coordination are introduced to the base
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Figure 2.7: Coverage CCDF plot of the effective SINR γeff for the proposed deep
Q-learning algorithm vs. the number of antennas M .

stations, though not as effectively, which explains why close to γeff = 9 dB

tabular Q-learning PCIC underperforms FPA. Further, I observe that deep

Q-learning outperforms the tabular Q-learning implementation of the PCIC

algorithm, since deep Q-learning has resulted in a higher reward compared to

tabular Q-learning. This is because deep Q-learning has converged at a better

solution (identical to the solution obtained through brute force), unlike the

tabular Q-learning the convergence of which may have been impeded by the

choice of a initialization of the state-action value function. However, as the

effective SINR γeff approaches 13 dB, the users are close to the BS center and

therefore all power control algorithms perform almost similarly thereafter.

I show the coverage CCDF in Fig. 2.7. As M increases, so does the
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Figure 2.8: The normalized run times for the proposed deep Q-learning algorithm
as a function of the number of antennas M .

probability of achieving a given effective SINR, since the effective SINR de-

pends on the beamforming array gain which is a function of M as stated earlier.

The improvement in the run time is shown in Fig. 2.8. The brute force algo-

rithm has a significantly larger run time compared to the proposed algorithm.

The run time increases as the number of antennas M increase, though much

steeper in the brute force algorithm, due to the exponential nature of the

run-time complexity. At M = 4, only 4% of the run time of the brute force

algorithm was needed for my proposed algorithm. In Fig. 2.9, at smaller ULA

sizes M , the impact of the constant threshold γbf
0 becomes dominant and it

takes almost similar times to converge for values of M . This is likely to be

due to the wider beams in the grid of beams, which are able to cover the UEs

moving at speeds v. However, for the large antenna size regime, as the size
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of the ULA M increases, the number of episodes required converge increases

with minimal effect of γbf
0 as I explained earlier. This is due to the longer time

required for the agent to search through a grid of beams of size |F|, which are

typically narrower at large M . This causes the agent to spend longer time to

meet the target SINR. This time or delay can have a negative impact on the

throughput and voice frames of the data and voice bearers respectively. If I

assume the data bearer transmits b bits over a total duration of T bf for beam-

formed data bearers, then the impact of the convergence time would cause

these b bits to be transmitted over a duration of T bfζ. The throughput due to

convergence then becomes b/T bfζ. For voice, the number of lost voice frames

due to this convergence time is dνζe.

The achieved SINR is proportional to the ULA antenna sizeM as shown

in Fig. 2.10. This is expected as the beamforming array gain is ‖fb‖2 ≤ M .

The transmit power is almost equal to the maximum. Fig. 2.10 also shows the

relative performance of JBPCIC compared with the upper limit of performance

outlined in Section 2.7.2. I observe that the performance gap of both the

transmit power of the base stations and the SINR is almost diminished all

across M . This is because of the DQN ability to estimate the function that

leads to the upper limit of the performance. Further, I observe that the solution

for the race condition is for both BSs to transmit at maximum power.

Finally, Fig. 2.11 shows the sum-rate capacity of both the JBPCIC

algorithm and the upper limit of performance. Similarly, the performance gap

diminishes across all M for the same reason discussed earlier.
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Figure 2.9: The normalized convergence time for the proposed deep Q-learning
algorithm as a function of the number of antennas M .
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Figure 2.11: Sum-rate capacity as a function of the number of antennas M .

2.10 Conclusion

In this chapter, I sought to maximize the downlink SINR in a multi-

access OFDM cellular network from a multi-antenna base station to single-

antenna user equipment. The user equipment experienced interference from

other multi-antenna base stations. My system used sub-6 GHz frequencies for

voice and mmWave frequencies for data. I assumed that each base station

could select a beamforming vector from a finite set. The power control com-

mands were also from a finite set. I showed that a closed-form solution did not

exist, and that finding the optimum answer required an exhaustive search. An

exhaustive search had a run time exponential in the number of base stations.

To avoid an exhaustive search, I developed a joint beamforming, power

control, and interference coordination algorithm (JBPCIC) using deep rein-
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forcement learning. This algorithm resides at a central location and receives

UE measurements over the backhaul. For voice bearers, my proposed algo-

rithm outperformed both the tabular Q-learning algorithm and the industry

standard fixed power allocation algorithm.

My proposed algorithm for joint beamforming, power control and in-

terference coordinations requires that the UE sends its coordinates and its

received SINR every millisecond to the base station. The proposed algorithm,

however, does not require the knowledge of the channel state information,

which removes the need for channel estimation and the associated training

sequences. Moreover, the overall amount of feedback from the UE is reduced

because the UE sends its coordinates and would not need to send explicit

commands for beamforming vector changes, power control, or interference co-

ordination.

In the next chapter, I talk about enhancing the performance of the co-

ordinated multipoint through using a deep learning based triggering function,

which finds an improved relationship between the retransmission overhead and

the MIMO transmission rank.
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Chapter 3

Improving Downlink Coordinated Multipoint

Performance with Deep Learning

In Chapter 2, I have introduced deep reinforcement learning to perform

joint beamforming, power control, and interference coordination for data bear-

ers; and power control and interference coordination for voice bearers. In this

chapter†, I enhance the performance of coordinated multipoint. Coordinated

multipoint improves the user performance by utilizing the capacity of more

than one base station close to the edge to enable communications. In the down-

link direction, coordinated multipoint has three schemes: joint transmission,

dynamic point selection, and coordinated scheduling/coordinated beamform-

ing. I seek to optimize the communication performance of a joint transmission

scheme. My focus is on using a surrogate function to trigger a higher simul-

taneous network-based transmission rank towards the user. This surrogate

trigger function again disrupts the conventional way coordinated multipoint is

triggered and offers enhanced user performance.

†This chapter is based on the work published in the journal paper: F. B. Mismar and B.
L. Evans, “Deep Learning in Downlink Coordinated Multipoint in New Radio Heterogeneous
Networks,” IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1040-1043, Aug. 2019.
This work was supervised by Prof. Brian L. Evans.
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3.1 Overview

In this chapter, I propose a method to improve the performance of the

downlink coordinated multipoint (CoMP) in heterogeneous networks. This

method is compliant with industry standards and is based on the construc-

tion of a surrogate CoMP trigger function using deep learning. This surrogate

function enhances the downlink user throughput distribution through online

learning of non-linear interactions of user equipment reported measurements,

which I use as learning features to build a classifier to change the transmis-

sion rank. The cooperating set is a single-tier of sub-6 GHz heterogeneous

base stations operating in the frequency division duplex (FDD) mode (i.e., no

channel reciprocity). In simulation, I show that the average user throughput

obtained by my proposed method outperforms industry standards by 13.5%

in a realistic and scalable heterogeneous cellular environment.

3.2 Introduction

The aggregate demand for data traffic over fifth generation of wireless

communications (5G) cellular networks is expected to increase a thousand

times compared to the previous generation [8]. Heterogeneous networks, in

which small cells are deployed along with macro base stations, are one of

the most important solutions to increase the network capacity. Downlink

coordinated multipoint (CoMP) will play an important role in improving data

rates and cellular capacity in 5G by using a centralized unit to coordinate the

operation of multiple New Radio (NR) base station units [66]. The principle of
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downlink CoMP extends to other 5G techniques such as the “cell-free massive

MIMO,” which achieves coherent processing across geographically distributed

base stations [15].

Downlink CoMP has various implementations. My focus is on the joint

transmission scheme, where the spatially multiplexed data streams of the user

equipment (UE) are available at more than one point participating in the data

transmission in a time-frequency resource. These points (or base stations)

form the CoMP cooperating set. This effectively forms a distributed multiple

input multiple output (MIMO) channel with spatially decorrelated streams

from each base station (BS) in the CoMP cooperating set [67], which increases

the average user throughput. This seems intuitive as spatial decorrelation in-

creases the number of independent channels. The base stations in the CoMP

cooperating set communicate over low-latency backhaul to maintain synchro-

nization. A common approach in CoMP today is to use a static absolute

triggering threshold based on the UE reported measurements.

3.2.1 Prior Work

A traffic analysis model based on Markov chains was introduced in [68]

to approximate the computation of the received power sum of multiple log-

normal random components in multi-BS environments in a joint transmission

downlink CoMP scheme. Call admission control was introduced to improve

the resource utilization based on transmission from multiple cells. I, on the

other hand, focus on user perceived throughput and spectral efficiency without
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regards to the call blocking. Joint transmission downlink CoMP was studied

in [69] to derive an expression for network coverage probability of a UE located

equidistant from cooperating BSs in a heterogeneous network using stochastic

geometry. On the other hand, I do not have the equidistant constraint. The

performance of the zero-forcing beamforming for CoMP coordinated beam-

forming was evaluated in [70], with base stations randomly dropped on a two-

dimensional plane for multiple times. A near-optimal number of antennas was

found to be equal to two in zero-forcing beamforming, which is the maximum

number of transmit antennas I use.

Interference mitigation and handover management in CoMP-formed

clusters were discussed in [71, 72]. The objective was to reduce the back-

haul utilization in star clusters of base stations without harming end-user

throughput. In contrast, my algorithm aims to improve end-user throughput.

Furthermore, I do not require the formation of star clusters as heterogeneous

networks in CoMP are likely to serve a user capable of two receive streams in

pairs composed of one high power macro and one low power node.

3.2.2 Contributions

In this chapter, I further improve the CoMP joint transmission aver-

age user throughput performance from my previous work [73]. In my previous

work, I used support vector machine (SVM) binary classification for my CoMP

trigger function in frequency division duplex mode of operation. I propose an

online deep learning algorithm which acquires physical layer measurement re-
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ports from the connected UEs within the channel coherence time in a radio

frame to trigger CoMP instead of conventional algorithms. My proposed algo-

rithm is compliant with the industry standard for CoMP for Long Term Evolu-

tion Advanced (LTE-A) [67]. The proposed algorithm formulates a surrogate

CoMP trigger function to enhance the downlink performance. This surrogate

function factors in the received power, the received signal to interference plus

noise ratio, the MIMO rank indication, and the codeword retransmission rate.

The algorithm computation can take place in a centralized location as part of a

self-organizing network (SON) as shown in Fig. 3.1. My choice of deep neural

networks (DNNs) allows the creation of more learning features than shallow

architectures such as SVM. This is due to the combinatorial and non-linear na-

ture of the hidden layers of a DNN. Furthermore, DNNs perform particularly

well when channels are complicated [74,75]. Also, SVMs tend to underperform

when the classification problem is imbalanced [76].

I choose a heterogeneous network due to the relatively shorter distances

of small cells from the macro, making backhaul more suitable for CoMP [67].

However, using macro BSs only may be possible with certain backhaul con-

straints [67].

3.3 Network and Signal Model

In this section, I describe the network environment, the signal model,

and the deep learning related to it.
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Figure 3.1: Joint transmission in a coordinated multipoint New Radio heteroge-
neous network with interfaces to the self-organizing network.

3.3.1 Network Environment

My heterogeneous network is based on orthogonal frequency division

multiplexing (OFDM). I uniformly scatter small cells for densification of the

macro coverage in an urban environment. Non-stationary UEs with multiple

antennas are randomly placed and uniformly distributed in the service area.

