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Abstract: This review covers analytical methods applied to the determination of none 8 

volatile sulphur-containing biological compounds. The classes of S-compounds include 9 

amino acids, proteins, lipids, carbohydrates and sulphur-containing metabolites. Techniques 10 

covered include element specific detectors as well as molecular specific detectors from X-ray 11 

absorption near-edge structure (XANES) to elemental and molecular mass spectrometers. 12 

The major techniques used are inductively coupled plasma mass spectrometry (ICP-MS) and 13 

high-resolution electrospray mass spectrometry (ESI-MS) in their various forms. Both 14 

techniques either individually or combined require the sample to be present in liquid form 15 

and therefore involve sample preparation usually extraction and depending on sample and 16 

molecular class studied potentially also derivatisation in addition to generally requiring 17 

chromatographic separation. Over recent years, detection limits achieved by elemental 18 

methods and computational methods to extract signals of sulphur-containing compounds out 19 

of the mass of data produced by molecular high-resolution mass spectrometers made 20 

significant gains. Still the determination of sulphur-containing compounds is challenging, but 21 

nowadays the methods have been developed well enough to allow application to real samples 22 

for absolute quantification of biomolecules such as proteins or lipids.  23 

 24 

1. Introduction 25 

 26 

Sulphur is one of the more abundant elements used in biology. It probably was involved in 27 

form of metal-sulphide catalysts during the evolution of life. Its low redox potential and its 28 

ability to bind either directly to carbon atoms or via an oxygen-bridge is widely used by 29 

nature. Sulphur-containing compounds exist in nature among amino acids, carbohydrates, 30 

lipids and secondary metabolites and are involved in major biochemical reactions as 31 

illustrated in Figure 1. 32 

Thiolates (HS-C group) can act as metal-ligands, base in enzymatic reactions (protease), in 33 

group-transfer reactions (CoA transfer); they form also the base of disulphide bridges and 34 

control the redox potential (glutathione). Sulphide (C-S2-C group) on the other hand acts as 35 

redox group (lipoic acid) and metal ligand (FenSn clusters). Thioester (H3C-S-C group), like 36 

methionine, act as methyl donor, ligand in enzymes and form cross-links (Cyt C). Some 37 

coenzymes are also sulphur-containing, like thiamine and biotin. The sulphate-group (C-O-38 

SO3
- group) and sulphonate-group (C-SO3

-) modify in nature compound behaviour, e.g 39 

solubility of lipids. 40 

One would think given its high abundance and wide distribution in biological tissues that the 41 

determination (identification and quantification) of sulphur-containing compounds is well 42 

developed and relative straight forward, but that is not the case. Identification of sulphur-43 

containing compounds by traditional molecular discovery methods like nuclear magnetic 44 

resonance spectroscopy (NMR) and molecular mass spectrometry (MS) can be as difficult as  45 

the quantification of sulphur in organic compounds by elemental mass spectrometry (ICP). 46 



In this review, we try to show where in our opinion the challenges in the determination of 47 

sulphur-containing biological compounds are from the point of view of an elemental 48 

analytical chemist. Part one of the review consists of a short description of sulphur-containing 49 

compounds as examples of the wide variety encountered in living cells. Part two covers 50 

analytical techniques and analytical challenges when analysing sulphur-containing 51 

compounds. 52 

Due to the wide variety and the use of different analytical methods, we do not cover volatile 53 

sulphur-containing compounds and their detection and quantification methods. 54 

 55 

2. Classes of sulphur-containing compounds 56 

 57 

This part gives a short summary of sulphur-containing compounds present in biological 58 

matrices in addition to the ubiquitous sulphate ions. The major principal structures in which 59 

sulphur can occur in nature are summarised in Table 1. Sulphur is essential to life in all its 60 

forms. It is involved in its variable molecular species in among others all major redox-61 

processes, synthesis of proteins, carbohydrates, secondary metabolites (Figure 1) with 62 

bacteria forming the basis of the biological sulphur cycle. 63 

2.1. Amino acids, peptides and proteins 64 

The main sulphur-containing amino acids methionine and cysteine are present in most 65 

proteins [1]. Methionine itself is essential for human beings, whereas cysteine can be 66 

synthesised in a five-step process from methionine. Cysteine is redox active and often binds 67 

thiophilic metal-ions in the catalytic centre of proteins. It is also often involved in stabilising 68 

the three-dimensional structure of proteins by formation of disulphide bridges [2]. Oxidation 69 

of cysteine can lead to sulfenic, sulfinic and sulfonic acid, especially the oxidation to sulfenic 70 

acid is an important reversible post-translational protein modification [3,4]. Methionine in 71 

contrast is mostly the start codon for protein synthesis in addition to being part of the 72 

sequence. A post-translational protein modification is the in vivo oxidation of specific 73 

methionine residues forming methionine sulfoxide [5]. For more details of the sulphur-74 

containing amino acids see [6]. 75 

Human serum albumin, the most abundant protein in blood serum, for example contains in 76 

addition to the initiator methionine seven methionines in the sequence and 35 cysteine 77 

residues per molecule 34 of them forming intra-molecular disulphide bridges [7]. A tryptic 78 

digest of excreted reduced human serum albumin without miss-cleavage contains 22 different 79 

sulphur-containing peptides. 80 

One of the dominant sulphur-containing peptides in eukaryotic cells is glutathione (GSH) a 81 

