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If you know when someone was born, and you know what time it is, you know how old they are.  

If you know how old someone is and when they were born, you know the date on which they are being 

observed.  If you know someone’s age as of a given time, you know when they were born.  These are 

ineluctable features of algebra (age ≡ period – cohort) and geometry, as reflected in the Lexis diagram 

(Chauvel 2014, 384-389).  There are many ways that one can turn the problem (e.g., cohort ≡ period – 

age) and thus many alternative forms of observation, classification, and depiction.  However, there is a 

strong statistical sense in which there are only two pieces of information, not three. 

 This chafes, because in sociology and other social and population sciences, it is not hard to 

conjure for each temporal dimension “a distinct causal interpretation” (Mason et al. 1973, p. 243).  A 

primordial example is political party identification (Oppenheim 1970): 

… [T]he political environment in which a particular birth cohort first enters the electorate may 

help determine the extent to which individuals in that cohort identify with a political party for 

the remainder of their lives.  As that party experiences normal fluctuations in political fortunes, 

however, some members of the cohort may temporarily shift their loyalties.  Both cohort and 

short-term period effects can thus contribute to party identification.  Since the aging process 

might also independently affect party identification (as persons become more “conservative” 

with age, for example, they may find the Republicans increasingly attractive), we have here 

another example in which age, period and cohort conceptually have distinct causal impacts on 

the dependent variable. (Mason et al. 1973, 244-245). 

Persons reaching their majority in the New Deal era may have been more likely to be Democrats 

than those in cohorts before or after.  Net of this, aging into mid-life may have pushed them more 

toward the Republicans.  With a bit more precision, you can know that we are looking at party 

identification circa 1964, when the Republicans nominated a candidate viewed as too conservative to 

win, and the Democrats benefited from the holdover popularity of a recently assassinated young 

president.  The period under observation is knowable from the age and the birth cohort of a set of 
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respondents.  But there is nothing about the events of the period shaping party identification that follow 

necessarily from the experience of this cohort in early adult life or the leavening effects of prosperity 

and responsibility on youthful idealism.  The temporal markers are linear functions of one another.  

Their manifestations are not. 

 
On Cohort Analysis   

“Any quantitative cohort analysis is a form of time-series analysis” (Fienberg and Mason 1985, 

85 [emphasis added]).  A corollary is that the concept of a cohort is what is distinct about age-graded 

data analyzed over historical time.  Keeping this in mind helps in specifying models and analyses that 

convey meaning in the presence of a linear identity that is algebraically tautological and sociologically 

meaningless. 

In sociology, the foundational paper on cohort analysis is Ryder (1965).  At the time of the 

publication of Mason et al. (1973), it hit a steady pace of citations (Figure 1) that persisted through its 

re-publication in the volume on Cohort Analysis in Social Research:  Beyond the Identification Problem  

(Mason and Fienberg 1985) to 2005, when it was recognized as being among the “greatest hits” of the 

American Sociological Review (Jacobs 2005).  This was also the time when it became clear that the field 

had not yet moved beyond the identification problem.  Citations to Ryder (1965) accelerated coincident  

with a new wave of papers on issues of identification in age-period-cohort analysis—in particular, the 

Intrinsic Estimator (Yang et al. 2004).  This is notwithstanding that Ryder (1965) is not a technical paper 

and does not mention the identification problem.  The paper concludes with a summary statement that 

does sound like a call for the estimation of something like cohort effects:  “The purpose of this essay is 

to direct the attention of sociologists toward the study of time series of parameters for successive 

cohorts of various types, in contradistinction to conventional period-by-period analyses” (861).   
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But the methodological concerns that are touched on subsequently concern the onerous 

demands for data collection and the difficulty of making comparisons across cohorts under conditions of 

differential selectivity, and are, in the event, essentially second-order:  “Yet such difficulties are not so 

much those of the method itself as meaningful reflections of the research investment necessary to study 

a long-lived species experiencing structural transformation” (861).  People live a long time, but they 

don’t live forever.  Experiences at early ages can have profound effects.  Events at a given time can have 

differential effects on individuals at different ages.  Social change via the succession of differentiated 

cohorts variously implicates the distinction between changes in an individual and changes in a 

Figure 1.  Cumulative Web of Science Citations to Ryder (1965) and to Selected Subsequent 
Papers in Sociology on Cohort Analysis. 
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population; socialization and social control across the life course; the adaptiveness of a society versus 

the “limited intellectual flexibility” (844) of an individual; and the role of a cohort as the embodiment 

and historical representation of an admix of social events and individual experiences.  Ryder’s (1965) 

synthesis of ideas from the sociology of generations (Mannheim 1952), demography, history, 

developmental psychology, and what is now known as life course analysis has become such a 

touchstone for the concept of cohort analysis that is easy to miss something that he does not talk about:  

linear trends.  Nor are they present in analyses that are faithful to this conceptual perspective.   

Consider Yang’s (2016) cohort biography of the Red Guard generation, the Chinese who were 

teens and young adults at the time of the 1966-68 Cultural Revolution.  They were the first cohort raised 

under Communism.  They were mobilized to fight against functionaries in the Cultural Revolution, were 

subsequently exiled to the countryside, and were variously rehabilitated, de-radicalized, and re-

integrated in a fraught journey that shaped and re-shaped Chinese history—and their cohort. 

… I use terms such as trajectories, journey, and life course to talk about the history of the Red 

Guard generation.  These words may convey a sense of linear progress, as if, from the time of 

birth, members of the Red Guard generation were destined to march toward a clear, fixed, and 

grand goal….  By analyzing the longer history of the Red Guard generation, which will highlight 

the many ups and downs of the generation, I … will show the futility of grand teleological 

perspectives for understanding history.  There is neither linearity nor teleology to the trajectory 

of the Red Guard generation, or perhaps other political generations in other times and places….  

For the protagonists of my story, the history of a generation was nothing less than a history of 

perpetual disruption of personal lives. (Yang 2016, 5) 

 Yang’s (2016) study, which pertains to a single cohort and is non-quantitative at that, is an 

example of the kind of “composite cohort biograph[y]” whose comparison with other cohorts “would 

yield the most direct and efficient measurement of the consequences of social change” (Ryder 1965, 

847).  Which can be done quantitatively.  The radicalizing political and social events in China circa 1968 
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had contemporaneous parallels globally, including in France.  Thus it is not surprising that les soixante-

huitards—the generation that came of political age, at least emblematically, among the civil unrest of 

May 1968, figures often, via comparison of cohort “destinies,”  in Chauvel’s (2014) analysis of changes in 

French social structure across the 20th Century (and into the current one).   This was a generation that 

turned from street protest to electoral participation, displacing in the legislative elections of 1981 prior 

generations of politicians whose youth in the aftermath of the Second World War had provided them 

with opportunities given the number of their elders tarnished by the war and the Occupation.  The 

soixante-huitards thereupon encrusted themselves in the French body politic in a manner that left scant 

room for subsequent generations (Chauvel 2014, 36-43).   

This is a form of “generational domination” (Chauvel 2014, 10) that highlights not just the social, 

historical, and political biographies of generations, but their interplay.  In France, a cohort’s experience 

at a given point in time reflects not just its past and its development, but the opportunity structure of a 

period as conditioned by the experience of other cohorts at other times.  Policy decisions made at one 

time for one reason—on the expansion of education, for example—can be a boon for one generation, to 

the detriment of those that follow (Chauvel 2014, 232-239).   

Generational dominance, or the hoarding of opportunities, is only one way in which cohorts are 

useful for understanding how historical events re-shape social structure.  “To some extent all cohorts 

respond to any given period- specific stimulus.  Rarely are changes so localized in either age or time that 

their burden falls exclusively on the shoulders of one cohort” (Ryder 1965, 847).   

So which cohorts shoulder the burden—or reap the rewards?  The Nineteenth Amendment to 

the United States Constitution, enacted in 1920, extended to women the right to vote.  The degree to 

which women took up the franchise depended on how long they had been living in a polity in which 

voting was forbidden to them.  The longer they had lived under the old regime, the more they seem to 

have been inculcated with the idea that voting is not for women, and the less likely they were to vote 
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during the remainder of their lives.  We know this because voting among women, relative to voting 

among same-generation men, picked up across cohorts in function of the age of a cohort in 1920, to the 

point where women who were either too young in 1920 to have been aware of their disenfranchisement 

or who were born after 1920 could no longer be distinguished from men in their propensity to vote 

(Firebaugh and Chen 1995).   The power of the cohort as a tool for understanding social change is 

reinforced by another feature of this study:  The data on voting that are analyzed are for national 

elections between 1952 and 1988, long after the historical event whose effects are being inferred.  The 

concept of a cohort thus provides both a window on the past… and a glimpse into the future. 

I once wrote that sociologists and demographers are “mad for cohorts” (Smith 2008, 289), which 

is infelicitous insofar as it implies that there is something either frivolous or romantic in the frequency 

with which the concept figures in our research.  There can be a real power to cohort analysis.  At the 

same time, we should not reify the construct unduly.  Ryder (1965) was simultaneously of two minds 

about this:  

As a minimum, the cohort is a structural category with the same kind of analytic utility 

as a variable like social class. Such structural categories have explanatory power because they are 

surrogate indices for the common experiences of many persons in each category. Conceptually 

the cohort resembles most closely the ethnic group: membership is determined at birth, and 

often has considerable capacity to explain variance, but need not imply that the category is an 

organized group (847). 

