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Abstract  

Mammalian TNFR1 and TNFR2 bind TNFα and TNFβ, and provide key communication signals to a 

variety of cell types during development and immune responses that are crucial for cell survival, 

proliferation and apoptosis. In teleost fish TNFβ is absent but TNFα has been expanded by the third 

whole genome duplication (3R WGD) and again by a 4R WGD in some lineages, leading to the four 

TNFα paralogues known in salmonids. Two paralogues for each of TNFR1 and TNFR2 have been 

cloned in rainbow trout in this study and are present in other salmonid genomes. Whilst the TNFR2 

paralogues were generated via the 4R salmonid WGD, the TNFR1 paralogues arose from a local en 

bloc duplication. Functional diversification of TNFR paralogues was evidenced by differential gene 

expression and modulation, upstream ATGs affecting translation, ATTTA motifs in the 3’-UTR 

regulating mRNA stability, and post-translational modification by N-glycosylation. Trout TNFR are 

highly expressed in immune tissues/organs, and other tissues, in a gene- and tissue-specific manner. 

Furthermore, their expression is differentially modulated by PAMPs and cytokines in a cell type- and 

stimulant-specific manner. Such findings suggest an important role of the TNF/TNFR axis in the 

immune response and other physiological processes in fish.  

 

Key words  

Rainbow trout, TNFR1, TNFR2, paralogues, en bloc duplication, gene expression 
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1. Introduction 

 

Tumor necrosis factor (TNF) receptor-1 (TNFR1) and TNFR2 are members of the TNF receptor 

superfamily (TNFRSF) that bind both TNFα and TNFβ, which belong to TNF superfamily (TNFSF). 

The TNFSF and TNFRSF provide key communication signals between a variety of cell types during 

development and immune responses, and have been implicated in many inflammatory and 

autoimmune diseases (Dostert et al., 2019). In humans, 19 TNFSF ligands and 29 TNFRSF receptors 

have been characterised to date (Collette et al., 2003).  

 

The TNFSF members, such as TNFα (aka “TNFSF2”), are type II transmembrane (TM) proteins but 

can be secreted upon proteolytic cleavage by metalloproteases or furin proteases (Magis et al., 2010). 

All family members possess a TNF homology domain (THD) in the C terminal extracellular region 

that assemble into a non-covalent trimer essential for signalling by TNFSF members (Banner et al., 

1993). Both membrane and soluble TNFα are bioactive through binding to TNFR1 and TNFR2 and 

play an important role in immune responses, inflammation, cell proliferation, differentiation, necrosis 

and apoptosis. TNFβ (aka “Lymphotoxin-α or LTα” and “TNFSF1”) is the closest family member of 

TNFα in mammals. It can be secreted as a soluble homotrimer and binds to TNFR1 and TNFR2 with 

high affinity (Koroleva et al., 2018).  

 

The TNFRSF receptors, such as TNFR1 (aka “TNFRSF1A”) and TNFR2 (aka “TNFRSF1B”) are 

type I TM receptors. The common feature of TNFRSF is the presence of relatively short (30–40 

residues) cysteine-rich domains (CRD) located in the ectodomain, which are involved in interaction 

with the THD of TNFSF ligands (Dostert et al., 2019). The extracellular regions of TNFR1 and 

TNFR2 are structurally highly homologous and include four CRDs, each of which contains six 

cysteines. There is no significant homology in the intracellular region between TNFR1 and TNFR2, 

indicating that these receptors activate distinct signaling pathways (Puimege et al., 2014). TNFR1 

contains a death domain (DD) in the cytoplasmic tail that recruits the TNFR1-associated DD protein 

(TRADD) and promotes cell death and inflammation. In contrast, TNFR2 does not have an 

intracellular DD and instead recruits the TNFR-associated factor (TRAF) 1 and TRAF2 proteins and 

favours cellular survival and tissue regeneration (Holbrook et al., 2019). Although both TNFα and 

TNFβ can bind and signal through TNFR1 and TNFR2, knock-out mouse mutants for each ligand 

have different phenotypes, partially due to differential expression of the ligands (Etemadi et al., 2013). 

TNFα is mainly produced by activated monocytes/macrophages but can also be produced by mast 

cells, T and B lymphocytes, natural killer (NK) cells, neutrophils, endothelial cells, smooth and 

cardiac muscle cells, fibroblasts and osteoclasts, whereas TNFβ is secreted by activated T cells and 

resting B cells (Bradley, 2008). 
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The receptors of TNF are also differentially expressed and modulated. TNFR1 is ubiquitously 

expressed on nearly all cells in the body and the promoter of TNFR1 is active constitutively. The 

expression of TNFR2, on the other hand, is inducible and expressed exclusively in immune cells, 

endothelial cells and some neuronal populations (Puimege et al., 2014; Yang et al., 2018). The 

expression levels of TNFR proteins can be regulated by cytokines, such as interferons (IFN) and TNF 

itself (Aggarwal et al., 1985; Tsujimoto et al., 1986; Bloksma et al., 1983). Consequently, the 

activation from TNFR1 is responsible for a large number of inflammatory responses classically 

attributed to TNFα, although TNFR2 signalling has been reported to be important for proliferation of 

lymphoid cells and may be the preferential receptor for membrane TNFα (Grell et al., 1995).  

 

The TNFSF/TNFRSF have a deep evolutionary origin that precedes the appearance of vertebrates and 

the adaptive immune system (Wiens and Glenney, 2011). They have been discovered in invertebrates 

including porifera (Pozzolini et al., 2016), molluscs (De Zoysa et al., 2009), crustaceans (Mekata et al. 

2010; Wang et al. 2012) and insects (Kauppila et al., 2003), and expanded in vertebrates (Quistad and 

Traylor-Knowles, 2016). Genes coding for TNFSF members have also been studied in various fish 

species (Glenney and Wiens, 2007). TNFα was one of the first cytokines characterized within teleosts, 

initially isolated from Japanese flounder Paralichthys olivaceus (Hirono et al., 2000) and rainbow 

trout Oncorhynchus mykiss (Laing et al., 2001). Since then, it has been identified in a wide range of 

fish species. However, no orthologues of mammalian TNFβ has been identified in teleosts (Secombes 

et al., 2016; Maeda et al., 2018). Interestingly, two TNFα genes have been found in many teleost fish, 

eg. in bluefin tuna Thunnus orientalis (Kadowaki et al., 2009), orange-spotted grouper Epinephelus 

coioides (Lam et al., 2011), zebrafish Danio rerio and medaka Oryzias latipes (Kinoshita et al., 2014), 

goldfish Carassius carassius (Kajungiro et al.,2015) and meagre Argyrosomus regius (Milne et al., 

2017), with even more TNFα genes identified in common carp Cyprinus carpio L. (Savan and Sakai, 

2004) and salmonids (Hong et al., 2013). The paralogues reside in syntenically conserved regions on 

different chromosomes indicating they arose from WGD events known to have happened at the base 

of the teleosts (3R WGD) and again in the cyprinid and salmonid lineages (4R WGD) (Kinoshita et al., 

2014; Berthelot et al., 2014; Xu et al., 2014). 

 

In comparison, the receptors for TNFSF are less known in fish. Only a single TNFR1 and TNFR2 

have been isolated in species such as Japanese flounder, goldfish and zebrafish (Park et al., 2003; 

Eimon et al., 2006; Grayfer and Belosevic, 2009). The Japanese flounder TNFR1 and TNFR2 share 

35-40% identities to their mammalian counterparts (Park et al., 2003). The flounder TNFR1 was 

constitutively expressed in most organs whilst the TNFR2 gene was constitutively expressed in only 

immune organs (kidney, spleen and gills). In peripheral blood lymphocytes flounder TNFR1 and 

TNFR2 were differentially modulated by pathogen associated molecular patterns (PAMPs) and 
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activated by concanavalin A and phorbol myristate acetate (Park et al., 2003). In goldfish monocytes 

IFNγ upregulated the expression of both TNFR1 and TNFR2, whereas TNFα up-regulated TNFR2 but 

down-regulated TNFR1 (Grayfer and Belosevic, 2009). Whilst the bioactivity of TNFα has been 

described in rainbow trout (Hong et al., 2013), the receptors for TNFα have still to be characterised 

in salmonids. 

