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Abstract

There are many important real world systems which are composed of interconnected entities:
society, part of which are people and the relationships they form, chemical components and
the reactions that they partake in, supply routes and their dependencies on each other, to
give some examples. Studying a network of connections has proven sufficient to derive useful
knowledge about the original system, and the microscale structure, i.e. patterns that appear
in small groups of connected nodes, has correlated with the behavior of the entities these
nodes represent. One type of microscale pattern that has been studied is the one of (induced
or not) network motifs. These are small connected graphs (graphlets) that are present,
if need be after a vertex relabeling (isomorphic to), as (induced or not) subgraphs in the
network studied in an unexpected number versus an adequate null model.

This thesis presents two major contributions to this topic. First, we present FaSE-
Jump, a modified FaSE algorithm for induced subgraph census that trades memory for
time. Secondly, we derive analytical formulas for an extension to (induced) subgraph census
that restrict the count via specification of both the topology of the vertex in the graphlet,
via its orbit under graph isomorphism, as well as its degree in the full network, which we
call graphlet-orbit degree frequency.

We developed and tested FaSE-Jump, a memory-sparing version of the subgraph census
algorithm FaSE. This version places shortcuts on the data structure FaSE uses for indexing
the graphlets it finds, an instance of a GTrie. These shortcuts allow FaSE-jump to jump from
a node in the GTrie to a representative node in that level. This avoids building the subtrees
under jump sources. FaSE-Jump was tested against FaSE on a wide range of networks. The
results indicate that while memory use is sometimes reduced 3x in high memory use inputs,
these are offset by a consistent 3x slowdown over the entire range of inputs. Future work
might consider using a mixed strategy that places jumps at key depths of the GTrie.

The measure we present as graphlet-orbit degree frequency has, as parameters, two aspects
of vertices: their topology in the graphlet, which can be interpreted as a microscale rule
if statistically relevant; their degree, which often classifies their function in the network.
After measuring this quantity, it is necessary to compare it with values obtained on a null-
model. This can be done by Monte Carlo simulation or, more efficiently, with guaranteed
accuracy, and furthering our understanding, by direct analytical calculation. We derived,
and verified against Monte Carlo simulation, formulas for the mean value of graphlet-orbit
degree frequency under the expected degree model.
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Resumo

Existem muitos sistemas reais que são compostos de entidades interconectadas: a sociedade,
composta por pessoas e as relações que estas formam, compostos químicos e as reações em
que tomam parte, rotas de abastecimento e as interdependências entre estas, para dar alguns
exemplos. Estudar uma rede de conexões provou ser suficiente para derivar conhecimento
útil sobre o sistema original, e a estrutura à microescala, isto é, os padrões que aparecem
em pequenos grupos de nós conectados, tem-se correlacionado com o comportamento das
entidades que estes nós representam. Um tipo de padrão à microescala que tem sido estudado
é o de motivos (induzidos ou não) de rede. Isto são pequenos grafos conexos (grafetes)
que estão presentes, se necessário após um renomear dos vértices (isomórficos a), como
subgrafos (induzidos ou não) na rede estudada num número inesperado versus um modelo
nulo adequado.

Esta tese apresenta duas contribuições principais para este tópico. Primeiro, apresentamos
FaSE-Jump, uma versão modificada do algoritmo FaSE, de censo de subgrafos, em que a
nossa versão troca memória por tempo. Segundo, derivamos fórmulas analíticas para uma
extensão do censo de subgrafos induzidos que restringe a contagem via especificação não só
da topologia do vértice no grafete, como também o seu grau na rede original, que chamamos
frequência grafete-órbita grau.

Desenvolvemos e testamos FaSE-Jump, uma versão que poupa memória do algoritmo de
censo de subgrafos FaSE. Esta versão coloca atalhos na estrutura de dados, uma GTrie, que
FaSE usa para indexar os grafetes que encontra. Estes atalhos permitem ao FaSE-Jump
saltar de um nó da GTrie para um nó representante no mesmo nível. Isto evita ter de
construir as subárvores que descendem das origens dos saltos. FaSE-Jump foi testado contra
FaSE numa gama variada de redes. Os resultados indicam que embora o uso de memória seja
algumas vezes reduzido 3x com entradas de alto uso de memória, estes ganhos são balançados
por um gasto consistente de 3x mais tempo de execução. Trabalho futuro poderá considerar
usar uma estratégia que use saltos apenas a profundidades chave na GTrie.