The network is comprised of a macro BS with one tier of surrounding macro

BSs. All macro BSs have three sectors with directional antennas. I also

add uniformly scattered small cells in the service area with omni-directional

antennas. The BSs are transmitters and the UEs are the receivers. I use

LTE-A as a multi-access wireless network in the sub-6 GHz range.
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3.3.2 Signal Model

I adopt a narrow-band network MIMO channel model where the re-

ceived signal in the discrete time domain for the i-th UE is written as

ri =

√
Es,i
nt

Hisi + vi (3.1)

where Hi ∈ Cnr×nt is the channel formed by the transmitting BSs with both

large- and small-scale gain for the i-th UE, Es,i is the energy transmitted from

the BSs to the i-th UE, si ∈ Cnt is the transmitted signal from the BSs in

the cooperating set such that E[‖si‖2] = 1, and vi ∈ Cnr is the noise vector

at the receiver. The latter two quantities are also assumed to be circularly

symmetric Gaussian with zero mean and variance σ2
vI. Also, nt and nr are the

number of transmit and receive streams respectively such that the maximum

number of streams at the i-th UE ns := min(nr, nt).

As I sample the signal model at discrete time steps t with unity incre-

ments, Es,i is also equal to the power of the transmitting BS in the CoMP

cooperating set to the i-th UE P
(i)
BS. Therefore, I can write that Es,i := P

(i)
BS.

I use zero-forcing (ZF) reception at the UE. Hence, the received signal

to interference plus noise (SINR) for the i-th UE per receive stream j is derived

as:

γ
(i)
j =

P
(i)
BS

ntσ2
ṽ

/[H∗iHi]
−1
j,j , j = 1, . . . , ns (3.2)

where σ2
ṽ is the variance of the receiver enhanced noise, measured at the i-th

UE. This noise is defined as

ṽi :=
√
ntWZF,ivi (3.3)
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where WZF,i ∈ Cnr×nt is the ZF matrix and is equal to the pseudo-inverse of

the channel Hi (i.e., WZF,i = H†i ).

Similarly, the i-th UE received power per receive stream j is:

P
(i)
UE,j := σ2

ṽγ
(i)
j =

P
(i)
BS

nt
/[H∗iHi]

−1
j,j , j = 1, . . . , ns (3.4)

all for the i-th UE. The parameters of the radio environment are listed in

Table 3.3.

I also define the reference symbol received power for the i-th UE (mea-

sured on the first receive branch as)

P
(i)
RS = P

(i)
UE,j=1

/
(NSCNPRB) (3.5)

where NSC is the number of subcarriers per physical resource block (PRB) in

the OFDM radio frame, and NPRB is the number of PRBs allocated over the

transmission bandwidth.

I define βj,i, which is the respective codeword reception error, based on

the block error rate (BLER) for the j-th stream of the i-th UE. BLER has

a direct relationship with the number of streams and their chosen modula-

tion and code scheme. I introduce two physical measurements which I use as

learning features each of size M : a) the CSI reference symbol received power

(CSI-RSRP) which is given in (3.5) and b) a transformation of the signal to in-

terference plus noise ratio of the data channel (CSI-SINR) as measured at the

j-th receive antenna. This resembles the channel quality indicator (CQI) [40]

from LTE-A and is the name I adopt here. The CQI plot as a function of the
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CSI-SINR is shown in Fig. 3.2. The CQI is reported for up to ns antennas,

which is the also known as the transmission rank. To obtain the machine

learning features X := [xi]
N
i=1,xi ∈ RM , I choose CQI and CSI-RSRP because

they are physical channel measurement quantities that have weak statistical

correlation: despite sharing the same coordinates where the measurement is

made, CSI-RSRP (x1) is the received power of the narrowband NR reference

symbols on the first receive antenna, while CQI (x2) is a quantized indication

of the received wideband SINR per antenna [77]. The space-time decorrelation

in the channel Hi, where MIMO is possible in the cooperating set service area,

can be indicated by per-antenna CQI values [67].

Surrogate CoMP trigger function: In building my surrogate CoMP

trigger function, I create the supervisory signal labels vector y ∈ {0, 1}M . To

do so, I use the aggregate BLER for the UE i, βi, and write

yi := 1[βi ≤ βtarget] (3.6)

where βtarget is the retransmission target. The vector y is likely to be imbal-

anced in the two classes as a result. When yi = 1, CoMP triggers a second

stream thereby causing the cooperating set to behave as a distributed MIMO

environment. The MIMO possibility is therefore not only due to the reported

CSI measurements by the UE, but also by the error observed in received code-

words.

With space-time independent receive streams j, I exploit statistical

independence and find that the aggregate received BLER per user i, βi, can
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be calculated from the number of streams ns and the BLER per stream j, βj,i,

as

βi := 1−
ns∏
j=1

(1− βj,i), (3.7)

which shows that the aggregate BLER for the i-th user increases as the num-

ber of streams ns increases. The components of the surrogate CoMP trigger

function for the i-th user are: BLER, CSI-RSRP, CQI, and the number of

streams ns, all of the i-th UE.

Finally, the relationship between the effective UE throughput and the

elements of the surrogate CoMP trigger function for a given UE i is given

by Reff
i = Ri(1 − βi) where Ri is the instantaneous achievable rate given by

Ri :=
∑

j B log2(1 + γ
(i)
j ) [78], all for the i-th UE [79]. This means that

the relationship between the throughput and the BLER is inversely linear.

An intuition here is that the SINR has a smaller impact on the effective UE

throughput compared to the BLER since the latter is a pre-logarithmic factor.

3.4 Machine Learning

In this section, I describe two machine learning algorithms: support

vector machines and deep neural networks. I also go over the various steps

required in training a classifier.

3.4.1 Support Vector Machines

SVM classifiers maximize the margin around the separating hyperplane

of two classes. In essence, the SVM classifier is the solution of the hinge-loss
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kernel-modified Lagrangian dual problem

maximize:
λ

∑
i

λi −
1

2

M∑
m=1

M∑
n=1

λmλnymynK(xm,xn)

subject to:
M∑
m=1

λmym = 0,

0 ≤ λm ≤ CBox, m = 1, . . . ,M

(3.8)

where xm,xn (with non-bold typeface subscript) are the support vectors to the

m-th and n-th data point respectively, λm, λi are elements in the Lagrangian

multiplier vector λ ∈ RM , and CBox is a hyperparameter to control overfitting,

also known as the Box constraint. Lastly, K(·, ·) is the SVM kernel and is

defined as

K(x,x′) , φ(x)>φ(x′) (3.9)

where φ(·) is a function that maps x to a higher dimension. A scale factor γ

can also be introduced to the SVM kernel [80]. Since the dual problem is a

maximization problem of a quadratic function subject to linear constraints, it
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Figure 3.2: Downlink channel quality indicator (CQI) to CSI-SINR mapping.
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Table 3.1: Machine learning features for CoMP improvement
Parameter Type Description

x0 Bias term Integer This is equal to unity.
x1 CSI-RSRP Float Narrowband received power measurement.
x2 CQI Integer Wideband received SINR on first antenna linearly mapped.
x3 Rank Integer The number of streams j of the UE.

can be solved efficiently by quadratic programming. Also, the primal-dual gap

is zero for SVM due to Slater’s condition (strong duality) since the optimization

objective in the primal problem is convex [81].

The SVM model is trained and tune the hyperparameters in Table 3.2

using grid search and K-fold cross-validation. I perform this grid search over

the space defined by the Cartesian product of a few values of each hyperpa-

rameter.

3.4.2 Deep Learning

I use a fully connected DNN classifier with the sigmoid activation func-

tion in the implementation of this algorithm as shown in Fig. 3.3. I define the

learning features in a design matrix X based on the physical measurements in

the previous subsection. These features (listed in Table 3.1) are scaled such

that their values lie in the closed interval [0, 1]. If the features were correlated,

an inflation in the training error variance would have turned the learning re-

sults useless. Further, the block matrix of the weights of the fully connected

DNN hidden layers is Θ := [θ`]
d+1
`=1 ,θ` ∈ Rw×M .

This introduction of a supervisory signal with deep learning enables

the classifier to capture more effects more implicitly as I explain later in Sec-
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Figure 3.3: Structure of the fully connected deep neural network used in the
implementation of my modified algorithm.

tion 3.5.

Feature engineering and missing data: The UEs are not scheduled

all the time. Furthermore, not all the antennas are always receiving data either.

Therefore, I dropped the CQI from the second antenna, and created a learning

feature which captures ns. When a UE is not receiving data, the CQI for that

user in that time step is missing, even though the RSRP is still reported. I

drop this data point from my dataset.

Training, cross-validation, and testing: The gathered data X and

y is periodically split to a training and a test dataset. I then train the model

and tune the hyperparameters in Table 3.2. I use grid search over the hyperpa-

rameters search space to find the optimal settings and K-fold cross-validation

to prevent under- or over-fitting.

Classification performance: The vector containing the estimated

supervisory signal labels from the classifier is ŷ. Since the classifiers are trained
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with the training dataset, the anticipated generalization performance of the

classifiers is represented by the test data misclassification error µ

µ :=
1

Mtest

∑
m

1[ŷm 6= ŷtest,m] (3.10)

where Mtest is the test data size. High misclassification error can be attributed

to classifier poor bias-variance characteristic or rapidly changed radio condi-

tions. When the data has highly imbalanced classes (i.e., #(y = c)� #(y =

c′), c, c′ ∈ {0, 1}, c 6= c′), as is the case in this problem, the receiver operating

characteristic (ROC) area under the curve ξ has advantage over the misclas-

sification error. This is because ROC tries all the thresholds in its attempt to

compute the probability that a classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative example.

3.5 Problem Formulation

A common industry approach to enable downlink CoMP or disable it

in the cooperating set is to use absolute thresholds of the downlink SINR

reported by the UEs. These thresholds are subjective and have diminished

effects on the user rate since SINR is a logarithmic term in its formula. There-

fore, they are unlikely to yield an improved downlink CoMP performance. To

improve the CoMP performance, I formulate the problem of triggering CoMP

as a trade-off between BLER β and transmission rank ns. Therefore, un-

like the subjective SINR-based threshold, I now have a dynamic data-driven

pre-logarithmic threshold that triggers CoMP. The data is collected from the
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radio measurements from all the UEs served by the cooperating set during

the time duration of TCoMP. This duration cannot exceed the channel coher-

ence time Tcoherence or the radio frame duration TRF. I use the approximation

Tcoherence ≈ c/(vfc) where c is the speed of light, v is the speed of the receiver

UE, and fc is the center frequency of the OFDM carrier. In other words,

TCoMP ≤ min(Tcoherence, TRF). Given this, the matrix X has a number of rows

M upper bounded by nsNUEgTCoMP, given the CSI reporting periodicity of g

reports per transmission time interval (TTI) as in [11].

The collected data is then used to train a deep learning classifier and

if its performance is acceptable, it can override the common approach for the

next TTI. Otherwise, the common trigger is always the fallback. The DNN

classifier performance is measured through the decision threshold ε, which can

also control misclassifications due to training outside the channel coherence

time or poor model fitting in general.

The DNN classifier must be periodically invalidated (i.e., purged and

retrained with new measurements) at a periodicity of TCoMP. Invalidation

ensures that the model is updated with measurements within the channel

coherence time. Otherwise, the channel state information (CSI) may have

changed but may not have the proper reflection onto the classifier. I can

therefore build a deep learning binary classifier where yi is found as in (3.6).