 

In this study, two paralogues sharing high aa identity for TNFR1 and two for TNFR2 have been 

characterised in rainbow trout. Whilst the TNFR2 paralogues arose from the salmonid 4R WGD, the 

TNFR1 paralogues were generated by a local en bloc duplication. Their expression was comparatively 

examined by real-time PCR and it was found that the paralogues are differentially expressed in vivo in 

tissues from healthy fish and in vitro in cell lines stimulated with PAMPs (LPS and poly I:C) and 

recombinant cytokines (IFNγ and TNFα).   
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2. Methods and Materials 

2.1. Fish 

Rainbow trout (Oncorhynchus mykiss), weighing approximately 100 g, were purchased from the Mill 

of Elrich Trout Fishery (Aberdeenshire, UK) and maintained in 1-m-diameter aerated fibreglass tanks 

supplied with a continuous flow of recirculating freshwater at 15 ± 1 °C. Fish were fed twice daily on 

standard commercial pellets (EWOS), and maintained as described previously (Wangkahart et al., 

2019). 

 

2.2 Cloning of trout TNF receptors. 

The cloning of TNFR was performed in 2013 when no salmonid genomic resource was available. 

Blast (the basic local alignment search tool, Altschul et al., 1990) search was performed at NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using mammalian TNFR1 and TNFR2 protein sequences, and 

resulted in the identification of candidate ESTs for TNFR1A (EZ763921), TNFR1B (EZ776440), 

TNFR2A (EZ832094) and TNFR2B (BX870761). Primers (Table 1) were designed within the 5’-

untranslated region (UTR) of these ESTs and used for 3’-RACE as described previously (Wang and 

Secombes, 2003; Wang et al., 2008), using 3’-RACE-ready cDNA samples prepared from head 

kidney macrophages. The cloning, sequencing and protein sequence analysis was as described 

previously (Hong et al., 2013; Wang et al., 2018). The programs used included Clustal Omega 

(Sievers et al., 2011) for multiple sequence alignment, MatGAT program (V2.02, Campanella et al., 

2003) for global sequence comparisons, SMART7 (Letunic et al., 2012) for domain prediction, 

MEGA7 (Kumar et al., 2016) for phylogenetic tree analysis and Genomicus (Louis et al., 2013) for 

synteny analysis.   

 

2.3 RT-qPCR analysis of gene expression 

The primers (Table 1) for real time PCR quantification of gene expression were designed so that at 

least one primer crossed an intron to prevent amplification of genomic DNA. A serially diluted 

common reference containing equal molar amounts of purified PCR products of trout TNFR1 and 

TNFR2 genes and the house-keeping gene EF-1α was used for quantification throughout. The real-

time PCR quantification was as described previously, performed using a Lightcycler 480 system 

(Roche) (Wang et al., 2011a).  

 

2.4 Tissue distribution of trout TNFR1 and TNFR2 transcripts 

Six healthy rainbow trout (~ 100 g) were killed and seventeen tissues (blood, gills, thymus, scales, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

skin, muscle, adipose tissue, liver, spleen, gonad, head kidney, caudal kidney, intestine, heart, tail fins, 

adipose fin, and brain) were collected and homogenised in TRI reagent (Sigma, UK). The RNA 

preparation and cDNA synthesis were as described previously (Wang et al., 2011a). The expression 

level of each gene in different tissues was normalized to the expression of EF-1α and expressed as 

arbitrary units. 

 

2.5. Modulation of expression of TNFR1 and 2 in four trout cell lines.  

Four trout cell lines, a mononuclear/macrophage-like cell line RTS-11 from spleen (Ganassin and 

Bols, 1998), an epithelial cell line from liver (Lee et al., 1993), and fibroid cell lines RTG-2 from 

gonad (Wolf and Quimby, 1962) and RTGill from gills (Schirmer et al., 1998) were used in this study. 

The cell culture conditions were as describe previously (Wang et al. 2011b). All cells were passaged 1 

day before stimulation in L-15 medium (Invitrogen) supplemented with 10% FCS and antibiotics (100 

units/ml penicillin, 100 µg/ml streptomycin) at a concentration of 3-5x105 cells/ml. The cells were 

stimulated by direct addition of stimulants that were dissolved in cell culture medium. Three 

stimulants, E. coli LPS (25 µg/ml, from strain 055:B5, Sigma), polyinosinic:polycytidylic acid (poly 

I:C, 50 µg/ml, Sigma), recombinant interferon (IFN)-γ (20 ng/ml, Wang et al., 2011b) or medium 

alone as control, were used and the cells incubated for 4, 8 and 24 h. The concentrations chosen for 

each stimulant were deemed optimal from previous studies (Wang et al. 2011b). RTS-11 cells were 

also stimulated with 10 ng/ml of recombinant TNFα3 (Hong et al., 2013) for 4, 8, 24, 48 and 72 h or 

storage buffer as a control. Four replicates (four flasks of cells) were used for each treatment, with the 

treatments terminated by dissolving the cells in TRI reagent (Sigma). The real-time RT-qPCR 

quantification of gene expression was as above. The fold change was calculated as the average 

expression level of stimulated samples divided by that of the time matched controls. 

 

2.7. Statistical analysis 

Real-time PCR data were analysed using the SPSS Statistics package 24.0 (SPSS Inc., Chicago, 

Illinois) as described previously (Wang et al., 2011a). One way-analysis of variance (ANOVA) and 

the LSD post hoc test were used to analyze expression data in Figs. 8-10, with P <0.05 between 

treatment and control groups considered significant. Since tissue expression consisted of sample sets 

from six individual fish, a Paired-Sample T-test was applied (Fig. 6). 
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3. Results 

 

3.1 Cloning and sequence analysis of trout TNFR1 and TNFR2 paralogues 

The cDNA sequences of the two TNFR1 paralogues, TNFR1a and TNFR1b, are 3072 and 2688 bp 

and encode for 403 and 397 aa, respectively (Figs. S1-2, Table 2). There are two upstream ATGs in 

the 5’-UTR, and mRNA instability motifs (ATTTA, 1 for TNFR1a and 4 for TNFR1b) in the 3’-UTR 

suggesting that they may be subject to post-transcriptional and translational regulation. The predicted 

aa sequences of both cDNA sequences have a signal peptide, an extracellular region containing 4 

CRDs each with six conserved cysteine residues, a TM domain, and an intracellular DD domain. All 

these characteristics are well conserved across TNFR1 molecules from other fish species (Atlantic 

salmon, northern pike, channel catfish and Japanese flounder) and mammals (humans and mice) (Fig. 

1). There are two potential N-glycosylation sites present in trout TNFR1a and only one in TNFR1b 

that were conserved in salmon counterparts. The first site was found in CRD1 of salmonids TNFR1s 

that was also found in mammalian TNFR1s. The other site of salmonid TNFR1 was in CRD4 with an 

N-glycosylation site also found in pike and catfish in the same domain (Fig. 1). The major difference 

between fish and mammalian TNFR1 was an insertion of low complexity region rich in P/S/T 

residues between the TM and DD domains (Fig. 1). 

 

The cDNA sequences of the two trout TNFR2 paralogues, TNFR2a and TNFR2b, are 1814 and 2403 

bp that encode for 455 and 463 aa, respectively (Figs. S3-4, Table 2). There are 2 ATTTA motifs in 

the 3’-UTR of TNFR2b but none in TNFR2a. The predicted aa sequences of both cDNA sequences 

have a signal peptide, an extracellular region containing 4 CRDs, a TM domain, and an intracellular 

domain. CRD1-3 possess six cysteine residues but CRD4 only four. All these characteristics are well 

conserved across TNFR2 molecules from other fish species and mammals (Fig. 2). There are three 

potential N-glycosylation sites present in trout TNFR2a and two in TNFR2b. The first site was found 

in CRD1 of trout TNFR2 that was conserved in salmon TNFR2b, as well as flounder and tilapia 

TNFR2. The other trout sites were in CRD4 with at least one N-glycosylation site also found in other 

vertebrate TNFR2 molecules in the same domain except salmon TNFR2b (Fig. 2).  

 

The predicted aa sequences of the two trout TNFR1 paralogues share 80.2% aa identity (Table 2). 

The trout and salmon orthologues shared higher aa identities (ie. 85.5% for TNFR1a and 93.0% for 

TNFR1b) than paralogues between and within species (79.8-82.4%). All salmonid TNFR1 molecules 

shared similar aa identities/similarities to TNFR1 from other fish species and mammals (Table S1). 

The translation of the two trout TNFR2 paralogues share 63.6% aa identity (Table 2). The trout and 

salmon orthologues again shared higher aa identities (ie. 91.2% for TNFR2a and 87.2% for TNFR2b) 

than paralogues between and within species (59.6-64.4%). All salmonid TNFR2 molecules shared 
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similar aa identities/similarities to TNFR2 from other fish species and mammals (Table S2). 

