ACCEPTED MANUSCRIPT • OPEN ACCESS

Multi-decadal shoreline change in coastal Natural World Heritage Sites – a global assessment

To cite this article before publication: Salma Sabour et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab968f

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by/3.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

2		
3 4 5	1	Multi-decadal shoreline change in coastal
6 7 8	2	Natural World Heritage Sites – a global
9 10 11	3	assessment
12 13	4	Salma Sabour ¹ , Sally Brown ² , Robert J. Nicholls ^{1, 3} , Ivan D. Haigh ⁴ , Arjen P. Luijendijk ^{3, 9}
14 15	5	
16 17	6 7	¹ Faculty of Engineering and Physical Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom.
18	8	² Department of Life and Environmental Sciences, Bournemouth University, Fern Barrow, Bournemouth
19 20	9 10	³ Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich
21	11	NR4 7TJ, United Kingdom.
22 23	12	⁴ School of Ocean and Earth Science, National Oceanography Centre Southampton, University of
24	13	Southampton, Waterfront Campus, European Way, Southampton, SO14 3ZH, United Kingdom.
25	14 15	⁶ Deltares Delft The Netherlands
26 27	16	
28	17	
29	18	
30	19	
31 32	20	
33	21	
34	22	
35	23	
36 37	25	
38	26	
39	27	
40	28	
41 47	29	
43	30	May 2020
44	31	May 2020
45 46		
40 47		
48		
49		
50		
51 52		
53		
54		
55 56		
50 57		
58		
59 60		
UU		

Abstract

Natural World Heritage Sites (NWHS), which are of Outstanding Universal Value, are increasingly threatened by natural and anthropogenic pressures. This is especially true for coastal NWHS, which are additionally subject to erosion and flooding. This paper assesses shoreline change from 1984 to 2016 within the boundaries of 67 designated sites, providing a first global consistent assessment of its drivers. It develops a transferable methodology utilising new satellite-derived global shoreline datasets, which are classified based on linearity of change against time and compared with global datasets of geomorphology (topography, land cover, coastal type, and lithology), climate variability and sea-level change. Significant shoreline change is observed on 14% of 52 coastal NWHS shorelines that show the largest recessional and accretive trends (means of -3.4 m yr⁻¹ and 3.5 m yr⁻¹, respectively). These rapid shoreline changes are found in low-lying shorelines (< 1 m elevation) composed of unconsolidated sediments in vegetated tidal coastal systems (means of -7.7 m yr⁻¹ and 12.5 m yr⁻¹), and vegetated tidal deltas at the mouth of large river systems (means of -6.9 and 11 m yr⁻¹ ¹). Extreme shoreline changes occur as a result of redistribution of sediment driven by a combination of geomorphological conditions with (1) specific natural coastal morphodynamics such as opening of inlets (e.g. Río Plátano Biosphere Reserve) or gradients of alongshore sediment transport (e.g. Namib Sea) and (2) direct or indirect human interferences with natural coastal processes such as sand nourishment (e.g. Wadden Sea) and damming of river sediments upstream of a delta (e.g. Danube Delta). The most stable soft coasts are associated with the protection of coral reef ecosystems (e.g. Great Barrier Reef) which may be degraded/destroyed by climate change or human stress in the future. A positive correlation between shoreline retreat and local relative sea-level change was apparent in the Wadden Sea. However, globally, the effects of contemporary sea-level rise are not apparent for coastal NWHS, but it is a major concern for the future reinforcing the shoreline dynamics already being observed due to other drivers. Hence, future assessments of shoreline change need to account of other drivers of coastal change in addition to sea-level rise projections. In conclusion, extreme multi-decadal linear shoreline trends occur in coastal NWHS and are driven primarily by sediment redistribution. Future exacerbation of these trends may affect heritage values and coastal communities. Thus shoreline change should be considered in future management plans where necessary. This approach provides a consistent method to assess NWHS which can be repeated and help steer future management of these important sites.

Keywords: shoreline change, multi-decadal, local and global scales, UNESCO, conservation, World Natural Heritage Sites, sea-level rise, coastal heritage, erosion, recession, accretion

Introduction

World Heritage Sites are locations of Outstanding Universal Values (OUV) selected by the United Nations Educational, Scientific and Cultural Organization (UNESCO) as having cultural, historical, scientific, or other forms of significance¹. Of the 1 092 World Heritage Sites, 209 are classified as Natural World Heritage Sites (NWHS)¹. NWHS have a high irreplaceability (uniqueness or rarity) factor; they are prioritised and have extraordinary biodiversity and geodiversity features compared to other protected areas^{2,3}. The UNESCO World Heritage Centre established a list of 14 primary factors of deterioration of the OUV ranging from human activities (development, pollution, social and cultural use), climate change and severe weather events, to invasive species, management and institutional factors⁴. Climate change and severe weather events can affect coastal areas through flooding, inundation and increased erosion^{5–7}. 88 NWHS intersect the coast and include sites most at risk from climate change⁸. Although they have pristine environments, their coastlines are increasingly subject to anthropogenic pressures inside and outside their boundaries such as pollution, population growth, and development including port facilities, dams and pumping stations. Following the International Union for Conservation of Nature conservation Outlook assessment conducted in 2017⁹, only 20% of coastal NWHS have a good conservation outlook, and the conservation of 39% of the sites is under significant to critical concerns. Moreover, the OUV of about two thirds of coastal NWHS are at high to very high threat from deteriorating factors. Additionally, these sites are subject to physical processes such as sea-level rise (SLR)¹⁰⁻¹⁵ and human modifications to sediment budgets¹⁶. However, shoreline change is not systematically monitored or reported in many NWHS^{17–19}, so it is unclear how NWHS shorelines have or could change. As sites that have very limited internal anthropogenic disturbance, they present significant opportunities to analyse how and why shorelines change due to natural drivers and/or external pressures.

Previous assessments of shoreline change in heritage studies include local^{20–23}, regional²⁴ or global^{25,26} studies. Local studies included the Sundarbans mangrove forests^{21,23}, the Everglades National Park²², and the Wadden Sea²⁰. A regional evaluation of 49 coastal Cultural World Heritage Sites around the coast of the Mediterranean found that 37 low-lying sites are at risk from a 100-year flood event today and that 42 sites are threatened by coastal erosion²⁴. Two global studies have analysed the effects of future shoreline change due to SLR. The first determined that 80% of the coastal wetlands of international importance could be affected by a 0-1 m rise in sea level²⁷. The second study found that 40 to 136 cultural and mixed coastal World Heritage Sites may be affected by flooding over 2 000 years if global temperatures and sea-levels continue to rise²⁵. To date, no study has explored globally past multi-decadal shoreline change and its possible drivers in NWHS in term of their geomorphology, elevation, land cover, lithology, climate variability and sea-level change.

The availability of satellite images from 1984 to present via the Google Earth Engine has allowed the creation of a global consistent shoreline change dataset that can be used to monitor coastal NWHS^{28–30}. In this paper, global datasets of shorelines, geomorphological conditions, and relevant forcing drivers are used to evaluate 45 102 historic shoreline change from 1984 to 2016 across 67 coastal NWHS (out of 88 due to data availability ⁴⁶103 limitations and data cleaning). The objectives are: ⁴⁷104

- (1) To assess and classify historic shoreline change behaviour within the 67 coastal NWHS;
- (2) To evaluate the geomorphological conditions associated with different shoreline behaviours (based on their linearity against time) and shoreline trends (recessional, depositional and stable); and
- (3) To determine the impacts of historic sea-level change and climate variability on shoreline behaviour.

This paper is structured as follows. The data are introduced in Section 2. The methods and results are presented in Section 3 and Section 4 respectively. The discussion is presented in Section 5 and the conclusion ⁵⁶112 in Section 6.

⁵⁷113 ⁵⁸114 ⁵⁹115

⁴⁸105 49

50¹⁰⁶

₅₁107

₆₀115

³₄ 116 2 Data

1 2

5

6

7

8

9

37 38

39 40

41

46

47

49¹³⁰ 139

⁵¹ 52

48137 138

⁵⁰140

Three datasets were used: (1) coastal NWHS sites boundaries and shoreline change time series (Section 2.1);
(2) geomorphological datasets (Section 2.2); and (3) climate variability and sea-level change datasets (Section 2.3).
2.3).