So is a cohort like a social class, or isn’t it?  An occupation indexes a class in the same sense that a 

birthdate indexes a cohort, but in the former instance the analytic category entails interests as well, if 

not self-consciousness (Wright 1997).  There may indeed be historical cohorts that are like social classes 

in that sense—the Red Guard generation being an obvious example, perhaps the soixante-huitards as 
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well—but the women who were sentient at the time of the Nineteenth Amendment probably did not 

constitute cohorts in the same fashion.  Their birthdates are just a way of keeping track of them. 

From this view comes an operating conception of a cohort, conceived not as a concrete group, 

but as a possible key to understanding social change.  As a result it is very different from the 

concept of social class:  It is based above all on its technical construction and constitutes an 

instrument of objectification.  The cohort is thus a tool and not necessarily a strong element of 

the theoretical apparatus of sociology:  It’s characterization as a relevant group can only be a 

result—true, false, or somewhere in between—according to the purpose [of the exercise], and 

not an a priori hypothesis. (Chauvel 2014, 383 [my translation]) 

“’Cohort analysis,’ after all, is a means and not an end in itself” (Duncan 1985, 300); the proof of 

the pudding is inevitably in the tasting (Smith, Mason, and Fienberg 1982, 792).  Many of the perceived 

analytic problems associated with so-called age-period-cohort analysis recede if we keep the cohorts in 

the fore, not for any special statistical reason, but because of the conceptual utility for reading the data.  

In the sections that follow, I revisit from this perspective several of the key issues in the identification of 

these models, and conclude with some orienting suggestions.  There is no panacea, but this has less to 

do with the remorselessness of algebra and geometry than it does with the absence of an ailment.  Once 

one stops thinking about events (or is it their causes?) flowing simultaneously (and, implicitly, infinitely) 

through historical time in two non-concomitant directions, things improve considerably.  

 

Identification Entails a Constraint on Linear Terms 

 The mésalliance between an algebraic identity and theoretical aspirations put a bad curse on 

statistical treatments of “age-period-cohort analysis.”  This is unfortunate.  From the beginning, it was 

recognized that the algebraic identity which reduces three dimensions to two obtains only with respect 

to the linear terms in age, period, and cohort.  Thus whereas 

( 1 )                                                        𝑌𝑌 = 𝛼𝛼 + 𝛽𝛽1𝐴𝐴 + 𝛽𝛽2𝑃𝑃 + 𝛽𝛽3𝐶𝐶 + 𝜀𝜀  
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is not estimable, 

( 2 )                                                       𝑌𝑌 = 𝛼𝛼 + 𝛽𝛽1𝐴𝐴2 + 𝛽𝛽2𝑃𝑃 + 𝛽𝛽3𝐶𝐶 + 𝜀𝜀 

Is estimable, and under certain circumstances it might be appropriate to think about models in which at 

least one of the three temporal dimensions is not linearly related to the response: 

For example, if we were studying age-period-specific fertility rates as a cohort problem, we 

clearly would not want to specify a linear relationship between fertility rates and age….  Women 

do not, we know, have a higher probability of a birth with each additional year that they age. 

(Mason et al. 1972, 7) 

This led to a consideration of “relatively functional free” (Mason et al. 1973, 246) specifications 

linking age, period, and cohort to outcomes of interest based on multiple classification analysis (sets of 

categorical variables representing each temporal dimension).  Parsing the temporal dimensions into 

categorical indicators does not in and of itself “solve” the estimation issue posed by the linear identity 

𝐴𝐴 ≡ 𝑃𝑃 − 𝐶𝐶.  Rather, the linear identity means that not even differences between category coefficients 

are uniquely estimable (Mason et al. 1973, 246-247).  The algebra and geometry of this point have been 

made many times since, and there is nothing that I will or can say that will change them.  Nonetheless, 

since a theme of this chapter is that it is rarely useful to think of the linear effects of period and cohort 

as coexisting independent of one another, it is useful to have a perspective and notation that explicitly 

distinguishes linear from non-linear effects.  These I borrow liberally from Holford (1983), and adapt 

slightly. 

Consider the classic data array in which there are  𝐼𝐼 age-groups observed across 𝐽𝐽 periods.1  The 

general representation of the multiple classification analysis framework is 

                                                             
1 I assume that age-groups conform to intervals between periods—i.e., if periods are observed every five 

years, then age categories span five years—although all the points here generalize to more complicated 

data arrays and observation schemes (Fienberg and Mason 1978, 37-42). 
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(3)                                         ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� =    𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑗𝑗 + 𝛾𝛾𝑘𝑘  
 
 
where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is some measure (count, rate, etc.) at age 𝑖𝑖 in period 𝑗𝑗 hence cohort 𝑘𝑘 = 𝑗𝑗 − 𝑖𝑖 + 𝐽𝐽.2  A 

standard method for identifying the sets of effects �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� is via effect coding: 

(4)                                         �𝛼𝛼𝑖𝑖

𝐼𝐼

𝑖𝑖=1

= �𝛽𝛽𝑗𝑗

𝐽𝐽

𝑗𝑗=1

= �𝛾𝛾𝑘𝑘

𝐾𝐾

𝑘𝑘=1

= 0 

 
This is, however, insufficient for resolving the identification issue in the situation in which we are 

seeking to maintain representations of all three temporal dimensions (Fienberg and Mason 1985, 67-

68).  To see this, create linear re-scalings of the dimensional indexes  

(5𝑎𝑎)                                        𝐴𝐴𝑖𝑖 = 𝑖𝑖 −
𝐼𝐼 + 1

2
          � ⇒  �𝐴𝐴𝑖𝑖 = 0

𝐼𝐼

𝑖𝑖=1

� 

(5𝑏𝑏)                                        𝑃𝑃𝑗𝑗 = 𝑗𝑗 −
𝐽𝐽 + 1

2
          � ⇒  �𝑃𝑃𝑗𝑗 = 0

𝐽𝐽

𝑗𝑗=1

� 

 

(5𝑐𝑐)                                        𝐶𝐶𝑘𝑘 = 𝑘𝑘 −
𝐾𝐾 + 1

2
        � ⇒  �𝐶𝐶𝑘𝑘 = 0

𝐾𝐾

𝑘𝑘=1

� 

 
and use them to redefine the �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� terms as 

(6𝑎𝑎)                                        𝛼𝛼𝑖𝑖 = 𝛼𝛼𝐿𝐿𝐴𝐴𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑑𝑑 

(6𝑏𝑏)                                        𝛽𝛽𝑗𝑗 = 𝛽𝛽𝐿𝐿𝑃𝑃𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑑𝑑 
 
(6𝑐𝑐)                                        𝛾𝛾𝑘𝑘 = 𝛾𝛾𝐿𝐿𝐶𝐶𝑘𝑘 + 𝛾𝛾𝑘𝑘𝑑𝑑  . 
 

                                                             
2 The function ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� implies the generalized linear model (McCullagh and Nelder 1989).  The indexing 

of cohort (𝑘𝑘) assumes that ages are indexed from youngest to oldest, and periods from most distant to 

most recent. 
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Each term �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� is thus a function of a constant rate of change in, respectively, age (𝛼𝛼𝐿𝐿), period 

(𝛽𝛽𝐿𝐿), and cohort (𝛾𝛾𝐿𝐿); plus a corresponding deviation �𝛼𝛼𝑖𝑖𝑑𝑑 ,𝛽𝛽𝑗𝑗𝑑𝑑 , 𝛾𝛾𝑘𝑘𝑑𝑑� from the linear trend.  These new 

terms are what would be estimated were we somehow to have known (or estimated) the sets of 

category-specific coefficients �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� and regressed them on their respective linear 

locations �𝐴𝐴𝑖𝑖 ,𝑃𝑃𝑗𝑗,𝐶𝐶𝑘𝑘�.   

A corresponding implication is that  

(7)                                          �𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖𝑑𝑑 =
𝐼𝐼

𝑖𝑖=1

 �𝑃𝑃𝑗𝑗𝛽𝛽𝑗𝑗𝑑𝑑 =
𝐽𝐽

𝑗𝑗=1

�𝐶𝐶𝑘𝑘𝛾𝛾𝑘𝑘𝑑𝑑 = 0
𝐾𝐾

𝑘𝑘=1

 

 
i.e., no covariance (correlation) between deviations (residuals) and trend (predictors).3   
 
 “[S]pecifying a model with linear and nonlinear effects does not solve the identification 

problem” (Fienberg and Mason 1978, 15), but it can keep clear what is at issue.  Substitute equations 

(6𝑎𝑎 − 𝑐𝑐) into equation (3), to yield 

(8)                              ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝛼𝛼𝐿𝐿𝐴𝐴𝑖𝑖 + 𝛽𝛽𝐿𝐿𝑃𝑃𝑗𝑗 + 𝛾𝛾𝐿𝐿𝐶𝐶𝑘𝑘 + 𝛼𝛼𝑖𝑖𝑑𝑑 + 𝛽𝛽𝑗𝑗𝑑𝑑 + 𝛾𝛾𝑘𝑘𝑑𝑑  

There are three new terms in this functionally equivalent expression, but also, as per equation  (7), 

three new restrictions—restrictions that render the category effects independent of their corresponding 

linear indexes.  The model is still not identified, but any further single restriction on these parameters 

will make the model just-identified, with equivalent predicted values 𝑦𝑦�𝑖𝑖𝑖𝑖𝑖𝑖.  Estimates of the category-

specific (de-trended) deviations �𝛼𝛼𝑖𝑖𝑑𝑑 , 𝛽𝛽𝑗𝑗𝑑𝑑 , 𝛾𝛾𝑘𝑘𝑑𝑑� are unique and invariant regardless of the (single) 

identifying restriction that is chosen (Holford 1991, 432-433). 