 

3.2 Bioinformatics analysis of TNFR1 and TNFR2  

To confirm the membership of the trout genes cloned in this study in the TNFRSF, a phylogenetic tree 

was constructed using amino acid multiple alignments of vertebrate TNFR1, TNFR2, and other 

closely related tetrapod TNFRSF members (TNFR3, 5, 10 and 14) sharing similar domain structure 

(Magis et al., 2012). Trout TNFR1 and TNFR2 grouped with their counterparts from other fish 

species and tetrapods with high bootstrap support (99% for TNFR1 and 96% for TNFR2) and these 

clades were separated from other closely related TNFRSF members (Fig. 3), confirming their 

identities. The topology of salmonid TNFR1 and pike (a close relative of salmonids before the 

salmonid 4R WGD) TNFR1 represents a classical tree topology recapturing true species relationships 

after a WGD (Macqueen and Johnston, 2014). The salmonid and pike TNFR2 also form an 

independent clade but with pike TNFR2 set between salmonid TNFR2a and TNFR2b (Fig. 3). In both 

cases it is possible to suggest that the salmonid paralogues arose from the salmonid 4R WGD. 

 

To further confirm their identities, we performed a synteny analysis with the Genomicus program 

using medaka TNFR1 and TNFR2 as references. Both vertebrate TNFR1 and TNFR2 loci were well 

conserved in medaka, tetraodon, zebrafish, chicken, humans and mice as shown in Fig. S5, suggesting 

a true orthologous relationship.  

 

The pike and salmonid genomes are not well annotated in the current Genomicus database. Therefore, 

we performed a manual synteny analysis with information extracted from the updated genomic 

sequences from NCBI. Pike TNFR1 was found in linkage group (LG)20, and both trout TNFR1a and 

TNFR1b on Ch3 (Fig. 4A). Most of the genes in the pike TNFR1 locus were found present in trout 

with a block of genes (dedd2 to TNFR1) duplicated adjacently in trout Ch3. The duplicated blocs 

retained most gene present in pike and have an additional CD27 gene in both blocs (Fig. 4A), 

suggesting this gene was present before the en bloc duplication. Similarly, the salmon TNFR1a and 

TNFR1b were also found in the syntenic region on Ch2 (NC_027301), suggesting that the salmonid 

TNFR1 paralogues arose from a local en bloc duplication.  

 

Pike TNFR2 was found in LG17, and trout TNFR2a and TNFR2b in Ch17 and Ch7, respectively. The 

TNFR2 loci on pike LG17, trout Ch17 and Ch7 were well conserved (Fig. 4B). Similarly, salmon 

TNFR2a and TNFR2b were also found in a syntenic region on Ch12 (NC_027311) and Ch22 

(NC_027321), respectively. These syntenic relationships confirm that the salmonid TNFR2 

paralogues indeed arose from the salmonid 4R WGD. 
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3.3 Gene organization analysis of TNFR1 and TNFR2  

Both TNFR1 and TNFR2 in humans and chicken have a 10 exon/9 intron gene organization with all 

10 exons coding, and identical intron phases (Fig. 5). Both trout TNFR1 paralogues, and flounder 

TNFR1 also have a 10 exon/9 intron structure. However, there is 1 non-coding exon in the 5’-UTR 

and only 9 coding exons (Fig. 5A). Fish TNFR1 genes has a large exon 8 that is equivalent to exons 7 

and 8 in human and chicken TNFR1 possibly caused by intron insertion in tetrapods or intron lose in 

fish. The human TNFR1 gene has a large exon 9 that contributes to the insertion of the low 

complexity region between TM and DD domains in the TNFR1 multiple alignment (Fig. 1). Fish 

TNFR2 genes had a similar gene organization to that of tetrapods but again had one less coding exon. 

The coding region of the last exon in fish was large and equivalent to that of exons 9 and 10 in 

tetrapods, possibly caused by intron insertion in tetrapods or intron lose in fish (Fig. 5B).  

 

3.4. Tissue distribution of the expression of trout TNFR1 and TNFR2 transcripts 

Constitutive expression of the four TNF receptor genes was detectable in all seventeen tissues 

examined (Fig. 6). The highest expression of TNFR1a was in spleen and lowest in liver. The highest 

expression of TNFR1b was also found in spleen as well as heart, and the lowest in liver and tail fins 

(Fig. 6). The spleen, gills, brain, adipose tissue and tail fins expressed higher levels of TNFR1a than 

TNFR1b. In contrast, heart, muscle and blood expressed higher levels of TNFR1b than TNFR1a (Fig. 

6). 

 

The highest expression of TNFR2a was in spleen and heart, and the lowest in liver, tail fins and scales. 

The highest expression of TNFR2b was also found in spleen and heart, in addition to caudal kidney, 

and the lowest in blood. The two TNFR2 paralogues were differentially expression in all the tissues 

except for gills, brain, adipose tissue, scales and skin (Fig. 6). 

 

Overall, trout TNF receptor genes were differentially expressed in a tissue-dependent manner, and the 

expression of TNFR1 genes was higher than that of TNFR2 genes in all tissues tested, by greater than 

ten-fold in most cases. The immune tissues, eg. spleen, gills and head kidney, are among those that 

highly expressed all the receptors. The high-level expression of TNFR2 paralogues in non-immune 

tissues/organs, including heart, caudal kidney, gonad and muscle was also noteworthy.  

 

3.5. Differential expression of trout TNFR1 and TNFR2 paralogues in four cell lines 

The TNF receptor gene were also found differentially expression in trout cell lines (Fig. S6). The 

expression of TNFR1 paralogues was higher than that of TNFR2 paralogues in all the four cell lines 

studied. The macrophage-like cell line RTS-11 expressed the highest levels of all the receptors (Fig. 

S6). 
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3.6. Modulation of the expression of TNFR1 and TNFR2 paralogues in four trout cell lines.  

In epithelial cell lines RTL and RTGill, the expression of TNFR1 paralogues was high constitutively 

but was refractory to stimulation with LPS, poly I:C and IFNγ (Fig. 7). TNFR2a expression was up-

regulated by IFNγ from 4 h to 24 h, and by polyI:C from 8 h to 24 h but was refractory to LPS. 

Meanwhile, TNFR2b expression was upregulated only by poly I:C in RTGill cells at 24 h, but down-

regulated by IFNγ in RTL at 24 h (Fig. 7). In the fibroblast like RTG-2 cells, IFNγ up-regulated 

TNFR1a and TNFR1b expression at 4h and 8 h, and TNFR2a expression from 4 h to 24 h, but 

decreased TNFR2b expression at 24 h. Poly I:C also upregulated TNFR1a and TNFR1b expression at 

8 h only, and TNFR2a expression at 8h and 24 h, but had no effects on TNFR2b expression. LPS 

moderately up-regulated TNFR2a expression at 4 h but had no effects on the expression of other TNF 

receptor genes in this cell line (Fig. 7). In RTS-11 cells, IFNγ rapidly up-regulated TNFR1a and 

TNFR1b expression at 4 h, and TNFR2a expression from 4h to 24 h, but decreased the expression of 

TNFR1 paralogues at 24 h, and had no effect on TNFR2b expression. Poly I:C up-regulated TNFR2b 

expression at 4 h only and had no effects on the expression of other genes. LPS increased the 

expression of TNFR1b and TNFR2b at 4 h only and had no effects on the expression of TNFR1a and 

TNFR2a (Fig. 7). 

 

In conclusion, the expression of TNF receptor genes can be modulated in a cell line-, gene- and 

stimulant-dependent manner. TNFR1 paralogues are highly expressed constitutively but less 

responsive to stimulation (less than 10-fold increase). In contrast, TNFR2a expression was low 

constitutively but highly inducible. IFNγ is a potent stimulant of TNFR expression with rapid kinetics 

of induction compared to poly I:C. LPS only had minor effects on TNFR expression (Fig. 7). 

 

3.7. Modulation of the expression of TNFR1 and TNFR2 paralogues by recombinant TNFα 

RTS-11 cells express the highest level of TNFR1 and TNFR2 genes and are known to be responsive 

to TNFα stimulation (Hong et al., 2013). Therefore, we examined the receptor expression after TNFα 

treatment of RTS-11 cells over a time course from 4 h to 72 h. Significant up-regulation of gene 

expression was seen with TNFR1a from 8-48 h, TNFR1b at 4 h, 24 h and 48h, and TNFR2a from 4-

48 h (Fig. 8888). The up-regulated expression was absent by 72 h. TNFR2b expression was refractory at 

all time-points (Fig. 8888). 
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4. Discussion 

 

In this study, two highly identical paralogues of TNFR1 and TNFR2 have been cloned in rainbow 

trout. Their identities were confirmed in terms of the characteristic domain structure of the protein 

encoded, by phylogenetic tree analysis, and by conserved synteny. Many highly identical immune 

genes, eg. TNFα, IL-1β, IL-12 family members and SOCS gene family members, are present in 

salmonids that originate from the salmonid 4R WGD (Hong et al., 2013; Husain et al., 2014; Wang 

and Husain, 2014; Wang et al., 2019). This also appears to be the case for the two TNFR2 paralogues. 