10121 2.1 Study sites and shoreline change time series

Boundaries of coastal NWHS were retrieved from the World Database on Protected Areas³¹. 88 sites 11122 intersected the Global, Self-consistent, Hierarchical, High-resolution Shoreline database³² (Figure 1). 12123 13124 Shorelines were obtained from a global assessment of derived Landsat images^{28–30}. This provided satellite-¹⁴125 derived shorelines (SDS) data points and their yearly positions based on transects spaced 500 m apart. SDS ¹⁵126 data points were available for 71 out of 88 coastal NWHS due to limited coverage of historic satellite imagery 16 127 in offshore waters. The raw shoreline time-series data were cleaned from transects containing less than five 17 ., 18¹²⁸ SDS data points and having a temporal coverage shorter than seven years²⁸. Approximately 1.5 million timeseries data points were selected. Further conditional and outlier data cleaning were undertaken 19129 20130 (Supplementary Section A.1.1). The conditional cleaning was performed for more consistency on the assessment of shoreline trends: all transects that had at least 17 SDS data points were retained for the analysis 21131 22132 (Supplementary Section A.1.1). The outliers' cleaning was performed to delete extreme SDS data points values 23133 (deviating by more than three times the standard deviation) within each transect (Supplementary Section ²⁴134 A.1.1). The cleaning process (see flowchart in Supplementary Figure SM1) removed 3.8% of the raw SDS data 25 135 points, and 67 sites remained in the analysis (Figure 1). 26 ____136 27

Figure 1 Geographical distribution of 88 coastal Natural World Heritage Sites around the world. 67 sites with available cleaned shoreline time-series data are analysed (Sources: World Database on Protected Areas³¹, Global, Self-consistent, Hierarchical, High-resolution Shoreline database³², and shoreline time-series data^{28–30}).

53142 2.2 Geomorphological conditions

Information of topography, land cover, coastal type and lithology (Table 1) was obtained from global databases to analyse how depositional and recessional shoreline change rates (SCR) varied (Supplementary Section A.1.2). The resolution of the topography and land covers datasets (~500 m at the equator) is similar to the shoreline data. The coastal type dataset resolution is 50 km and permits the classification of sites. The resolution of lithological data varies, starting from 5 m² and is adequate for both transect- and site-based

analysis. These datasets are suitable due to their coverage of the study area allowing for a consistent analysis; moreover, their resolutions are suitable for a global and site-based assessment of shoreline trends.

Table 1 Summary data types, sources, resolutions and transects categorisation in terms of topography, land cover, coastal typology, and lithology. Details of data selection and classification are available in the Supplementary Section A 1.2

Dataset	Source and Resolution		Categories
Topography	Global Map DEM (2017) 33	1.	$0 \le elevation \le 1 m$ (extremely
(classification based on the	~0.5km at the equator		low-lying)
distribution of the elevation of		2.	1 < elevation ≤ 10 m (low-lying)
strong linear transects)		3.	10 < elevation ≤ 50 m (middle)
		4.	50 < elevation ≤ 400 m (high)
		5.	No data (transects without
			available elevation)
Land cover	Global Land Cover by National	1.	Coral reefs
	Mapping Organisations - GLCNMO	2.	Mangroves
	(2013) ³⁴	3.	Marshes
	~0.5km at the equator	4.	Vegetated
		5.	Non-vegetated
		6.	Urban areas
Coastal type	Worldwide Typology of Nearshore	1.	Small deltas
	Coastal Systems (2011) 35	2.	Tidal systems
	Minimum resolution 50km	3.	Lagoons
		4.	Fjords and fjärds
		5.	Large rivers
		6.	Large rivers with tidal influence
		7.	Karst-dominated stretches of
			coasts
		8.	Arheic (dry areas)
		9.	Islands
Lithology	Global Lithological Map - GliM	1.	Evaporites
	(2012) ³⁶	2.	Polar ice and Glaciers
	Average resolution of 1:3 750 000	3.	Acid Plutonic Rocks
	 polygons areas varies starting 	4.	Basic-Ultrabasic Plutonic Rocks
	from 5 m ²	5.	Intermediate Plutonic Rocks
	·	6.	Metamorphic Rocks
		7.	Carbonate Sedimentary Rocks
		8.	Mixed Sedimentary Rocks
		9.	Siliciclastic Sedimentary Rocks
		10.	Unconsolidated Sediments
		11.	Pyroclastic
		12.	Acid Volcanic Rocks
		13.	Basic Volcanic Rocks
		14.	Intermediate Volcanic Rocks

2.3 Climate variability and sea-level change

Between 1900 and 2016, global mean sea level has risen by 16-21 cm³⁷. However, the effect of local SLR on ⁴⁷156 the shoreline variability is poorly understood as often exceeded by climate variability, local geomorphological ⁴⁸157 conditions, and/or human interventions³⁸. Our study hypothesised that local trends of SLR³⁷ may have a 50 50 potential observable contribution to strong linear shoreline trends within similar geomorphological categories 51 159 in pristine NWHS sites, which should be negligibly affected by human interventions. To verify this hypothesis, ₅₂160 local trends of sea-level change were assessed, and their effects on strong linear shoreline trends were determined within different geomorphological categories and sites. Linear available trends of local estimates of relative sea-level change³⁹ (measured by tide gauges) were used. These linear trends are appropriate as contemporary SLR acceleration rates are small (order of 0.1 mm² yr⁻¹) and are often not detectable at local tide gauge sites because of the large variability present in sea level⁴⁰. Other driving forces of regional climate ⁵⁷165 variability⁴¹ (Table 2) were assessed as drivers of shoreline change. These yearly values of large-scale climate ⁵⁸166 indices have been used in previous global assessments of surges and flooding^{42,43} and have been shown to 60¹⁶⁷ influence year-to-year variability in sea level^{44–46}. The shoreline change dataset is 33 years of length, which is appropriate to capture the year-to-year variability that arises from climate forcing such as El Niño/Southern
 Oscillation (ENSO) or the other climate indices listed in Table 2.

Table 2 Regional climate variability indices description. The datasets are retrieved from https://psl.noaa.gov/data/climateindices/list/.

Index	Return periods	Description
El Niño/Southern Oscillation (ENSO) precipitation index	2 to 7 years ^{47,48}	Rainfall-based ENSO indices describing irregularly periodic variation in sea surface temperatures (SST) over the tropical eastern Pacific Ocean. The climate phenomenon periodically fluctuates between neutral, La Niña or El Niño ⁴⁹ .
Atlantic Multi-decadal Oscillation (AMO)	20 to 60 years ^{50,51}	SST anomalies occurring in the North Atlantic Ocean ⁵² .
Arctic Oscillation (AO)	No particular periodicity ⁵³	Non-seasonal sea-level pressure (SLP) anomalies at the Arctic and Antarctic poles ⁵⁴ .
North Atlantic Oscillation (NAO)	No particular periodicity ⁵⁵	Atmospheric SLP between the Icelandic Low and the Azores High, which affects the westerly winds and location of storm tracks ⁵⁶ .
Niño 3, Niño 4 and Niño 3.4	2 to 7 years ^{47,48}	Indices used to monitor the tropical Pacific, all of which are based on SST anomalies averaged across a given region ⁵⁷ .
North Pacific (NP)	2 to 6 years or 7 to 12 years 58	Area-weighted SLP over the region 30°N-65°N, 160°E-140°W ⁵⁸ .
Pacific Decadal Oscillation (PDO)	20 to 30 years ⁵⁹	Leading principal component of North Pacific monthly SST variability ^{60,61} .
Southern Oscillation Index (SOI)	2 to 7 years ^{47,48}	Description of the development and intensity of El Niño or La Niña events in the Pacific Ocean (normalised index) ⁵⁷ .

₂₆172 3 Methods

1 2 3

4

29

³⁶181 ³⁷182 38

₃₉183

40184

Three stages of analysis were undertaken, corresponding to the three study objectives.
 Three stages of analysis were undertaken, corresponding to the three study objectives.

3.1 Shoreline change time-series: linear behaviour classifications and strong linear trends Prior to fitting a linear regression, the potential linear behaviour of SDS data points, defined by their linearity against time, was assessed using Pearson's correlation coefficient (*r*) (R-3.5.1 package 'psych'⁶²), with the statistical significance measured using the *p-value* (the closer *r* is to +/- 1 the stronger the linear relationship). Based on past qualitative description of r^{63-65} , shoreline change transects were divided as:

- 1. Strong linear (less than -0.7 or greater than 0.7);
- 2. Weak linear (-0.7 to -0.3 or 0.3 to 0.7); and
- 3. Non-linear (-0.3 to 0.3).