tripeptide containing an unusual γ-glutamyl-bond and cysteine. It is important among others 82 

for the homoeostatic maintenance of the redox potential in cells and can bind to thiophilic 83 

metals (like arsenic [8] and mercury [9]) and xenobiotics [10,11]. The related phytochelatins 84 

in plants [12,13,14 ], nematodes [15] and worms [16] are, in contrast, mostly produced in 85 

response to metal-induced stress. 86 

A non-proteogenic sulphur-containing amino acid is taurine. It is synthesised from cysteine 87 

or methionine by humans, but not by all mammals. Taurine contributes to the osmolyte pool 88 

and is involved in several other physiological processes like nerve cell development and it 89 

can be incorporated into lipids (structure of an example taurolipid see Figure 2 B3) [17,18]. 90 

 91 

2.2. Sulphur-containing carbohydrates 92 

There are very few sulphur-containing carbohydrates per se known (examples see Figure 2 93 

A1 and A2). The major ones are the carrageenans, which are linear sulphated polysaccharides 94 



in red seaweed important in the food and pharmaceutical industry [19,20]. They are a class of 95 

polysaccharides containing galactose, with the main difference between them being the 96 

position and number of sulphate-group(s) and the presence or absence of 3,6 97 

anhydrogalactose [20,21Error! Bookmark not defined.]. They contain between 22 and 35 98 

w% sulphate groups, which have a strong influence on solubility and gelling properties [20]. 99 

Secondary metabolites and glycolipids contain also sulphur-containing carbohydrates. 100 

Predominant among the lipids are the sulfoquinovones (as in Figure 2 A2 showing the 101 

carbohydrate moiety, see next paragraph) [22]. 102 

 103 

2.3. Sulphur-containing lipophilic compounds 104 

Living cells contain a wide variety of sulphur-containing lipids. They predominantly contain 105 

a sulphate or a sulfono-group (SO4
- or SO3

--group) bound to the sugar-moiety of a glycolipid 106 

and are highly anionic. An important member of this family is sulfoquinovosyl diacylglycerol 107 

(SQDG, 6-deoxy-6-sulfo-glucose), which is part of photosystem II and the cytochrome b6f 108 

complex [22]. It occurs in photosynthetic organisms and some bacteria [22]. In them sulphur 109 

is directly bound to carbon as C-SO3
- (as in Figure 2 A2). Environmental conditions influence 110 

SQDG levels in plants [23]. 111 

Another member of the sulphonate-containing lipids are the sulphatides (example structure 112 

Figure 2 B1), which are sphingolipids important among others in the myelin sheath of nerve 113 

cells (4-7 % of the lipids present) and in the brain [24,25]. Members of this family are 114 

widespread in tissues and play important roles in a variety of biological processes (nervous 115 

system, immune system, haemostasis, thrombosis, kidneys) [26]. In them, a sulphonate-group 116 

is bound to a galactose moiety [26]. The other major sulfoglycolipid family are the 117 

seminolipids containing the same galactose moiety (example structure Figure 2 B2) [24]. 118 

Other sulphur-containing lipids include taurine-containing lipids (a fatty acid conjugated to 119 

taurine, Figure 2 B3) and present in animal tissue especially in brain. Some fatty acids 120 

containing a sulphate-group, for example caeliferin found in grasshopper, are known to 121 

influence plant response to grazing [27]. In some bacteria and marine invertebrates, a number 122 

of unusual sulphur-containing fatty acids are present, containing two sulphate groups and a 123 

variable number of chloride atoms with unknown biological function [28].  124 

 125 

2.4. Secondary metabolites 126 

Sulphur-containing secondary metabolites are widespread and occur in a variety of forms. 127 

They are derived either from one of the sulphur-containing amino acids (mostly cysteine) or 128 

contain a sulphate, sulphonate-group or a thiol-ring containing structure. Plants especially 129 

produce a whole range of sulphur-containing metabolites, which often have defensive 130 

properties.  Members of the Allium genus for example produce an abundance of compounds 131 

related to alliin [29]. These compounds are the main taste producing compounds in Alliums 132 

whether it is alliin for garlic or iso-alliin for onion (example structure see Figure 2 C2) [30]. 133 

In these compounds sulphur is bound directly to carbon and forms a disulphide bridge with 134 

another carbon-bound sulphur, either sulphur atom in these structures can be oxidised or 135 

dioxidised. Alliin, its precursors and their relatives are thought to have, among others, 136 

antifungal properties helpful for plant survival [29].     137 

Members of the Capparales order (among others Broccoli), in contrast, produce 138 

predominantly glucosinolates (example structure Figure 2 C1), which are responsible for their 139 

specific smell when cut and the bitter taste [31,34]. These are molecules containing beside a 140 

sulphate-group a thioglucose group and variable side-chains of an amino acid, to date more 141 

than 200 members of this class are known [32]. Specific enzymes in plant cells, when 142 

released, transform these compounds into (iso)-thiocyanate [33,34]. These molecules are also 143 



thought to be part of the plant’s defence mechanism [34]. Ingested in small amounts these 144 

compounds may contribute to the health promoting properties of Bassica vegetables [33,35]. 145 

An essential sulphur-containing metabolite for mammals is thiamine (Vitamin B1, Figure 2 146 