However, to our surprise, the two trout TNFR1 paralogues arose from a local en bloc duplication that 

has also happened in other salmonids such as Atlantic salmon. The salmonid en bloc duplicated 

TNFR1 paralogues share higher identities at the protein level (eg. 80.2% in trout) compared to the 4R 

WGD originated TNFR2 paralogues (eg. 63.6% in trout). This reveals that both duplicated TNFR2 

loci were retained after the 4R WGD but one copy of the duplicated TNFR1 locus was lost. The 

retained TNFR1 copy later duplicated en bloc in an ancestral salmonid. The mechanisms driving this 

en bloc gene duplication and retention is unknown but could be due to gene balance, whereby genes 

in the same complex pathway are preferentially co-retained after WGDs to avoid architectural 

disruption or metabolic imbalance (Pires and Conant, 2016). Two types of TNFα, the ligand binding 

TNFR1 and TNFR2, are present in 3R teleosts, and these were duplicated again by the salmonid 4R 

WGD and retained as four paralogues in salmonids (Hong et al., 2013; and unpublished data). 

Mammalian TNF (including TNFα and TNFβ) signal through TNFR1 to promote mainly 

inflammation and apoptosis, whilst TNFR2 signaling activates the pro-survival PI3K-Akt/PKB 

pathway and sustains regulatory T cell function (Pegoretti et al., 2018). Dysfunction of either TNF, 

TNFR1 or TNFR2 hampers immune defence or promotes inflammatory and autoimmune diseases 

(Puimege et al., 2014; Yang et al., 2018). The en bloc duplication of TNFR1 in salmonids may 

represent a kind of convergent evolutionary mechanism to produce multiple copies of TNFR1 to 

balance the multiple copies of TNFα and TNFR2 generated by WGD.  

 

Gene duplication is a major driver of functional divergence. The duplicated genes are preserved 

through functional diversification: neofunctionalization, subfunctionalization, or both (Teufel et al., 

2019). The functional divergence can be embodied by changes in the promoter that regulate the 

expression, or changes with effects on regulation at post-transcriptional, translational and post-

translational levels, and changes in the protein sequence that directly affect its function. The 

regulation of mRNA stability is important for the control of gene expression. AU rich elements, such 

as AUUUA motifs (ATTTA in cDNA sequence) are important cis-acting sequences in the 3’-UTRs of 

mRNAs encoding cytokines and other transiently expressed genes that promote mRNA degradation 
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(Mino and Takeuchi, 2018). Four ATTTA motifs are present in the 3’-UTR of TNFR1b but only two 

in TNFR1a and TNFR2b, with none in TNFR2a. These differences may suggest that the TNFR1 and 

TNFR2 paralogues differ in post-transcriptional regulation. 

 

Translation initiation is the rate-limiting step in mRNA translation and is central to translational 

regulation. Upstream ATG/open reading frames (uORFs) in the 5’-UTR are regulatory elements that 

modulate the translation initiation rate of the downstream ORF by sequestering ribosomes (Zhang et 

al., 2019). Two upstream ATG are present in TNFR1 paralogues and one in TNFR2b, suggesting that 

trout TNFR genes may subject to translational regulation. 

 

N-Glycosylation is a co- and post-translational modification that is critical for the regulation of the 

biophysical properties and biological activities of diverse proteins (Zacchi et al., 2016). Mammalian 

TNFR1 can be modified by N-glycosylation that could facilitate its capability of binding to TNFα and 

signalling (Han et al., 2015). 1-3 potential N-glycosylation sites are found mainly present in CRD1 

and CRD4 in different trout TNFR molecules. Although the implication of N-glycosylation remains to 

be determined in fish, the different potential of N-glycosylation of TNFR1 and TNFR2 paralogues 

may suggest divergence of post-translational regulation.  

 

Another interesting finding in this study is the difference of gene organisation between tetrapod and 

teleost TNFR1 and TNFR2 orthologues. Teleost fish TNFR1 genes have an extra exon in the 5’UTR. 

In addition, both teleost TNFR1 and TNFR2 possess one fewer coding exon than their tetrapod 

orthologues and a large coding exon/region that equates to two exons in tetrapods. Whether this 

change was due to intron loss in teleosts or intron insertion in tetrapods is not possible to answer from 

this study. Exon insertion in the 5’-UTR may bring extra control elements such as upstream 

ATG/ORFs, as seen with the two trout TNFR1 paralogues, that may impacton translation regulation 

(Zhang et al., 2019). Introns provide selective advantages to eukaryotic cells, such as regulating gene 

expression, alternative splicing and nonsense-mediated decay, controlling mRNA transportation and 

chromatin assembly (Jo and Choi, 2015). Gene expression analysis of paralogues revealed that those 

with structural change showed large differences and a low correlation coefficient between paralogues 

(Wang et al., 2019). Thus, change of exon/intron gene organisation might have an impact on gene 

expression and function 

 

At the transcript level, expression of four trout TNFR genes is detectable in all the tissues analysed 

(from healthy fish) and in cell lines, albeit at different levels, suggesting a ubiquitous nature of their 

expression in rainbow trout. The protein expression levels remain to be determined when isoform-

specific antibodies are available in the future. The expression of TNFR1 paralogues is higher than that 
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of the TNFR2 paralogues in most tissues and cell lines, in accord with the ubiquitous expression of 

TNFR1 and more limited expression of TNFR2 seen in mammals (Yang et al., 2018). However, the 

paralogues are differentially expressed in a tissue- and cell line-specific manner, suggesting functional 

diversification.  

 

The expression of TNFR1 and TNFR2 paralogues is high in immune organs, such as spleen, head 

kidney and gills in rainbow trout, as seen in Japanese flounder (Park et al., 2003), suggesting 

important roles in the fish immune response as in mammals (Puimege et al., 2014). Their expression 

is low in liver, especially for TNFR1 paralogues. Liver is an important immune organ involved in 

acute phase reactions, that under stress and infections produces large quantities of inflammatory 

substances including TNF (Khansari et al., 2019). The low levels of expression of TNFR1 paralogues 

in resident liver cells may prevent excessive TNFR1 signaling leading to inflammatory shock and 

apoptosis. The high level expression of TNFR1 and TNFR2 in muscle may reflect the direct action of 

TNFα on skeletal muscle shown in mammals (Li, 2003) and in rainbow trout (Vraskou et al., 2011).  

Another interesting observation is the high level expression of the TNFR2 paralogues in non-immune 

organs including heart, caudal kidney, muscle and gonad. TNF binding to TNFR2 activates NF-κB 

and PI3/Akt pathways that maintain survival and enhance proliferation (Yang et al., 2018), suggesting 

an important role of the TNF/TNFR2 axis in these organs.  

 

Trout TNF receptors can be modulated in a gene-, cell line- and stimulant-dependent manner. In 

general, the expression of TNFR1 paralogues is higher constitutively but less responsive to 

stimulation with PAMPs and recombinant cytokines than TNFR2 paralogues, especially for TNFR2a, 

in the four cell lines tested. The cell type-dependent modulation of TNF receptor expression may be 

of relevance in terms of curbing inflammatory signals to keep a balance between survival and death 

signals. It is known that TFNα expression can be induced in these cell lines by LPS, poly I:C, IFNγ 

and TNFα, and is highly induced in vivo by bacterial and viral infection (Hong et al., 2013). The 

expression of TNFR1 paralogues was refractory to stimulation in the epithelial-like RTL and RTGill 

cells. In contrast, TNFR2a is highly induced by polyI:C and IFNγ. In RTG-2 and RTS-11 cells, 

TNFR1 paralogues can be up-regulated but to a lower extent and more transiently compared to 

TNFR2a. The preferential up-regulation of TNFR2 expression may enhance survival and proliferation 

to maintain an intact epithelium and help tissue-repair after an insult. 

 

It seems that IFNγ is a potent inducer of trout TNF receptor expression, as seen in carp (Grayfer and 

Belosevic, 2009) and mammals (Aggarwal et al., 1985; Tsujimoto et al., 1986). Poly I:C can also up-

regulate TNFR expression especially for TNFR2, but LPS has only minor effects. The poor 

responsiveness to LPS in trout cells may be due to the loss of TLR4 in the genome, as seen in most 
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fish species, and even when present (as in zebrafish) does not appear to bind LPS (Sepulcre et al., 

2009). The expression of trout TNFR1a, TNFR1b and TNFR2a can be up-regulated by TNFα in RTS-

11 cells but TNFR2b was refractory. Interestingly, goldfish TNFα up-regulates TNFR2 expression but 

down-regulates TNFR1 expression in monocytes (Grayfer and Belosevic, 2009). Whether this 

inconsistency is due to species-specific regulation or to cell type/developmental stage differences 

remains to be determined.  