This enables us to reformulate the problem as a machine learning problem
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that minimizes the binary cross-entropy loss function L(·, ·):

minimize:
Θ

L(y, ŷ; Θ) := −
∑
k

yk log ŷk + (1− yk) log(1− ŷk). (3.11)

Here, ŷ is estimated from the DNN classifier. The value of ŷ instructs the

CoMP cooperating set to form or teardown a dynamic MIMO channel through

changing ns. This is done per user for all users i during a given TTI. Mini-

mization of the loss function is done through stochastic gradient descent (SGD)

optimizer. SGD starts with a random initial value of Θ and performs an iter-

ative process to update Θ as follows

Θ := Θ− η∇L(y, ŷ; Θ) (3.12)

where η : 0 < η ≤ 1 is the learning rate of SGD and∇L(y, ŷ; Θ) is the gradient

of the loss function (3.11) with respect to Θ. The weights Θ are updated after

every time step t. I also use the sigmoid function σ : x 7→ 1/(1 + e−x) as

the activation function of all the nodes in the DNN. The sigmoid function is

a continuous non-linear differentiable function for all x making it a preferred

choice, especially when the data is scaled in the interval [0, 1] as mentioned in

Section 3.4.2.

Deep learning transforms (3.11) to higher dimensions through com-

binatorial and non-linear nature of the hidden layers. Using the fully con-

nected DNN in Fig. 3.3, I write my DNN-based surrogate function ŷ in terms

of the inputs, the trainable weights Θ, and non-linear activation functions

σ`(·), ` ∈ {1, 2, . . . , d+ 1} as

ŷ = σd+1(θd+1σd(. . . σ1(θ1X̃))) (3.13)
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where d + 1 is the output layer, X̃ is the normalized matrix X, and the non-

linear activation functions are applied element-wise on vectors. It can be

inferred from the surrogate function formula that the number of learning fea-

tures generated from these inputs is in O(wd). This surrogate function is a

CoMP-triggering function used for the next TTI.

3.6 Algorithm

In this section, I present my proposed algorithm in comparison to other

algorithms.

3.6.1 Static SINR-based Algorithm

The decision to enable or disable CoMP in the cooperating set for users

is based on an absolute threshold of the downlink SINR on the first antenna

reported by the distribution of users. It is triggered based on the majority of

the UEs reporting CQI above the trigger SINR threshold. In other words, I

can write the SINR-based algorithm as

yi[t] = 1[γ(i)[t] ≥ γCoMP] (3.14)

where γi)[t] is the received SINR as measured on the first antenna and γCoMP

is the CoMP SINR trigger.

3.6.2 Dynamic Algorithm

The dynamic algorithm to trigger CoMP comes from [73]. The asymp-

totic time complexity of SVM training is in O(M3) where M is the number of
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rows in the matrix X as computed in Section 3.3. However, performing a grid

search cross-validation has a multiplicative impact on this bound [2,81].

3.6.3 Deep Learning Algorithm

The improved proposed dynamic algorithm to trigger CoMP is shown

in Algorithm 2. The decision to trigger CoMP is based on the class with

the maximum frequency: ŷ?[t] := arg maxŷ f(ŷ[t− 1]), f(ŷi) := #(ŷ = ŷi)/M ,

where the vector ŷ is obtained using the surrogate CoMP function from all the

served UEs (3.13). The lower bound time complexity of training a DNN with

d hidden layers and w neurons per hidden layer is in O(Mwd) [82]. Otherwise,

with equal hyperparameter search space size and cross-validation folds, DNN

run-time complexity outperforms SVM if d logw < 2 logM .

The main steps of Algorithm 2 are as follows:

• Construct the dataset for the UEs in the cooperating set, which contains

the measurements and the MIMO rank.

• Train the DNN classifier using this dataset.

• Use this classifier to make a decision about the enabling or disabling

CoMP (i.e., the distributed MIMO channel rank) towards the UEs in

this cooperating set.
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Algorithm 2: Deep Learning CoMP Algorithm

Input: Decision threshold ε, measurements collection period TCoMP,
current triggering downlink SINR. Table 3.4 has example
values.

Output: Triggering decision for downlink CoMP for all NUE UEs in
Tsim TTIs.

1 for T := 1 to Tsim do
2 if T mod TCoMP 6= 0 then
3 Acquire the learning features X in Table 3.1 from all UE

measurements during time t = T, . . . , (T + TCoMP − 1).
4 Compute the classification label y.
5 Use the static algorithm for CoMP trigger

6 else
7 Split the measurement data [X |y] to training and test data.
8 Scale the features in X to interval [0, 1].
9 Train the DNN model using the training data and use grid

search on K-fold cross-validation to tune the hyperparameters
(in Table 3.2) and find optimum weights Θ.

10 Compute the misclassification error µ.
11 if µ > ε then fallback to static algorithm.
12 Compute ŷ using the trained classifier for all UEs.
13 Use arg maxŷ f(ŷ) to decide to enable CoMP in the next TTI.

14 end
15 Invalidate the DNN model.
16 Purge collected measurement data.

17 end

3.7 Performance Measures

The user downlink throughput empirical cumulative distribution func-

tion (CDF) [83] and the average user throughput are used as performance

measures of the respective algorithms as presented in Section 3.6.
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Table 3.2: Classifier hyperparameters

DNN Hyperparameter Search range SVM Hyperparameter Search range

DNN depth d {1,3,5} Kernel {gaussian, polynomial∗}
DNN width w {1,3,10} Box constraint CBox {0.01,1,10}
Optimizer Stochastic Gradient Descent Kernel scale γ auto [73]

∗ Degrees p ∈ {1, 2, 3, 4}.

Table 3.3: CoMP algorithm – radio environment parameters
Parameter Value

Bandwidth B 10 MHz
Downlink center frequency fc 2100 MHz
Downlink user scheduler Proportional Fair
Macro BS maximum power 46 dBm
Small cell BS maximum power 37 dBm
Maximum number of streams ns 2
Number of PRBs NPRB 50

3.8 Simulation Results

In this section, I evaluate the performance of my proposed solution in

terms of the performance measurements. I describe the adopted setup and

then delve into the simulation outcomes.

3.8.1 Setup

I use a MATLAB-based simulator to implement my algorithm [83,84].

The UEs move at an average speed of v = 5 km/h. I use a K = 3 K-fold cross-

validation with a training-test data split of 70-30 and SGD optimizer learning

rate η = 0.05. I set the retransmission target βtarget to 10%. The number of

subcarriers per PRB NSC = 12, and the radio frame duration TRF = 10 ms.

The channel coherence time Tcoherence ≈ 103 ms. The network is shown in
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Table 3.4: CoMP simulation parameters

Parameter Value

Static CoMP SINR trigger γCoMP −3.5 dB
Total number of connected UEs in the cluster NUE 184
Number of small cells 17
Number of macro BSs 21
Measurements collection period TCoMP 3 TTIs
Simulation time Tsim 30 TTIs
Misclassification error threshold ε 15%

Fig. 3.5. The small cells are scattered according to a homogeneous density of

80 per km2. The important simulation parameters are in Table 3.4.

3.8.2 Outcomes

The performance improvement empirical CDF of the user throughput

over the simulation period is shown in Fig. 3.4. This improvement is due to the
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Figure 3.4: Empirical cumulative distribution function (CDF) of the UE downlink
throughput for all three algorithms.
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learning of an improved surrogate CoMP triggering function as shown in Fig.

3.7. The supervisory signal labels are imbalanced with #(y = 0) = 1,522 out

of 9,180. Therefore, the class y = 1 is the majority class. This means that the

BLER was maintained below the 10% target. I observe that the SINR-based

algorithm makes decisions to enable or disable CoMP in the cooperating set
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Figure 3.5: CoMP network with UEs in blue and small cells in red diamonds.
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Figure 3.6: Scatter plot showing the CSI-RSRP and the SINR as measured on
antenna j = 1. There is weak correlation between the two quantities.
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Table 3.5: CoMP downlink link-level performance

Average
User Throughput BLER βi Streams ns CQI CSI-RSRP

Algorithm [Mbps] [dBm]

SINR-based CoMP‡ 1.02 - - - -
SVM CoMP 1.10 7.15% 1.59 3 −58.17
DNN CoMP 1.16 3.76% 1.55 3 −58.17

‡ Quantities not reported in the published version.

when the improved dynamic algorithms do the opposite. The reason for DNN

outperforming the SVM-based CoMP algorithm is two-fold. First, the depth

of the DNN allows the creation of more interaction features. As I show in

Table 3.6, the number of features in DNN is O(wd), compared to the most

feature-generating polynomial SVM kernel of degree p with the number of

features being O(p). Second, SVM tends to suffer bias towards the majority

class (y = 1) when the training supervisory signal labels are imbalanced [76].

Due to the decisions made by the computed surrogate function (3.13), the

CoMP cooperating set prevents UEs from receiving less codewords with lower

BLER penalty on average (3.7). Furthermore, the cooperating set activates

CoMP at times the SVM decision is biased towards disabling CoMP. The

optimization of triggering CoMP with an increased BLER and a larger number

of streams ns brings about the observed downlink throughput gain on average.

Neither the average CQI nor the average RSRP was impacted as shown in

Table 3.5.

Fig. 3.6 shows that there is no strong correlation between the RSRP

and the SINR as measured on the first antenna (when measured in the linear
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abled (state = 0) for the SINR-based (left), the SVM-based (middle), and the DNN
proposed algorithm (right).

Table 3.6: Comparison of complexities

Algorithm Asymptotic run-time Number of features

SINR-based CoMP O(1) O(1)
SVM CoMP O(M3) O(p)
DNN CoMP O(Mwd) O(wd)

scale). The coefficient of determination of these quantities, which indicates

the proportion of the variance of one quantity that can be predicted from the

other, is in the order of 10−3.

3.8.3 Future Work

Note that I have focused on the joint transmission type of coordinated

multipoint, where different codewords are transmitted from different BSs to

the UE. In this case, the UE benefits from the increase in the throughput

when MIMO is possible. However, an interesting improvement is to extend

the idea to cell-free massive MIMO [15] or network-coordinated beamforming,
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where the DNN learns the best assignment of joint beamforming vectors to

the scheduled UEs, enhancing the overall performance.

3.9 Conclusion

In this chapter, I motivated the use of a surrogate trigger function

for CoMP. My surrogate trigger function captures the received signal power,

the SINR, the codeword retransmissions, and the transmission rank in an at-

tempt to enhance the means of which the transmission rank is triggered in

the CoMP cooperating set. I obtained this function through applying online

machine learning to physical layer measurements in a realistic LTE-A FDD

heterogeneous network using both SVM and DNN. My standards-compliant

method using DNN improved the downlink rates compared to SVM with vir-

tually no impact on the reported CQI or the narrowband received power. This

improvement is due to introducing the retransmissions awareness to the CoMP

trigger function, the increase in the number of relevant learning features, and

the lower bias in the DNN classification model compared to SVM.

In the next chapter, I introduce predictive band switching in dual-band

cellular networks. The idea of proactively granting band switching without

ceasing the transmission can improve the downlink UE throughput.
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Chapter 4

Deep Learning Predictive Band Switching in

Wireless Networks

In Chapter 3, I have introduced deep learning to enhance the downlink

coordinated multi-point performance. In this chapter†, I use deep learning to

perform predictive band switching and eliminate the measurement gap bottle-

neck. Band switching is the procedure during which the user requests changing

their serving frequency band. It is often referred to as the vertical handover.