                                                             
3 Estimation of linear effects 𝛼𝛼𝐿𝐿 ,𝛽𝛽𝐿𝐿 , 𝛾𝛾𝐿𝐿  via regression is as per, e.g., Holford (1991, 433).  The 

normalization to 0 of both categorical effects (equation [4]) and linear trends (equations [5𝑎𝑎 − 𝑐𝑐]) 

eliminates the intercept term.  Thus in the regression interpretation of equations (6𝑎𝑎 − 𝑐𝑐), the 

deviations �𝛼𝛼𝑖𝑖𝑑𝑑 ,𝛽𝛽𝑗𝑗𝑑𝑑 , 𝛾𝛾𝑘𝑘𝑑𝑑� are akin to the respective error terms, not to intercepts. 
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Since 𝑃𝑃𝑗𝑗 ≡ 𝐴𝐴𝑖𝑖 + 𝐶𝐶𝑘𝑘 , equation (8) is equivalently 

(9)                              ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜇𝜇 + (𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿)𝐴𝐴𝑖𝑖 + (𝛾𝛾𝐿𝐿 + 𝛽𝛽𝐿𝐿)𝐶𝐶𝑘𝑘 + 𝛼𝛼𝑖𝑖𝑑𝑑 + 𝛽𝛽𝑗𝑗𝑑𝑑 + 𝛾𝛾𝑘𝑘𝑑𝑑  

Although all just-identified models will yield unique and invariant estimates of these additive 

combinations of coefficients on linear trend  𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿  and 𝛾𝛾𝐿𝐿 + 𝛽𝛽𝐿𝐿 , the particular values of this set of 

coefficients {𝛼𝛼𝐿𝐿 ,  𝛽𝛽𝐿𝐿 , 𝛾𝛾𝐿𝐿} will vary according to the identifying restriction that is employed.   

 Holford (1983) suggested identification by a constraint on a linear parameter itself, in particular 

period, as per  

(10)                                        𝛽𝛽𝐿𝐿 = 0  , 
 
or zero linear trend (ZLT) in the period coefficients (O’Brien 2015, 51).  This reduces equations (8) and  
 
(9) to 
 
(11)                               ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜇𝜇 + 𝛼𝛼𝐿𝐿𝐴𝐴𝑖𝑖 + 𝛾𝛾𝐿𝐿𝐶𝐶𝑘𝑘 + 𝛼𝛼𝑖𝑖𝑑𝑑 + 𝛽𝛽𝑗𝑗𝑑𝑑 + 𝛾𝛾𝑘𝑘𝑑𝑑  

The assumption underlying this identifying restriction may or may not be accurate.  If it is at all 

inaccurate, we can see from equation (9) that estimates for 𝛼𝛼𝐿𝐿 and 𝛾𝛾𝐿𝐿  will be too high (low) to the 

extent that the assumption of no linear trend in period (equation [10]) is too low (high) relative to 

“whatever the true value of [𝛽𝛽𝐿𝐿] happens to be” (Holford 1983, 316).  Even though the deviations 

�𝛼𝛼𝑖𝑖𝑑𝑑 ,𝛽𝛽𝑗𝑗𝑑𝑑 , 𝛾𝛾𝑘𝑘𝑑𝑑� are not affected by this assumption, the category effects �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� from the multiple 

classification schema (equations[3] and[4]) will be, via equations (6𝑎𝑎 − 𝑐𝑐).4 

                                                             
4 The exceptions, as can be derived from equations (6𝑎𝑎 − 𝑐𝑐) and equations (5𝑎𝑎 − 𝑐𝑐), are the 

terms 𝛼𝛼𝐼𝐼+1
2

,  𝛽𝛽𝐽𝐽+1
2

, 𝛾𝛾𝐾𝐾+1
2

, which will exist when 𝐼𝐼, 𝐽𝐽, and/or 𝐾𝐾are odd, and which will not vary under 

alternative identification assumptions.  In one sense this is a trivial artifact of normalization assumptions 

(equations [4] and [5𝑎𝑎 − 𝑐𝑐]).  On the other hand, It does explain why plots of effects for given 

dimensions under alternative identifying restrictions rotate around a central value (e.g., Holford 1991, 

Figure 1; O’Brien 2019, Figures 5-7). 
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 All assumptions underlying just-identified age-period-cohort models are constraints on the 

linear coefficients {𝛼𝛼𝐿𝐿 ,  𝛽𝛽𝐿𝐿 , 𝛾𝛾𝐿𝐿}, if only implicitly.  Thus identification by equating two adjacent terms in 

the multiple classification specification (Mason et al. 1973)—the constrained generalized linear model 

(CGLIM) (Yang and Land 2013, 66)—is equivalent to a constraint on the corresponding linear term as a 

function of the deviation terms.   In general, for adjacent categories 𝑤𝑤 and 𝑤𝑤 + 1, 𝜃𝜃 ∈ {𝛼𝛼,𝛽𝛽, 𝛾𝛾}, and 

𝑉𝑉𝑤𝑤 ∈ �𝐴𝐴𝑖𝑖 ,𝑃𝑃𝑗𝑗,𝐶𝐶𝑘𝑘�,  from equations (6𝑎𝑎 − 𝑐𝑐) we see that  

(12)                            𝜃𝜃𝑤𝑤 =  𝜃𝜃𝑤𝑤+1    ⇒      𝜃𝜃𝐿𝐿𝑉𝑉𝑤𝑤 + 𝜃𝜃𝑤𝑤𝑑𝑑 = 𝜃𝜃𝐿𝐿𝑉𝑉𝑤𝑤+1 + 𝜃𝜃𝑤𝑤+1𝑑𝑑     ⇒      𝜃𝜃𝐿𝐿 =  𝜃𝜃𝑤𝑤+1𝑑𝑑 − 𝜃𝜃𝑤𝑤𝑑𝑑   . 

This is not what any researcher to date has been arguing explicitly in estimating a CGLIM model, and yet 

there it is.  The corollary is that any model identified by a constraint on one of the linear coefficients 

implies a CGLIM model.  O’Brien (2019, 218) distinguishes identification via constraints on a pair of 

effect coefficients (“simple constraints”) from “more complicated just identifying constraints such as 

setting the linear trend of the period effects to some value such as zero…”.  Equation (12) shows that 

these are two sides of the same coin.  

Recall from equation (9) that two additive combinations of linear terms {𝛼𝛼𝐿𝐿 ,  𝛽𝛽𝐿𝐿 , 𝛾𝛾𝐿𝐿} are 

estimable (e.g., 𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿 and 𝛾𝛾𝐿𝐿 + 𝛽𝛽𝐿𝐿), so that “[i]f any one of the slopes is fixed at a particular value, 

then the other two are immediately determined, as well” (Holford 1991, p. 434).  Any slope determined 

in one dimension must find some “compensation” in the other dimensions, subject to the two estimable 

(hence observable) sums of linear coefficients.  This is why the literature is replete with demonstrations 

that different just-identified CGLIM models yield wildly varying estimates of �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� (e.g., Mason et 

al. 1973, Table 4; Kupper et al. 1985, Tables 3a-c; Holford 1991, Table 2; Yang, Fu, and Land 2004, Table 

3).5 

                                                             
5 But not estimates of �𝛼𝛼𝑖𝑖𝑑𝑑,𝛽𝛽𝑗𝑗

𝑑𝑑, 𝛾𝛾𝑘𝑘
𝑑𝑑�; these are unique (e.g., Holford 1991, Table 2). 
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 When William Mason and I (1985) reconstructed and extended Frost’s (1939, Table 1) data on 

tuberculosis (TB) mortality in Massachusetts, we noted that classification of the non-pulmonary forms of 

TB had been changing over time (pp. 169-170), and that these non-respiratory tuberculoses were 

concentrated prior to adulthood (p. 177).  In focusing on pulmonary TB alone—a disease classically 

associated with young adulthood—we were struck that mortality in both of the first two decades of life 

was comparatively low and virtually indistinguishable in level, whether viewed from a period or a cohort 

perspective (Mason and Smith 1985, 175-178; cf. Smith 2004, 114).  In adopting the identifying 

restriction 

(13)                               𝛼𝛼0−9 = 𝛼𝛼10−19  

in our age-period-cohort analysis of pulmonary tuberculosis mortality, we ignored the implications of 

this restriction for the linear effects of age (hence period and cohort).  Implicitly, however, we were 

fixing the linear effect of age as (from equation [12]) 

 (14)                              𝛼𝛼𝐿𝐿 = 𝛼𝛼0−9𝑑𝑑 − 𝛼𝛼10−19𝑑𝑑    . 