 

Conclusion: Two paralogues of TNFR1 and TNFR2 are present in salmonids. Whilst the TNFR2 

paralogues were generated via the 4R salmonid WGD, the TNFR1 paralogues arose from a local en 

bloc duplication. Functional diversification of TNFR paralogues was evidenced by differential gene 

expression and modulation, upstream ATGs affecting translation, ATTTA motifs in the 3’-UTR 

regulating mRNA stability, and post-translational modification by N-glycosylation. Teleost and 

tetrapod TNFR1 and TNFR2 orthologues differ in exon/intron organization. Trout TNF receptors are 

highly expressed in immune tissues/organs, and in other tissues in a gene- and tissue-specific manner. 

Their expression can be differentially modulated by PAMPs and cytokines in a cell type- and 

stimulant-specific manner, suggesting an important role of the TNF/TNFR axis in the immune 

response and other physiological processes in fish.  
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Figure legend 

Fig. 1. Multiple alignment of rainbow trout TNFR1 paralogues with TNFR1 molecules from 

other fish and mammalian species. The multiple alignment was produced using Clustal Omega, and 

conserved amino acids were shaded using BOXSHADE (V3.21). The signal peptide, the four cysteine 

rich domains (CRD1-4), the transmembrane domain and the death domain are indicated above the 

alignment. The aa sequence of the signal peptide and transmembrane domain are in green, and the 

conserved cysteine residues in the CRD domains are in red. Potential N-glycosylation sites in CRD1 

and CRD4 are highlighted in blue. 

Fig. 2. Multiple alignment of rainbow trout TNFR2 paralogues with TNFR2 molecules from 

other fish and mammalian species. The multiple alignment was produced using Clustal Omega, and 

conserved amino acids were shaded using BOXSHADE (V3.21). The signal peptide, the four cysteine 

rich domains (CRD1-4) and the transmembrane domain are indicated above the alignment. The aa 

sequence of the signal peptide and transmembrane domain are in green, and the conserved cysteine 

residues in the CRD domains are in red. Potential N-glycosylation sites in CRD1 and CRD4 are 

highlighted in blue. 

 

Fig. 3 A unrooted phylogenetic tree of selected vertebrate TNFRSF members. The phylogenetic 

tree was constructed using amino acid multiple alignments of TNFR1, TNFR2, and other closely 

related TNFRSF members (TNFR3,5,10,14) from selected vertebrates, and the neighbour-joining 

method within the MEGA7.0 program. The evolutionary distances were computed using the JTT 

matrix-based method with all ambiguous positions removed for each sequence pair. Node values 

represent percent bootstrap confidence derived from 10,000 replications. The accession number for 

each sequence is given after the species and molecule names. The trout molecules cloned in this study 

are highlighted in red and grouping of TNFRSF members are indicated on the right.   

Fig. 4. The TNFR1 (A) and TNFR2 (B) loci of rainbow trout and pike. The information was 

extracted from genomic DNA sequences at NCBI under accession numbers NC_025987 (pike 

TNFR1), NC035079 (trout TNFR1a and TNFR1b), NC_025984 (pike TNFR2), NC035093 (trout 

TNFR2a) and NC035083 (trout TNFR2b). 

Fig. 5. Comparison of gene organisation of the TNFR1 (A) and TNFR2 (B) in rainbow trout, 

flounder, humans and chicken. Boxes represent exons, and lines between exons represent introns. 

The white and black boxes represent non-coding and amino acid (aa) coding regions, respectively. 

The sizes (bp) of each exon are numbered in the boxes. The gene organization of the rainbow trout 

TNFR1 and 2 genes was predicted using the Splign program based on the sequence information from 

Table 1 and Figs. S1–S4 in Supplementary Materials. The accession numbers for other genes are 
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XM_020093063/NW_017859661 (flounder TNFR1), AB080947/NW_017859683 (flounder TNFR2), 

ENSG00000067182 (human TNFR1), ENSG00000028137 (human TNFR2), 

ENSGALG00000039461 (chicken TNFR1) and ENSGALG00000034213 (chicken TNFR2). The 

TNFR protein domains (SP=signal peptide, TM=transmembrane domain) and corresponding coding 

exon regions are indicated. 

Fig. 6. Transcript expression of rainbow trout TNFR1 and TNFR2 paralogues in tissues. The 

expression level was determined by RT-qPCR in 17 tissues from six healthy fish. The transcript level 

was calculated using a serial dilution of references that contained equal molar amounts of the probes 

for each gene, then normalized against the expression level of EF-1α and presented as the average + 

SEM. The connected bars indicate significant differences in expression levels of paralogues (p < 0.05, 

paired samples T test). 

Fig. 7. Modulation of the expression of TNFR1 (A, C, E and G) and 2 (B, D, F and H) 

paralogues in four cell lines by PAMPs and IFNγ. Four trout cell lines, RTL, RTG-2, RTGill and 

RTS-11 cells were stimulated with LPS (25 µg/ml), poly I:C (25 µg/ml) and recombinant IFNγ (10 

ng/ml) for 4, 8 and 24 h. The expression of TNF receptors was quantified as in Fig. 6, and presented 

as the mean (+SEM, N=4) fold change calculated by the average expression level of treated samples 

divided by that of time-matched controls. The relative significance of a LSD post hoc test after a 

significant one-way ANOVA between the stimulated and time-matched controls is shown above the 

bars as * p ≤ 0.05, **p ≤ 0.01 and *** p ≤ 0.001. 

Fig. 8. Modulation of the expression of TNFR1 and TNFR2 paralogues in RTS-11 by TNFα. 

RTS-11 cells were stimulated with 10 ng/ml recombinant TNFα3 for 4-72 h. The expression of TNF 

receptors was quantified as in Fig. 6, and presented as the mean (+SEM, N=4) fold change calculated 

by the average expression level of treated samples divided by that of time-matched controls. The 

relative significance of a LSD post hoc test after a significant one-way ANOVA between the 

stimulated and time-matched controls is shown above the bars as * p ≤ 0.05, **p ≤ 0.01 and *** p ≤ 

0.001. 
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Table 1. Primers used for 3’-RACE and real-time PCR analysis of gene expression 

 

Gene Primer name Sequence (5’ to 3’) Application 
TNFR1a TNFR1aF1  CGCGATTTAATACCCTGGCGTA 3’-RACE 
 TNFR1aF2 GGTGACTCGACTGCATCGCC 3’-RACE 
 TNFR1aF CACATCCCACTCCCAATGGC Real-time PCR 
 TNFR1aR CCTCTTGGATCAGCCTCCGAGT Real-time PCR 
TNFR1b TNFR1bF1 ACTTAACACCCTGGCTTCTCTTGG 3’-RACE 
 TNFR1bF2 TTTGGAGACTCGACTGCATCACT 3’-RACE 
 TNFR1bF GCACAGATCCCACTCCCAAACCT Real-time PCR 
 TNFR1bR CCTCTTGGATCAGCCTCCGAGT Real-time PCR 
TNFR2a TNFR2aF1  GACTTTTCTCAAGATCTTAAAGGGGCA 3’-RACE 
 TNFR2aF2 CAAGATCTTAAAGGGGCAATAATAATTGT   3’-RACE 
 TNFR2aF GGAAATTGGGAGGCCATTAAATTTGATA Real-time PCR 
 TNFR2aR GACTAGATGGCAAGGGACTGGTAGG Real-time PCR 
TNFR2b TNFR2bF1 GCAAAGACGCCCTCAGTTTCC 3’-RACE 
 TNFR2bF2 GGTTTCAGTATGGACTTTTTCGCAAT 3’-RACE 
 TNFR2bF GGAAAGGAGGCCATTAAATGTCTGC Real-time PCR 
 TNFR2bR CAGATGTCAGAGGGCTGGTGGA Real-time PCR 
EF-1α EF-1αF CAAGGATATCCGTCGTGGCA Real-time PCR 
 EF-1αR ACAGCGAAACGACCAAGAGG Real-time PCR 
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Table 2. Summary of sequence features of rainbow trout TNFR1 and TNFR2 paralogues  

 

 

 

 