C4). Phosphorylated thiamine is a co-factor for several enzymes in the energy-metabolism 147 

and carbon-metabolism [36]. In this case, sulphur is bound in a thiazole ring.  148 

There is a wide variety of other sulphur-containing secondary metabolites known. Among 149 

others, a diterpenoid (serofendic acid, structure see Figure 2 C3) isolated from foetal calf 150 

serum with neuroprotective activity [37]. 151 

 152 

3. Techniques for isolation, separation, identification and quantification 153 

of sulphur-containing compounds 154 

3.1. Sample preparation  155 

One of the major considerations during sample preparation is the stability of sulphur-156 

containing compound(s). Most sulphur-containing compounds are not only redox-sensitive, 157 

but can also form artificial polymers or breakdown products [38]. 158 

Especially redox-sensitive are all thiol-containing compounds. Rao et al. [39] studied the 159 

stability of some none derivatised thiolic and non-thiolic species in serum over time using 160 

ESI-MS. Their results showed that thiol-containing compounds are unstable over time and 161 

derivatisation is required for stabilisation. A large variety of reagents is available for this step 162 

with the choice depending on the subsequent detection method. When detection by UV or 163 

fluorescence spectrometry is required, UV or fluorescence active compounds are used. For 164 

derivatisation of thiols determined by molecular mass spectrometry, normally small agents 165 

like iodoacetamide (preferred in proteomics) or iodoacetic acid are used. Mester et al. [39] 166 

compared a number of derivatisation agents and considered iodoacetic acid is the suitable 167 

reagent for derivatisation of reduced thiol-groups using dithiothreitol (DTT) as reductant for 168 

oxidised thiols.  169 

Important in this step is the quantitative derivatisation of the thiol-groups, since incomplete 170 

derivatisation results in additional (undesirable) detector signals, which may or may not have 171 

different retention times during high-performance liquid chromatography (HPLC) separation. 172 

Derivatisation is also used to introduce an additional elemental tag, like arsenic [40], onto a 173 

thiol-group to improve quantification by ICP-MS. Tagging with selenium-containing 174 

compounds, which improves identification of the compound(s) by molecular mass 175 

spectrometry due to its specific isotope pattern can also be used [41]. Another possibility is 176 

the introduction of ICAT (isotope coded affinity tag, eg. biotin coupled to iodoacetic acid) or 177 

MeCAT (containing a metal complexed to a thiol-reactive group like iodoacetic acid) [42] 178 

onto cysteine residues, which can introduce enriched stable metal isotopes to allow relative 179 

quantification by ESI-MS or absolute quantification by ICP-MS for elemental tags suitable 180 

for peptide quantification. Hansen et al. [43] wrote an authorative review of methods for the 181 

derivatisation of thiols and Klencsar et al. [44] summarised suitable functional groups for 182 

detection by ICP-MS. 183 

Reduced thiol-containing compounds can be enriched using affinity chromatography. 184 

Different affinity resins have been developed over the years based on covalent-binding and 185 

the formation of a disulphide-bond (eg thiopropyl sepharose) [45], on gold nanoparticles [46], 186 

arsenic [47,48],mercury-compounds [49] and others [50,51]. 187 

The study of secondary metabolites, like alliin-derivatives and glucosides, requires often the 188 

deactivation of specific cellular enzymes during extraction to allow the determination of the 189 

intracellular compound(s), since these often react with enzymes upon cell damage to other 190 

compounds used in cellular defence. Depending on the enzyme in question, these reactions 191 



can be avoided using acidic extraction conditions, specific enzyme inhibitors or boiling of the 192 

sample before homogenisation and extraction [31,38,52,53  ]. 193 

Sulphur-containing lipids can be extracted using standard lipid extraction methods, the 194 

difficulties start when other non-sulphur containing lipids have to be removed before 195 

analysis. The main extraction protocols are the procedures by Blight, Dyer and by Folch [54]. 196 

Since sulphur-containing lipids are more polar than tri-glycerides, they extract mostly 197 

together with the polar phospholipids. For enrichment of sulfo-lipids sample clean-up by SPE 198 

can be useful as this allows the separation into different lipid classes simplifying detailed 199 

analysis [54]. 200 

3.2. Purity of reagents 201 

Important for the determination of sulphur-containing molecules are considerations about the 202 

purity of all chemicals used during sample preparation and analysis. The sulphur content is 203 

normally not evaluated in e.g. derivatisation chemicals. The manufacturer does generally not 204 

determine sulphur-content of solvents and the use of HPLC-MS grade solvents for example 205 

does not guarantee low sulphur-background. As experience in our laboratory shows, the 206 

sulphur content can vary significantly from batch to batch. The same possible source of 207 

contamination can come from the use of MilliQ water, which can contain significant amounts 208 

of some sulphur-compound(s). Before use, it is therefore advisable to check solvents and 209 

other reagents for their sulphur-content, when using ICP-MS as detector. Another potential 210 

contamination source can be the high-purity gases (predominantly argon and oxygen) used 211 

during ICP-MS analysis. 212 

3.3. Separation  213 

Reversed-phase HPLC separates most sulphur-containing compounds, separation of different 214 

lipid classes can be done using normal-phase HPLC, other separation modes like hydrophilic 215 

interaction liquid chromatography (HILIC) are suited for more polar compounds and anion or 216 

cation exchange chromatography are useful for specific ionic target molecules. Separation 217 

does not present a problem per se for sulphur-containing compounds. 218 

Normal-phase HPLC is mostly used in complex lipid analysis. The problem with this 219 

separation method is beside its relative low separation power, the difficulties in combining it 220 

with either elemental or molecular mass spectrometers for identification and quantification of 221 

the eluting compounds. For example, the eluents are not particularly well suited for ESI-MS. 222 