This procedure takes place at the radio resource management layer in the air

interface.

†This chapter is based on the work submitted in the journal paper: F. B. Mismar, A.
AlAmmouri, A. Alkhateeb, J. G. Andrews, and B. L. Evans, “Deep Learning Predictive
Band Switching in Wireless Networks,” IEEE Transactions on Wireless Communications,
submitted, Oct. 2, 2019. Part of this work also appeared in the conference paper: F. B.
Mismar and B. L. Evans, “Partially Blind Handovers for mmWave New Radio Aided by
Sub-6 GHz LTE Signaling,” in Proceedings of IEEE International Conference on Commu-
nications Workshops, May 2018. This work was supervised by Prof. Brian L. Evans. Mr.
Ahmad AlAmmouri, Prof. Jeffrey G. Andrews, and Prof. Ahmed Alkhateeb (Arizona State
University) provided important ideas about the use of the ray-tracing dataset, the problem
formulation, and the depth of analysis of the results which greatly improved the work. Prof.
Jeffrey G. Andrews wrote the last two sentences in the Abstract (Section 4.1 here) and the
first paragraph in the Introduction (Section 4.2 here).
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4.1 Overview

In this chapter, I deal with the band switching problem in wireless

networks. In cellular systems, the user equipment (UE) can request a change

in the frequency band when its rate drops below a threshold on the current

band. The UE is then instructed by the base station (BS) to measure the

quality of candidate bands, which requires a measurement gap in the data

transmission, thus lowering the data rate. I propose a band switching approach

based on machine learning that does not require any measurement gap. My

proposed classifier-based band switching policy instead exploits spatial and

spectral correlation between radio frequency signals in different bands based

on knowledge of the UE location. I focus on switching between a lower (e.g.,

3.5 GHz) band and a millimeter wave band (e.g., 28 GHz), and design and

evaluate two classification models that are trained on a ray-tracing dataset.

A key insight is that measurement gaps are overkill, in that only the relative

order of the bands is necessary for band selection, rather than a full channel

estimate. My proposed machine learning-based policies achieve roughly 30%

improvement in mean effective rates over those of the industry standard policy,

while achieving misclassification errors well below 0.5%.

4.2 Introduction

With each successive cellular standard using a rapidly increasing num-

ber of different frequency bands in different parts of the spectrum, the band

selection problem has become ever more complicated. In particular, UEs wish
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to use the band or bands that maximize their quality of experience (QoE),

which is highly correlated to their achieved data rate. The choice of the op-

timal frequency band can be challenging. On the one hand, lower frequency

bands generally have more benign propagation and thus produce higher sig-

nal to noise ratio (SNR), but higher frequency bands such as millimeter wave

(mmWave) offer much more bandwidth as well as beamforming gains and will

typically be more lightly loaded. So, if the SNR on a mmWave band is accept-

able, it is likely to provide a much higher data rate than a lower band and a

UE would usually benefit from being efficiently switched over to the mmWave

band. Similarly, if coverage is lost on the mmWave band, the UE should be

quickly switched back to the lower band.

Despite its increasing importance, the procedure for band switching has

seen only incremental changes over the evolution of multiple successive 3GPP

standards [26,85]. This procedure is shown in Fig. 4.1 and described as follows.

If the received power at the user drops below a certain threshold on its current

frequency band, call it fj, it requests a band switch from its serving base

station (BS). This request is followed by a measurement gap, where the data

flow is stopped to allow the user to tune its reception circuitry to the frequency

of the target band, call it fj′ , j
′ 6= j, to measure the channel. After obtaining

the measurements, the user reports them back to the BS. The BS estimates,

based on the measurements, whether the user would benefit from switching

to fj′ or not, and hence, grants or denies the request. A key issue with the

aforementioned procedure is its dependence on the measurement gap which
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causes interruption in the data flow and reduces the user overall throughput.

The 3GPP standards also introduced mobile load balancing (MLB) as a means

of transferring traffic served by a congested BS to nearby BSs that have spare

resources [28]. However, MLB requires periodic communication between BSs

about their resources, thereby introducing a significant overhead. MLB is also

triggered by the BS desire to relieve its congestion, while the band switch is

triggered when the UE desires to maximize its QoE.

It would be desirable to introduce a reliable method that can support

the band switch procedure without interrupting the user data flow by measure-

ment gaps. The aim of this chapter is to propose a novel gap-free algorithm

for band switching that utilizes the spatial and spectral correlations over dif-

ferent frequency bands along with the previous band switching requests and

decisions for nearby users. More precisely, I propose predictive algorithms,

based on the extreme gradient boosting (XGBoost) trees [86] and deep neural

network (DNN) classifiers, which allow the BS to decide whether to grant or

deny the band switching requests without the need for measurement gaps.

4.2.1 Related Work

Predicting the success of a band switch from one frequency band to an-

other without explicitly measuring the channel at the target frequency band

falls under the genre of problems commonly referred to as “channel estimation

using out-of-band information” [87]. In the simplest form of this problem,

there are forward and backward (downlink and uplink) links occupying the
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UE BS

Received power of the user
on fj drops below threshold

Request band switch to fj′

Measurement gap configured at fj

Measure the new channel at fj′

Report the measurements

Band switch decision

Figure 4.1: The band switch procedure between frequency bands in one base
station (BS) in the downlink direction.

same frequency bands at different time slots. In this case, I can use chan-

nel reciprocity [88] to estimate the channel of the backward link using the

measurements on the forward link, or vice versa. Even with a separation of

frequency duplex bands on the order of ten megahertz, a spatial correlation

between the signals on the two frequency bands still exists due to the common

paths, blockages, and reflectors [47, 88]. Interestingly, the spatial correlation

between two frequency bands that are separated by tens of gigahertz still ex-

its [89]. However, it cannot be directly used to accurately estimate the channel

on one frequency band by only using the measurements from the other, but

it can be used to aid the channel estimation and reduce its complexity. For

example, this correlation was exploited in [90–93] for cell discovery, channel

covariance estimation, and beam selection in mmWave bands using sub-6 GHz
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measurements. In the case of band switching, I am not interested in accurate

channel estimation since the objective is not to use the estimate in decoding

the messages, beam selection, or precoder/combiner design used in multiple-

input multiple-output (MIMO) communications. Instead, my goal is much

simpler: ranking the downlink channel quality of the two frequency bands or

technologies.

The major challenge in exploiting the spatial correlations between fre-

quency bands is the lack of accurate mathematical models that describe how

the channel changes across these frequencies (or technologies). This challenge

makes a data-driven or a machine learning (ML) approach more attractive to

follow and implement. With more publicly available datasets that are based

on field-measurements or sophisticated ray-tracing simulations [94, 95], I ex-

pect the interest in this approach to dramatically increase. Nevertheless, the

applications involving dual-band ray-tracing datasets with ML classification

to study channels is a nascent research area.

Although relevant to dual-band resource management, the work in [96]

did not address the impact of measurement gaps on UE data rates. It fo-

cused on granting resources to users at mmWave first, while I allow granting

resources to both mmWave and sub-6 GHz simultaneously without any spe-

cific preference. Furthermore, statistical path loss models were used for both

mmWave and sub-6 GHz bands which may be privy to the spatial and spectral

correlation of channels that I otherwise capture using ray-tracing datasets.

The work in [97] studied only one type of 3GPP dual-band handovers,
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which I call the “legacy” policy later in this chapter. However, similar to

[96], the use of statistical path loss models voids the opportunity to exploit

the correlation across bands; therefore insights about the performance of the

various algorithms, including the second type of 3GPP dual-band handover

algorithms—the “blind” policy—could not be derived. Furthermore, the ob-

jective was to improve energy efficiency through handover avoidance, unlike

my proposed algorithm the objective of which is to improve the UE data rates

by eliminating measurement gaps.

In [98] dual connectivity was studied. Dual connectivity requires a

local coordinator to manage the traffic between the cells, unlike band switch

procedures. As a result, a backhaul latency constraint between the BSs was

imposed. Furthermore, empirical pathloss models were used. Multiple BSs

with a single UE were simulated while my focus is on a single BS with dual

band and multiple UEs. The use of a single UE may prevent the employment of

ML techniques due to the limited number of learning observations—a problem

I avoid altogether through the use of a dataset. Moreover, a band switch time-

to-trigger mechanism was introduced, whereby the band switch is only granted

after the band switch criterion is fulfilled for a period of time. This, unlike my

proposed approach, introduces further latency to the band switch procedure

thereby making it unsuitable for the high-rate and ultra-low latency targets

promised in the fifth generation of wireless communications (5G) [8].
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4.2.2 Contributions

In this chapter, I provide an answer to the question whether a reli-

able band switch method exists to maximize the users’ achievable data rates.

Specifically, this chapter makes the following contributions:

1. Motivate the use of deep learning in ranking the downlink channel quality

of the two frequency bands—a mathematically intractable problem and

a requirement for the band switching procedure.

2. Offer several insights about the different band switch policies and their

respective impact on performance. Furthermore, I show how the choice of

the band switch threshold can have adverse impacts on the performance.

3. Motivate a data-driven approach to band switching, where I use a ray-

tracing dataset in deep learning.

4. Create a unified framework to describe the band switch policies in a single

equation and use this equation to explain the various band switching

policies and their relevant performance.

4.3 System Model

In this section, I describe the adopted network and channel models.
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4.3.1 Network Model

I consider a radio network comprised of one BS serving single-antenna

UEs in an arbitrary association area. The BS has two frequency bands; one

in the sub-6 range and one at mmWave. Moreover, the BS utilizes a different

number of antennas for each frequency band. Let j ∈ {sub-6,mmWave} denote

the frequency band and let N (j) denote the number of antennas on the j-th

band, then the received signal at the i-th UE from the BS at the j-th frequency

band is

r(i,j) = P
(j)
TXh∗(i,j)f(i,j)s(i,j) + n(i,j), (4.1)

where P
(j)
TX is the transmit power of BS on the j-th frequency band, h(i,j) ∈

CN(j)×1
is the channel vector, f(i,j) is the beamforming vector, s(i,j) is the

transmitted signal, and n(i,j) ∼ Normal(0, σ2
n) is the thermal noise. I focus on

codebook-based analog beamforming, where the beamforming vector is chosen

from a pre-defined codebook F (j) [99]. In this case, the BS chooses the optimal

beamforming vector f? that maximizes the receive SNR at the user from the

codebook F (j)

f?(i,j) := arg max
f(i,j)∈F(j)

|h∗(i,j)f(i,j)|2. (4.2)

Let the codebook size be denoted byN
(j)
CB and assume that all codewords

are normalized, i.e., ‖f(i,j)‖2 = 1. Based on this, the received SNR at time step

t at the i-th UE on the j-th frequency band is

γ(i,j)[t] =
P

(j)
TX[t]

σ2
n

|h∗(i,j)[t]f?(i,j)[t]|2, (4.3)
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and the instantaneous achievable rate is

R(i,j)[t] = B(j) log2(1 + γ(i,j)[t]), (4.4)

where B(j) is the available bandwidth at the j-th frequency. Note that the rate

in (4.4) does not include the overhead of switching to a different frequency band

nor the beam training overhead. These overheads cause a loss in throughput,

which is typically related to the coherence time of the channel and the frame

length.