41 185 To assess the contributions of the three linear categories in the long-term shoreline change, mean annual SCR 42 186 for the three linear categories were assessed using an Ordinary Least Square linear regression applied to 43 187 transects based SDS⁶⁶. The linear fit is a valid option to describe and forecast long-term predictive analysis and 44 188 to minimise potential random error and short-time variability⁶⁶.

46 47 47 48 191 For the multi-decadal period considered in the analysis, linear regressions, which assume that the relationship between shoreline change and time is linear, are not relevant for shorelines changing with weak linear or non-49¹⁹² linear behaviours. Thus, only SCR calculated for transects with strong linear shoreline behaviour are highly 50193 probable and significant on a multi-decadal scale and were selected to analyse depositional, recessional or stable SCR between 1984 and 2016. As the SDS accuracy is within a subpixel precision for the 33 years period 51194 52195 analysed (15 m for Landsat), SCR between -0.5 and 0.5 m yr⁻¹ were considered stable²⁸. Depositional and 53196 recessional transects were defined by SCR >0.5 m yr⁻¹ and <-0.5 m yr⁻¹ respectively²⁸. The mean and standard ⁵⁴197 deviation of SCR were calculated for each geomorphological category and sub-category. Geomorphological ⁵⁵198 56 57199 57 categories and sub-categories with less than five transects were considered non-representative of mean shoreline change per category. Shoreline change outliers for strong linear transects were removed (<-21.16 m 5, 58²⁰⁰ yr⁻¹ for recessional transects and >23.05 m yr⁻¹ for depositional transects) (see Supplementary Figures SM10 and SM11). 6 947 transects (98%) remained within 52 sites, after outliers were removed. 59201

5

6

7

8

23

1

203 3.2 Geomorphological analysis

All transects were classified by their topography, land cover, coastal type and lithology (see Supplementary Section A.1.2). A comparison of the different geomorphological conditions for the strong linear, weak linear and non-linear shoreline behaviours has been conducted followed by an in-depth analysis of three transects' types of strong linear behaviour: recessional, depositional and stable.

9 208

11 209 3.3 Climate variability and sea-level change analysis

12210 Comparisons of SDS data points per transect against a time series of climate indexes were undertaken using Kendall t non-parametric rank correlation^{43,67}. The comparison investigated potential dependencies between 13211 shoreline change and the ten climate indices defined in Section 2.3. The percentage of transects having a 14212 15213 moderate/strong positive (τ >=0.5) or moderate/strong negative (τ <= -0.5) correlation with the time-series of 16214 climate indices was assessed for each category of transects defined by the Pearson's r classification. The ¹⁷215 contribution of sea-level change was assessed by fitting a linear regression between recessional and ¹⁸216 depositional strong linear SCR and local relative sea-level change for different land cover and coastal type 19 .) 20²¹⁷ categories. Additionally, a comparison between average shoreline evolution and relative sea-level change has 21²18 been conducted for each site. Only shores with a mean elevation lower than 10 m (definition of the Low ₂₂219 Elevation Coastal Zone⁶⁸) were assessed.

²⁴220 4 Results

26221 4.1 Classification of shoreline change time-series

27222 The first objective was to assess and classify shoreline change linear behaviour in coastal NWHS between 1984 28223 to 2016. All 67 sites had transects exhibiting at least two of the three linear shoreline behaviour categories ²⁹224 (defined in Section 3.1). 52 of the 67 sites contained transects with strong linear shoreline behaviour. Across ³⁰225 ³¹226 ³²227 the 67 sites, data were available for 52 033 transects. 14% of these showed a significant strong linear behaviour at the 99.85% confidence level (Supplementary Table SM4). The percentage of transects with linear 33²227 behaviour within each site varied from 0.2% (Dorset and East Devon Coast) to 63.5% (The Sundarbans) (Figure 34228 2, Supplementary Table SM5). Under the hypothesis of long-term shoreline change, transects with strong 35229 linear behaviour had the highest mean recessional (-3.4 m yr⁻¹, std 3.6 m yr⁻¹) and depositional trends (3.5 m 36230 yr⁻¹, std 4.3 m yr⁻¹) in comparison to weak linear and non-linear shoreline categories (Supplementary Table 37231 SM6). The differences between strong linear, weak linear and non-linear shoreline behaviours with both 38232 depositional and recessional trends in relation to r are presented in Supplementary Table SM7 and Figures ³⁹233 SM4 to SM9. 40 41 234

Figure 2 Globally distributed pie charts of strong linear, weak linear and non-linear transects (defined using Pearson's r coefficient) ₂₆237 within the 67 coastal NWHS with available cleaned time-series shoreline data. The relative density plots show the relative distribution of each subset in relation to the complete dataset for the longitudes and the latitudes separately.

_, 28²³⁹ For the 7 087 transects in the 52 coastal NWHS showing strong linear shoreline behaviour, 52.8% had a recessional trend, 43% were accreting and 4.2% were stable. Among the sites with more than five remaining linear transects, The Sundarbans (Bangladesh), Danube Delta (Romania), and Sundarbans National Park (India) had the highest percentage of transects with a strong linear behaviour. The Volcanoes of Kamchatka (Russia), The Sundarbans and Ujung Kulon National Park (Indonesia) had the highest percentage of coasts with strong ³⁴245 linear recessional shoreline change (97.6%, 84.9% and 84.6% were recessional of the total strong linear transects consecutively) (Figure 3). The Banc d'Arguin National Park (Mauritania), High Coast/Kvarken Archipelago (Sweden/Finland), and Redwood National and State Parks (United States) had the highest ₃₈248 percentage with strong linear depositional shoreline change (98.3%, 91.1%, 90% are recessional of the total strong linear transects respectively) (Figure 3). Among all sites, Río Plátano Biosphere Reserve (Honduras) had the highest mean recessional SCR (-11.8 m yr¹, std 7) and The Wadden Sea (Netherland, Germany and Denmark) had the highest mean depositional SCR (10.9 m yr⁻¹, std 5.7 m yr⁻¹) (Table 3).

29 256 30 257

Figure 3 Globally distributed pie charts of recessional, depositional and stable shoreline trends within the 52 coastal NWHS with strong linear shoreline behaviour. The relative density plots show the relative distribution of each subset (recessional, depositional and stable) in relation to the complete dataset for the longitudes and the latitudes separately. Detailed percentages for each site are available in the Supplementary Table SM8.

Table 3 Number of transects, mean rates of change and standard deviations (std) for recessional, depositional and stable shoreline trend categories within a subset of coastal NWHS with the highest values of mean strong linear recessional and depositional trends. The sites, with more than five linear transects, are classified in descending order of the site-based mean rate of strong linear recessional shoreline change rates. A comprehensive assessment for all sites is available in the Supplementary Table SM9.

54			Recession	al shoreline	change	Depositior	nal shoreline	e change	Stable	shoreline cha	ange
35 36 37	Name	Coastline length (km)	Number of transects	Mean (m yr ⁻¹)	Std (m yr-1)	Number of transects	Mean (m yr ⁻¹)	Std (m yr ⁻¹)	Number of transects	Mean (m yr⁻¹)	Std (m yr ⁻¹)
38	Río Plátano Biosphere Reserve	39	4	-11.8	7	4	2.7	2.8	0	0	0
40	Redwood National and State Parks	71	1	-9.3	0	9	3.7	2.1	0	0	0
41 42 43	Te Wahipounamu – South West New Zealand	1592.5	52	-8.6	6.7	21	1.8	0.7	2	-0.3	0.2
40	Socotra Archipelago	368	3	-7.8	0.9	5	5.4	1.5	0	0	0
44	The Wadden Sea	2 507.5	231	-7.5	4.6	240	10.9	5.7	0	0	0
45	Península Valdés	497	6	-7.2	5.4	3	0.7	0.2	4	0	0.4
46	Namib Sand Sea	359.5	46	-6.7	5	40	7.6	5.6	0	0	0
47 48	Atlantic Forest Southeast Reserves	382	41	-4.9	5.6	31	2.1	2.1	1	-0.4	0
40	The Sundarbans	503	528	-4.8	4	90	4.6	5.5	4	-0.4	0.1
49	Danube Delta	175.5	131	-4.6	2.9	66	4.6	4.9	0	0	0
50 51	Lorentz National Park	133.5	14	-4.3	4.7	16	6.6	4.8	0	0	0
52 53	Banc d'Arguin National Park	1 275	4	-1.8	1.3	227	6.1	3.9	0	0	0
54	iSimangaliso Wetland Park	66	0	0	0	10	4.9	1.2	0	0	0
55 56 262											

Geomorphological analysis 4.2

The second objective was to evaluate the geomorphological conditions associated with different shoreline ⁵⁹265 behaviours (based on their linearity against time) and shoreline trends (recessional, depositional and stable).