The compounds are difficult to ionise, due to their low polarity and therefore require 223 

atmospheric pressure chemical ionization (APCI) or atmospheric pressure photoionization 224 

(APPI) for ionisation. 225 

HILIC, which separates polar lipids [55] and other compounds [56] well, is a better choice, 226 

especially using acetonitrile/water as eluent is well suited for ESI-MS. Combining HILIC 227 

with ICP-MS detection can be problematic for plasma stability due to very high amount of 228 

organic solvent required for HILIC. The columns also generally show a better peak capacity 229 

and therefore separation power than normal-phase columns. 230 

The major separation technique used for sulphur-containing compounds in biological samples 231 

is reversed-phase chromatography using C18-columns. This technique not only separates 232 

small sulphur-containing molecules, like alliin and GSH, but is also suitable for larger 233 

peptides after tryptic digest of proteins. Using C4-columns the technique is applicable to 234 

small to medium sized proteins [104]. Reversed-phase chromatography is perfectly suited for 235 

direct combination with molecular mass spectrometers and can be connected to elemental 236 

mass spectrometers without undue difficulties using a torch with a small inner diameter 237 

injector and platinum sampler and skimmer cone as well as adding oxygen to the plasma gas 238 

to prevent carbon built-up on the sampler cone..  239 



Small ionic sulphur-containing compounds, like taurine, have been successfully separated 240 

using anion exchange columns or mixed mode-columns from other amino acids [57]. Taurine 241 

and sulphate in urine and serum were quantified by ICP-MS after separation with an anion 242 

exchange column [58]. For analytes such as these, the relative low separation power of a 243 

normal ion exchange column is sufficient. Ion exchange columns can directly be coupled to 244 

conventional ICP-AES or MS as elemental detector, but can create difficulties due to the 245 

required use of (often non-volatile) buffers such as phosphate for molecular mass 246 

spectrometry. For ion exchange chromatography to be coupled to ESI-MS the separation 247 

methods have to be modified to use more volatile buffers such as formic acid or ammonium 248 

carbonate. 249 

Over recent years, significant developments took place with regard to column material; The 250 

particle size of the packing material for most chromatographic columns decreased resulting in 251 

improved separation efficiency. Additional packing materials especially in reversed-phase 252 

chromatography were introduced among these are the core-shell materials or non-porous 253 

column materials. These developments improved the separation efficiency of modern 254 

columns significantly. But is it good enough for complex biological samples? The difficulties 255 

start when all the sulphur-containing compounds have to be baseline separated, since 256 

biological samples often contain large numbers of structurally similar compounds. Shallots 257 

for example (Figure 3a-c) contains at least 44 different sulphur-containing compounds with a 258 

concentration range of four orders of magnitude (some of which are shown in Figure 3b and 259 

c). A tryptic digest of pure albumin contains 22 sulphur-containing peptides without 260 

considering potential protein modifications. For detection by molecular mass spectrometry, 261 

baseline separation of the compounds may not be mandatory for quantification, but it is 262 

essential for absolute quantification of any given compound via ICP-MS [59]. Therefore, the 263 

columns used for separation have to be high-resolution columns. In some instances, the 264 

combination of reducing agent for disulphides and the derivatisation agent used can influence 265 

the peak shape [39]. For methionine-containing peptides, the possibility of multiple 266 

compounds occurring has to be considered, since oxidation of methionine (producing two 267 

stereoisomers) can result in chromatographically resolved peaks depending on amino acid-268 

sequence and column [60]. Alternatively, 2D-chromatography either on-line or off-line by 269 

collecting fractions can simplify the samples to a point where base-line separation is possible. 270 

3.4. Detection 271 

UV or fluorescence - probes 272 

Sulphur-containing groups are not per se UV active, but depending on the structure, sulphur-273 

containing compounds are directly detectable by UV-absorption spectrometry. For example 274 

quantitative identification without derivatisation of sulphur-compounds in allium species can 275 

be achieved at wavelength between 205 and 254 nm [61-65   ]. 276 

Derivatisation with thiol-specific probes, either for improved detection by UV or for 277 

detection by fluorescence spectrometry is also widely used. Ellmann’ reagent (5,5′-Dithiobis-278 