Gene TNFR1a TNFR1b TNFR2a TNFR2b 

cDNA sequence 

GenBank ID HE717002 HE717003 HE717004 HE717005 

Length (bp) 3027 2688 1814 2403 

Upstream ATG 2 2 0 1 

ATTTA motif 1 4 0 2 

Genomic sequence 

Chromosome Ch3 Ch3 Ch17 Ch7 

GenBank ID NC_035079 NC_035079 NC_035093 NC_035083 

Length (bp) 12,367 9,901 24,309 7,461 

Number of exons 10 10 9 9 

Number of introns 9 9 8 8 

Protein sequence 

Full length (aa) 403 397 455 463 

Signal peptide 28 31 25 25 

Mature peptide 375 366 430 438 

TM region 217-241 215-239 249-272 281-304 

N-glycosylation sites 2 1 3 2 

Amino acid identity 

Trout TNFR1a 100 80.2 21.5 20.2 

Salmon TNFR1a 85.5 82.4 21.9 21.2 

Trout TNFR1b 80.2 100 21.5 19.4 

Salmon TNFR1b 79.8 93.0 21.2 20.8 

Pike TNFR1 54.1 57.8 22.2 21.2 

Human TNFR1 26.8 26.2 22.0 21.9 

Chicken TNFR1 26.7 28.4 20.0 19.3 

Trout TNFR2a 21.7 21.5 100 63.6 

Salmon TNFR2a 22.1 21.5 91.2 64.4 

Trout TNFR2b 19.5 19.7 63.6 100 

Salmon TNFR2b 21.7 21.3 59.6 87.2 

Pike TNFR2 18.5 20.2 46.2 45.9 

Human TNFR2 20.4 23.0 28.6 30.1 

ChickenTNFR2 22.7 23.6 29.9 27.6 
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                               Signal peptide                                                                           CRD1 
Trout  1a MDV--LRGKWKEKCILNVCALLILCWSVDP--SPLVPPLPTTQEFQCLEGSHYHT--ANGTCCRKCHEGFMLKEHCTKNGDNSLCVHCQEGRTYLEKSN 
Salmon 1a MDV--LRGKWKEKCILNVCALLVLCWSVDP-----YLLAPPPEGSQCPDGSHYHN--ANGTCCRKCHEGFKLKEHCTKDGENSQCVPCEEGRTYREKSN 
Trout  1b MDV--LRGKWKEKCILNVCALLVLCWSVDPSLS-APPPPDRTRELQCLEGSHYRT--ANGTCCRKCHEGFKLKEDCTKEGE-SQCEPCKEGRTYLERSN 
Salmon 1b MDV--LRGKWKEKCILNVCTLLLLCWSVDLSLS-PPPPLDRTQELQCLEGSHYRN--ANGTCCRKCHEGFKLKKDCTKEGE-SQCEPCKEGKTYLERSN 
Pike      MAV--LKGKWKEKNIFIVSTLLLMCWSVGLS---APPPSN-RTHSQCQEGSHYLS--KEGLCCGKCHQGFRLVKDCSVDNGNAECKPCSSG-TYRESSN 
Catfish   MESRHHTGKWKKICAPCILFLLTVLRQCDA----TEGHKNFNNTGSCLEN-EYLH--GE-FCCDKCPPGFKLTRKCKGSGLRSECVKCSPG-SYQDNMN 
Flounder  MEEAGHRGRRNKKAPVGT-TLLLMCMIVPTLAIS-----QPLVKPTCSPE-EYST--DKGICCNKCSPGYKLVEKCNAIGHRSKCAPCLPG-QFMDQLN 
Medaka    MEGCGLQRTGNKKACVGI-FLLLMCTVL--YA------AQEPNQMKCPTG-DYLS--KNNICCNKCNPGYKLVKECLVAGHRSNCTSCPED-QYMDQIN 
Human     MGLSTVPDLLLPLVLL---ELLVGIYPSGVIGLVPHLGDREKRDSVCPQG-KYIHPQNNSICCTKCHKGTYLYNDCPGPGQDTDCRECESG-SFTASEN 
Mouse     MGLPTVPGLLLSLVLL---ALLMGIHPSGVTGLVPSLGDREKRDSLCPQG-KYVHSKNNSICCTKCHKGTYLVSDCPSPGRDTVCRECEKG-TFTASQN 
    

                          CRD2                                                                   CRD3                                                               CRD4 
Trout  1a YAKNCLRCTLC--VDNEEVFSPCKKSKNTVCRCKKGFYQNRINSGTRECLTCKTCGPGERETQPCKEESDTVCECKDFYFRDKKSNKTCLSCKLCELTA 
Salmon 1a YVKTCLRCTLC--VDNEEEESPCKKSSNTLCRCKKGFYKNRINSETRECLSCKTCGPGERETQPCTQESDTVCECKDFYFRDKKNNKTCLPCQICELTA 
Trout  1b YAKNCLRCTRCD-VDNEEEVSPCKKSRNTVCRCIEGFYKKRIDSVTRECLRCKTCGPGERETQPCTPESDTVCECKGF--RNKKNNRNCLPCQNCR-SA 
Salmon 1b YAKNCLRCTRC--DDNEEEVSPCKKSRNTVCRCIEGFYKKRIDSVTRECLRCKTCGPGERETQPCTPERDTVCECMDF--RNQKNNRNCLPCQNCR-SA 
Pike      AFRNCDSCRKC--VENEEVVSLCNRSRNQVCRCQTGFYLRKIDSETRECTSCETCGSGERVTQECTPESNTVCECSIFHYRDQMNKRTCLSCKNCT-ST 
Catfish   HFQNCFSCRTCNPASNEIELAECTHMQDRKCGCKQGFYQEVLDDITMSCVPCRKCGVGEMETRSCNGQMNTECECKYNHYRVAK--RICAQCTNC--SS 
Flounder  FYPNCKSCRICRASKHEHTLTKCVSKQNTICECDSGYYRFHIDSQAYECRKCAQCAPDEKEKQNCTPLKNTVCECKENYYRVK---NKCEPCKSC--TT 
Medaka    YNPNCFRCKVCKRRKHEVEESSCKRDKNTVCVCEAGYYKSEIDPTAFECLKCSKCRPDEKVKQQCTRDTNTVCVCKDGHYREK---NTCKPCEGC--SV 
Human     HLRHCLSCSKCRKEMGQVEISSCTVDRDTVCGCRKNQYRHYWSENLFQCFNCSLCLNGT-VHLSCQEKQNTVCTCHAGFFLRE---NECVSCSNCKKSL 
Mouse     YLRQCLSCKTCRKEMSQVEISPCQADKDTVCGCKENQFQRYLSETHFQCVDCSPCFNGT-VTIPCKETQNTVCNCHAGFFLRE---SECVPCSHCKKNE 
  

                                                                            Transmembrane domain                                                                                    
Trout  1a DCQQECS--SGTHPTPNGDGKSEDTGY----PYLLAAFSCVCLLLLVVVGIMGVLVVRRKRKGSNSFPSAEITSQVSETSTRRLIQ------------- 
Salmon 1a DCQQECS--SGTHPTPNGVAKPEDTGWDVWSPYLLALSVCVCVLLLVVVGIMGVLVVRRKPKGSSSFPSAEITSQGSETSTRRLIQ------------- 
Trout  1b DCQQECA--SGTDPTP----KPTDTGWGVWSPYLLAAFGCVCVVLLVVMGIMGVLVVRRKPKGSSSFLSAEITSQGSEKSTRRLIQ------------- 
Salmon 1b DCQQECA--SGTDPTP----KPEDTGWGVWSPYLLAAFGCVCVVLLVVMGIMGVLVVRRKPKGSNSFLSAEITSQGSEKSTRRLIQ------------- 
Pike      DCRQECHQ-ELATPST----VGVSQPSNTSTTVLLLVFGCGFVFLLVVVMILACVVFWRV-KGLSSFPSDEVISQGT-KSTQKLIQ------------- 
Catfish   KCSDLCT--HGVKTTP----PSHPKSGYPLQTIVVLVWVCLCLVIGLPCIVSLYKGIKHWKK--RK---QNQYSQSS-ESHDPEKQ--GKETHKC---- 
Flounder  ECEHYCSGSSMNTKAP----DTGKE----FLTNIIAGVVSVALLLLGLVALITHLVTKRSIK--KKLVKPSHHDDSPDPCELILCS------------- 
Medaka    ECSHLCE--AVTTKRP----EPRDD----LMVAIVA-ISAVGVVMVALGVLVTHVFTKRFIK--KKMPSLTSQPTDISISERLFVH------------- 
Human     ECTKLCL----P-QIE-NVKGTEDSGTTVLLPLVI--FFGLCLLSLLFIGLMYRYQRWKSKL-YSIVCGKSTPEKEGELEGTTTKPLAPNPSFSPTPGF 
Mouse     ECMKLCL----PPPLA-NVTNPQDSGTAVLLPLVI--LLGLCLLSFIFISLMCRYPRWRPEV-YSIICRDPVPVKE-EKAGKPLTP-APSPAFSPTSGF 
  