First, a comparison of the geomorphological compositions of strong linear, weak linear and non-linear shoreline behaviours was conducted (Figure 4). Transects with strong linear behaviour had a higher percentage of tidal systems (30%) and arheic systems (19%) while transects with non-linear and weak linear behaviours had a higher percentage of fjords/fjärds (14% and 9% consecutively) and islands (13% and 12% consecutively). Strong linear transects had a higher percentage of mangroves (40%) in comparison to non-linear and weak linear transects. Non-linear and weak linear transects had a higher percentage of different rock types (such as metamorphic, acid plutonic, basic plutonic, intermediate plutonic rocks) while transects with a strong linear behaviour had the highest percentage of unconsolidated sediments (74%). Transects with ¹²274 strong linear behaviour had a higher percentage of extremely low-lying (18%) and low-lying areas (61%).

3 281 Second, the geomorphological conditions associated with strong linear recessional, depositional and stable 4 282 shoreline trends are evaluated. For 297 stable transects in 18 sites, 62% of the transects had their mean 5 283 elevation within [1-10 m] and 29% within [10-50 m]. Sable transects consisted of 42% small deltas, 31% arheic 6 284 systems and 13% tidal systems (Figure 5). Within these coastal types, vegetated areas and mangroves were 7 285 the prevailing land cover types (Figure 5). They represented respectively 53% and 34% of the totality of 8 286 recessional transects. 71% of recessional transects were unconsolidated sediments, 6% siliciclastic 9 10287 sedimentary rock and 5% acid volcanic rocks. Further analysis were not conducted for stable strong linear 11288 shoreline trend as they represent only 4% of the totality of strong linear transects in 35% of the sites displaying 12289 a strong linear behaviour.

¹³290 ¹⁴291 ¹⁵202 Within 3 664 recessional transects in 47 sites, 14% of the transects had their mean elevation within [0-1 m] 15 16²⁹² and 68% within [1-10 m]. Recessional transects consisted of 36% tidal systems, 36% small deltas and 15% 17293 arheic systems (Figure 5). Within these coastal types, mangroves and vegetated areas were the prevailing land 18294 cover type (Figure 5). They represented respectively 52% and 38% of the totality of recessional transects. 81% 19295 of recessional transects were unconsolidated sediments, 6% siliciclastic sedimentary rock and 5% basic 20296 volcanic rocks. Within 2 986 depositional transects in 45 sites, 23% of the transects had their mean elevation 21297 within [0-1 m] and 51% within [1-10 m]. Depositional transects consisted of 36% small deltas, 23% tidal, and ²²298 23% arheic systems respectively (Figure 5). Within these coastal types, mangroves and vegetated areas were ²⁹⁸ ²³ ²⁴ ²⁵ ³⁰⁰ ²⁶ ³⁰¹ dominant (Figure 5). Vegetated areas, mangroves and coral reefs represented respectively 60%, 25% and 11% of the totality of accretive transects. 67% of accretive transects were unconsolidated sediments, 11% metamorphic rocks and 7% siliciclastic sedimentary rocks. The depositional trend decreased exponentially 27302 with increases in elevation (Supplementary Figure SM13). The highest depositional SCR were observed for 28303 transects with a mean elevation lower than 1 m (Table 4).

30305 Among all elevations categories, the comparison of land cover categories shows that transects within the ³¹306 elevation category [0-1 m] with vegetated areas had the highest mean rate of shoreline recession (-5.9 m yr⁻¹, ³²307 ³³308 ³⁴308 std 4.3 m yr⁻¹) (Table 4). Transects within a 1 km geodesic distance from coral reefs had the lowest recessional trend (mean -1.7 m yr⁻¹, std 1.8 m yr⁻¹). For elevations <1m, among all geomorphological categories, the highest 35⁻⁷309 mean rates of recession (-8.1 m yr⁻¹, std 5.2 m yr⁻¹) was observed in transects composed of unconsolidated 36310 sediment within the category of vegetated tidal systems in the Wadden Sea (Supplementary Table SM10). For low-lying areas, the highest mean recession of -8.9 m yr⁻¹ (std 4.2 m yr⁻¹) was observed in transects composed 37311 38312 of siliciclastic sedimentary rocks within the category of vegetated tidal systems (Supplementary Table SM11). 39313 For the middle-elevation category, the highest mean shoreline recessive trend was observed within 40314 metamorphic rock transects situated in vegetated fjords (-7.5 m yr⁻¹, std 7.2 m yr⁻¹) in Te Wahipounamu (New 41 315 42 316 43 317 44 317 Zealand) (Supplementary Table SM12). For the high-elevation category, the greatest mean recession was in metamorphic rock transects in vegetated fjords and fjärds situated in Te Wahipounamu and West Norwegian *Fjords (Norway)* (-13.1 m yr⁻¹, std 6.2 m yr⁻¹) (Supplementary Table SM13). 45 45 318

For all topographic categories, extremely low-elevation transects within vegetated areas had the highest mean 46319 47320 accretive trend (7.0 m yr⁻¹, std 5.8 m yr⁻¹) (Table 4). Transects within a 1 km geodesic distance from coral reefs 48321 had the lowest accretive trend (Table 4). Within extremely low-elevated transects, the highest mean accretive 49322 trends were observed in transects composed of vegetated tidal systems (12.5 m yr⁻¹, std 5.4 m yr⁻¹, in the ⁵⁰323 Wadden Sea) and vegetated large rivers within a tidal delta (11.0 m yr⁻¹, std 5m yr⁻¹, in the Islands and Protected Areas of the Gulf of California (Mexico)) (Supplementary Table SM14). Within low-elevated transects, the highest mean depositional trend of 13.6 m yr⁻¹ (std. 5.3 m yr⁻¹) was observed in transects composed of evaporites within the category of vegetated small deltas situated within the Namib Sand Sea ₅₅327 (Namibia) (Supplementary Table SM15). For the middle-elevation category, the highest accretive trend was 56328 observed within transects situated in tidal coastal systems covered by mangroves (4.6 m yr⁻¹, std 5.4 m yr⁻¹) 57329 (Supplementary Table SM16). Coastal ecosystems with this shoreline trend were found in Kakadu National 58330 Park, Lorentz National Park and The Sundarbans. For high elevation transects, the greatest mean accretive

59 60

1 2

in term of their coastal type conversely.

Table 4 Mean strong linear recessional and depositional shoreline change rates (m yr⁻¹) within the elevation categories and corresponding land cover sub-categories. Grey cells correspond to non-representative or non-existent categories. Categories with less than \leq 5 transects are considered as non-representative of the shoreline change within each category. Detailed results for other geomorphological categories and subcategories are available in the Supplementary Sections A.2.3 and A.2.4.

			Land cover categories											
ropographic		Coral reefs		Mangroves		Marshe	Marshes		ted	Non-vegetated		Urban		
$0 \le elevation \le 1 m$		1	1	2	2.7	47	FO	FO	7	20	12			
-5.3	6.7	-1	1	-3	3./	-4.7	5.9	-5.9	/	-3.8	4.3			
1 < elevati	on ≤ 10 m	1 Г	1.6	2.2	2.7	2.1	2.0	2.1	2.1	22		1.2		
-3.1	2.7	-1.5	1.6	-3.2	2.7	-3.1	2.9	-3.1	3.1	-3.5	2.4	-1.2		
$10 < elevation \le 50 m$		1.0	1.0	2.4	25		17	2.4			12			
-2.3	2	-1.9	1.8	-2.4	2.5		1.7	-2.4		-1./	1.2			
$50 < elevation \le 400 m$		12								\checkmark				
-5.1	1.4	-1.2	1					-5.5	1.5					

²⁶343 4.3 Climate variability and sea-level change analysis

²⁷344 The third objective was to determine the impacts of historic sea-level change and climate variability on ²⁰345 29 shoreline behaviour in coastal NWHS. The comparison of yearly transect-based time series of shorelines _____346 (within the three categories of linear shoreline change behaviour) against ten climate indices indicated no significant statistical association at global scale (Supplementary Table SM18). Globally and for different geomorphological categories and sub-categories, there was no positive correlation between shoreline change and relative sea-level change for transects with strong linear recessional or depositional trend. Thus the absolute value of recessional SCR did not increase and the value of depositional SCR did not decrease with increasing relative sea-level change values for low lying transects (0 to 10 m) (Figure 6 and Supplementary ³⁶352 Figure SM14). A weak positive relationship was observed between recessional strong linear shoreline trend and relative sea-level change in vegetated tidal systems below 1 m in the Wadden Sea (Figure 7). No 39³⁵⁴ correlation has been found between the average shoreline change rate and the average relative SLR for each site (Supplementary Figure SM15).