2-nitrobenzoe acid, DTNB), monobrombimane [66,67] and a range of other reagents were 279 

developed to specifically label reduced thiol-groups [68]. Depending on the fluorophore the 280 

distribution and quantity of reduced thiols in live cells can be studied using confocal 281 

microscopy with cell-wall penetrating agents and therefore the influence of environmental 282 

factors on the reductive cell environment [69,70]. All compounds used for labelling form 283 

thioether bonds with free thiol-groups. Excitation and emission wavelengths depend on the 284 

fluorophore; some labelling compounds can be compound-specific [70]. 285 

Quantification of thiols by UV and fluorescence spectrometry requires species-specific 286 

standards and compound(s) to be baseline separated. 287 

 288 



Molecular mass spectrometry 289 

Molecular mass spectrometry, especially with ESI, APCI, APPI or matrix assisted laser 290 

desorption ionisation (MALDI), allows the determination of the molecular mass and when 291 

using high-resolution instruments the molecular composition of organic compounds can be 292 

deduced. For the calculation of the molecular composition of sulphur-containing compounds 293 

the small mass defect of sulphur isotopes (Δm32S = -0.0279) and the isotopic pattern of 294 

sulphur distinct from that of carbon, nitrogen and hydrogen are important and can be used in 295 

algorithms to identify sulphur-containing compounds.  296 

 297 

The major distinction is the 32S to 34S ratio (95.0 to 4.2 %), whereas the major carbon, 298 

nitrogen and hydrogen isotopes are spaced one m/z apart. Nevertheless, it can be difficult to 299 

identify sulphur-containing compounds based on their isotopic pattern alone. As can be seen 300 

in Figure 4.A for a low molecular mass sulphur-containing compound the difference between 301 

the theoretical sulphur-containing pattern and a non-sulphur-containing pattern is relative 302 

large (Figure 4.A). For a high-molecular mass compound, the difference in the isotopic 303 

pattern between a sulphur-containing and a non-sulphur-containing compound is significantly 304 

smaller (Figure 4.B). Highly accurate isotope patterns as for example achievable using 305 

Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) are required to 306 

identify sulphur-containing compounds confidently by mass spectrometry alone [71,72]. 307 

Most programs used for data analysis allow the search for specific isotope clusters (taking 308 

into account isotope spacing and intensity). For elements like chlorine and bromine with their 309 

very distinct isotopic pattern, this method works very successfully for the identification of 310 

unknown compounds. For chlorine the abundance distribution between 35Cl and 37Cl is 75.8 311 

to 24.2 %, in contrast the abundance distribution of sulphur is 95.0 to 4.2 %. To improve this 312 

Andersen et al. [73] recently developed a program (Dynamic Cluster Analysis, DCA) which 313 

improves the applicability of isotopic pattern analysis in the search for unknown sulphur-314 

compounds. The method uses A+1 and A+2 isotope cluster spacing of high-resolution / high 315 

mass accuracy spectra to evaluate the spectrum automatically for sulphur-containing 316 

candidates. They checked their A+1 and A+2 algorithm among others against the Marinlit 317 

natural products database. Results indicate that the majority of sulphur-containing 318 

compounds below a molecular mass of 800 can be identified with higher confidence than 319 

when using the A and A+2 algorithm of other programs [73]. No confident identification of 320 

sulphur-containing compounds larger than that is possible by molecular mass spectrometry 321 

due to the low abundance of 34S compared to 32S (4.2 % compared to 95.0 %). 322 

Another option to improve identification of reactive thiol-containing compounds is the group-323 

specific derivatisation of these compounds allowing the use of tandem mass spectrometry for 324 

the detection of specific fragments as used e.g. by Liem-Nguyen et al. for the detection and 325 

quantification of thiol-containing compounds in natural waters [74]. 326 

Cysteine (Cys) and especially the intramolecular Cys-Cys bridges play an important part in 327 

the 3-D structure of proteins. The position of Cys-Cys bridges can be studied using partial 328 

reduction and alkylating the Cys differently at each step, depending on labelling conditions 329 

the location of the disulphide bridge (surface / interior of protein) can be estimated [75-79   ]. 330 

The general matrix sensitivity of HPLC-MS applies also to the detection and quantification of 331 

sulphur-containing compounds. An overview and descriptions to overcome the problem can 332 

be found in Trufelli et al. [80] and Chambers et al. [81]. Signal intensity in molecular mass 333 

spectrometry is compound and matrix dependent, absolute quantification therefore requires 334 

species-specific standards (often isotopically labelled) preferably combined with the standard 335 

addition method.  Relative quantification (comparing two or more different biological states, 336 

cell treatments for example) is often used in proteomics using thiol-reactive tags enriched in 337 

deuterium (ICAT) or MeCAT [82,83]. Another option for quantification is the use of species-338 



specific isotope dilution mass spectrometry (SS-IDMS). For this approach, the compound is 339 

synthesised using enriched isotopes (13C, 2H, 34S or others) and a known amount spiked to the 340 

sample before any sample treatment. The changing intensities of the isotope pattern are then 341 

used for quantification [11]. In Table 2 some detection limits for specific metabolites using 342 

HPLC-MS are shown. 343 

 344 

Another feature of sulphur-containing compounds is the potential for in-source oxidation in 345 

MS, which can hamper quantification when it is non-reproducible. In-source reactions can 346 

vary depending on mass spectrometer and source-settings. In-source oxidation at methionine 347 

needs to be considered when using MS as quantitative detector for peptides, but when using 348 

relative quantification like ICAT this may be of no consequence since different samples can 349 

be assumed to be similarly affected. 350 

 351 

Elemental Detectors 352 

Elemental detectors used for the determination of sulphur-containing compounds are 353 

predominantly inductively coupled argon-plasmas (ICP) either coupled directly to optical 354 

emission spectrometer (OES) or mass spectrometers (MS).  355 

Conductivity detectors, gravimetric or volumetric methods [84] are only suitable for very 356 

specific sulphur compounds like sulphate or sulphide. X-ray fluorescence or X-ray absorption 357 

spectroscopy (XANES and EXAFS) are able to identify the oxidation state (XANES) and 358 

bond length to the near neighbours (EXAFS), but are not suitable for coupling with 359 

separation methods and require access to specific accelerator beamlines at synchrotron 360 

centres. The advantage of these techniques is the possibility to measure samples “in situ” 361 

without any sample preparation, thereby avoiding artefact formation [85]. Another advantage 362 

is the possibility to create high-resolution two or three -dimensional maps of tissues with 363 

information of oxidation state and nearest atomic neighbours [86].Distinction between 364 

different sulphur-containing compounds is however difficult, when oxidation state and 365 

nearest neighbours are the same and minor compounds cannot be identified [87]. 366 