A medida que apresentamos como frequência grafete-órbita grau tem, como parâmetros,
dois aspectos dos vértices: a sua topologia no grafete, que pode ser interpretada como
uma regra à microescala se estatisticamente relevante; e o seu grau, que frequentemente
classifica a sua função na rede. Após medir esta quantidade, é necessário compará-la com os
valores obtidos num modelo nulo. Isto pode ser feito por simulação Monte Carlo, ou, mais
eficientemente, com precisão garantida e avançando o nosso conhecimento, directamente por
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cálculo analítico. Derivamos, e verificamos contra simulações Monte Carlo, fórmulas para o
valor médio da frequência grafete-órbita grau, no modelo do grau esperado.

Palavras-chave: ciência de redes, motivo de rede, censo de subgrafos, FaSE, GTrie, órbita,
analítico, modelo nulo, troca tempo-memória, modelo de variável oculta, modelo de grau
esperado
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1. Introduction

There are many important real world systems which are composed of interconnected entities.
Representing the entities as nodes and the connections as edges in a graph results in what
is called a complex network, so-called for their often non-trivial topology [1]. Studying
this topology has proven sufficient to derive useful knowledge in many occasions, spawning
the field of complex networks. A survey of applications can be found in [2], which covers
systems such as society, part of which are people and the relationships they form; chemical
components and the reactions that they partake in; economic supply routes and their
dependencies on each other.

This field of study can be roughly split into the problems of representation, characterization
and modelling. The problem of characterization consists in the creation of measures that can
differentiate networks. The theoretical basis being the same, i.e. studying the topology of a
network, regardless of application, any network measure can have multidisciplinary impact.
A survey of such measures can be found in [3].

The focus of this thesis is one these measures, called network motifs [4]. They can
be interpreted to be building blocks that by presence or absence characterize a network.
Therefore, they can shed light on the first principles that rule the micro-scale structure of
the network. Specifically, network motifs are small connected graphs (which we will call
graphlets) that are present, if need be after a vertex relabeling (that is, isomorphic to), as
subgraphs in the network studied at an unexpected rate versus an adequate null model,
that is, their number needs to be statistically relevant. Figure 1.1 illustrates the concept of
subgraphs isomorphic to an example graphlet.

1



1. Introduction

G

1

2

3

4

c

1

2 3

a b c

d e

Figure 1.1.: In graph G, the graphlet c is isomorphic to subgraphs (a to e), of which only d
and e are induced subgraphs.

Network motifs have been successfully used in multiple areas, such as biology [5], sociology
[6] and computer science [7]. However, they are computationally difficult, and therefore most
work has been done with small sizes, with motifs containing at most 5 vertices. While it
is possible to generalize the concepts in this work to directed graphs, this carries increased
costs in performance and analysis, therefore we restrict ourselves to undirected graphs, i.e.
edges have no direction.

Therefore, by definition, determining if a graphlet is a network motif implies two steps:
performing a census over the network, which is an algorithmic problem named subgraph
census, and determining if it is statistical relevant, which we will call the statistical relevance
issue.

The subgraph census problem is related to the subgraph isomorphism problem, i.e., given
two graphs G and H, determine if H is a subgraph of G, in the sense that it is a simplification
that checks if the frequency of H is > 0. The subgraph isomorphism problem is NP-complete
[8], making the subgraph census problem of at least the same difficulty.

Solving the statistical relevance issue can be achieved by computationally expensive gen-
eration and measurement of enough samples of the null-model to obtain statistics, or it can
be done by analytical derivation of the expected measures.

A refinement on this concept is the concept of topologically equivalent vertices, in the
context of a particular graphlet. This equivalence partitions the vertices into what are called
orbits. A vertex in G then can be associated with all the graphlet-orbit pairs in which it
appears. Subgraph counting algorithms can then collapse this information into statistics that
relate graphlet-orbit appearances to vertex properties. This concept has been successfully
applied in biology [9]. Figure 1.2 illustrates the concept of orbits.
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1.1. Goals and Contributions

1

2 3

g σc(g)←

()

(2 1 3)

(1 2 3)

()
0

0 0

0

1 1

c o’s

0 : {1, 2, 3}

0 : {1}
1 : {2, 3}

Figure 1.2.: For each graphlet g on k = 3 vertices, in cyclic notation, the permutation σc(g)
that creates them from their canonical form c. On c the vertices are annotated
with their orbit o.