4.3.2 Channel Model

Here I discuss the channel coherence time, the beam training time, the

band switching overhead, and the effective throughput.

Channel coherence time: Let the coherence time for sub-6 GHz and

mmWave frequency bands be denoted as T sub-6
C and TmmWave

C , respectively. The

exact values depend on the environment, the antenna configuration, and the

user movement. Hence, to maintain the generality of the framework, I do not

assume specific values for the channel coherence times and I discuss my choice

of the coherence times in Section 4.7, which is only needed to numerically

evaluate the performance of the different algorithms.

Beam training time: For the beam training overhead, I define the

training penalty per beam as Tbeam. Thus, the total beam training time, TB, is

related to the number of all possible beams, which is the size of the codebook

F (j) in my case (i.e., TB = TbeamN
(j)
CB).
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Band switching overhead: At the beginning of each frame, the UE

can request a band switch operation from its serving BS if it is not satisfied by

its current signal quality. The BS uses a certain policy to determine whether

the change to a different frequency band should be granted or denied. However,

there is a time penalty for the band switch request, which is used by the BS

to take a decision regarding the user request. I denote this overhead by TH ,

which is determined by the algorithm or the policy used in the BS to respond

to the band switch request and the existence or absence of a measurement gap.

The exact values of TH are given in Section 4.4, where I present different band

switch policies.

Effective throughput: Using the previous definitions for the channel

coherence time TC , the beam training time TB, and the band switch overhead

TH , I can compute the effective throughput for the i-th UE that is connected

to the j-th frequency band at the time step t as follows

R
(i,j,k)
E [t] =

(
1− T

(j)
B + T

(k)
H

T
(j)
C

)
R(i,j)[t], (4.5)

where the j-th band is the band after the band switch decision is made, which

is a new frequency if the band switch was granted and the old frequency if the

band switch was denied.

After discussing the system model and providing the necessary defini-

tions, I present the current polices discussed in the industry standards [26] for

the BS to make band switch decisions in the next section.
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Figure 4.2: Legacy band switch time diagram. The shaded gray rectangles repre-
sent the measurement gaps.

4.4 Band Switch Policies

A band switch policy has to answer the following two questions: (i)

when should the UE request this band switch? (ii) what is the information

needed by the BS to make a decision for the band switch request and how?

The first is typically solved by a pre-defined rate threshold rthreshold, such that

if the UE rate is below this threshold, it requests a band switch. For the

second question, the standards specify two policies today [26]. These policies

are the measurement-based legacy approach and the blind approach. I also

discuss the optimal policy as a benchmark. To provide a unified framework for

the different polices, I define the following decision variables: xbr, y ∈ {0, 1},

where xbr = 1 if the UE requests a band switch, and xbr = 0 otherwise, and

y = 1 if the BS grants the band switch and y = 0 otherwise. It is understood

that y is only defined if xbr = 1. Further, the threshold rthreshold is defined

for all policies except the optimal policy. It is set based on how soon the UE

should request the band switch from the BS.
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4.4.1 Legacy Policy

The legacy policy, also known as the measurement-based policy, is

shown in Fig. 4.2. When the user throughput is below the threshold rthreshold,

it requests a band switch from the BS and it stops its transmission to mea-

sure the channel at the desired frequency band. After measuring the downlink

channel, the user reports the measurements back to the BS, which decides

whether to grant or deny the band switch request based on the measurements

provided by the user. The measurement gap duration, denoted by TG, is set

to be a fraction of the coherence time [26]

TG := ρTC , ρ > 0. (4.6)

Further, if I denote the overhead due to a band switch signaling request

and its decision response as b > 0, then the band switch time overhead T
(legacy)
H

is equal to TG + b. By using this policy, the BS can make an informed decision

regarding the band switch using the rates from both bands, which guarantees

a certain QoE for the user. However, this comes at the expense of the mea-

surement gap,where the BS stops its transmission to the UE so it measures

the target channel, which causes an interruption in the data flow and reduces

the UE throughput.

By employing this policy, one of three scenarios are possible at the

beginning of each frame: (i) the UE does not request a band switch, which

happens if its current rate is higher than the threshold, (ii) the UE requests a

band switch and it is granted by the BS, which happens if the user’s current
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rate is lower than the threshold, and the rate at the target band is higher than

its current rate, or (iii) the UE requests a band switch, but it is denied, which

happens if the UE current rate is lower than the threshold, and the rate at the

target band is lower than its current rate. In terms of the decision variables I

mentioned, they are defined as follows

x
(i)
br [t] = 1[(R(i,j)[t] < rthreshold)], ∀i, (4.7)

y(i)[t] = 1[(R̂(i,j′)[t] > R(i,j)[t])], ∀i, (4.8)

where j is the current serving BS, j′ is the target BS, and R̂(i,j′) is the estimated

rate the UE would get if the band switch were granted.

4.4.2 Blind Policy

Similar to the legacy policy, when the UE throughput is below the

threshold, it requests a band switch from the BS. However, in this policy, the

BS instructs the UE to band switch to a different band without any need for a

measurement gap. Given the nature of this band switch approach, if the SNR

is worse at the target frequency, the throughput drops significantly. Hence,

although the measurement gap is eliminated, the BS cannot guarantee the

user a higher throughput after the band switch, which causes a low QoE for

the user. The decision variables in this case are as follows

x
(i)
br [t] = 1[(R(i,j)[t] < rthreshold)], ∀i, (4.9)

y(i)[t] = 1, ∀i, (4.10)
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since the band switch requests are always granted by the BS. Here, T
(blind)
H = b,

which is only for the signaling overhead since there is no measurement gap

requirement.

4.4.3 Optimal

To define an upper bound for the various band switch policies, I define

the optimal policy to be the one where the BS knows the instantaneous quality

of the channels of the different bands perfectly, so there is no need for a

measurement gap. Hence, it asks the user to switch to a different band if

the target rate is higher than its current rate. It also eliminates the need for

a pre-defined rate threshold, since the band switch request and decision are

combined and executed at the beginning of each frame by the BS. This also

costs a time overhead of b. Based on this, the optimal effective throughput in

this case is given by

R
?(i)
E [t] = max

j∈{sub-6,mmWave}

(
1− T

(j)
B

T
(j)
C

)
R(i,j)[t]. (4.11)

Finally, the decision variables can be written as

x
(i)
br [t] = 1, ∀i, (4.12)

y(i)[t] = 1[(R̂(i,j′)[t] > R(i,j)[t])], ∀i. (4.13)

4.4.4 Overhead of Band Switching

Based on the previous discussion, besides the standards-imposed sig-

naling overhead requirement of b, which is common across all policies, only
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the legacy policy causes a band switch overhead. This overhead is equal to

the measurement gap. Hence, T
(i,j,k)
H = T

(i,j,k)
G + b for k ∈ {legacy} and

T
(i,j,k)
H = b, k ∈ {blind, optimal}. Note that deterioration in user throughput

due to band switch overhead in the legacy policy drives the setting of the pre-

defined threshold to lower values to avoid spending long times in measurement

gaps. When this threshold is set low, the signal quality has to be bad for the

user to request the band switch. This prevents the user from utilizing possibly

better channels on other frequency bands or technologies. Moreover, with the

introduction of mmWave frequency bands [100] in the 5G standard, the design

of the band switch procedure becomes yet more critical since radio frequency

signals at mmWave bands are more sensitive to blockages by various objects.

For example, it was shown in [101] that the antenna gains on the mmWave

bands can suffer from up to 25 dB attenuation due to the user hand grip on

the mobile device and it varies with the different hand grips. Hence, under

large blockage losses, the user would benefit from a fast transition to other

frequency bands, and relying on the measurement gaps does not help.

The objective of this work is to propose a new band switch policy that

eliminates the measurement gap, as in the blind policy, but ensures a certain

QoE as in the legacy policy. My policy relies on deep learning classification,

which I introduce in the next section, before discussing the details of my

algorithm.
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Table 4.1: Deep neural network classifier learning features

Parameter Type Description

x0 Bias term Integer This is equal to unity.

x1 R
(sub-6)
E Float Effective achievable rate in the sub-6 GHz band.

x2 R
(mmWave)
E Float Effective achievable rate in the mmWave band.

x3 Source technology Binary (= 1 for sub-6 and = 0 for mmWave).
(x4,x5,x6) Coordinates Float The coordinates of the UEs distance from the base

station based on the coordinates of i-th UE.

x7 Band switch requested Binary UE requested band switch (x
(i)
br = 1)?

y Band switch decision Binary UE band switch request is granted (y(i) = 1)?

4.5 Proposed Policy

For my proposed policy, I use the locations and measurements of a set

of users U to improve the band switch performance for a set of geographically

nearby users N \ U from the total set of users N , where |N | = NUE such

that U ⊂ N , without the need of a measurement gap. This is achieved by

exploiting the spatial and spectral correlation of the channels over different

frequency bands and different locations. I keep the minimum threshold criteria

used in the legacy and blind polices, where the UE requests a band switch if

its rate drops below a pre-defined threshold, rthreshold. Then the BS grants the

band switch if the estimated rate at the target frequency is higher than the UE

current rate. The difference is that the BS does not ask the UE to interrupt

its transmission to measure the channel, but instead uses a machine learning

approach to estimate the rate at the target frequency, using the user current

rate and the previous measurements from other UEs. Hence, the decision

variables xbr, y are defined in the same way as in the legacy approach given in
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(4.7) and (4.8).

The major challenge in this approach, which relies on exploiting the

spatial and spectral correlations between the channels, is the lack of accurate

mathematical models that capture these correlations. Hence, I propose the use

of DNN or XGBoost classifiers in the solution of my problem. My proposed

algorithm trains the classifier based on a fraction of the locations of the UEs

and whether a band switch was granted or denied in these locations. Then,

I use this classifier to predict the band switch of other locations in the prox-

imity of these learned locations. My algorithm is illustrated in Fig. 4.3 and is

specified in Algorithm 3. The main steps of this algorithm are as follows:

• Construct the dataset for the UEs in the region, which contains the rates

from the spatially correlated wireless channels and band switch decisions.

• Train the classifier using this dataset.

• Use this classifier to predict the band switch for the UEs outside this

region.

For the classifier I consider two options: DNN and XGBoost. DNN

is a feed-forward architecture that uses layers of neurons of a given depth d

and width w [2]. An activation function σ(·) defines the output of a neuron

with respect to its inputs. A DNN optimizes a convex loss function through

a learning rate η > 0. XGBoost optimizes an objective function containing

a convex loss function (e.g., binary logistic loss) and a regularization term
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Figure 4.3: Illustration of my proposed algorithm. The list of learning features is
shown in Table 4.1.

α‖w‖1 + 1
2
λ‖w‖2

2 + γT , where w is the vector containing the leaf weights in

the boosted tree, α and λ are the regularization terms for their respective

norms, γ is the complexity control, and T is the number of leaves.

Classifier training: I train the hyperparameters of the classifiers us-

ing grid search and K-fold cross-validation. The list of learning features is

shown in Table 4.1. Let the feature matrix be denoted by X ∈ RNUE×p, p > 2.

The industry standards require two features for the band switch decision, as I

showed earlier. The supervisory label vector is a column vector y ∈ {0, 1}NUE ,

where 0 means the band switch was denied and 1 means granted based on

(4.7).