 367 

ICP with argon plasma is for most elements a highly efficient excitation and ionisation 368 

source. Sulphur with is high ionisation potential (10.357 eV) compared to metallic elements 369 

has a significantly lower ionisation efficiency. Nevertheless, it is possible to use ICP coupled 370 

to either an OES or a MS as sulphur detector. Both detectors allow compound independent 371 

quantification of sulphur since in both cases the actual compound present does not influence 372 

signal intensity, which is solely depending on the amount of element (sulphur in this case) 373 

present. This allows compound independent quantification (when the stoichiometry of the 374 

compound is known) using any known stable compound as standard without having the 375 

actual compound(s) present in the sample available as calibrants [88]. However, when 376 

coupling HPLC to an ICP-detector the eluent composition can influence signal intensity. This 377 

is especially important under gradient conditions using organic solvents, as methanol and 378 

acetonitrile, for the separation of sulphur-containing compounds create variable plasma 379 

conditions during the gradient due to the eluent dependent carbon enhancement effect 380 

[59,85,89 ]. One option to compensate for the solvent effect is to mathematically correct it 381 

[90], another is the use of isotope dilution analysis (IDA) when using ICP-MS [59,89] or the 382 

introduction of a “counter-gradient” post-column [91-93 ]. Recently a new method requiring 383 

an additional mass flow controller for compensation of gradient effects using methane or 384 

carbon dioxide addition to the plasma [94] was introduced. The different methods were so 385 

far, not directly compared therefore the merits of one method over to others are not known. 386 

For the time being, the use of a specific method will depend mostly on the technical 387 



feasibility in the laboratory of the user. All these gradient compensation techniques require 388 

manual application as so far none of the ICP-MS data analysis programs can automatically 389 

apply any of them. 390 

 391 

Sulphur-containing compounds can be detected by ICP-OES at 180.676 nm (the most intense 392 

emission line) requiring a spectrometer capable to measure in the UV-range (usually achieved 393 

by flushing the spectrometer with additional nitrogen to remove interfering gases absorbing 394 

in the UV).  395 

More sensitive and therefore nowadays preferred is the ICP-MS. Determination of sulphur by 396 

ICP-MS was for many years limited to either determination of 34S+ with single quadrupole 397 

instruments or the use of high-resolution instruments due to the strong molecular interference 398 

of 16O16O+ on the main sulphur isotope of m/z 32.  399 

High-resolution sector field instruments are able to resolve the molecular interferences of 400 

oxygen, nitrogen and hydrides (for example 16O16O+ on 32S+). These instruments together 401 

with their multi-collector relatives allow the determination of different sulphur isotopes on 402 

mass and in the case of multi-collector instruments simultaneously with high precision [95].  403 

Until about 2000 they were the instruments of choice for low level sulphur determination. 404 

Significant improvements of quadrupole instruments (ICP-qMS), after the introduction of 405 

reaction / collision cell technology, allowed the low-level determination of sulphur using 406 

these more widespread and technically simpler instruments. Mason et al. were one of the first 407 

to study the effect of different reaction / collision gases on the determination of sulphur and 408 

sulphur isotope ratios by ICP-qMS [96]. The use of xenon as collision gas allowed accurate 409 

determination of 32S/34S ratios [96]. Bluemlein et al. [85] compared the use of xenon as 410 

collision gas with oxygen as reaction gas (formation of 32S16O+) in an ICP-qMS with the use 411 

of a high resolution ICP-MS as sulphur detector for HPLC. Triple-quad ICP-MS (ICP-412 

MS/MS), introduced in 2012, very quickly proved an excellent instrument choice for low-413 

level sulphur determination [97,98]. Using ICP-MS/MS interferences are efficiently removed 414 

from the sulphur-signal using oxygen as reaction gas, by isolating the individual sulphur 415 

isotopes before reaction (eg. removal of 48Ti+ from 32S16O+). A tutorial review about ICP-416 