It is hard to think about what (if anything) the perspective afforded by equation (14) means a 

priori since, by construction (equation [7]), these category-specific deviation coefficients 

(𝛼𝛼0−9𝑑𝑑 ,  𝛼𝛼10−19𝑑𝑑 , … ) are uncorrelated with the linear term for age (𝛼𝛼𝐿𝐿).  As it turns out, this was one 

instance where the implicit constraint on the linear term does not seem to have done any violence to 

the analysis, at least in terms of estimated parameters (pace Rodgers 1982, 785).  Estimation of the 

parameters in equation (8), as a log-rate model fitted to the Massachusetts TB mortality data (Mason 

and Smith 1985, Tables A1 and A2)6, with identifying restrictions as per equations (4), (7), and (14), 

yields 𝛼𝛼𝐿𝐿� = −0.0148 �𝑆𝑆𝑆𝑆𝛼𝛼𝐿𝐿� = 0.0051�, 𝛽𝛽𝐿𝐿� = 0.0022 �𝑆𝑆𝑆𝑆𝛽𝛽𝐿𝐿� = 0.0053�, and 𝛾𝛾𝐿𝐿� = −0.0545 �𝑆𝑆𝑆𝑆𝛾𝛾𝐿𝐿� =

                                                             
6 I.e., ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = ln

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖

, with 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 as corresponding population counts (as proxies for person-years of 

exposure at age[s] 𝑖𝑖 in year 𝑗𝑗), fixed by design; and 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 a random variate. 
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0.0053�.  Thus we had concomitantly and implicitly set mortality as declining by age at approximately 

1.5% a year, a result that, in and of itself, is neither here nor there:  Mortality rates for respiratory 

tuberculosis should decline with age after early adulthood.  But before adulthood, rates of pulmonary 

TB are low, too; so that there is no substantive sense to a linear trend in age, even if it must exist 

algebraically.  The more important consequence of the identification of the linear term for age (𝛼𝛼𝐿𝐿) is 

that it simultaneously identifies linear terms for period (𝛽𝛽𝐿𝐿) and cohort (𝛾𝛾𝐿𝐿).  In the case of the latter, 

the decline is precipitous, at over 5% per annum, or a >40% decline in mortality at all ages across every 

ten years of births (i.e.., cohorts).  This is a reasonable parameterization of something long known: that 

TB moves in waves, and that when mortality drops, it drops in a wave across cohorts (Andvord [1930] 

2002; Frost 1939).  

In contrast, under this model, identified even if only implicitly by 𝛼𝛼𝐿𝐿� = −0.0148  (equation [14] 

as implied by equation [13]), there is essentially no linear trend in period, as the estimated 0.2% 

increase per annum ( 𝛽𝛽𝐿𝐿� = 0.0022 or +2.2% per decade) is less than half of its estimated standard error 

(𝑆𝑆𝑆𝑆𝛽𝛽𝐿𝐿� = 0.0053).  The implication is that had the model been identified under the assumption of zero 

linear trend in period (equation [10] in lieu of equation[14]), the estimated parameters would have 

been the same.  This is confirmed in Figure 2 , where the coefficients for these two models—

respectively, the blue and red dots—are indistinguishable.  The coefficients plotted in this figure sum the 

estimated linear trends and deviations as per equations (6𝑎𝑎 − 𝑐𝑐) and thus a linear regression of time on 

the coefficients in any dimension has as slope the estimated effects discussed above, at least for the 

identifying assumption that the terms for the first two age categories are equivalent (equation [13]).7 

                                                             
7 The pattern of coefficients is thus that depicted as “net effects Model VII” in Mason and Smith (1985, 

Figures 4-6), with three minor differences.  First, the earlier analysis used a logistic response (rather than 

log-rate) model, although at such low rates, the difference in specifications is minuscule (e.g., Clogg and 
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Figure 2. Estimated Effect Coefficients (Including Linear Trend) for Three Just-Identified Age-
Period-Cohort Models fit to the Massachusetts TB Data from Mason and Smith (1985). 

                                                             
Eliason 1987, 28-29).  Second, in the original analysis identification of the set of category coefficients 

was done by omitting dummy variables, i.e., setting one or more to zero, rather than norming the set to 

sum to zero, as per equation (4).  This affects the constant of the equation, hence the location of the 

coefficients—but not their difference from one another.  Third, in Mason and Smith (1985), the absence 

of deaths in the three cells associated with the cohorts of 1960 and 1970 led to constraining the cohort 

effect for the cohorts of 1950, 1960, and 1970 to be identical.  Here, no effects were estimated for these 

last two cohorts.  Results are not sensitive to the treatment of these small cohorts and the 

corresponding cells. 
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It is by happenstance, then, that the CGLIM model proposed by Mason and Smith (1985) 

corresponds to a ZLT for period model:  It just happens that 𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿 ≈ 𝛼𝛼𝐿𝐿, where  𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿  is an 

estimable term that does not depend on the identifying restriction (as per equation [9]) and 𝛼𝛼𝐿𝐿 is the 

constraint on the linear trend in age as per equation (14), which is implied by the CGLIM constraint in 

equation (13).  Under this specification, we observe that 𝛽𝛽𝐿𝐿 ≈ 0 and infer that the ZLT for period 

specification would fit the data equivalently, as confirmed in Figure 2.  Not all CGLIM models will imply 

such “clean” constraints (e.g., a ZLT specification) on the linear terms {𝛼𝛼𝐿𝐿 ,  𝛽𝛽𝐿𝐿 , 𝛾𝛾𝐿𝐿}, but recognizing the 

correspondence between constraints on effect coefficients (such as CGLIM models) and constraints on 

linear terms is useful when thinking about identifying specifications (Fienberg and Mason 1985, 70).  The 

plausibility of a set of estimated parameters is enhanced when they can be reproduced empirically from 

alternative constraints that do not necessarily imply one another. 

In contrast, there is a large-class of just-identified specifications, including the Intrinsic Estimator 

(IE) (Yang, Fu, and Land 2004) that have some desirable statistical properties, but obscure constraints on 

the linear terms (O’Brien 2011).  These constraints turn out to be non-intuitive functions of the design of 

the data array, i.e., the values of 𝐼𝐼 and 𝐽𝐽, hence 𝐾𝐾 (Fosse and Winship 2018).  Figure 2 also shows (green 

dots) the estimated coefficients from the canonical IE model as applied to the Massachusetts respiratory 

TB data.  It can be seen that linear trends contrary to those involved in either the Mason-Smith CGLIM 

constraint (equations [13] or [14]) or period ZLT specification (equation [10]) give a different picture of 

the temporal structure of the disease as it disappeared in the commonwealth.  The slopes under the IE 

constraint are, respectively, 𝛼𝛼𝐿𝐿� = 0.0565,  𝛽𝛽𝐿𝐿� = −0.0692, and 𝛾𝛾𝐿𝐿� = −0.0364.  The idea that TB 

mortality would rise monotonically with age, not to mention at such a high rate, is precisely what Frost 

(1939) was pushing back against 80 years ago. 
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From Bounding to Over-identification:  Further Perspectives on Linear Trends 

One could say that there is a lot of spurious precision in the various estimates presented above.   

Or if not in these estimates specifically—since we do generate the same estimates under two quite 

different identifying restrictions—in just-identified age-period-cohort models in general.  How can we be 

so confident in a particular restriction on the linear parameters?   

In brief:  We can’t.  Confidence in the precise if occult IE identification for the Massachusetts TB 

data, for example, would have been misplaced.  Cohort analysis thus shares with the more general social 

scientific literature (Manski 1995) an appreciation for the modesty (acknowledged ignorance) associated 

with identification through bounding the acceptable range of estimates of a parameter or set of 

parameters.  The idea of identifying age-period-cohort models with reference to a restricted range of 

plausible values—e.g., that linear trends in one or more dimensions are non-decreasing with time—

dates to at least Wickramaratne et al. (1989); O’Brien (2019) proposes similar restrictions for a restricted 

range of one dimension, and Fosse and Winship (2019) give a generalized treatment of the underlying 

idea.  The thread that I pull on in the remainder of this section has a particular orientation.  Models with 

a linear bound in one dimension are equivalent to CGLIM models.  Perhaps because no one seems to 

think about them as CGLIM models, no one seems to be as bothered by the identifying restriction as 

they are when an identifying restriction starts as a restriction on two adjacent terms in an ANOVA 

model.  Nor am I bothered by this lack of visceral antipathy.  It allows us to glide easily to interesting 

tests of models that are over-identified.  At which point I draw the (precise algebraic) analogy with the 

problem of testing an age-period-cohort model against a model in which one of the three dimensions is 

excluded in its entirety… or in its linearity. 

For any monotonic increasing constraint on effect coefficients {𝜃𝜃𝑤𝑤: 𝜃𝜃1 ≤ 𝜃𝜃2 ≤ ⋯ ≤ 𝜃𝜃𝑊𝑊−1 ≤

𝜃𝜃𝑊𝑊} , there is a corresponding minimal value to the linear trend 𝜃𝜃𝐿𝐿.  Call this 𝜃𝜃𝑀𝑀𝐿𝐿 .   This value can be 

obtained with reference to a corresponding CGLIM model 𝜃𝜃𝑤𝑤 = 𝜃𝜃𝑤𝑤+1 where 𝑤𝑤 is determined by 
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observing where 𝜃𝜃𝑤𝑤𝑑𝑑 − 𝜃𝜃𝑤𝑤+1𝑑𝑑  is greatest across the 𝑤𝑤 = 1, … ,𝑊𝑊 − 1 first differences among deviation 

coefficients {𝜃𝜃𝑤𝑤𝑑𝑑}.  The set of deviations {𝜃𝜃𝑤𝑤𝑑𝑑} for any temporal dimension 𝜃𝜃 is estimable and invariant 

across all just-identified models.  Thus the initial model consulted (fitted) to establish the maximal 𝜃𝜃𝑤𝑤𝑑𝑑 −