My proposed approach is shown in comparison to the legacy approach

in Fig. 4.4 and it operates in two phases: a) learning phase and b) exploitation

phase.

Learning phase: In the learning phase, the UE follows the legacy

approach discussed earlier while the proposed algorithm stores the learning

features X and y. Machine learning is then applied on this data to build
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Algorithm 3: Measurement Gap Free Band Switch Policy

Input: Parameters listed in Table 4.2 and Table 4.3.
Instantaneous rates by UE location per frequency band
(or technology) of a given region. Band switch threshold
rate. Set of all UEs N and target UEs U ⊂ N .

Output: A vector ŷ containing a prediction whether the
measurement gap-free band switch should be granted or
denied for the set N \ U in the proximity of that region,
a confusion matrix C, and the area under the receiver
operating characteristic (ROC) curve for the set.

1 Nlearning := d(1− rexploitation) ·NUEe
2 At random, sample with no replacement a set users from N which

has NUE users.
3 Build the dataset [X |y] for UEs {1, 2, . . . , Nlearning}, where X is in

Table 4.1 and y is based on (4.8), both for all Nlearning UEs.
4 Randomly split the data [X |y] into a training and a test data

(using rtraining split ratio).
5 Train the DNN classifier using the training data and use grid

search on K-fold cross-validation to tune the hyperparameters
based on the binary cross-entropy loss function [2].

6 forall u ∈ N \ U do
7 Use the DNN classifier to predict ŷ(u) based on X(u).
8 end
9 Obtain ξ the area under the ROC curve for this model using

ŷ := [ŷ(u)].
10 Build the confusion matrix C by observing y and ŷ.

a classifier that estimates band switch decisions but without the need for a

measurement gap. During this phase, I let all UEs request band switches by

setting x7 to unity (or rthreshold to +∞). This is in order for the classifier to

learn the relationship between channels regardless of band switch requests. I

use both DNN and XGBoost classification models in the implementation of

this phase.
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Figure 4.4: Proposed band switch time diagram. The shaded gray rectangles
represent the transmission gaps.

Exploitation phase: In the exploitation phase, the classifier uses

prediction to eliminate the measurement gap but for the set of UEs U which

were not used in the learning phase, as stated earlier. This set U is a group of

UEs that are geographically close to the ones in the learning phase which can

benefit from the spatial correlation of the channels. The predicted decision

either grants or denies the band switch from the j-th band. The exploitation

phase essentially represents the generalization capacity of the classifier.

4.6 Performance Measures

In this section I describe my choice of the performance measures to

benchmark my algorithm. These measures describe the performance of both

the QoE of the users and the performance of the classifier.

112



4.6.1 Effective Achievable Rate

I evaluate the effective rate of all the users in the network using (4.5)

employing the different polices I discussed. I am interested in the statistics

of the effective achievable rates. Namely, the cumulative distribution function

(CDF) and the mean.

4.6.2 Confusion Matrix

I define the misclassification count E : 0 ≤ E ≤ n as the number of

incorrectly predicted band switches during the exploitation phase. I build a

confusion matrix C ∈ Z2×2
+ having the true and predicted band switch decision

counts and write

E := Tr(JC>), (4.14)

where J is a 2× 2 anti-diagonal identity matrix. The misclassification error µ

can be derived by dividing E by n := brexploitationNUEc.

4.6.3 Receiver Operating Characteristic Area Under the Curve

The receiver operating characteristic (ROC) curve is a two-dimensional

curve used to visualize classifiers based on the tradeoff between hit rates and

false alarm rates. To compare the performance of classifiers, I reduce the

ROC performance to a single scalar quantity known as the ROC area under

the curve [102]. This area ξ : 0.5 ≤ ξ ≤ 1.0 where 0.5 means the classifier is as

good as a random guess and 1.0 means it produces perfect prediction.

So far, I have discussed the different band switch policies, including my
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proposed policy. I have highlighted the desired performance measures I am

interested in. In the next section, I discuss the data I use and how I construct

in detail.

4.7 Dataset Construction

To test the performance of the proposed algorithm, I rely on the Deep-

MIMO dataset [94]. The choice of this dataset is based on its use of accurate

ray-tracing tools to generate spatially and spectrally correlated channels for

specific scenarios. Hence, I avoid using oversimplified mathematical models

that could lead to misleading results. A better choice would be to use a

dataset that is based on actual field-measurements. However, such dataset

is not available yet to the best of my knowledge, and is highly non-trivial to

generate.

In the O1 outdoor scenario of the DeepMIMO dataset, the UEs are

placed on a uniform grid on a main street for both the sub-6 GHz and mmWave

frequency bands, where the BS uses OFDM and uniform planar array (UPA)

antennas. The adopted O1 scenario is shown in Fig. 4.5.

4.7.1 Channel Coherence Time

The channel coherence time over which the channel remains highly

correlated, is known to be given by [103]

TC(α) ≈ c

fcvs sinα
, (4.15)
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where c is the speed of light, vs is the speed of the UE, α is the angle between

the direction of travel and the direction of the BS, vs sinα is the relative speed

of the user with regards to the BS, and fc is the center frequency. This equation

has been widely used to measure the channel coherence time for the sub-6 GHz

range, where omni-directional antennas are used. However, at mmWave, where

directional antennas along with beamforming are employed to combat the high

isotropic path loss, (4.15) does not accurately measure coherence time [104].

This is because by combining directional antenna arrays with beamforming,

the signal power is focused on a beamwidth-defined angular space directed

towards the UE location. Hence, only the variations in the channel within this

angular space are relevant, which increases the channel coherence compared

to (4.15). The coherence time of the beamformed channel, referred to as the

beam coherence time, is given by [104]

TC(α) ≈ D

vs sinα

Θ

2
, (4.16)

where D is the Euclidean distance from the serving BS and Θ is the beamwidth

of the beams used by serving BS (in radians). Since UEs are located at different

locations with different distances to the BS, they have different coherence

times. However, to maintain a fixed frame length for all users connected at

the same band, I assume the cell-center beam coherence time (i.e., the 1st

percentile). This conservative assumption is also motivated by the practical

case where the BS may not have full knowledge of the UE parameters, such as

their distance and accurate location. To sum up, I assume that the coherence
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time for sub-6 GHz and mmWave bands is given by

T sub-6
C :=

(
c

fcvs sinα

)
0.01

, (4.17)

TmmWave
C :=

(
D

vs sinα

Θ

2

)
0.01

, (4.18)

respectively, where (X )0.01 is the 1st percentile of the set X . For the frame

time, I set the frame duration to be equal to the channel coherence time for

simplicity. Hence, the overheads for beam training and band switch, mentioned

earlier, are related to a single parameter, which is the coherence time.

4.7.2 Band-Selective Blockage

Further, I choose to have occasional blockage in the mmWave frequency

band. To generate this blockage using DeepMIMO, I generate two channels:

one with blockage and the other without blockage. I further combine the

mmWave channels into one by introducing a Bernoulli random variable for

the i-th UE:

bi ∼ Bernoulli(p), i = 1, 2, . . . , NUE (4.19)

h(i)[t] = bih
(i)
b [t] + (1− bi)h(i)

nb [t], (4.20)

where p is the blockage probability, h
(i)
b is the channel with blockage on the

first mmWave path, and h
(i)
nb is the channel with no blockage, all for the i-th

UE. Hence, some locations along the street are assumed to be blocked from

the BS (non-line of sight), while others have a line of sight.
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Figure 4.5: Scenario O1 of the DeepMIMO dataset. I use base station (BS) 3 and
users on User Grid 1.

4.7.3 Analog Beamforming

I adopt a multi-antenna setup, where the BS employs a UPA of M
(j)
y

and M
(j)
z antennas in the elevation and azimuth directions respectively at

the j-th band. Therefore, I write the channel in (4.1) as h ∈ CM
(j)
y M

(j)
z ×1

in a vectorized form. In my implementation of analog beamforming, I focus

on discrete Fourier transform (DFT) codebooks. I focus on DFT codebooks

because they are simple to implement. Let the M × N
(j)
CB matrix F(j) be

the concatenation of M beamforming vectors in the codebook F (j), then the

matrix F(j) is constructed as

F(j) = F(j)
z ⊗ F(j)

y (4.21)
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Table 4.2: Predictive band switching algorithm – radio environment parameters

Parameter Value

Subcarrier bandwidth (sub-6, mmWave) (180, 1800) kHz
Center frequency (3.5, 28) GHz
UE noise figure 7 dB
DeepMIMO Scenario O1 Base Station 3
DeepMIMO Scenario O1 number of antennas (Mx,My,Mz) (1, 64, 4)
DeepMIMO Scenario O1 OFDM limit 64
Band switch threshold for sub-6 GHz rsub-6

threshold 1.72 Mbps
Band switch threshold for mmWave rmmWave

threshold 7.00 Mbps
Measurement gap fraction of coherence time ρ 0.6

where F
(j)
y ∈ CM

(j)
y ×M

(j)
y and F

(j)
z ∈ CM

(j)
z ×M

(j)
z concatenate the DFT codebook

vectors in the y and z directions for the j-th frequency band. In the next sec-

tion, I use this dataset to evaluate the performance of the proposed algorithm

and compare it with the other algorithms discussed earlier.

4.8 Simulation Results

In this section, I evaluate the performance of my proposed algorithm

in simulations using several performance measures outlined in Section 4.6.

4.8.1 Setup

The DNN and XGBoost classifier hyperparameters are both shown in

Table 4.3. As mentioned earlier, the users are placed on a uniform grid on

a main street in the service area of this co-sited BS such that the i-th UE

has the Cartesian coordinate (xi, yi, zi). The height of all UEs zi = 2 m is

constant throughout the simulation. The users move at a vehicular speed
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Table 4.3: Hyperparameters of classifiers used in the implementation of my algo-
rithm

DNN XGBoost

Parameter Value Parameter Value

Exploitation split rexploitation 0.8 Exploitation split rexploitation 0.8
K-fold cross-validation K 2 K-fold cross-validation K 2
Optimizer [105] `1 regularization term α {0,1}
Learning rate η 0.05 `2 regularization term λ {0,1}
Activation function σ(·) sigmoid Complexity control term γ {0,0.02,0.04}
Depth of neural network d {1,3,5} Sample weights {0.5,0.7}
Width of the hidden layer w {3,5,10} Child weights {0,10}

vs = 50 km/h within the BS service area every discrete time step t. In an

attempt to find the training ratio that best maximizies the ROC area, I choose

from rtraining ∈ {1 × 10−3, 5 × 10−3, 7 × 10−3, 1 × 10−2, 3 × 10−2, 5 × 10−2, 7 ×

10−2, 0.1, 0.3, 0.4, 0.5, 0.7}. I set the beam training time Tbeam := 1 µs [104].