MS/MS can be found here [99]. A detailed review about sulphur determination by ICP-MS is 417 

available from Giner Martínez-Sierra et al. [100].  418 

Detection limits for sulphur given in the literature vary greatly (Table 2). The main reason for 419 

these highly variable detection limits beside instrument type is the problem of sulphur-420 

background in the gases and solvents used as mentioned above. One normally does not think 421 

that argon, argon/oxygen mixtures or oxygen used in ICP-MS may be contaminated with 422 

sulphur-compounds, but experience in our laboratory shows that especially with 423 

argon/oxygen mixtures, used when organic solvents are introduced into the ICP-MS, the 424 

sulphur background can be considerable due to the presence of SO2, H2S or other volatile 425 

sulphur-containing compound(s). 426 

One advantage of ICP-MS, so far rarely used for sulphur, is the possibility to use stable 427 

isotopes not only for quantification of compound(s) either by species unspecific (IDMS) or 428 

species specific spiking (SS-IDMS), but to use enriched stable isotopes to quantitatively trace 429 

metabolic changes in cells over time [101]. 430 

 431 

 432 

  Combined molecular and elemental mass-spectrometry 433 

Both molecular and elemental mass spectrometers are not ideal for the identification and 434 

quantification of sulphur-containing compounds on their own. Either absolute quantification 435 

or identification is difficult. Combining both detectors off-line or on-line with HPLC 436 



therefore is advantageous, especially for biological samples with their large number of 437 

sulphur-compounds present. This allows the identification of the compound(s) and absolute 438 

quantification using a mass balance approach. Identification of the compound is important 439 

when the amount of compound and not the amount of sulphur has to be calculated from the 440 

sulphur signal of the ICP-MS. Feldmann et al. recently published a review on the dual 441 

detection system (ESI-MS + ICP-MS) for non-targeted analysis, including sulphur-containing 442 

compounds [102]. 443 

Depending on the stability of the sulphur-containing compounds and the stability 444 

(reproducibility) of the separation separate ICP-MS measurements for quantification and 445 

molecular mass spectrometric measurements for identification can be successful. Advisable 446 

for the mostly reactive sulphur-containing compounds is the on-line combination of both 447 

detectors. This way any changes in the sample in the time between the determination of the 448 

compounds with one detector and the other can be excluded as shown so clearly by Bluemein 449 

et al. for arsenic-phytochelatin complexes [103]. The disadvantage of the parallel use of both 450 

detectors is that nano-flow columns cannot be used and the instruments have to be physically 451 

near to each other (a requirement not always easy to satisfy).  452 

Prerequisites for the parallel quantification and identification (be it simultaneously or 453 

separate) are separation conditions acceptable to both detectors, excluding the use of non-454 

volatile buffers (ESI-MS) and restricting, to some extent, the use of organic solvents (ICP-455 

MS). The use of a flow splitter is required for simultaneous determination by ICP-MS and 456 

ESI-MS, preferably one developing some back-pressure to keep the flow rates to both 457 

detectors stable over a gradient, but it can also be simple T-piece with different length and 458 

inner diameter tubing. When the system is regularly put to different uses, the use of a sample 459 

containing one known substance (or a few) giving good signals in both detectors is advisable 460 

to determine the time-off set between the detectors. Last but not least, it is helpful for the 461 

identification of compounds, when the data from the ICP-MS can be read by the program 462 

used for data analysis of the ESI-MS or vice versa. 463 

There are a number of publications where ICP-MS is used for quantification of sulphur-464 

containing compounds and the identification of the compounds is done off-line by ESI-MS or 465 

MALDI-MS. For example off-line combination of elemental and molecular mass 466 

spectrometry was successfully used for protein [104], peptides from tryptic digests [105] and 467 

naturally occurring peptides (hepcidin) [106] with quantification via ICP-MS and 468 

identification via ESI-MS. The same process was applied for the identification of drug 469 

impurities and drug metabolites [107,108]. 470 

Fernández-Iglesias et al. [109] estimated the amount of protein bound to gold nano-particles 471 

as the amount of sulphur relative to number and size of the gold nano-particles and combined 472 

this approach with off-line gel electrophoresis for protein separation with protein 473 

identification by ESI-MS after tryptic digest.  474 

True parallel use of elemental and molecular mass spectrometry is so far rarely reported for 475 

sulphur-containing compounds. Raab et al. reported the on-line combination of molecular and 476 

elemental mass-spectrometry with a mass-balance approach for the quantification of sulphur-477 

containing compounds in garlic extract [38] and Bluemlein et al. [103] described the 478 

quantification and identification of arsenic-phytochelatin complexes. Wesenberg et al. [110] 479 

summarised the different techniques and combinations thereof for sulphur-containing 480 

peptides, see also [14,111]. 481 

As this list shows quantification of sulphur by elemental detectors combined with 482 

identification of the compound(s) by molecular mass spectrometry is a very useful 483 

experimental approach for a wide variety of sample types and research questions. 484 

 485 



4. Outlook 486 

 487 

Sulphur is widespread in biological compounds. Over recent years, the analysis of these 488 

biologically important compounds made great strife. Improved or newly developed analytical 489 

methods permit nowadays the sensitive detection and quantification of sulphur-containing 490 

compounds in complex biological matrices. The application of these methods will allow more 491 

details about the complex biological sulphur-cycle to be discovered. Especially the 492 

combination of elemental and molecular mass spectrometry coupled with better-quality 493 

separation techniques will improve the understanding of the influence of the sulphur 494 

metabolism on health and disease. The major difficulties still to overcome are achieving 495 

reproducible low detection limits for elemental detection of sulphur and better peak capacity 496 

of HPLC columns to achieve enhanced separation of sulphur-containing compounds 497 

especially in complex protein or peptide mixtures. 498 

 499 
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 505 

Table 1: principal structure of sulphur containing groups and their occurrence 506 

Sulphur-containing group Found in (among others) 

HS-CH2-R cysteine 

H3C-S-CH2-R methionine 

R-S-S-R disulphide (eg. cystine, alliin relatives) 

HOS-R sulfenic acid (post translational modification 

of cysteine in proteins) 

HO2S-R sulphinic acid (post translational 

modification of cysteine in proteins) 

HO3-S-CH2-R in lipids 

HO3-S-O-CH2-R in lipids 

 

thiol-containing ring structure (eg. Vitamin 

B1) 

 507 

 508 

Table 1: Overview of limits of detection (l.o.d) for different analytical methods as cited in 509 

the literature 510 

Instrument type compound l.o.d. 