1.1. Goals and Contributions

Our intention with this thesis is to contribute in general to the subfield of network science
concerning network motifs. We approached this by first delving into the subgraph census
problem, and then by focusing on the statistical relevance issue via analytical methods.

Our approach to the subgraph census problem started by taking a state-of-the-art exact
subgraph enumeration algorithm named FAst Subgraph Enumeration (FaSE) [10] which
main limitation is high memory usage. Our research goal was to find memory usage reduction
strategies and then quantify their impact on runtime. We designed, implemented and tested
a variant we called FaSE-Jump that reduces memory usage by as much as 3x, incurring a
consistent 3x runtime increase.

As for the statistical relevance issue, we intended to derive new analytical formulas for
statistical measures of network motifs, that would avoid time-consuming measures by ran-
dom sampling. We focused on an apparently unexplored research space, that of analytical
formulas for orbit counts aggregated by vertex degree on the expected degree model, the
most common and real-world applicable null model. By extending pre-existent work on
graphlet counts, we derived formulas for this novel measure which we successfully validated
by systematic simulation for k ≤ 5.

3



1. Introduction

1.2. Terminology and Definitions

We proceed by going over some terminology.

Functions and symbols In general, we use subscripts as fixed symbols to identify a specific
function. For instance, fa : A → B would be a function from A to B, and fa(a) would be
the image of a by fa.

Edge representation We represent an edge between vertices a and b as the set {a, b}, or the
pair (a, b) or (b, a), interchangeably, since we are dealing exclusively with undirected graphs.

Subgraphs, induced or not We proceed to clarify what we mean by subgraph. A graph
g = (v, e), with vertices v and edges e, is a subgraph of G = (V,E) when v is a subset of V ,
and the condition on e depends on whether or not the subgraph is induced. For a not induced
subgraph, e can be any subset of the set of edges between vertices v that appear in G, while
for an induced subgraph, it must include all of those edges. When performing measures
on induced subgraphs, we will prefix those measures with the term ’induced’. Figure 1.1
illustrates the concept of (induced) subgraphs.

Graph isomorphism We say two graphs are isomorphic when disregarding the labels as-
signed to their vertices makes them equal. Mathematically speaking, two graphs g = (v, e),
g′ = (v′, e′) are isomorphic when there is a bijection between its vertices such that their
edges are the same, i.e. when ∃σ : v → v′ s.t. e′ = {{σa, σb}∀{a, b} ∈ e}.

1.3. Organization

The rest of the work is divided in two parts. First, the implementation and performance
analysis of a modification to an existing subgraph census algorithm. Secondly, the derivation
and confirmation by simulation of formulas for graphlet-orbit counts aggregated by vertex
degree under the expected degree model.

4



2. Time-Memory Trade-Off In FaSE
Algorithm for Subgraph Census

2.1. Introduction and Related Work

The problem of computing a subgraph census has been researched since Milo et al. [4]
formulated network motifs and introduced the program mfinder for calculating subgraph
counts. Next came Enumerate Subgraphs (ESU) by Wernicke [11], which steps through
each subgraph once while eschewing search paths that lead to overcounting. Each subgraph
found needs to be mapped to its canonical graphlet. In general, the preferred tool for
this classification task is the highly optimized program suite nauty[12]. By pre-matching
partially constructed subgraphs into the same isomorphism class, improvements such as
FaSE[10] cut down on the number of classification calls. If the motif graphlet search space
is limited,the GTrie data structure [13] adapts to any subset of interest out of all possible
k vertices graphlets, taking advantage of the corresponding symmetries to short-circuit the
census.

These approaches are generalizable in graphlet size and, although less explored, in vertex
and edge labelling. However, there is a distinction between algorithms that must run the
census over the entire network to function, such as GTScanner [13], based directly on the
GTrie data structure, and algorithms that are more flexible in the sense that they can scan
for subgraphs that intersect a given subset of vertices, such as FaSE. This last case, for
instance, is more applicable to dynamic graphs, to situations where graph access is costly, or
a global census is impractical. This motivates our research towards improving FaSE, that
can be easily modified to achieve this query functionality. For a recent survey on subgraph
counting see [14].