With NSC = 12 OFDM subcarriers per PRB and a subcarrier spacing ∆f = 15

kHz, I have the bandwidth B = 180 kHz per PRB. I use one PRB for the sub-

6 GHz frequency band and ten PRBs for the mmWave frequency band. In

other words, Bsub-6 = 180 kHz and BmmWave = 1800 kHz. The coherence

times for sub-6 GHz and mmWave based on (4.17) and (4.18) are 6.17 and

19.16 ms respectively. I choose the transmit energy of 0.1W/Hz at mmWave

and set the transmit energy at sub-6 GHz to 1W/Hz. Further, I arbitrarily

set the band switch thresholds as 1.72 Mbps and 7.00 Mbps for sub-6 GHz

and mmWave. The exploitation ratio rexploitation of 0.8 means that the data

available for training and testing is 20% of the entire dataset. Using the

training ratios rtraining above, the proportion of data used towards learning
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Figure 4.6: Instantaneous throughput distributions for both sub-6 and mmWave
frequency bands.

does not exceed 20%×0.7 = 14%. In the learning phase, I set the band switch

request threshold to +∞. This allows us to capture all the available spatial

correlation information between the channels without any omission.

I simulate the radio environment (given in Table 4.2) using three dif-

ferent scenarios:

• Scenario A: All users start in sub-6 and attempt to change band to

mmWave.

• Scenario B: All users start in mmWave and attempt to change band to

sub-6 GHz.

• Scenario C: 70% are in sub-6 and 30% are in mmWave.

I refer to the source code for the details of the implementation of this

simulation [106]. Before presenting the results for these scenarios, I start with
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analyzing the raw data from the dataset. In Fig. 4.6, I show the distribution of

the effective throughput over all users for the 3.5 GHz and the 28 GHz bands.

From the marginal distributions, I can see that the effective throughput for

the mmWave bands goes up to 12 Mbps, while it only goes up to 3 Mbps

for the 3.5 GHz band. This is due to the large bandwidth that is available

in the mmWave band. However, due to blockage, these high rates only occur

with a small probability, since the two CDF curves cross at 0.8. Overall, the

figure shows that the effective rate at mmWave can be very high, due to the

large bandwidth, or very low, due to the blockage. This wide range of rates

motivates the optimized design of the band switch policy, since ineffective

design can cause a big deterioration in the UE throughput, or can prevent the

user from harvesting a high rate from mmWave bands.

From the joint distribution, the general trend is that a higher through-

put on 3.5 GHz means a higher throughput on 28 GHz. This is due to the

correlation between the channels caused by common paths, reflectors, and ob-

structions. By simple computations using the joint distributions, one can see

that the 25% of the users can get higher throughput on the 28 GHz band.

Intuitively, these are the users who do not suffer from blockage and are at

a short distance from the BS. These users would benefit from operating at

mmWave. To quantify this gain, I plot Fig. 4.7, which shows the distribution

of the absolute difference between the throughput at 3.5 GHz and 28 GHz,

|∆RE| := |Rsub-6
E − RmmWave

E |. As the figure shows, the difference between

throughput can go up to 10 Mbps, which can have a detrimental impact on
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Figure 4.7: The distribution of the absolute difference between the rate on 3.5
GHz and 28 GHz.

the users throughput and motivates a careful design for the band switch policy.

Next, I analyze the performance of the different band switch policies discussed

earlier.

4.8.2 Band Switch Polices

4.8.2.1 Scenario A

I start with Scenario A, where all the users start in 3.5 GHz band

and can request a band switch to the 28 GHz band. The results are shown

in Fig. 4.8, where I show the distribution of the effective throughput under

different band switch policies. Starting by the legacy approach, the effect of

the measurement gap is clear in the figure and results in a performance gap

compared to the optimal policy, especially in the low rate regime, where the

negative impact of the measurement gap is detrimental. To be precise, the
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Figure 4.8: The distribution of the effective throughput for Scenario A under
different band switch polices.

effect is more dominant for users suffering from a low throughput at sub-6

GHz and requested a band switch from the BS, but their request got denied

because the throughput at mmWave is also low, possibly due to blockage.

Hence, having a measurement gap makes their throughput even worse. This

can be observed from the curve for the small throughput regime. Moving to

Fig. 4.8, I observe that there are more users in the small throughput range

(i.e., less than 0.5 Mbps) in the blind policy than the legacy policy. This can

be justified as follows: for the same class of users suffering from extremely

low throughput at sub-6, but would not benefit from switching to mmWave,

the legacy approach instructs them to stay in the sub-6 GHz band at the

expense of a measurement gap, while the blind policy switches these users to

the mmWave band, which deteriorates their throughput even more. However,
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there is a point where the throughput at mmWave is around the same as the

sub-6 GHz. At this point, the blind policy is more efficient since it has the

advantage of not requiring a measurement gap.

For the proposed algorithm, Fig. 4.8 also shows that it has the best

performance compared to the previous two; it is identical to the optimal in

the low rate regime and identical to the other policies in the high rate regime.

This is due to: (i) the elimination of the measurement gap, hence users with

low throughput do not suffer more if their band switch request got denied as in

the legacy approach, and (ii) the accurate band switch decisions, which prevent

switching users to a band with low throughput as in the blind policy. Note that

there is a performance gap between the three policies and the optimal in the

high rate regime. This performance gap is due to the band switch threshold

introduced in these policies, but missing from the optimal. Hence, users with

high throughput on sub-6 GHz do not benefit from the higher throughput

on mmWave bands following these policies. But this is not the case for the

optimal algorithm, since the BS picks the band with the maximum throughput

each frame without a threshold. However, as I will show later, my proposed

algorithm can overcome this issue by increasing the band switch threshold,

without losing its accuracy. Finally, to quantify the gains provided by the

different band switch policies, I list the mean effective throughput in Table

4.4. Based on the values for Scenario A, the proposed algorithm provides a

gain of 39% and 37% over the blind and the legacy policies, respectively, and

just 20% behind the optimal algorithm. Overall, the results for this scenario
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Figure 4.9: The distribution of the effective throughput for Scenario B under
different band switch polices.

Table 4.4: Normalized mean effective throughput for different scenarios

Normalized mean effective throughput RE [Mbps]
Scenario Legacy Blind Proposed Optimal
Scenario A 0.55 0.54 0.75 1.00
Scenario B 0.43 0.88 1.00 1.00
Scenario C 0.35 0.76 1.00 1.00

are promising and show the effectiveness of the proposed algorithm.

4.8.2.2 Scenario B

For the second scenario, the results are shown in Fig. 4.9. There are

a few differences between this scenario and Scenario A. Firstly, all policies

achieve the same performance in the high rate regime, which is due to the

assumption that all users start in the mmWave band. To be precise, the

high throughput regime (above 4 Mbps) can only be achieved on mmWave
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bands as shown in Fig. 4.6. Hence, given that the users start in the mmWave

band and this range is above the band switch threshold, these users remain

in mmWave regardless of the policy, which justifies the identical performance

of the different policies in the high throughput regime. Secondly, the blind

achieves an identical performance to the optimal for for the low throughput

region. To justify this, I need the data in Table 4.5, which show the number of

band switch requests and the number of the granted ones for each policy and

each scenario. From this table, I can see that around 70% of the band switch

requests are granted in this scenario assuming the optimal policy. Hence,

the blind algorithm is identical to the optimal 70% of the time. Among this

70% of the users, are the users who suffer from extremely low throughput at

mmWave, mostly due to blockage. Hence, the blind algorithm results in the

optimal decision for these users which justifies the identical performance for

the low throughput regime. However, the blind also makes the wrong decision

30% of the time, which results in a gap between this policy and the optimal

in the medium throughput regime. Finally, the legacy is always the worst in

this scenario, which is due the measurement gap and the fact that the blind is

accurate 70% of the time without having a measurement gap.

The means of the effective throughput are also shown in Table 4.4. The

proposed policy achieves 130% of throughput compared to the legacy policy

and 13% compared to the blind policy. Also, the effective throughput for the

proposed is almost identical to the optimal.
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Table 4.5: Band switch grants and requests based on the band switch policy and
the scenario

Scenario Policy Band switches requested Band switches granted
Scenario A Legacy 22,458 2,751

Blind 22,458 22,458
Proposed 22,458 2,724

Scenario B Legacy 41,609 32,558
Blind 41,609 41,609
Proposed 41,609 32,569

Scenario C Legacy 43,033 21,514
Blind 43,033 43,033
Proposed 43,033 21,619

4.8.2.3 Scenario C

The results for this scenario are presented in Fig. 4.10. As expected,

the results lie between the previous two, and all the curves can be justified

using the same arguments I above. The reason I include this scenario is to

have an idea on the gains I might observe in practice, since part of the users

will be using mmWave and the others using sub-6 GHz. The mean gains are

also presented in Table 4.5.

Overall, the results for the different scenarios show the superiority of

the proposed policy compared to the legacy and the blind policies; up to 130%

improvement in the effective throughput depending on the considered scenario.

It also justifies the use of a machine learning approach to solve this problem.

Next, I provide more technical discussions on the accuracy of the proposed

algorithm, more insights, and possible extensions to this work.
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Figure 4.10: The distribution of the effective throughput for Scenario C under
different band switch polices.
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Figure 4.11: The confusion matrix C for the three scenarios using DNN.

4.8.3 Discussion

I start with discussing the predictive accuracy of the proposed algo-

rithm. Fig. 4.11 shows that my proposed algorithm usually made the right

decisions; only a very few times did it deny the band switch when it was

supposed to grant it (and vice versa).
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Figure 4.12: The confusion matrix C for the three scenarios using XGBoost.
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Figure 4.13: The classification performance of the proposed algorithm for different
training data sizes and different scenarios.

To compare with other ML classifiers, I show the performance of XG-

Boost alongside DNN. In Fig. 4.11 and Fig. 4.12, I show the confusion matrix

for the three considered scenarios using DNN and XGBoost respectively. Pre-

cisely, the misclassification error (µ) using DNN (XGBoost) is 0.47% (0.53%),

0.17% (0.73%), and 0.39% (0.61%) for Scenarios A, B, and C, respectively.

The run-time complexity of XGBoost using the hyperparameters in Table 4.3
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has an upper bound in O(n + n log n) = O(n log n) [86], where n := NUE.

However, for DNN this complexity is in O(nwd) [82], where d and w are the

depth and width of the DNN, respectively. Hence, the classifier choice between

DNN and XGBoost is a trade-off between decision speed and accuracy: if ac-

curacy is desired, then choose DNN, but if less run-time complexity is desired

for decision speed, XGBoost is a more attractive choice.

The second point I highlight here is the amount of training data that

I require to have an accurate prediction. In Fig. 4.13, I show the ROC area

(ξ) and the misclassification error (µ) for different training data sizes. In

particular, the figure shows that training using only 1/40 of the data is enough

to have an excellent performance—less than 2% misclassification error. In

other words, having knowledge about the previous band switch decisions for

1/40 of the locations at random is enough to predict the band switch decisions

for the rest of the locations. This ratio depends on the spatial correlation

between the channels on different locations, as well as the hyperparameters

and the choice of the machine learning algorithm.

Note that my presented results so far are for a single band switch thresh-

old value. However, I claim that the performance gap between the optimal

algorithm and the proposed one can be reduced by increasing the threshold.