₂₅342

364 5 Discussion

This paper has presented the first global assessment of trends and drivers of shoreline change in coastal Natural World Heritage sites from 1984 to 2016. The data showed that both extreme erosional and accretional tendencies were apparent and one tendency did not dominate in these sites. A classification of linear behaviour with time indicated that strong linear shoreline trends have a significant contribution to the recessional (-3.4 m yr⁻¹, std 3.6 m yr⁻¹) and depositional trends (3.5 m yr⁻¹, std 4.3 m yr⁻¹). The prevalence of unconsolidated sediment in transects with strong linear behaviour demonstrates the potential contribution of coastal sediment processes (affected by human disturbances, waves, tides and tidal currents, wind, currents and sea-level change).

Drivers of strong linear recessional and depositional trends were assessed using geomorphological categorisation of transects, including analysis of case studies (Supplementary A.3 Discussion). Low lying transects had the highest mean depositional and recessional linear shoreline trends with (6.7 m yr^{-1} and -5.3 m yr^{-1}) for transects in [0-1 m] and (2.7 m yr^{-1} and -3.1 m yr^{-1}) for transects in [1-10 m]. This is partly explained by the lithological compositions of these low-lying environments and the presence of lagoons, sandy beaches, large rivers and large rivers under tidal influences. Río Plátano Biosphere Reserve has the highest mean shoreline recession (-11.8 m yr⁻¹, std 7.01 m yr⁻¹) due to the 2002 opening of an inlet 12 km northwest of Iban lagoon inducing new accretive and erosive processes within the site boundaries that are influenced by Paulaya river sediment discharge and the southeast-northwest ocean current from Honduras to Yucatan⁶⁹. Sediment deposition, shaped by the Benguela Upwelling system, southwest of the Namib Sand Sea's Conception Bay (evaporite basin) and Sandwich harbour had induced the highest mean accretive shoreline of all coastal NWHS (13.6 m yr⁻¹, std 5.3 m yr⁻¹)⁷⁰. Transects with high mean rates of change (10.1 m yr⁻¹ and -7 m yr⁻¹) were found in large rivers within tidal delta situated in the vegetated shorelines of Islands and Protected Areas of the Gulf of California. This extreme trend is linked to natural forcing (wave and tides) but also to the decadal legacy of distant human alterations that interrupts completely constructive processes within the delta and creates new hydrological circulations accompanied by "unnatural" erosive/accretive processes⁷¹⁻ ⁷³. High sedimentary movements, found in vegetated shores (6.9 m yr⁻¹ and -5.1 m yr⁻¹) and marshes $(5.4 \text{ m yr}^{-1} \text{ and } -5.7 \text{ m yr}^{-1})$ in large river systems are due to the construction of engineered structures along the rivers and on the coasts. These extreme rates are observed in the Danube Delta that underwent a large decrease in its sediment discharge due to up-stream damming projects (1970 and 1983) in parallel to the undesirable effects of extreme downdrift erosion southward of Sulina Jetties engineered in the second half of the 19th century^{74–77}. Extreme rates of changes are also observed within vegetated tidal systems (8.2 m yr⁻¹ and -6.8 m yr⁻¹) and more specifically within barrier islands in the Wadden Sea. The largest unbroken system of intertidal sand and mudflats in the world is a result of dramatic morphodynamic adjustments due to land reclamation (at the boundaries of the NWHS) within the climatic environment of the Frisian coast, which supported the reduction of inlet width (and tidal prism) and thus the growth of the islands^{78,79}. The mainland and some islands of the Wadden Sea are engineered (sand nourishment, breakwaters dykes, and dunes protection) and accretive transects are prevalent (Supplementary Figure SM19)⁸⁰⁻⁸⁴. Thus, both depositional and recessional large shoreline trends in coastal NWHS can be linked to coastlines that are highly altered by human intervention external and internal to a site's boundaries.

Transects within small deltas and arheic systems inside 1 km geodesic buffer from coral reefs have the lowest accretive and recessional shoreline trend ((1.5 m yr⁻¹ and -1.5 m yr⁻¹) and (1.7 m yr⁻¹ and -0.9 m yr¹) respectively). This trend may be explained as coral reefs provide sediments and coastal protection from waves, storms and floods and minimise the effects of coastal processes on the coastlines^{85–87}. Most of the sites with coral reefs (such as the Great Barrier Reef (Australia), Shark Bay (Australia), and Komodo National Park (Indonesia)) are under frequent bleaching events in recent years (for instance the third bleaching event 2014-2017 was among the worst ever observed)^{88,89}. Unconsolidated

Page 18 of 25

sediments within tidal systems protected by coral reefs show less stability than non-tidal systems with higher rates of erosion (-3.4 m/y; std 1 m/y) and accretion (2.1 m/y; std 1.5m/y) in the Great Barrier Reef and Lagoons of New Caledonia: Reef Diversity and Associated Ecosystems. The reef systems within the latter coastal NWHS are among the most affected by present and projected future bleaching events⁸⁸. Coral reefs also deteriorate through overfishing, sewage and agriculture pollution and invasive species^{90,91}. Further deterioration of coral reefs would weaken their function to maintain stable coastlines, especially beaches^{87,88}.

While the shoreline change dataset describes well the changes for continental unconsolidated sediments or sedimentary rocks, it does not demonstrate well shoreline change for coastal transects situated within complex narrow bodies of water as fjords (such as Te Wahipounamu, and the West Norwegian Fjords) or remote rocky cliffs (such as the Galapagos Islands). A visual verification using Google Time-lapse does not show the extreme linear shoreline trend captured by the SDS for these natural systems and informs on the limitation of shoreline detection methodology using satellite images. These errors may occur during (1) image detection: geometric distortion and radiometric errors⁹² or (2) image processing: geo-rectification, ortho-rectification⁹³ and shoreline extraction.

Overall, there are no statistically significant correlations between transect-based shoreline change and the climatic indices of sea surface temperature and pressure anomalies. This may be explained by the limited spatial and temporal resolution of the climatic data and the underlying satellites images used to assess shoreline trends. In Low Elevation Coastal Zones, the analysis of shoreline trends demonstrate that no major historic role of relative sea-level change in accretional or recessional shoreline trend can be identified. One issue is that SLR shows limited variability in time and space over the study period. Further, the high variability at many sites emphasises that other processes, in addition to SLR, are operating. This may be due to different responses of sites to sea-level change, the lack of observations on coastal dynamics and their driving processes and that even in rapidly subsiding coasts other processes (i.e. storms, wave action, human activities) may dominate the shoreline trend^{38,94}. However, for transects below 1 m in the vegetated tidal sedimentary systems and marshes of the Wadden Sea, a weak correlation between increasing relative sea-level and shoreline strong linear retreat was detected. This may be explained by rising sea-levels resulting in more inundation but also coastal erosion in low-lying areas^{95,96}. The detection of this weak correlation may be related to the better quality of tide gauge data available in the Wadden Sea and to the site's highly dynamic tidally influenced inlets that experience one of the highest mean recession (-8.1 m yr⁻¹, std 5.2 m yr⁻¹) in NWHS worldwide^{78,97}. This finding is supported due to the accuracy of shoreline detection methods (0.5 m yr⁻¹) allowing observation of increased shoreline change as a result of SLR. For instance, following the Bruun rule⁹⁸, 1 mm yr⁻¹ of SLR could induce at least an incremental horizontal change of 1.65 m in a beach slope of 1:50 over 33 years. Detection of climate variability and sea-level change effects on shoreline behaviour could be improved by using higher satellites image resolution (e.g. 1m), developing monthly time-series of shoreline change (instead of annual time-series) and improving the spatial and temporal resolution of sea level and climatic data especially in remote areas.