HPLC + High-resolution ICP-

MS  

sulphur 0.15 [85] to 5.46 [112] µM 

High-resolution ICP-MS + 

membrane desolvatisation unit 

(total S) 

sulphur 0.3 nM [113] 

ICP-qMS sulphur 3.11 mM (as 34S) [85] 

ICP-qMS + xenon sulphur 0.62 [96] – 2.46 [85] µM 

ICP-qMS tuned to high oxide sulphur 0.41 [114] and 8.42 [115] 

S
CH3

CH3

CH3

CH3



rates (32S+ -> 32S16O+) µM 

ICP-qMS + oxygen (32S+ -> 
32S16O+) 

sulphur 0.0062 [116] and 2.68 [85] 

µM 

ICP-MS/MS (32S+ -> 32S16O+) sulphur 0.094 – 0.19 µM [97] 

ICP-MS/MS (32S+ -> 32S16O+) sulphur 0.2 pM [117] 

Preconcentration + ESI-MS/MS 

(SRM) 

Small thiols in water 0.06 – 0.5 nM [74] 

Fluorescence probe (imaging 

live cells) 

thiols 0.35 to 2.3 µM [118] 

ESI-MS/MS (MRM)  Various glucosinates 1-400 µg compound/L [11]  

ESI-MS/MS (MRM) Various glucosinates 30-360 µg compound /kg 

fresh plant material [52] 

ESI-MS Various glucosinates 10 – 50 µg compound /kg dry 

plant material [53] 

ESI-MS/MS (SRM) Various glucosinate 

metabolites in blood 

plasma / urine 

0.03 to 1.1 µg/L [120] 

HPLC with fluorescence 

detection (monobromobimane) 

thiols 1.2 nM of SH [121] 

HPLC with fluorescence 

detection (DTNB) 

thiols 1.2 µM of SH [121] 

 511 

 512 
 513 

Figure 1: Sketch of metabolic involvement of sulphur containing compounds 514 



 515 
Figure 2: examples of sulphur-containing biological compounds: A1: γ-carrageenan, A2: 6-516 

sulfoquinovose, B1: sulfatide, B2: seminolipid, B3: taurolipid C, C1: glucosinolate, C2: 517 

alliin, C3: serofendic acid C4: Vitamin B1 518 



 519 
Figure 3: separation of a shallot bulb extract using reversed phase HPLC separation and 520 

coupled to ICP-MS/MS as detector (m/z 48 for 32S16O+) (the intensity is in log-scale). The 521 

extract contains at least 44 sulphur-containing compounds. Panel A) Major identified and 522 

quantified compounds are labelled by number and correspond to the following compounds: 523 

Compound 1 (sulphate and related compounds) 35 mg S/ kg dry matter, compound 2 524 

(alliin/isoalliin) 42 mg S/ kg dry matter, compound 3 (3-(Propylsulfinyl)-L-alanine, 180) 2.9 525 

mg S/ kg dry matter, compound 4 (γ-Glutamyl-3-[(1-propen-1-ylsulfinyl]alanine  307) 11 mg 526 

S/ kg dry matter, compound 5a (γ-Glutamyl-homocysteine , 265) 1.2 mg S/ kg dry matter , 527 

compound 5b (γ-Glutamyl-S-methyl-cysteine , 265) 0.40 mg S/ kg dry matter, compound 6 528 

(γ-Glutamyl-methionine, 279) 1.2 mg S/ kg dry matter, compound 7 (γ-Glutamyl-S-(2-529 

carboxypropyl)—cysteine, 337) 9.3 mg S/ kg dry matter,  compound 8a (γ-glutamyl-S-allyl-530 

cysteine GSAC 291) 0.25 mg S/ kg dry matter, compound 8b (γ-glutamyl-S-1-propenyl-531 

cysteine, 291) 1.5 mg S/ kg dry matter, compound 9 (687) 0.52 mg S/ kg dry matter, 532 

compound 10 (S-propylmercaptoglutathione 382) 0.37 mg S/ kg dry matter, compound 11 (? 533 

21.6 min) 0.21 mg S/ kg dry matter, compound 12 (412) 0.29 mg S/ kg dry matter, Panel B 534 

shows extracted ion-chromatograms of compound 2 -6, Panel B shows extracted ion-535 

chromatograms of compound 7 -12 536 

 537 



 538 

Figure 4: examples of measured intensity for compounds compared to theoretical intensities 539 

for molecular composition containing either sulphur or not (data produced by MaXIS II, 540 

qTOF Bruker); panel A: compound at m/z 396 is S-1-propenylmercaptoglutathione oxidised, 541 

panel B: compound at m/z 1399 tryptic peptide of bovine serum albumin 542 

(TVMENFVAFVDK), in both cases the tables show the % intensity of the M+1 etc peaks 543 

relative to M. 544 

 545 

 546 
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