2.2. Fast Subgraph Enumeration (FaSE)

FaSE is described by the pseudocode in Listing 2.2 and illustrated in Figure 2.2; in the
following paragraph we will make an informal description of the pseudocode, enclosing literal
quotes inside parenthesis. In our pseudo-code we use the notation a..b for the list a with b

appended. FaSE maintains a GTrie [13], i.e. a trie of graphs (gtrie). Subgraphs are fed

5



2. Time-Memory Trade-Off In FaSE Algorithm for Subgraph Census

occurences classes leaves classes/leaves
k

3 1.4e+03 2.0e+00 3.0e+00 6.7e-01
4 1.3e+04 6.0e+00 1.7e+01 3.5e-01
5 9.8e+04 2.1e+01 1.7e+02 1.2e-01
6 6.3e+05 1.1e+02 2.4e+03 4.4e-02
7 3.4e+06 7.0e+02 2.7e+04 2.6e-02
8 1.6e+07 5.6e+03 2.0e+05 2.7e-02
9 6.8e+07 4.2e+04 1.1e+06 3.7e-02

Table 2.1.: Number of subgraphs (’occurrences’), number of isomorphism classes, number of
leaf nodes in the GTrie and the ratio between them, for a range of k values for
the network ’starwars’. Data from [10].

vertex by vertex (n) by a subgraph enumerator (gen) to the GTrie resulting in a depth-first
traversal. The subgraph enumerator, is in practice the ESU algorithm but in theory can be
anything that respects the specification in Listing 2.1. Once a leaf node is reached, i.e. once
depth k is attained, the leaf’s counter (node.count), initially zero, is incremented. After
enumerating all the subgraphs of interest, each leaf is mapped by its corresponding graphlet
(graph) to its canonical graphlet (getCanonical(graph)). In this way, FaSE saves runtime
by doing one classification for all subgraphs that matched a leaf. More specifically, at the d-
th (depth) level of this tree, from each node, descend zero or more edges, each corresponding
to a binary vector of size d (makeLabel(n,subgraph)). Each vector is the adjacency vector
of the d + 1-th vertex (n) of some subgraph (subgraph .. n) that was scanned, and thus
for any d each node of the tree at depth d can be made to correspond to a graph of size d.

Loosely speaking, the number of canonical graphs with k vertices grows in proportion to
the number of graphs with k vertices, of which there are 2k. This happens since as k grows
the symmetries that map several graphs to the same canonical form are easily broken by
small changes. However, the number of leaves in the GTrie that FaSE constructs is larger
still, since for any specific graph there are roughly k! ways of the algorithm arriving to it
as it discovers it vertex by vertex. In practice, we ran FaSE on an example network to get
the magnitude of this combinatorial explosion, of the results are in Table 2.1 and plotted
in Figure 2.1; for this example, the ratio of leaves to canonical graphs is around 102. The
situation worsens if considering any kind of combinatoric complication such as directed edges,
labelled edges or vertices in general, or multilayer motifs, for instance, making memory usage
a major limitation to the applicability of FaSE.
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2.2. Fast Subgraph Enumeration (FaSE)
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Figure 2.2.: FaSE diagram taken from [15].
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Figure 2.1.: Plot of FaSE number of occurrences, classes and leaves versus k, using data
from Table 2.1.
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2. Time-Memory Trade-Off In FaSE Algorithm for Subgraph Census

Listing 2.1: Subgraph enumerator specification
1 generates subset of induced subgraphs S of G, each identified by a set of vertices
2 enumerated so that the enumeration state s corresponds to a subgraph g =

↪→ subgraph(s) of a member of S
3 vertices of G must have an ordering
4 initial state is ∅ so that subgraph(∅) = ∅
5 methods
6 next(s:state) → s′:state, v: vertex | null
7 goes over all valid vertices v s.t calling super(s,v) is valid
8 super(s:state,v:vertex) → s′:state
9 generates a state so that:

10 subgraph(s′) = subgraph(s) ∪ v

Listing 2.2: FaSE algorithm
1 input
2 global gen : generator
3 global k : size of graphlets
4 output
5 map (canonical form of size k) −> count
6 code
7 global gtrie = empty Gtrie
8 recurse(
9 state = ∅,