𝜃𝜃𝑤𝑤+1𝑑𝑑  does not affect the linear term 𝜃𝜃𝑀𝑀𝐿𝐿  obtained, or the other two linear terms, which are determined 

once 𝜃𝜃𝑀𝑀𝐿𝐿  is specified for one of the three dimensions.  This does not mean that any CGLIM (or other just-

identified) model will by itself generate sets of coefficients that maintain monotonicity in a given 

dimension.  But the estimates from any such model, combined with the identifying assumption 

regarding monotonicity, will identify a CGLIM that defines a slope restriction (by reversing the derivation 

in equation [12]) that creates a boundary.  All values  𝜃𝜃𝐿𝐿 > 𝜃𝜃𝑀𝑀𝐿𝐿  are part of a region that 

maintains {𝜃𝜃𝑤𝑤: 𝜃𝜃1 ≤ 𝜃𝜃2 ≤ ⋯ ≤ 𝜃𝜃𝑊𝑊−1 ≤ 𝜃𝜃𝑊𝑊}, albeit at the “cost” of inducing compensating change in 

the linear trends for the other two dimensions.   With the boundary specifications of {𝛼𝛼𝐿𝐿 ,𝛽𝛽𝐿𝐿 , 𝛾𝛾𝐿𝐿} and the 

fitted �𝛼𝛼𝑖𝑖𝑑𝑑 ,𝛽𝛽𝑗𝑗𝑑𝑑 , 𝛾𝛾𝑘𝑘𝑑𝑑� in hand, equations (6𝑎𝑎 − 𝑐𝑐) define the coefficients  �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� that maintain 

monotonicity in one dimension with the minimal linear slope.8   

For example, if one wishes to stipulate that period coefficients {𝛽𝛽𝑖𝑖} be non-decreasing with 

time, then the minimal linear slope 𝛽𝛽𝑀𝑀𝐿𝐿  that will sustain this stipulation is equal to the maximal first 

difference 𝛽𝛽𝑤𝑤𝑑𝑑 − 𝛽𝛽𝑤𝑤+1𝑑𝑑 , where the model is equivalently identified by setting 𝛽𝛽𝑤𝑤 = 𝛽𝛽𝑤𝑤+1.  In this sense, 

                                                             
8 In the case where the identifying restriction is that coefficients in a given dimension be monotonically 

decreasing, then all of the above obtains with reversals of inequalities and the corresponding language, 

i.e., “maximal” for “minimal,” “least” or “lowest” for “greatest,” and so on.  In the case where 

monotonicity is only expected to obtain after a given time—e.g., a peak in homicide rates at ages 20-24, 

with rates decreasing monotonically thereafter (O’Brien 2019)—then the definition of the lowest (most 

negative) value  𝜃𝜃𝑤𝑤𝑑𝑑 − 𝜃𝜃𝑤𝑤+1𝑑𝑑  can be restricted to values of 𝑤𝑤 that index categories over which 

monotonicity is assumed to obtain. 
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the bounding is weak.  Consider, for example, a lower bound 𝛽𝛽𝑀𝑀𝐿𝐿  conforming to the specification of 

monotonically increasing period effects.  Then 

(15𝑎𝑎)                                        (𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿) − 𝛽𝛽𝑀𝑀𝐿𝐿 ≥ 𝛼𝛼𝐿𝐿 

(15𝑏𝑏)                                        𝛽𝛽𝐿𝐿 ≥ 𝛽𝛽𝑀𝑀𝐿𝐿  
 
(15𝑐𝑐)                                        (𝛽𝛽𝐿𝐿 +  𝛾𝛾𝐿𝐿) − 𝛽𝛽𝑀𝑀𝐿𝐿 ≥  𝛾𝛾𝐿𝐿  . 

where both 𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿  and 𝛽𝛽𝐿𝐿 + 𝛾𝛾𝐿𝐿  are estimable and invariant (equation [9]) and thus can be 

determined from whatever just-identified model was estimated to determine 𝛽𝛽𝑀𝑀𝐿𝐿 .  Only for equation 

(15𝑏𝑏) does bounding identify the sign of a linear term (in this case, 𝛽𝛽𝐿𝐿)—by definition, since increasing 

monotonicity in period implies 𝛽𝛽𝑀𝑀𝐿𝐿 ≥ 0.  Linear terms in age (𝛼𝛼𝐿𝐿) and cohort (𝛾𝛾𝐿𝐿) can still take on both 

positive and negative values, at least until 𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿  and 𝛽𝛽𝐿𝐿 + 𝛾𝛾𝐿𝐿 , respectively,  are observed 

(estimated).9   

We can advance matters by asking how putting further inequality restrictions on slope 

coefficients might plausibly tighten bounds.  If in addition to monotonically increasing effects in period 

we further stipulate that the linear trend in cohort is also increasing—a less specific additional 

constraint, since it does not imply that cohort coefficients are necessarily monotonically increasing—

then we are asserting that 

(16)                                         𝛾𝛾𝐿𝐿 ≥  0 

and thus defining tighter bounds: 

(17𝑎𝑎)                                       (𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿) − 𝛽𝛽𝑀𝑀𝐿𝐿 ≥ 𝛼𝛼𝐿𝐿 ≥ (𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿) − (𝛽𝛽𝐿𝐿 +  𝛾𝛾𝐿𝐿) 

(17𝑏𝑏)                                       𝛽𝛽𝐿𝐿 + 𝛾𝛾𝐿𝐿 ≥  𝛽𝛽𝐿𝐿 ≥ 𝛽𝛽𝑀𝑀𝐿𝐿  
                                                             
9 Wikramaratne et al. (1989) posit 𝛽𝛽𝑀𝑀𝐿𝐿 = 0, observe 𝛽𝛽𝐿𝐿 + 𝛾𝛾𝐿𝐿 > 0, and note (338) that this implies (as 

per equation [15𝑐𝑐]) that 𝛾𝛾𝐿𝐿could be either positive or negative absent further assumptions.  A corollary 

is that under the same maintained assumption, the counterfactual but a priori plausible observation that 

𝛽𝛽𝐿𝐿 +  𝛾𝛾𝐿𝐿 < 0  would guarantee 𝛾𝛾𝐿𝐿 < 0. 
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(17𝑐𝑐)                                       (𝛽𝛽𝐿𝐿 +  𝛾𝛾𝐿𝐿) − 𝛽𝛽𝑀𝑀𝐿𝐿 ≥  𝛾𝛾𝐿𝐿 ≥ 0  . 

These are elaborations of inequalities found in Holford (1991, 447), “for using knowledge about the 

underlying biology of a disease to understand something about the trends involv[ing] a restriction on 

one or more time factors.”  They differ from Holford’s (1991) inequalities primarily in having sharpened 

the specification of the linear trend in period to include not just non-negativity in the linear trend, but 

also monotonicity in effect coefficients.   

All of the bounds in equations (17𝑎𝑎 − 𝑐𝑐) only hold conditional on 

(18)                                         𝛽𝛽𝐿𝐿 + 𝛾𝛾𝐿𝐿 ≥  𝛽𝛽𝑀𝑀𝐿𝐿  

which can be viewed as an alternative hypothesis to the null hypothesis 

(19)                                         𝛽𝛽𝐿𝐿 + 𝛾𝛾𝐿𝐿 <  𝛽𝛽𝑀𝑀𝐿𝐿  . 

In this sense a test of equation (19) is a test of the over-identifying restriction provided by 

equation (16).  (Compare equations [15𝑏𝑏] and [17𝑏𝑏].) 

 Why “[i]n this sense”?  Because equations (17) through (19) lean on 𝛽𝛽𝑀𝑀𝐿𝐿 , a quantity that is itself 

based on an assumption or identifying restriction.  Were it to turn out that 𝛽𝛽𝐿𝐿 ≱ 𝛽𝛽𝑀𝑀𝐿𝐿 —i.e., that equation 

(15𝑏𝑏), the inequality conforming to the original identifying assumption, that period effects increase 

monotonically, were false—then the apparent tightness of the bounding on linear effects provided by 

equations (17𝑎𝑎 − 𝑐𝑐) would be illusory.  Estimation of linear trends continues to rely on an identifying 

restriction, even under an empirically maintained over-identifying restriction.  This said, conditional on 

the stipulation provided by equation (15𝑏𝑏), the test of equation (19) and its potential sequelae—

rejection in favor of equation (18) and adoption of the bounds in equations (17𝑎𝑎 − 𝑐𝑐)—could be quite 

informative.  The fact that we do not know that period effects should increase monotonically does not 

mean that we cannot or should not assume (posit) that period effects increase monotonically, and to 

reason and observe from there. 
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Tests of over-identifying restrictions relative to the fit of a just-identified model have long been 

a feature of the cohort analysis literature (e.g., Mason et al. 1973; Fienberg and Mason 1978, pp. 42-61).  

 If the full logistic response model with age, period, and cohort effects, whether under-

identified, just-identified, or over-identified, provides an acceptable fit to the data, then it will 

usually be of interest to explore whether we can set the effects of one or two dimensions to 

zero. Fitting age-period, age-cohort, cohort-period models, and even further reduced models, is a 

straightforward task with any computer program designed to fit standard log linear models to 

multidimensional arrays. Such reduced models pose no special identification problems because 

there is no way for the linear component of one dimension to become confounded with the 

linear components of the other two. (Fienberg and Mason 1978, 29). 