                                                                                                                                                          Death domain                                                                  
Trout  1a -------------------------------------------EDPENVLNQCIPSCSPVCECEQEPLRKLPDCVPKEIKISELIYSVLDQVPTRHMKE 
Salmon 1a -------------------------------------------EDPENVLNQSIPSYSPVCESEQEPLSTLPDCVPKEIKISELIYSVLDQVPPRHVKE 
Trout  1b -------------------------------------------EASENVLNQSIP----VCECEQELLSKLPDCVPKEIKISELIYSVLDQVPLRRVKE 
Salmon 1b -------------------------------------------EDPENVLNQSIPSYSPVCESEQEPLRKLPACVPKEIKISELIYSVLDQVPLRRVKE 
Pike      -------------------------------------------GQHGNVFIPTDLSSASVCE--RELLSKLPDCVPKEIKISDFIYSVLEQVPPRRVKE 
Catfish   -------------------------------------------VQSKDDVSRLLPV---------QPDPVLPDCIPREIKTHEFVYLVLEIVPVSRFKE 
Flounder  -----------------------------------------SEECSENSNVETTPN-SPVSE---QQPSNLPDCVPLEIKITDLIYSVLELVPALQVKQ 
Medaka    -------------------------------------------EESSESQVESVPQ-SPVEE---QGQPNLPDCVPLEIRIPDLIYTVLDLVPVVRVKE 
Human     TPTLGFS----PVPSSTFTSSSTYTPGDCPNFAAPRREVAPPYQGADPILATALAS-DPIPNPLQKWEDSAHKPQSLDTDDPATLYAVVENVPPLRWKE 
Mouse     NPTLGFSTPGFSSPVSSTPISPIFGPSNW-HFMPPVSEVVPT-QGADPLLYESLCS-VPAPTSVQKWEDSAH-PQRPDNADLAILYAVVDGVPPARWKE 
  

                                                                      Death domain                                                                                    
Trout  1a LVRSLGVSDIVIERAENDHLRDTKEAQYQMLRVWAKGSAQ----GGGEVLARPLLYHLLDKLRDMDLGGTAEELETKYGDQ----------- 403 
Salmon 1a LVRSLGVSDIVIERAENDHLRDTKEAQYQMLRVWAKGNAQ----GGGEVLARPLLYHLLDKLRDMDLGGTAEELETKYRDQ----------- 404 
Trout  1b LVRSLGVSDIVIERAENDHLRDTKEAQYQMLRVWAKGSAQ----GGGEVLARPLLYHLLDKLRDMDLGGTAEELETKYGDQ----------- 397 
Salmon 1b LVRSLGVSDIVIERAENDHLRDTKEAQYQMLRVWAKGNAQ----GGGGVLARPLLYHLLDKLRDMDLGGTAEELETKYGDQ----------- 400 
Pike      LVRSLGVSDRVIELAENDYLRDTKEAQYQMLKFWACGGSQ----GRGGLLTLHLLHDLLVKLRNMELGGAAEELETIYGDYSGDK------- 400 
Catfish   LVRRLNVSEQDIGRAERDN-RAFADAQYQMLMVWVDSGTR----GGKSILPHSLFQECVDRLKDMNLTACAESIEDKYA------------- 387 
Flounder  LVRTLGVRDTEIEQAELDH-RFCKEAHYQMLRLWAEKVSRADGGGESGLLHLSLLQELLDKLRTMRLGGVAEELETKYSIQ----------- 393 
Medaka    LVRSLGVRDTVIEQAEMDH-RQCREAQYQMLRVWAESGSHAAGGGRGDMLHLSLVKELLDKLRQMHLGGTAEELETKYGIH----------- 385 
Human     FVRRLGLSDHEIDRLELQNGRCLREAQYSMLATWRRRTPR----------REATLELLGRVLRDMDLLGCLEDIEEALCGPAALPPAPSLLR 455 
Mouse     FMRFMGLSEHEIERLEMQNGRCLREAQYSMLEAWRRRTPR----------HEDTLEVVGLVLSKMNLAGCLENILEALRNPAP-SSTTRLPR 454 
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                       Signal peptide                                                                                     CRD1 
Trout  2a MILSTVSGILTVRILLAIMVQRVEN----------TVYTLPYTPDSAETCRNKTAEYYNTLINLCCSKCAPGTRLKNECSTTSDTVCEPCPSGQYSGT 
Salmon 2a MILNTVSGIFTVRILLAITVQPVEN----------TVYTLPYTPDSADACRNKIAEYYNTPRNLCCSKCAPGTRQKNECSTTSDTVCEPCPRGQYSGN 
Trout  2b MILRTVSGVLTVRIFLAIMVQPVEN----------MVYTLPYTPDSDGSCRNKTAEYYNPDVNLCCSKCTSGTRRKVVCSSTSDTACEPCPSDQYSGT 
Salmon 2b MILRTVSGVLTVRIFLAIMVQPVENMVHFMVPSSLQVYTLPYAPDSDGSCHNKTAEYYNAEVNLCCSKCTSGTRRKDLCSSTSDTACEPCPRGQYSGT 
Catfish   ----MNVGLRCLILGVVASLAKA------------KSYSLPY--EINGACRDRSTEYKVKS--FCCSKCKPGTRKERDCTSTEDTVCVPCPDGMYSEN 
Flounder  -----MKEIRALLLLLCVRTTTA------------------YRLDSDGKCHNSTTEYREQD--LCCKKCPPGQRLIQKCSDATESVCKQCDSGQYMEK 
Medaka    -----MGDLFVLLLLLSVQTTKA--------------------NSHESICNENT-EYLKDGTDLCCKKCQPGYHLGEHCSENKETVCEPCKSNTYLEN 
Tilapia   -----MKDMLLLLFLLCAQTIKVCS--------------TPYK-SENGQCHNDT-EYMDSG--LCCTKCRPGYRRGTSCTETTDTVCTPCPPDQYQEN 
Human     MAPVAVWAALAVGLELWAAAHA----------LPAQVAFTPYAPEPGSTCRLR--EYYDQTAQMCCSKCSPGQHAKVFCTKTSDTVCDSCEDSTYTQL 
Mouse     MAPAALWVALVFELQLWATGHT----------VPAQVVLTPYKPEPGYECQISQ-EYYDRKAQMCCAKCPPGQYVKHFCNKTSDTVCADCEASMYTQV 
 

                          CRD2                                                                                    CRD3 
Trout  2a FNYFTKCFRC-PKCSEDKGLQYAQDCSSTTKTQCMCQTGKFCIM-EQHPN-CKECGSYTHCQPGHGVAIEGT--------TDSDVNCAPCPNGTFSDQ 
Salmon 2a FNYFPKCFRC-PKCSEDKGLQYAQNCSSTTKTQCMCQTGMFCIM-EQHPN-CEECVSYTHCQPGHGVAIEGT--------TDSDVNCAPCPDGTFSDQ 
Trout  2b FNYFPKCFRC-PKCSADKGLKYVQKCSSTTKTQCACQTGMYCIL-DQHPD-CKECSSYTYCKPGHGVSVEGT--------AESDVECASCPNGTFSDQ 
Salmon 2b FNYFAKCFRC-PKCSADKGLKYVQKCSSTTKTQCACQTGMYCVL-NQHPD-CEECANLTYCKPGYGVSVEGTIAGQEAGTAESDVECASCPDGTFSDQ 
Catfish   MNYYPNCFSC-TRCYEDKGMQYAKQCTRVSDAVCVCKPGWYCIHSDDSPS-CTSCQKHRPCIPGKGAISPGT--------ATENVKCAVCPEGTYSNE 
Flounder  WNYAQKCLSC-NKCKSNKGLQYAQRCSSTTRTGCVCKPGMYCIMDFDNPY-CAECRNYSQCRAGYGVSLPGK--------ANSDVKCELCPDGMFSNT 
Medaka    WNYAQNCFSC-KICNPRKLLRYEQNCTLTKNAVCVCEPETFCAI-LLKPE-CSACKRYRKCPPGQGVSVQGT--------PSSDVKCQKCPNGTFSSI 
Tilapia   FNYYPNCATC-QKCREEKGLQYAQSCSSTTPSKCICRPGRYCIMGYDDPY-CSDCRKYKQCRPGTGVTAKGT--------PSSDVKCKPCPEGTFSDK 
Human     WNWVPECLSCGSRCSSDQ--VETQACTREQNRICTCRPGWYCAL-SKQEG-CRLCAPLRKCRPGFGVARPGT--------ETSDVVCKPCAPGTFSNT 
Mouse     WNQFRTCLSCSSSCTTDQ--VEIRACTKQQNRVCACEAGRYCAL-KTHSGSCRQCMRLSKCGPGFGVASSRA--------PNGNVLCKACAPGTFSDT 
 