The intensification of human interferences, climate change, SLR and wave climate change will affect coastal processes inducing variations in sediment-budgets⁹⁹. Future SLR may become the main driver of recession⁹⁹ effecting geomorphological responses. Eroding low-lying shorelines within tidal systems, large rivers and large rivers under tidal influences, altered by human interferences to coastal processes, may become the most affected coastal NWHS by future SLR and its related changes in sediment dynamics. In the Wadden Sea while contemporary slow sea-level change has expressed itself in losses of beaches or island displacements^{100–102}, future acceleration of SLR may induce back-barrier erosion and sediment deficit in the tidal basin and result in the transformation of the inter-tidal system to a lagoon system^{20,103}. The mapping of shoreline linear behaviour and depositional/recessional trends distinguishing abrupt and gradual changes at the transect level, coupled with socio-economic

and ecologic indicators, can be used by coastal managers as a preliminary classification of shorelines

in term of the importance and urgency of their management, supporting NWHS conservation triage

(process of prioritising actions)^{104,105}. The enhanced predictive capacity of strong linear shoreline

behaviour and the improved understanding of the factors causing this strong linear changes need to

be followed by more appropriate management actions, monitoring and planning of coastal NWHS

sites' evolving shorelines (when required and to the extent possible). Unconsolidated sediment

shorelines in coastal NWHS, not affected by external human interferences, which exhibit a strong

linear behaviour of shoreline change, may become primary observatories to assess SLR impacts on

natural coastal processes such as in Río Plátano Biosphere Reserve and the Namib Sea. Thus, this study

contributes to informing coastal management plans and decisions of coastal and marine protected

areas by providing a quantitative evaluation of shoreline behaviour that could improve the guide for

Planners and Managers for Marine and Coastal Protected Areas (developed by Salm & Clark ¹⁰⁶).

Conclusions

Despite the high local and international values of coastal NWHS, shoreline change has not been systematically monitored or reported to date. Therefore, it was unclear how NWHS coasts have been changing across the world. This study comprises the first global assessment of multi-decadal shoreline change from 1984 to 2016 within coastal NWHS asking: "how are coastal NWHS shorelines changing around the world and why?".

Based on newly available open-access datasets, shoreline change was analysed for 67 NWHS worldwide, in terms of linear behaviour, recessional or accretive trends, and potential drivers of change. Shorelines with strong linear erosional or accretive trends comprise 14% of total coastal NWHS shorelines. They occur within 52 coastal NWHS and demonstrate the largest shoreline erosive and accretive trends (mean of -3.4 m yr⁻¹ and 3.5 m yr⁻¹, respectively). Among the transects with strong linear behaviour, the highest recessional and accretive trends are found within low-lying unconsolidated sediments shorelines (< 1m) in vegetated tidal coastal systems, and vegetated tidal deltas at the mouth of large river systems. These extreme shoreline trends can be linked to natural coastal morphodynamics such as the opening of inlets or gradient of alongshore sediment transport. In other cases, they can be associated with direct or indirect human interferences such as land reclamation and damming of rivers upstream of a delta. Conversely, the most stable soft coasts are associated with shorelines protected by coral reefs ecosystems. In the future, these shorelines may be subject to increased instability due to the intensification of climate change and human deterioration degrading the natural protective capacity of coral reefs. A positive correlation between recessional (strong linear) shoreline change and relative sea-level change was found in the Wadden Sea, but globally, the effects of SLR on shoreline change are not apparent.

In most cases, shoreline monitoring had not been the main priority in the management of coastal NWHS. The availability of open-access datasets creates opportunities to better understand shoreline change so to inform management actions where necessary. These analyses can be repeated and refined providing new insights, as data extend in time and improve in resolution. Continued systematic monitoring is advised, especially for sites undergoing direct or indirect human interference.

1 2 3 4 5 6 7 8 9 10 11	510 511 512 513 514 515 516	7 Acknowledgements We acknowledge the researchers at Deltares for their support throughout this project. We thank all the researchers who have made their global datasets available. Salma Sabour received funding via the Leverhulme Trust Doctoral Training Scheme, hosted by Southampton Marine and Maritime Institute at the University of Southampton.	
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 32\\ 4\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 4\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 1\\ 42\\ 43\\ 44\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	517 518 519 520 521 522 523 524	8 Data availability statement The data that support the findings of this study are openly available at http://doi.org/10.5281/enodo.3751980 . Interactive maps based on the linear classification and on the strong linear trends of coastal NWHS transects are available at <a href="http://stalmasabour.github.lo/shoreline-change-coastal-natural-heritage-UNESCO/shoreline-inear-trends/respectively.pittub.lo/shoreline-change-coastal-natural-heritage-UNESCO/shoreline-inear-trends/respectively.pittub.lo/shoreline</td> <td></td>	
		20	

1			
2			
3 1			
5	525	9	Bibliography
6	526	1.	UNESCO. Operational Guidelines for the Implementation of the World Heritage Convention.
7	527		https://whc.unesco.org/en/guidelines/ (2017).
8	528	2.	Le Saout, S. et al. Protected areas and effective biodiversity conservation. Supplementary
9	529		Material. Science (80). 342, 803–5 (2013).
10	530	3.	Bertzky, B. et al. Terrestrial Biodiversity and the World Heritage List.
11	531		https://portals.iucn.org/library/sites/library/files/documents/2013-016.pdf (2014).
12	532	4.	UNESCO WHC. UNESCO World Heritage Centre - List of factors affecting the properties.
14	533		http://whc.unesco.org/en/factors/ (2008).
15	534	5.	Dawson, R. J. et al. Integrated analysis of risks of coastal flooding and cliff erosion under
16	535		scenarios of long term change. <i>Clim. Change</i> 95 , 249–288 (2009).
17	536	6.	Sweet, W. V et al. Global and Regional Sea Level Rise Scenarios for the United States. 1-75
18	537		(2017).
19	538	7.	Rasmussen, D. J. et al. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature
20	539		stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 13, 034040 (2018).
21	540	8.	Perry, J. World Heritage hot spots: A global model identifies the 16 natural heritage properties
22	541		on the World Heritage List most at risk from climate change. Int. J. Herit. Stud. 17, 426–441
23	542		(2011).
25	543	9.	IUCN. A conservation assessment of all natural World Heritage sites. (2017).
26	544		doi:10.2305/IUCN.CH.2017.17.en.
27	545	10.	Nicholls, R. J. Impacts of and Responses to Sea-Level Rise. in Understanding Sea-Level Rise and
28	546		Variability 17–51 (2010). doi:10.1002/9781444323276.ch2.
29	547	11.	Vitousek, S. <i>et al.</i> Doubling of coastal flooding frequency within decades due to sea-level rise.
30	548		Sci. Rep. 7 , 1399 (2017).
31 20	549	12.	Church et al. Sea-Level Rise by 2100. Science (80). 342 , 1445–1445 (2013).
32 33	550	13.	Gregory, J. Projections of Sea Level Rise. IPCC Fifth Assess. Rep. 16 (2013).
34	551	14.	Goodwin, P., Haigh, I. D., Rohling, E. J. & Slangen, A. A new approach to projecting 21 st century
35	552		sea-level changes and extremes. Earth's Futur. (2017) doi:10.1002/2016EF000508.
36	553	15.	Brown, S. et al. Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and
37	554		1.5 and 2.0 °C Rise in Global Temperatures to Year 2300. Earth's Futur. (2018)
38	555		doi:10.1002/2017EF000738.
39	556	16.	Dunn, F. E. <i>et al.</i> Projections of declining fluvial sediment delivery to major deltas worldwide in
40	557	-	response to climate change and anthropogenic stress. <i>Environ. Res. Lett.</i> 14 . (2019).
41 42	558	17.	IUCN. IUCN World Heritage Outlook. (2017).
42 43	559	18.	IUCN. IUCN Conservation Outlook Assessments - Guidelines for their application to natural
44	560		World Heritage Sites. 2. 1–35 (2012).
45	561	19.	UNESCO. Climate Change and World Heritage: Report on predicting and managing the impacts
46	562		of climate change on World Heritage and strategy to assist State Parties to implement
47	563		appropriate management responses. World Herit, Reports 22, 1–55 (2007).
48	564	20.	Trilateral Working Group on Coastal Protection and Sea Level Rise. Final Report of the Trilateral
49	565	-	Working Group on Coastal Protection and Sea Level Rise, Wadden Sea Ecosyst. 13, 64 (2001).
50 51	566	21.	Pahlowan, E. U. & Hossain, A. T. M. S. A disparity between erosional hazard and accretion of
51 52	567		the sundarbans with its adjacent east coast. Bangladesh: a remote sensing and GIS approach.
53	568		in Volume 9644 SPIE Remote Sensing 96441G (2015). doi:10.1117/12.2196386.
54	569	22.	Park, J., Stabenau, E., Redwine, J. & Kotun, K. South Florida's Encroachment of the Sea and
55	570		Environmental Transformation over the 21st Century, J. Mar. Sci. Ena. 5, 31 (2017).
56	571	23.	Loucks, C., Barber-Meyer, S., Hossain, A. A., Barlow, A. & Chowdhury, R. M. Sea level rise and
57	572		tigers: Predicted impacts to Bangladesh's Sundarbans mangroves. <i>Clim. Change</i> 98 , 291–298
58	573		(2009).
59	574	24.	Reimann, L., Vafeidis, A. T., Brown, S., Hinkel, J. & Tol, R. S. J. Mediterranean UNESCO World
60			
		X	
			21