Yang and Land (2013a, 109, Ch. 5) outline a method for age-period-cohort analysis that may culminate in 

the application of a just-identified model (including the IE), but only if more parsimonious two-

dimensional models (e.g., age-cohort) do not provide a satisfactory fit to the data.  They attribute 

criticism of the IE by Luo (2013) to an instance where preference for a more restricted model should 

have ruled out the application of the IE (or any just-identified [“full-blown”] APC model) in the first place 

(Yang and Land 2013b).10  

                                                             
10 Are the discrepant coefficients from the IE in Figure 2 another instance in which this counsel was 

ignored?  The estimates based on other constraints suggest very little variation in period, and one might 

well imagine that an age-cohort model would have / should have sufficed from the beginning.  However, 

the improvement in fit observed by Mason and Smith (1985, Table 3)—a reduction in deviance of 

somewhat over 100 on 8 degrees of freedom—continues to obtain, even with the minor changes to the 

analysis detailed in footnote 7.  A just-identified model would also be preferred if BIC is the model 

selection criterion (𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 = −73 versus 𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴 = +12). 
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Except that, as Holford (1991, 436-437) pointed out, two-factor models (over-identified models 

featuring only two of the three conceptual temporal dimensions) may not be what we think they are, at 

least with reference to a just-identified model.11  Whereas in estimating a simplified multiple 

classification model of the form of (for example) 

(20)                                          ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� =    𝜇𝜇 + 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑘𝑘  
  
and comparing it with equation (3) we might imagine that we have tested as null the full set of omitted 

coefficients 

(21)                                         𝛽𝛽𝑗𝑗 = 0   
 
for all 𝑗𝑗, hence linearity in period as well (equation [10]), we may have done no such thing.  In particular, 

what we have tested is “only” 

(22)                                         𝛽𝛽𝑗𝑗𝑑𝑑 = 0 

for all 𝑗𝑗, as in 

(23)                               ℊ�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� = 𝜇𝜇 + (𝛼𝛼𝐿𝐿 + 𝛽𝛽𝐿𝐿)𝐴𝐴𝑖𝑖 + (𝛾𝛾𝐿𝐿 + 𝛽𝛽𝐿𝐿)𝐶𝐶𝑘𝑘 + 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑘𝑘 

versus equation (9), on 𝐽𝐽 − 2, not  𝐽𝐽 − 1, degrees of freedom (Fienberg and Mason 1985, 71-72).  Uh-

oh:  There, in equation (23), is 𝛽𝛽𝐿𝐿 again, free to be more or less anything, absent a further restriction on 

the linear terms! 

 This state of affairs—if state of affairs it is—discomfited Holford (1991, 437).  Having noted that 

“[i]t is impossible to test the null hypothesis that the slope is zero [𝛽𝛽𝐿𝐿 = 0 ] when both age and cohort 

also are included in the model” he ventured, tentatively that “[i]t would be surprising if a causal agent 

that changed over time did so in a strictly linear fashion.  Typically, you also would expect to see a 

certain amount of curvature….”  Which is to say that if equation (22) holds, something—experience?  

                                                             
11 Rodgers (1982, 780-782) was also getting at this point, albeit with an example that elided issues of 

measurement error with issues pertaining to identification.  
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theory? common sense?—would suggest that equation (21) should hold as well.  This is 

notwithstanding that there is no algebraic or statistical reason to rule out the existence of a linear trend 

in period (rejection of equation [10]).  Holford (1991, 437) thus yields to the dictates of algebra and 

statistics in concluding that “an analysis that is limited to the consideration of just two factors is not 

really a solution to the problem, because the possibility for bias has not been eliminated.”  This 

perspective is reprised by Fosse and Winship (2018, 322): 

 Unfortunately, it is impossible to determine from the data alone whether or not all 

three temporal variable are operating.  Believing otherwise can seriously mislead researchers….  

[B]y fitting the two-factor model … one is imposing the identification assumption that the 

[omitted] linear effect is zero….  The zero-linear trend constraint on the cohort variable is 

external to the data, imposed by the researcher.  Depending on the substantive application, it 

may or may not be reasonable to assume that because the nonlinear effects of [one temporal 

dimension] are observed to be zero, its linear effect is also zero….  [T]his is an assumption that 

can only be justified by appealing to theory or the inclusion of additional data. 

O’Brien (2016, 366 [emphasis in original]) is even more admonitory: 

When the model contains just two factors, those two factors take credit for their own linear 

trend effects, their effects that involve deviations from their linear trends, and they take credit 

for the linear trend effects of the third (left-out) factor….  Leaving the third factor out of the 

model based on its incremental fit not being statistically significant will too often eliminate a 

substantively important factor. This elimination affects the coefficient estimates of the two 

factors in the model. 

It is one thing to realize that all just-identified models featuring effects for all three temporal 

dimensions necessitate restrictions on the linear terms.  It is quite another to see that even if one is 

willing to forego consideration of one of the temporal dimensions, one is (perhaps) still prey to the 

indeterminacy deriving from the fact that any of age, period, or cohort is a linear combination of the 
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other two.   What is going on here?    In the case of two-factor models, “[t]he left-out factor’s effects are 

constrained to be zero, both its linear trend effects and the effects of its deviations from the linear 

trend” (O’Brien 2016, 365).  We can parse this further to specify that the constraint on the deviations 

(e.g., equation [22]) is estimable hence testable, while the constraint on the linear term (e.g., 

equation [10]) is an assumption.  The situation is completely analogous to that discussed just above, in 

conjunction with an over-identifying restriction to tighten the bounds on effects (equations [17 − 19]).  

Holford (1991, 437) hazarded that if deviations from trend in one dimension are not statistically 

detectable, then one might plausibly infer that there is no linear trend in the same dimension, either.  I 

would turn it around to ask, why not just acknowledge that the test of an over-identified two-factor 

model against a just-identified age-period-cohort model is, specifically, a test against the just-identified 

model in which the linear term in the soon-to-be-absent dimension is assumed to be zero?  Conditional 

on this assumption, the test that there are also no non-linear effects in this dimension is a perfectly 

useful one. 

How can we—or why might we—wish to entertain such an assumption?  Theory or additional 

data specific to the analysis at hand (O’Brien 2016, 369; Fosse and Winship 2018, 322) are always 

welcome, but there may also be some general ways of thinking about the analysis of data in terms of 

age, period, and cohort that help to structure the models and methods in common use.  The ones I 

discuss in the remainder of this chapter mostly abjure imagining that there are linear effects operating 

simultaneously in period and cohort.  The problem, to my way of thinking, is less that age, period, and 

cohort are definitively bound (age ≡ period – cohort) than that we have come to substitute the algebra 

of the situation for the logic of social science.  When O’Brien (2016, 322) writes that “[l]eaving the third 

factor out of the model based on its incremental fit not being statistically significant will too often 

eliminate a substantively important factor,” I look for evidence of a social world, theoretical and/or 

empirical, in which it makes sense to think of all of these time dimensions as indexing factors that move 
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both simultaneously and linearly in their effects on some phenomenon of interest.  What I find instead 

are references to “the data-generating processes” (O’Brien 2016, 365) or “the true data generating 

parameters” (Fosse and Winship 2018, 324) or even “the true A, P, and C trends” (Luo and Hodges 2016, 

710).  Far be it from me to gainsay the utility of a received specification in adjudicating arguments in the 

statistical realm (Smith, Mason, and Fienberg 1982, Tables 1 and 2).  But do such entities—data 

generating processes or parameters, “true” trends—really exist?  I am mindful that all of our models are 

mental constructs; also, that it is hard to refute on the one hand or prove on the other a Platonic 

concept.  Nonetheless, the indeterminacies intrinsic to the statistical perspective may be distracting us 

from some fundamentals that could make the ground feel less shaky underfoot.   

 
Against Concomitant Linear Trends in Cohort and Period 

 Fosse and Winship (2018) conclude their survey of statistical approaches for identifying 

simultaneous age, period, and cohort effects with  

… a set of practical guidelines….  “[T]he full set of linear and nonlinear effects should be reported.  

This will allow the researcher to evaluate the legitimacy of the constraint imposed on the true, 

unknown linear APC effects….  Ultimately, any linear constraint should be grounded in an 

underlying social, cultural, or biological theory. (328) 

If categorical terms for each dimension of time have been normalized as per equation (4), then 

equations (5) and (6) make it straightforward to deduce linear and nonlinear effects, in fitting a 

regression line to the observed coefficients in at least two of the dimensions (Holford 1983).  It has long 

been known that all just-identified age-period-cohort models maintain and/or require a restriction on a 

linear term in time (Fienberg and Mason 1978, 6), even if the nature of those restrictions is sometimes 

obscure.  Earlier in this chapter I treated some comparatively simple cases (ZLT, CGLIM, bounding) 

compared to those unearthed by Fosse and Winship (2018). 
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Given all the time that has passed since cohort analysis veered into the identification problem, 

and all of the work that has been done within the age-period-cohort frame as well as at the edges, it 

would be (a) hard to dispute the generic advice that any and all identifying restrictions be motivated 

with reference to the specific problem at hand, and the theory and state of knowledge that surround it; 

and (b) fatuous to suggest a general solution.  But might not some re-orientation be in order, to keep us 

focused on the point of the enterprise, hence to avoid algebraic distractions?   The association of the 

data structure with a set of challenges and strictures from statistics and mathematics has had the 

unfortunate consequences of (a) turning attention from substantive issues, first assuming that we are 

less knowledgeable than we are, then making it appear that this is true; and (b) causing us to overlook 

what the basic identity A≡P-C is telling us about how we should be thinking about age, period, and 

cohort as explanatory concepts.  The nub of the problem is an epistemological one—what it is we think 

we are thinking about—and not a mathematical one.  Age, period, and cohort might be exchangeable 

algebraically and geometrically, but conceptually they are distinct.  For the two constructs associated 

with historical time, period and cohort, it is hard to think of when and why we would want to imagine 

linear trends in both. 