To verify this claim, I show the mean effective throughput for different band

switch thresholds in Table 4.6. In Scenario A, I observe that as I increase the

band switch threshold rthreshold, the performance gap between the mean effec-

tive throughputs of the proposed and the optimal rates shrink considerably.
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Table 4.6: Impact of different band switch thresholds for Scenarios A and B

Normalized mean effective throughput RE [Mbps]
rthreshold Legacy Blind Proposed Optimal

1.72 0.55 0.54 0.75 1.00
Scenario A 2.00 0.45 0.46 0.77 1.00

2.60 0.34 0.60 1.00 1.00

2.00 0.43 0.88 1.00 1.00
Scenario B 9.00 0.39 0.84 1.00 1.00

12.50 0.33 0.76 1.00 1.00

While both the legacy and blind rates also get better, their performance is

not close to the optimal: the legacy because of the measurement gap and the

blind because of the undesired band switch. However, in Scenario B, both the

blind and legacy rates deteriorate as I increase the band switch thresholds. In

the legacy policy, it is also due to the measurement gaps, and for the blind

policy, it is because users who were getting up to 10 Mbps on mmWave are

now getting 3 Mbps at best as shown in Fig. 4.6. As expected, I do not see

much of a change in the proposed rate as I increase the band switch threshold,

aligned with the CDFs in Fig. 4.7 and Fig. 4.9.

4.9 Conclusions

In this chapter, I used both deep neural networks and XGBoost classi-

fiers to rank the downlink channel quality of the frequency bands prior to the

band switch, which is a mathematically intractable problem. The use of clas-

sifiers eliminate the dependence on measurement gaps during a band switch

in a dual-band base station. I exploited the spatial and spectral relationships
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in both the sub-6 GHz and mmWave bands through the use of a ray-tracing

dataset. I revealed insights as to why the deep learning classification method

was needed and why it worked. I simulated one dual-band base station with

many UEs in its association area. In this simulation, my method improved

downlink throughput by up to 1.3x compared with the legacy policy over dif-

ferent scenarios with a misclassification error less than 0.3%. The observed

improvement is due to the classifier ability to exploit the spatial correlation

of channels across the different frequency bands and thus accurately predict

the effective achievable rate on the target frequency without the dependency

on a measurement gap. This band selection method is better suited for 5G

and beyond where maintaining high data rates is desired without interrupting

the data flow. I focused on the case where the BS has only two bands: one

centered at 3.5 GHz and the other at 28 GHz, since the dataset I use supports

these two bands. An interesting extension is for multiple bands, or when a

handoff between multiple BSs is required.

In the next chapter, I close with concluding remarks about my disser-

tation. I summarize my contributions and offer a few possible directions for

future research.
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Chapter 5

Concluding Remarks

5.1 Summary

This dissertation focused on improving the performance in next-generation

wireless communication networks using deep learning. These choice of deep

learning in next-generation wireless networks was motivated by 1) absence of

accurate mathematical formulations of channels, 2) incremental changes in ra-

dio resource management (RRM) algorithms over the evolution of successive

network standards, and 3) operators’ desire to build autonomous networks.

The summary of my contributions are shown in Table 5.1. First, I proposed

a joint beamforming, power control, and interference coordination algorithm

using deep reinforcement learning for both voice and data bearers. Then, I

developed a method to improve the performance of the coordinated multipoint

(CoMP) using a data-driven approach, different physical layer quantities, and

deep neural networks. Finally, I developed the employment of this approach

by introducing ray-tracing datasets to perform predictive band switching.

For the beamforming and power control problem, I developed a for-

mulation of the joint design of beamforming (BF), power control (PC), and

interference coordination (IC) as a non-convex optimization problem to max-
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Table 5.1: Summary of contributions

Dissertation Contributions

1. Joint BF, PC, IC 2. Improved CoMP 3. Band Switching

Chapter 2 3 4

Reference [107] [52] [108]

Frequency band mmWave and sub-6
GHz

sub-6 GHz mmWave and sub-6
GHz

Stack layer∗ PHY PHY RRM

Algorithm† DRL SVM and DNN DNN and XGBoost

Direction downlink

User multi-user

∗ PHY is the physical layer and RRM is the radio resource management layer.
† DRL is deep reinforcement learning, SVM is support vector machines, DNN is deep neural networks,

and XGBoost is extreme gradient boosting.

imize the signal to interference plus noise (SINR) per user and solved this

problem using deep reinforcement learning. The algorithm used the reported

SINR from connected users, the transmit powers of the base stations (BS), and

the coordinates of the connected users to improve the performance measured

by coverage and sum-rate capacity. My proposed algorithm did not require

the channel state information and relaxed the need for channel estimation—a

requirement for optimal beamforming. Simulation results showed that my al-

gorithm outperformed the link adaptation industry standards for sub-6 GHz

voice bearers and approached the optimal limits for mmWave data bearers but

without an exhaustive search in the action space. This led to a reduction of

the computational run time to 4% of the optimal solution run time depending

on the antenna size.

For the improved downlink coordinated multipoint problem, I devel-
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oped a surrogate CoMP triggering function that, unlike industry standards,

configures the rank of transmission to the user equipment (UE) not based on

the reported SINR but factors in the retransmission rate of the codewords

on these streams. I motivate the choice of using deep neural networks by

comparing the network performance against using support vector machines.

Deep neural networks converts the reported channel state information and the

codewords retransmissions into a classification problem using the retransmis-

sion targets set by the industry standards. The surrogate CoMP triggering

function then either triggers a rank-two transmission or maintains a rank-one

transmission based on the outcome of the classifier. In simulation, I showed an

improved throughput distribution, which was the result of the feature interac-

tion created by the deep neural network. The improvement was approximately

13.5% of the SINR-triggered industry baseline.

Finally, I showed that the dual-band predictive band switch procedure

between both sub-6 GHz and mmWave bands can be formulated as a ranking

problem. This allowed me to introduce deep learning to band switching. The

spatial and spectral correlation between radio frequency signals at different

bands was exploited to propose a classifier-based band switching policy. This

policy ranked the frequency bands by their channel quality. I built a unified

framework to describe the impact of the band switching policies on the effec-

tive achievable rates. I exploit the fact that band switching can benefit from

the ranking of channels instead of accurate channel estimations. The use of

classifiers eliminated the dependency on measurement gaps for band switch-
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ing, which improved these rates. I used two popular classification models and

showed the band switching trade-off between both models. I showed a key

insight about the employment of measurement gaps in band switching, since

only the order of the bands is necessary for this procedure, rather than a full

channel estimate. The results showed that my proposed band switch thresh-

olds provided 30% gain in the mean effective rates compared with the industry

standard policy rates, while achieving misclassification errors well below 0.5%.

5.2 Future Work

In my dissertation, I showed some applications of deep learning in

communications. However, there are still a myriad of performance problems

in wireless networks that result in mathematically intractable problems, and

adopting a data-driven approach poses viable solution. A caveat to this data-

driven approach to work is the aforementioned key challenges. I present several

possible research directions related to this dissertation next.

Multi-user joint beamforming, power control, and interference

coordination: My work in Chapter 2 discussed the use of reinforcement

learning and a string of bits with binary logic operations to formulate a joint

set of actions for both packetized voice and data bearers. I also proposed

one user per base station. To assess the scalability of my proposed algorithm,

increasing the number of users per base station is one way forward.

Improved cell-free massive MIMO: In Chapter 3, I discussed the

use of joint transmission to formulate a network-based MIMO channel. I also
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propose to improve the cell-free massive MIMO operation. Cell-free MIMO

can benefit from joint user-specific beamforming using deep learning, where

the beamforming vectors of the coordinated base stations can be derived using

deep reinforcement learning without full knowledge of the downlink channel.

Generalized multi-band predictive handovers: My work in Chap-

ter 4 eliminated the need for the measurement gaps for dual-band BS band

change (i.e., vertical handover) procedures. However, another procedure that

is relevant is the inter-BS handover procedure. Handovers are a result of the

mobility of the UEs away from the service area of one BS to the service area

of another. Exploiting the spatial correlation of channel measurements and

the use of channel signatures with the aid of deep learning can help build pre-

dictors that generalize measurement gap free handovers. Further, instead of

focusing only on a dual-band configuration, the use of deep learning to rank

multiple frequencies belonging to the same band (e.g., mmWave on 39 GHz

and 60 GHz) exploiting the spatial correlation between the channels can be

very interesting. This work is likely to widen the gap with the legacy based

algorithm, where longer measurement gaps are required to measure several

target frequencies.

Optimal hybrid beamforming: In Chapter 2, I proposed the use

of deep reinforcement learning to find the optimal analog beamforming vector

from a codebook of DFT beamforming vectors, which are simple to implement.

In hybrid digital/analog beamforming, the solution to derive the precoder and

the combiner is by solving for each independently. One way forward is to com-
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pute jointly solve for the precoder and the combiner using a deep reinforcement

learning approach and eliminate the dependence on analog beamforming.

One relevant direction to consider further is an NR link-level simula-

tor software release completely built in Python using ray-tracing propagation

model data. The importance of reproducible research continues to grow. With

the proliferation of deep learning and the various machine learning libraries,

new software languages have emerged. Most cellular network system simula-

tors nowadays are written in MATLAB. Porting Python to MATLAB works

but with slow execution times. Further, some of these simulators use statis-

tical propagation models which do not clearly capture implicit effects across

frequency bands or do not benefit from the graphics processing unit accelera-

tion.

In conclusion, the application of deep learning to next generation wire-

less networks does not end at NR. The doors are still wide-open for deep

learning applications that benefit from multi-access edge computing, wireless

sensors, video predictive caching and processing for wireless users, and radio

resource management beyond the fifth generation of wireless communications.
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Publications related to the dissertation

1. F. B. Mismar and B. L. Evans, “Deep Learning in Downlink Coordi-

nated Multipoint in Heterogeneous Networks,” IEEE Wireless Commu-

nication Letters, vol. 8, no. 4, pp. 1040-1043, Aug. 2019.

doi: 10.1109/LWC.2019.2904686.

2. F. B. Mismar, B. L. Evans, and A. Alkhateeb, “Deep Reinforcement

Learning for 5G Networks: Joint Beamforming, Power Control, and In-

terference Coordination,” IEEE Transactions on Communications, 2019,

available through IEEE Early Access.

3. F. B. Mismar, A. AlAmmouri, A. Alkhateeb, J. G. Andrews, and B.

L. Evans, “Deep Learning Predictive Band Switching in Wireless Net-

works,” IEEE Transactions on Wireless Communications, submitted

Oct. 2, 2019. [Online]. Available: https://arxiv.org/abs/1910.05305
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International Conference on Communications Workshops, May 2018.

3. F. B. Mismar and B. L. Evans, “Deep Q-Learning for Self-Organizing

Networks Fault Management and Radio Performance Improvement,”

Proceedings of the 52nd Annual Asilomar Conference on Signals, Sys-

tems, and Computers, Oct. 2018.
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[90] A. Ali, N. González-Prelcic, and R. W. Heath Jr., “Millimeter Wave

Beam-Selection Using Out-of-Band Spatial Information,” IEEE Trans-

155

https://github.com/farismismar/DL-CoMP-Machine-Learning


actions on Wireless Communications, vol. 17, no. 2, pp. 1038–1052, Feb.

2018.

[91] Y. Xiu, W. Wang, and Z. Zhang, “A Message Passing Approach to

Acquire mm-Wave Channel State Information Based on Out-of-Band

Data,” IEEE Access, vol. 6, pp. 45 665–45 680, Jul. 2018.

[92] Y. Xiu, J. Wu, C. Xiu, and Z. Zhang, “Millimeter Wave Cell Discovery

Based on Out-of-Band Information and Design of Beamforming,” IEEE

Access, vol. 7, pp. 23 076–23 088, Feb. 2019.
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