1			
2			
3 ⊿	575		Heritage at risk from coastal flooding and erosion due to sea-level rise. <i>Nat. Commun.</i> 9 , (2018).
	576	25.	Marzeion, B. & Levermann, A. Loss of cultural world heritage and currently inhabited places to
6	577		sea-level rise. <i>Environ. Res. Lett.</i> 9 , 034001 (2014).
7	578	26.	Sherbinin, A. de & Lacko, A. Evaluating the risk to Ramsar Sites from climate change induced
8	579		sea level rise. Ramsar Sci. Tech. Brief. Note 5, (2012).
9	580	27.	Sherbinin, A. de, Lacko, A., Alexander, S. & Rep-, S. Evaluating the risk to Ramsar Sites from
10	581		climate change induced sea level rise. <i>Ramsar Sci. Tech. Brief. Note</i> 5, (2012).
11	582	28.	Luijendijk, A. et al. The State of the World's Beaches. Sci. Rep. 8, 1–11 (2018).
12	583	29.	Hagenaars, G., de Vries, S., Luijendijk, A. P., de Boer, W. P. & Reniers, A. J. H. M. On the accuracy
13	584		of automated shoreline detection derived from satellite imagery: A case study of the sand
15	585		motor mega-scale nourishment. Coast. Eng. 133, 113–125 (2018).
16	586	30.	Hagenaars, G., Luijendijk, A., De Vries, S. & De Boer, W. Long term coastline monitoring derived
17	587		from satellite imagery. in <i>Coastal Dynamics</i> 1551–1562 (2017).
18	588	31.	IUCN. Protected Planet. Database 1–9 https://www.protectedplanet.net/ (2010).
19	589	32.	Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline
20	590		database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).
21	591	33.	International Steering Committee for Global Mapping. Global Map data archives.
22	592		https://globalmaps.github.io/.
23	593	34.	Kobayashi, T. et al. Production of Global Land Cover Data – GLCNMO2013. J. Geogr. Geol. 9, 1
24 25	594		(2017).
26	595	35.	Dürr, H. H. et al. Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine
27	596		Filter of River Inputs to the Oceans. Estuaries and Coasts 34, 441–458 (2011).
28	597	36.	Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation
29	598		of rock properties at the Earth surface. Geochemistry, Geophys. Geosystems 13, 1–37 (2012).
30	599	37.	Church, J. a. et al. Sea level change. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to
31	600		Fifth Assess. Rep. Intergov. Panel Clim. Chang. 1137–1216 (2013)
32	601		doi:10.1017/CB09781107415315.026.
33 24	602	38.	Le Cozannet, G., Garcin, M., Yates, M., Idier, D. & Meyssignac, B. Approaches to evaluate the
34 35	603		recent impacts of sea-level rise on shoreline changes. Earth-Science Reviews vol. 138 47–60
36	604		(2014).
37	605	39.	NOAA. Sea Level Trends. <i>Tides Curr.</i> 2012 (2012).
38	606	40.	Haigh, I. D. et al. Timescales for detecting a significant acceleration in sea level rise. Nat.
39	607		Commun. 5, 1–11 (2014).
40	608	41.	NOAA. ESRL: PSD: Climate Indices: Monthly Atmospheric and Ocean Time Series.
41	609		https://www.esrl.noaa.gov/psd/data/climateindices/list/.
42	610	42.	Mawdsley, R. J. & Haigh, I. D. Spatial and Temporal Variability and Long-Term Trends in Skew
43 44	611		Surges Globally. Front. Mar. Sci. 3, 1–17 (2016).
44 45	612	43.	Muis, S., Haigh, I. D., Guimarães Nobre, G., Aerts, J. C. J. H. & Ward, P. J. Influence of El Niño-
46	613		Southern Oscillation on Global Coastal Flooding. Earth's Futur. 6, 1311–1322 (2018).
47	614	44.	White, N. J. et al. Australian sea levels-Trends, regional variability and influencing factors.
48	615		Earth-Science Rev. 136 , 155–174 (2014).
49	616	45.	McCarthy, G. D., Haigh, I. D., Hirschi, J. J. M., Grist, J. P. & Smeed, D. A. Ocean impact on decadal
50	617		Atlantic climate variability revealed by sea-level observations. <i>Nature</i> 521 , 508–510 (2015).
51	618	46.	Amiruddin, A. M., Haigh, I. D., Tsimplis, M. N., Calafat, F. M. & Dangendorf, S. The seasonal
52	619		cycle and variability of sea level in the South China Sea. J. Geophys. Res. Ocean. 120, 5490-
53	620		5513 (2015).
54 55	621	47.	NOAA. Climate Prediction Center - ENSO Cycle.
56	622		https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/ensocycle.shtml
57	623	48.	NOAA. El Nino/Southern Oscillation (ENSO) Teleconnections National Centers for
58	624		Environmental Information (NCEI). https://www.ncdc.noaa.gov/teleconnections/enso/.
59	625	49.	Curtis, S., Adler, R., Curtis, S. & Adler, R. ENSO Indices Based on Patterns of Satellite-Derived
60		7	
			9
			22

1			
2			
5 ∕I	626		Precipitation. http://dx.doi.org/10.1175/1520-0442(2000)013<2786:EIBOPO>2.0.CO;2 (2000)
5	627		doi:10.1175/1520-0442(2000)013<2786:EIBOPO>2.0.CO;2.
6	628	50.	Christensen, J. H. et al. Climate phenomena and their relevance for future regional climate
7	629		change. Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to Fifth Assess. Rep. Intergov.
8	630		Panel Clim. Chang. 9781107057, 1217–1308 (2013).
9	631	51.	Gutiérrez, O. et al. Climate teleconnections and indicators of coastal systems response. Ocean
10	632		<i>Coast. Manag.</i> 122 , 64–76 (2016).
11	633	52.	Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic Multidecadal Oscillation and its
12	634		relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28, 2077–2080
14	635		(2001).
15	636	53.	JISAO. Arctic Oscillation (AO). http://research.jisao.washington.edu/data/aots/.
16	637	54.	NOAA. Climate Prediction Center - Arctic Oscillation.
17	638		https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml.
18	639	55.	NOAA. North Atlantic Oscillation (NAO). 1–2 (2015).
19	640	56.	NOAA. Climate Prediction Center - Northern Hemisphere Teleconnection Patterns.
20	641		https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml.
21	642	57.	NOAA. Climate Prediction Center - Monitoring & Data: Current Monthly Atmospheric and Sea
22	643		Surface Temperatures Index Values. https://www.cpc.ncep.noaa.gov/data/indices/.
24	644	58.	Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. <i>Clim. Dyn.</i>
25	645		9 , 303–319 (1994).
26	646	59.	JISAO. Pacific Decadal Oscillation (PDO). in doi:10.4135/9781446247501.n2786.
27	647	60.	Mantua, N. J. et al. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon
28	648		Production**. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 (1997)
29	649		doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
30	650	61.	Zhang, Y. et al. ENSO-like Interdecadal Variability: 1900–93. http://dx.doi.org/10.1175/1520-
31 22	651		0442(1997)010<1004:ELIV>2.0.CO;2 (1997) doi:10.1175/1520-
2∠ 33	652		0442(1997)010<1004:ELIV>2.0.CO;2.
34	653	62.	Revelle, W. Package 'psych'. https://personality-project.org/r/psych (2019).
35	654	63.	MM, M. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical
36	655		research. <i>Malawi Med. J.</i> 24 , 69–71 (2012).
37	656	64.	Asuero, A. G., Sayago, A. & González, A. G. The correlation coefficient: An overview. Crit. Rev.
38	657		Anal. Chem. 36 , 41–59 (2006).
39	658	65.	Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagnostic Med.
40	659		Sonogr. 6 , 35–39 (1990).
41 42	660	66.	Dolan, R., Fenster, M. S. & Holme, S. J. Temporal Analysis of Shoreline Recession and Accretion.
43	661		Source J. Coast. Res. 721528 , 723–744 (1991).
44	662	67.	Corbella, S. & Stretch, D. D. D. Decadal trends in beach morphology on the east coast of South
45	663		Africa and likely causative factors. Nat. Hazards Earth Syst. Sci. 12, 2515–2527 (2012).
46	664	68.	Socioeconomic Data and Applications Center (SEDAC)CIESIN, Earth Institute at Columbia
47	665		University Palisades, N. Y. ciesin. columbia. eduNationa. A. and S. A. Low-Elevation Coastal
48	666		Zone (LECZ). 2016 (2016).
49	667	69.	Burke, L. & Sugg, Z. Hydrologic Modeling of Watersheds Discharging Adjacent to the
50 51	668		Mesoamerican Reef. World Resour. Inst. 35 (2006).
52	669	70.	Berger, W. H., Lange, C. B. & Wefer, G. Upwelling history of the Benguela-Namibia system: A
53	670		synthesis of Leg 175 results. Proc. Ocean Drill. Progr. Sci. Results 175, 1–53 (2002).
54	671	71.	Andel, V. & G, T. S. Marine Geology of the Gulf of California. <i>Limnol. Oceanogr.</i> 10 , 303–304
55	672		(1965).
56	673	72.	Glenn, E. P., Flessa, K. W. & Pitt, J. Restoration potential of the aquatic ecosystems of the
57	674		Colorado River Delta, Mexico: Introduction to special issue on 'Wetlands of the Colorado River
58	675		Delta'. Ecol. Eng. 59, 1–6 (2013).
27 60	676	73.	Pitt, J. Shaping the 2014 Colorado River Delta pulse flow: Rapid environmental flow design for
00			7
		K	າວ
		Y	23