Thus given the following: social and/or demographic data arrayed over time by age, and a desire 

to know “what is going on” with respect to these age-graded rates and counts, including what has 

transpired in the past and what we have reason to think might transpire in the future.  In such instances, 

which are ubiquitous, statistical accounts in terms of age (and aging) and cohorts (including trends) 

should come to the fore.  What about period effects—don’t they exist?  Well, of course they exist; or 

might exist; or we might think that they exist; or thinking that they exist might help with our thoughts 

more generally.  But, in the first instance, our preference should be for age-cohort models with specific 

interactions, and/or age-period-cohort models with identification residing in the presumption that the 

linear trend in period is zero.  In many respects—as a technical treatment of the issue—this is not only 
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not new, it is old:  Adepts of the literature may recognize that these are the procession of models used 

by Holford (1983, 314-318) to illustrate estimation of age, period, and cohort effects.  What I want to 

offer in addition, in the set of interconnected remarks that follow, is a rationale for thinking this way, as 

opposed to worrying, for example, that an implied cohort linear trend is somehow taking credit for 

something that in some sense belongs to period (cf. O’Brien 2016, 366).  The orientation I proffer here is 

situational and not categorical.  I am suggesting that cohort is in general the more logical “carrier” of 

historical or temporal trends.   

One reason is that age effects usually are best interpreted with reference to cohorts.  The 

theory of age effects is primarily developmental and longitudinal, hence within cohorts, not cross-

sectional.  This is true whether the primary emphasis is on understanding how some phenomenon 

unfolds across the life course (Baltes 1968), or whether the question is historical change across some 

phenomenon known to vary systematically with age (e.g., Dorius, Alwin, and Pacheco 2016).  Sometimes 

the structure connecting rates with age—the linear increase in log-mortality with age over most of 

adulthood, for example (e.g., Cohen, Bohk, and Rau 2018)—can have the same shape whether viewed 

from a cohort or period perspective (Lenert and Missov 2010).  In other circumstances, the proponents 

of theories regarding age patterns of behavior and events have not noticed the distinction between age 

patterns hypothesized longitudinally but viewed cross-sectionally. In criminology, Hirschi and 

Gottfredson (1983) posited an age effect on crime that “is invariant across social and cultural 

conditions” (560), motivated it with respect to developmental factors, but illustrated it primarily with 

reference to cross-sectional patterns.  This made matters ripe for misunderstanding as overall crime 

rates changed over time (Porter et al. 2016, 34-35).   

What are the implications for identification?  There are at least three.  First, age-cohort models 

are in some sense primordial.  This is unless we happen to be in a theoretical plane where age-period 

models are primordial.  It is not impossible to give a scientifically coherent reading to an age pattern 
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that applies in the cross-section:  Social and economic punishments and rewards may be age-graded, 

and their relative application conditional on age might be a function of period-specific circumstances 

and resources alone.  In this event, the cohort biographies found in the data could well be of historical 

interest, but the patterns within the cohorts of punishments and rewards would give an inaccurate 

rendering of how age figures in their allocation, absent adjustment for period.  The distinction between 

the two is a theoretical one, as it has always been (e.g., Fienberg and Mason 1978, 50, 58-59)—not a 

matter of comparative goodness-of-fit. The crucial point is that the mental baseline should not be an 

age-period-cohort model with no identification restriction in sight, because therein lies the madness of 

equation (23), a twisting whirligig we would not even have imagined unless our view of the world 

began with equations (8) and (9).  

Second, to the extent that we have an understanding of what age patterns should look like, e.g., 

within a cohort, then extended models—A-P-C models, with all three temporal dimensions 

represented—can be identified with reference to age effects.  Fienberg and Mason (1978, 42-61) 

worked from the beginning with an over-identifying restriction on age effects:  In an era with little adult 

education, the level of schooling in a cohort should be relatively fixed after young adulthood, at least 

through the middle ages, until mortality and poor recall kick in.  Mason and Smith (1985) has provided a 

just-identified example.  The fact that the restriction on age (equation [13]) proved isomorphic with a 

zero linear trend restriction on period (equation [10]) increases confidence that the estimated 

coefficients convey a reasonable partition of the various time dimensions, including the restriction of all 

trend in historical time to the coefficients indexing cohort. 

The third implication is the converse of the second:  If we are restricting trend in historical time 

to one dimension alone (period), one test of the plausibility of this restriction is whether or not it 

generates a pattern of age coefficients that comports with expectations regarding the age pattern of the 

phenomenon under study.  Figure 3 shows age, period, and cohort coefficients (blue points) under a 
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zero linear trend (ZLT) constraint on period (equation [10]) for a just-identified model fit to data on 

correctional supervision and prison spells for North Carolina males, by age, between 1972 and 2016 

(Shen et al. 2019).  The coefficients for age show the anticipated pattern, with judicial sanction being 

highest in the mid- to late-20s, and dropping off at an accelerating pace thereafter.  (The response 

variable is a log-rate.)   Of course, such an “eye test” could (and should!) be made for any identifying 

restriction.  But it may be more helpful and reassuring in the context of a decision to restrict the trend in 

effect coefficients to two dimensions alone:  developmental and historical time.  Figure 3 also presents 

an alternative version of this partition, in which period is allowed to assume all historical trend (red 

points), and the general age pattern is not terribly different.  One could not (nor should not) choose 

between the two specifications on this basis alone; but given the general reasonableness of the age 

pattern under two alternative apportionments of the linear component of historical trend, it is easier to 

turn to the substantive component of the exercise.  This involved assessing the effects of a 1994 

sentencing reform (clearly visible in the plot of period effect coefficients) against the backdrop of secular 

change in crime and punishment which, given the high propensity for crime in early adulthood and the 

subsequent effects of early incarceration on the chances of later involvement with the criminal justice 

system, can be best represented as so-called cohort effects (Porter et al. 2016). 

Many other choices of identifying restriction, otherwise untethered and indifferently specified, 

could reorient the age pattern(s) in a manner that is un-credible.  See again the IE estimates in Figure 2.  

One of the lessons of stipulating monotonicity in any set of effects {𝜃𝜃𝑊𝑊} is the “hands on” experience of 

finding that there is always an extreme value of 𝜃𝜃𝑀𝑀𝐿𝐿  that will functionally annihilate whatever 

information is (was) contained in the unique estimates of the deviation coefficients {𝜃𝜃𝑤𝑤𝑑𝑑}.  The 

arithmetic of the situation notwithstanding, this is not a desirable state of affairs.  From an analytic 

standpoint, there really is a sense in which these coefficients need be privileged against the super-

abundance (three versus two) of the linear terms, even if the elimination of a linear term in the 
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potential presence of deviations from linearity in the same dimension does appear to stand on its head 

the common understanding of marginality in linear models (Nelder 1977, 49-50).   

 

Figure 3.  Estimated Age, Period, and Cohort Coefficients for Two Zero Linear Trend (ZLT) 
Restrictions on a Model for Prison Sentence Spells in North Carolina, 1972-2016. 

Trends that are purportedly the combination of offsetting period and cohort effects are difficult 

to understand:   

For any dataset, there is a space of possible estimates, all equally consistent with the data, but 

with different linear trends in age, period, and cohort, and no way from the data alone to choose 

among these…. On the other hand, some of the estimates seem to make more sense than others. 

For example, consider a model which adds the following three trends: (i) since 1948, an increase 

of 1% per year in the overall probability of Democratic identification, (ii) starting at age 18, an 

increase of 1% per year in the probability of an individual being a Republican as he or she gets 
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older, and (iii) for each cohort, an increase of 1% in the probability of being Republican, 

compared to the cohort that was born one year earlier. Add these three trends together and you 

get zero—the combination has no effect on any observable data—but they do not make much 

political sense. What does it really mean to talk about a linear time trend toward the Democrats 

if it is exactly canceled by each cohort being more Republican than the last? To put it another 

way, some methods of constraining the possible space of solutions seem more reasonable than 

others. (Gelman 2008, 2-3). 

A similar argument can be made against taking too seriously the idea that there are conceptually 

separable period and cohort trends that are moving in the same direction.  What exactly would that 

mean, given that we would be talking about linear trends?  That the march of history is progressing or 

regressing in some continuous reapportionment of its effects, from universal with respect to age to 

transmitted via early socialization—or vice versa?  The impossibility—and inutility—of attempting to 

distinguish these trends as between cohort and period is exemplified in the comparative study of 

income, where an historical trend is assumed, and the question of substantive interest is how different 

cohorts fare relative to this trend:  

As we explain how cohorts diverge from overall income trends, substantive reasons also exist for 

focusing on fluctuations around a linear trend, instead of focusing on the linear trend itself. 

Namely, the linear trend that one generation gets born into a society that is richer than the same 

society at an earlier point in time would generally not be considered unfair, but inevitable. 

Immanuel Kant (1784) most prominently argued that we are accustomed to one generation 

profiting from the efforts of the preceding one, so that overall, a long-run cohort- (or period-

based; one can never know) progression of living standards is the baseline to expect. (Chauvel 

and Schröder 2014, 1285 [emphasis added]). 
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Into the Future 

 None of which is to imply that there is no reason to distinguish period from cohort effects, 

either conceptually or in age-period-cohort models.  The enduring charm of these models is that there is 

age-graded variability in proportions, rates, counts and the like that derives from the irruption of 

historical events against the backdrop of the secular change embedded in cohorts.  I close with a brief 

foray into how the allocation of historical linear trend to the dimension indexed by cohort may be of 

value when it comes to projecting or forecasting the future. 