                                  CRD4                                                                                     
Trout  2a HSYTQTCQHHTDCVSQRRGVLTYGNTTSNAVCG----PKVR----------PPTRPPTTIPTSGTGHTTPSLQNLHI--------------------- 
Salmon 2a HSYTQTCQHHTDCVSQRRSVLTYGNTTSNAVCG----PKVR----------PPTSPPTRIPTSGTGHTTPSLQSLHT--------------------- 
Trout  2b HSYTQICQHHTDCVSQGRDVQTYGTATTDAVCG----PKVNGRLVSILQTTTPPSPPTTMPPSVKEHTTSSLQSMDMSTVPTTLGSKLTSSPS---DP 
Salmon 2b YSYTQICQHHTDCLSQGRDVLTYGTATTDAVCG----PKVNGRLVSILQTTTPPSPPTTMPPSGKGHTTSSLQSMDTSTVPTTRGSKLTSSPS---DP 
Catfish   TS-TKPCLPHTRCDLYCRSVLVRGTATTDTVCG----PVLST-----VPSRVTTCPLTIMPKTSSSPTEPSTM----PPFLTSYSTSQSLF------- 
Flounder  SSNTETCRPHTDC--HGKAVVRKGNTTSDTVCEEGVAPSSL-------FQDTTKGPHPGILFSTPRTIRSTVSATPDATLSVSASVSDEVF-----TH 
Medaka    SSNSEKCKPHTDC--KGRALVKKGDAISDNICEDEA-PKPL-------KRATPRAPVVIVLTSTEANNPGTTIDFTTTRGVKGFTQTSNTFVSFESSS 
Tilapia   TSSTDPCQPHTDC--NGRAVLRKGNTTSDTVCE----PYST-------ADNHKKGVGTTPSTSTTTVAPSSGSTAPLRSTAQSISVSEESS-----TY 
Human     TSSTDICRPHQIC----NVVAIPGNASMDAVCT----STSP---------TRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPSTSFLLPMG------- 
Mouse     TSSTDVCRPHRIC----SILAIPGNASTDAVCA----PESP---------TLSAIPRTLYVSQPEPTRSQPLDQEPGPSQTPS--ILTSLG------- 
 

                                              Transmembrane domain                                                                                    
Trout  2a ------GGKSPGFDLRIVSGVIGGVIGGVILLLIIGTVIY---KKAFIGSRLVSSIEDRNGNWEAIKFDSDGPMVL-QNSSFITSYREQQQCLMGKGN 
Salmon 2a ------EGKSPGFDLRIVSGVIGGVIGGVILLLIIGTIIY---KKVFTGSRLVSSTEDNHGNCEAIKFDSDGPMVL-QNSSFITSYQEQQQCLLGKGN 
Trout  2b LVIAPMEEKSPGVDLWIVVGAIGGVM---FLLLIIGTIIY---KKAFTKFIRVSSTEDING-------------------------KEAIKCLLGKGD 
Salmon 2b RVIAPTEEKSPGINLWIVAGAIGGAM---FLLLIVGTVIY---KKAFTNFIRVSSTEDINGNSE----------------------KEAIKCLLGKGD 
Catfish   PVYSP---RPPDRFIALWFGLPVAAL--LMVLLIATFCIC--HRKALAKPAVHEGVEAGQS----------------LNSVHLSS-PTEKEGLLAD-- 
Flounder  TIKSPPPYKPPGGS--LAA-IIAGVMGILLFIAVILVFLC--KAVRSKDVPTFQPKVDANGNCESDDKQITQSHLEETQLISFTVTSPEQQSLLDKAG 
Medaka    STKSPHTTKQPDIKP-VVIASSVVGIFFLLLTFVSLLFFY---KRRRTDSAKLHPKVDANGNCENGGKIVQRHEVERQKMGL----TSEQQCLLGKSE 
Tilapia   LITSRVT-QQPDSKYVIIIASVTGFLIITIPLLILFLLCYY-QKICKKDTASLSPKVDANGNCETADEKYTGKTQLSLFKVA----SQENECLLEKGE 
Human     --PSPPAEGST-GDFALPVGLIVGVTALGLLIIGVVNCVIMTQV--KKKPLCLQREAKVPHLPADKARGTQ---------------GPEQQHLLITAP 
Mouse     --STPIIEQSTKGGISLPIGLIVGVTSLGLLMLGLVNCIILVQ--RKKKPSCLQRDAKVPHVPDEKSQDAV---------------GLEQQHLLTTAP 
 
 
Trout  2a -------CSNPSQAENQQDTRRTWV-S-------ECSNSLEGLS-----IGPLQSTPPQSST--QPSPQPTSPQPTSPLPSSPLVNVNITVNYPVT-- 
Salmon 2a -------CSNPSQAENQQDTRRTWV-S-------GCSNSLEGLS-----IGPLQSTPPQPST--QPSPQPTSPQPTSPLPSSPLVNVNITVNYPVA-- 
Trout  2b -------CSNVGQAETQQDAVKTWSGS-------GCSNSLEGLS-----ICPVQSTLPQPSI--LASTPQPSPQSTSPLTSVPLVNVNITVTYPVN-- 
Salmon 2b -------CSNVGQAETQQDAIKTWSGS-------GCSNSLDGLS-----ISPVQSTIPQPSI--LASTPQPSPQSTSPLASVPLVNVNITVTYPVN-- 
Catfish   -------SSSDPSTSSSSDSHSQ-----------------------------------------GTGVSQDCIHAEQPAVSSPVLNLSITATFNCQVN 
Flounder  ACNDYSQSSINTETLIRTDSGGSHESISPLQSTVALNNSYPARSEPKILISNTEPASSQPTFPSESSSQPTSPPIISPLTTSPHFNVNITVH------ 
Medaka    AGSEESQCSNSSDTSTKPDNFISNEP-STLLSKSDFNNPIFALSEPMTLLSNPEAVTPQPSIPAQPSSQPTSPQIISPVTDRPHVNVNITVH------ 
Tilapia   ASSDHSHCTTNTETLTRTDGCSSQESISPLHSTFALDNPLSVLSEPMTLLSNIESAAPQPSIQTQTSSQPSSPQIITPMTTSPHVNVNITLH------ 
Human     -------SSSSSSLESSASALDRRA---------PTRNQPQAPG-----V-EASGAGEARAS--TGSSDSSPGGHGTQVNVTCIVNVCSSSDHSSQCS 
Mouse     -------SSSSSSLESSASAGDRRA---------PPGGHPQARV-----MAEAQGFQEARAS--SRISDSSHGSHGTHVNVTCIVNVCSSSDHSSQCS 
 
 
Trout  2a LGNGSCATPTSTHIDSSQADPELPLSREEEVHVNMPQ-------QEGGKEALTAIQESGNYV--------------- 455 
Salmon 2a IGNGSCPTPTSTHIDSSQADPELPLSREEEVYVNMPQ-------QEGGKEALTAIQESGNDV--------------- 455 
Trout  2b IGNELCSRPTSTQIDSPQADPETPLSREEEVYVNMPQ-------RESCKEALTPVQEFGNDV--------------- 463 
Salmon 2b IGNELCSRPTSTQIDSPQADPEAPLSREEEVYVNMPQ-------REGCKEALTAVQEFGNDV--------------- 484 
Catfish   PATGSCSIPISPCVH--QPEPEFPLSQEEELC-ISCE-------QEDSKDAIQSVQESGMTKY-------------- 418 
Flounder  IGNGSCGTPSVMPTHLTESDSYLPFGEEEESF-SIPQ-------QEDGKQPPRSVQDSAS----------------- 483 
Medaka    IGNGSYQT-VNPIDTRQAECQLPFEEEDWSV--STPK-------QEEGEQTCESVPESGANSTYYIPKQFATCKQAE 495 
Tilapia   IGNGSCGTPAFIPADLIKPDCKLPYGEEEESF-STPQ-------QEDGKQSLMSVPESSTYCTEHTEQDSYA----- 491 
Human     SQASSTMGDTDSSPSESPKDEQVPFSKEECAF-RSQLETPETLLGSTEEKPLPLGVPDAGMKPS------------- 461 
Mouse     SQASATVGDPDAKPSASPKDEQVPFSQEECPS-QSPCETTETL-QSHE-PLPLGVPDMGMKPSQAGWFDQIAVKVA- 474 
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Highlights 

 

 

1. Two paralogues for each of TNFR1 and TNFR2 are present in salmonids. 

2. TNFR2 paralogues arose from the 4R WGD but TNFR1 paralogues arose from an en bloc 

duplication. 

3. Teleost and tetrapod TNFR1 and TNFR2 orthologues differ in exon/intron structure. 

4. Trout TNF receptors are ubiquitously expressed with high level expression in immune organs. 

5. Trout TNF receptors can be differentially modulated by PAMPs and cytokines. 

 