1			
2			
3 4	677		ecological outcomes and scientific learning. <i>Ecol. Eng.</i> 106 , 704–714 (2017).
4 5	678	74.	Stănică, A., Panin, N., Staˇnicaˇ, A. & Panin, N. Present evolution and future
6	679		predictions for the deltaic coastal zone between the Sulina and Sf. Gheorghe Danube river
7	680		mouths (Romania). <i>Geomorphology</i> 107 , 41–46 (2009).
8	681	75.	Claudino-Sales, V. Danube Delta, Romania. in <i>Coastal Research Library</i> vol. 28 93–97 (2019).
9	682	76.	Ionescu, I. & Noaje, I. Natural environment change detection in Danube Delta, based on HRV -
10	683		SPOT images. Int. J. (1993).
11	684	77.	Dan, S. Coastal Dynamics of the Danube Delta. (2013). doi:10.4233/uuid:9c19651e-e744-43c3-
12	685		aa85-7ea7abd14a2.
14	686	78.	Kunz, H. Groynes on the East Frisian Islands: History and Experiences. in <i>Coastal Engineering</i>
15	687		1996 2128–2141 (American Society of Civil Engineers, 1997).
16	688		doi:10.1061/9780784402429.165.
17	689	79.	Winter, C. Macro scale morphodynamics of the German North Sea coast. J. Coast. Res. n SPEC.
18	690		IS , 706–710 (2011).
19	691	80.	Trilateral Working Group on Coastal Protection and Sea Level Rise. CPSL Third Report. Wadden
20	692		Sea Ecosystem vol. 28 (2010).
21	693	81.	Trilateral Working Group on Coastal Protection and Sea Level Rise. Coastal Protection and Sea
22	694		Level Rise: solutions for sustainable coastal protection in the Wadden Sea Region. Zhurnal
25 74	695		Eksperimental'noi i Teoreticheskoi Fiziki
25	696		http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0 (2005).
26	697	82.	Moser, M. & Brown, A. Trilateral Wadden Sea Cooperation External Evaluation Report. (2007).
27	698	83.	Mulder, J. P. M., Hommes, S. & Horstman, E. M. Implementation of coastal erosion
28	699		management in the Netherlands. Ocean Coast. Manag. 54, 888–897 (2011).
29	700	84.	Elias, E. P. L. & Van Der Spek, A. J. F. Dynamic preservation of Texel Inlet, the Netherlands:
30	701		Understanding the interaction of an ebb-tidal delta with its adjacent coast. Geol. en
31	702		Mijnbouw/Netherlands J. Geosci. 96 , 293–317 (2017).
32 22	703	85.	Mehvar, S., Filatova, T., Dastgheib, A., de Ruyter van Steveninck, E. & Ranasinghe, R.
33 34	704		Quantifying Economic Value of Coastal Ecosystem Services: A Review. J. Mar. Sci. Eng. 6, 5
35	705		(2018).
36	706	86.	Reguero, B. G., Beck, M. W., Agostini, V. N., Kramer, P. & Hancock, B. Coral reefs for coastal
37	707		protection: A new methodological approach and engineering case study in Grenada. J. Environ.
38	708		Manage. 210 , 146–161 (2018).
39	709	87.	Harris, D. L. et al. Coral reef structural complexity provides important coastal protection from
40	710		waves under rising sea levels. <i>Sci. Adv.</i> 4 , 1–8 (2018).
41	711	88.	Heron, S. F. et al. Impacts of Climate Change on World Heritage Coral Reefs: A First Global
42 43	712		Scientific Assessment. Paris, UNESCO World Herit. Centre. 1–14 (2017).
43	713	89.	Hoegh-Guldberg, O. et al. Impacts of 1.5°C of Global Warming on Natural and Human Systems.
45	714		https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter3_Low_Res.pdf
46	715		(2018).
47	716	90.	Hoegh-guldberg, O., Kennedy, E. V, Beyer, H. L., Mcclennen, C. & Possingham, H. P. Securing a
48	717		Long-term Future for Coral Reefs. Trends Ecol. Evol. 33, 936–944 (2018).
49	718	91.	Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt
50	719		coral reefs down to microbial scales. Nat. Commun. 7, 1–12 (2016).
51	720	92.	Richards, J. A. & Richards, J. A. Error Correction and Registration of Image Data. Remote Sens.
52 53	721		Digit. Image Anal. 39–74 (1993) doi:10.1007/978-3-642-88087-2_2.
54	722	93.	Zheng, X., Huang, Q., Wang, J., Wang, T. & Zhang, G. Geometric accuracy evaluation of high-
55	723		resolution satellite images based on Xianning test field. Sensors (Switzerland) 18, 1–11 (2018).
56	724	94.	Cazenave, A. & Cozannet, G. Le. Sea level rise and its coastal impacts. Earth's Futur. 2, 15–34
57	725		(2013).
58	726	95.	Pickering, M. D. et al. The impact of future sea-level rise on the global tides. Cont. Shelf Res.
59	727		142 , 50–68 (2017).
60			Y
		K	
			24

1			
2			
4	728	96.	Leatherman, S. P., Zhang, K. & Douglas, B. C. Sea level rise shown to drive coastal erosion. <i>Eos</i>
5	729		(Washington. DC). 81 , 55–57 (2000).
6	730	97.	De Jong, F. <i>et al.</i> Wadden Sea Quality Status Report - Geomorphology. <i>Wadden Sea Ecosyst.</i> 9 ,
7	731		(1999).
8	732	98.	Nicholls, R. J. Assessing erosion of sandy beaches due to sea-level rise. Geol. Soc. Eng. Geol.
9	733		Spec. Publ. 15 , 71–76 (1998).
10	734	99.	Le Cozannet, G., Garcin, M., Yates, M., Idier, D. & Meyssignac, B. Approaches to evaluate the
11	735		recent impacts of sea-level rise on shoreline changes. <i>Earth-Science Rev.</i> 138 , 47–60 (2014).
12	736	100.	Reise, K. Coast of change: Habitat loss and transformations in the Wadden Sea. Helgol. Mar.
13	737		Res. 59, 9–21 (2005).
14	738	101.	Benninghoff, M. & Winter, C. Recent morphologic evolution of the German Wadden Sea. Sci.
15	739		Rep. 9 , 1–9 (2019).
17	740	102.	Lotze, H. K. et al. Human transformations of the Wadden Sea ecosystem through time: A
18	741		synthesis. <i>Helgol. Mar. Res.</i> 59 , 84–95 (2005).
19	742	103.	Becherer, J. et al. The Wadden Sea in transition - consequences of sea level rise. Ocean Dyn.
20	743		68 , 131–151 (2018).
21	744	104.	Perry, J. Climate change adaptation in natural world heritage sites: A triage approach. Climate
22	745		7, (2019).
23	746	105.	Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23,
24 25	747		649–654 (2008).
25	748	106.	Salm, R. V. & Clark, J. R. Marine and Coastal Protected Areas: A guide for Planners and
27	749		Managers. (2010).
28	750		
29			
30			
31			
32			