Demography is the only social science which routinely makes projections or forecasts over long 

horizons (Granger 2007, 6).  The reason is the cohort conception that attaches to data arrayed by time 

and indexed by age (Smith 2009, 145-151).  This, and the long-livedness of the species (Ryder 1965).  

Many of the men and women surveyed in the National Election Studies of the second half of the 20th 

Century had been alive, and at varying ages, when women were given the right to vote in 1920.  This—

coupled with observation of the age pattern of voting over the life course—was leveraged by Firebaugh 

and Chen (1995) to make inferences on the impact of this period-specific political reform on the political 

involvement of different generations.  Conversely, the cohort differentiation that can be observed in the 

past opens up the possibility of using the characteristic age pattern to project phenomena forward, as 

when differences in the early life-course uptake of smoking foreshadow mortality many years into the 

future (Wang and Preston 2009). 

Which is not to say that the variation that exists historically in rates will primarily be due to 

factors associated with cohort membership.  To the contrary, there are many phenomena for which, 

from the standpoint of observed variation, “short-term period effects” (Mason et al. 1973, 245; 

emphasis added), such as those adduced with respect to political party identification, will dominate the 

partition of variance as between period and cohort.  Consider Figure 4 and Figure 5, which update 

figures that first appeared in Sobotka (2003, Figures 1a and 1b).  Figure 4 presents total fertility rates 
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(TFR), which are period-specific summations of age-specific fertility rates and, as such, are a strong first-

approximation to the period effects in the age × period data array.  Figure 5 displays completed fertility 

rates (CFR) that are within cohort summations of age-specific rates for the corresponding age × cohort 

array of age-specific fertility rates.  As such, they are a strong first-approximation to the cohort effects 

for this historical period.  Period variation is paramount (Ní Bhrolcháin 1992).  Moreover, this period 

variation is decidedly non-random.  To focus, for example, on the dots and thin connecting line in Figure 

4, for the Czech Republic:  There was a substantial decline in fertility in the run-up to the Prague Spring 

(1968), with a substantial recovery thereafter, before fertility dropped precipitously again in the early 

1990s, coincident with the end of the Soviet Union and its control over Czechoslovakia, and the 

subsequent separation of the Czech Republic from the union with Slovakia.   

The issue, however, is 

that these consequential period-

specific shocks are, from a 

forecasting standpoint, all but 

unknowable.  Things happen; we 

react.  We can give 

knowledgeable accounts of the 

effects of past happenings, but 

we are not so good at predicting 

them, much less their timing 

(Smith 1987).  The argument in favor of approaching fertility change from a cohort perspective (e.g., 

Ryder 1960) always had two aspects to it:  “first, the description or analysis of fertility patterns, and 

second, the formation of inferences about the course of fertility” (Hutchinson 1960, 117).  It is with 

respect to the future course of events that a projection structure based on an underlying age-cohort 

Figure 4 Total Fertility Rates (TFR) for Four European Countries. 
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model, with all historical trend allocated to cohort, has a crude but basic utility.  It is possible to forecast 

from age-period-cohort models with linear trend in both cohort and period (Riebler, Held, and Rue 

2012, 315-322; Yang and Land 2013a, 171-188); however, in all events, there is some added clarity to 

the exercise when the partition of trend is clear.  In Figure 2 and again in Figure 3, I have been at pains 

to present estimated coefficients on a common graph, hence on a common scale, which I claim 

immodestly only makes sense, given that age, period, and cohort have a common metric.  I do not know 

why this practice is not more common.  It has the great advantage of making clear not just the trend in 

estimated effects under alternative models, but the comparative  variation in outcomes attributable to 

each temporal dimension 

conditional on contraints on linear 

trends. 

The variation visible in 

these figures in, respectively, age, 

period, and cohort effects, and 

the dependence of this variation 

on our treatment of linear 

components, is evident in the 

following equations, which re-

express the set of effect coefficients  �𝛼𝛼𝑖𝑖 ,  𝛽𝛽𝑗𝑗, 𝛾𝛾𝑘𝑘� as variances, expanded with reference to equations 

(6𝑎𝑎 − 𝑐𝑐): 

(24𝑎𝑎)                                       𝜎𝜎𝛼𝛼𝑖𝑖
2 =  (𝛼𝛼𝐿𝐿)2 �

𝐼𝐼2 − 1
12

�  + 𝜎𝜎𝛼𝛼𝑖𝑖𝑑𝑑
2  

(24𝑏𝑏)                                       𝜎𝜎𝛽𝛽𝑗𝑗
2 =  (𝛽𝛽𝐿𝐿)2 �

𝐽𝐽2 − 1
12

�  + 𝜎𝜎𝛽𝛽𝑗𝑗𝑑𝑑
2  

 

Figure 5.  Completed Cohort Fertility (CFR) for Four European 
Countries. 
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(24𝑐𝑐)                                       𝜎𝜎𝛾𝛾𝑘𝑘
2 =  (𝛾𝛾𝐿𝐿)2 �

𝐾𝐾2 − 1
12

�  + 𝜎𝜎𝛾𝛾𝑘𝑘𝑑𝑑
2  

 

As previously, the components corresponding to deviations from trend �𝜎𝜎𝛼𝛼𝑖𝑖𝑑𝑑
2 ,𝜎𝜎𝛽𝛽𝑗𝑗𝑑𝑑

2 ,𝜎𝜎𝛾𝛾𝑘𝑘𝑑𝑑
2  � are unique—they 

do not depend on the choice of identifying restriction.  Nor do the dimension-specific scalars 

denominated by 12, which vary across age, period, and cohort in function of the span of the data array 

(i.e., in a standard age × period design, 𝐼𝐼 and 𝐽𝐽, hence 𝐾𝐾).  Because 𝐾𝐾 > 𝐽𝐽 , ceteris paribus (|𝛽𝛽𝐿𝐿| = |𝛾𝛾𝐿𝐿| 

and 𝜎𝜎𝛽𝛽𝑗𝑗𝑑𝑑
2 = 𝜎𝜎𝛾𝛾𝑘𝑘𝑑𝑑

2 )  

(25)                                       𝜎𝜎𝛾𝛾𝑘𝑘
2 > 𝜎𝜎𝛽𝛽𝑗𝑗

2   
 
Implying some normalization may be in order when comparing the extent of period and cohort effects 

(cf. Vaisey and Lizardo 2016, 9-13).   

When there are linear trends in both period (𝛽𝛽𝐿𝐿) and cohort (𝛾𝛾𝐿𝐿), the corresponding variances 

𝜎𝜎𝛽𝛽𝑗𝑗
2  and 𝜎𝜎𝛾𝛾𝑘𝑘

2  can become quite expansive.  In contrast, under the assumption of zero linear trend in 

period (equation [10]) 

(26)                                       𝜎𝜎𝛽𝛽𝑗𝑗
2 = 𝜎𝜎𝛽𝛽𝑗𝑗𝑑𝑑

2  

and the proportion of historical variability attributable to differences between cohorts is 

 

(27)                                        
𝜎𝜎𝛾𝛾𝑘𝑘
2

𝜎𝜎𝛽𝛽𝑗𝑗
2 +𝜎𝜎𝛾𝛾𝑘𝑘

2 =
 �𝛾𝛾𝐿𝐿�2�𝐾𝐾

2−1
12 � +𝜎𝜎

𝛾𝛾𝑘𝑘
𝑑𝑑
2

𝜎𝜎
𝛽𝛽𝑗𝑗
𝑑𝑑

2 + (𝛾𝛾𝐿𝐿)2�𝐾𝐾
2−1
12 � +𝜎𝜎

𝛾𝛾𝑘𝑘
𝑑𝑑
2

    . 

 
This quantity can be either reassuring or sobering with respect to forecasts based on the set of age and 

cohort coefficients {𝛼𝛼𝑖𝑖 ,𝛾𝛾𝑘𝑘}, since under this baseline parameterization, 𝜎𝜎𝛽𝛽𝑗𝑗𝑑𝑑
2  is a minimum estimate of 

the secular variability that is historical but not embedded in cohort effects.  In this sense it is a non-

stochastic measure of error—in the form of ignorance—in our quest to see into the future on the basis 
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of what we have learned in the past.  Further decomposition of 𝜎𝜎𝛾𝛾𝑘𝑘
2  in terms of trend and deviance from 

trend (via equation [24𝑐𝑐]) can be similarly instructive.   

 

What Is It Good for? 

 Alas, there is not too much that is intrinsic in social life.  Even if our range of behavior is 

circumscribed by our biology and our physical environment, what we make of it seems to be quite 

varied.  Small wonder that our methods for making sense of the human world rarely have the fixity that 

our scientific minds crave.  For roughly half a century, thinking about age-period-cohort models has 

tended to drift away from their specific utility for specific problems to absolutism, both for and against.  

This chapter represents an umpteenth effort—my fifth, personally (Fienberg 2013, 1982)—to explore 

how the age-period-cohort accounting model framework (Smith, Mason and Fienberg 1982; Mason and 

Smith 1985) can be used to illuminate the world around us, with reference to specific and general ideas 

in sociology, demography, and epidemiology.  If I have perseverated a bit on the algebra of the situation, 

the homeliness of the effort is a reminder that this is not akin to splitting the atom on the one hand, or 

handling poisonous serpents on the other.  It is just another way of getting temporary purchase on the 

social world around us.  When it illuminates, it is good.    
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