10 subgraph= empty list,
11 node = gtrie.root)
12 m = empty map with default value 0
13 for graph,count in gtrie.leaves_of_size(k):
14 m[getCanonical(graph)]+=count
15 return m
16
17 function recurse(
18 state:gen state,
19 subgraph : list of vertices,
20 node:gtrie node
21 )
22 depth = length(subgraph)
23 if depth == k:
24 node.count++
25 else:
26 while s’,n ← gen.next(state)
27 recurse(
28 state = gen.super(s’,n),
29 subgraph = subgraph .. n,
30 node = gtrie.child(node,makeLabel(n,subgraph))
31 )
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2.3. Adapting FaSE: saving memory

2.3. Adapting FaSE: saving memory

We investigated the memory-savings obtained by, at each tree level, mapping on-demand
all nodes that correspond to the same isomorphic graph to a representant node. The
pseudocode in Listing 2.3 describes the version with the modification, which we named
FaSE-Jump; through the following paragraph we will make an informal description of the
pseudocode, enclosing literal quotes inside parenthesis. The algorithm is modified so that,
after adding a new vertex (n), it performs an horizontal jump from a node (node_child)
to its representant (node_target). This eliminates the need for the subtrees under jump
origins and thus reduces the number of nodes in the tree, thus saving memory. An example
of this modification can be found in Figure 2.3. Table 2.1 shows the ratio between classes
and leaves and gives an idea of the number of paths that can be avoided at each level.
However, this modification requires additional bookkeeping. A traversal must maintain in
memory a permutation (permutation) that transforms the partially constructed subgraph
(subgraph) to its canonical form. At each node, corresponding to the mapping that brings it
to its representant node, there must be a pointer (node_child.target) and a permutation
(node_child.permutation). To initialize a new node with its jump target (buildTarget),
after its canonical form c has been calculated we need to check whether or not there is
already a representant for c. This is done via a map at each level from canonical graphlets to
representant nodes (depth_to_canonical_to_node[depth]) All these additional structures
requirements counter memory savings and increase runtime.

...

11

...

01

...

10

σ = (2 3)σ = id

1

2 3

Figure 2.3.: In dashed lines, jump structure, over the data structure, in gray lines.
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2. Time-Memory Trade-Off In FaSE Algorithm for Subgraph Census

Listing 2.3: FaSE-Jump algorithm
1 input
2 global gen : generator
3 output
4 map ( size s → (map (canonical form of size s → count)) )
5 code
6 global gtrie = empty Gtrie
7 global depth_to_canonical_to_node = empty map with default value

↪→ (empty map)
8 recurse(
9 state = ∅,

10 subgraph= empty list,
11 node = gtrie.root,
12 permutation = empty list
13 )
14
15 m = empty map with default value (empty map)
16 for depth,m in depth_to_canonical_to_node.pairs():
17 for graph,node in m.pairs():
18 m[depth][graph]=node.count
19 return m
20
21 function recurse (
22 s:gen state,
23 subgraph : list of vertices,
24 node : gtrie node,
25 permutation : list of indices
26 )
27 depth = length(subgraph)
28 while s’,n ← gen.next(s)
29 label = makeLabel(n,permute(permutation,subgraph))
30 node_child = gtrie.child(node,label)
31
32 if node_child.target is null:
33 buildTarget(depth+1,node_child,node,label)
34
35 node_target = node_child.target
36 node_target.count++
37
38 recurse(
39 state = gen.super(s’,n),
40 subgraph = subgraph .. n,
41 node = node_target,
42 permutation = permute(
43 node_child.permutation,
44 permutation .. depth
45 )
46 )
47
48 function buildTarget(
49 depth : level of node_child,
50 node_child : gtrie node,
51 node : gtrie node parent of node_child,
52 label : adjacency vector
53 )
54 canonical_subgraph,canonical_to_input = getCanonical(
55 induced_subgraph(node.canonical,label)
56 )
57 node_child.permutation = canonical_to_input
58
59 node_target = depth_to_canonical_to_node[depth][canonical_subgraph]
60 if (node_target is null){
61 node_child.canonical = canonical_subgraph
62 depth_to_canonical_to_node[depth][canonical_subgraph] = node_child
63 node_target = node_child
64 }
65 node_child.target = node_target
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2.4. Experimental Results

2.4. Experimental Results

A pre-existent C++ code base implementing FaSE and designed for Linux was made cross-
platform, and a python API was constructed to facilitate automated testing and metering.
This resulted in three new versions of the software being tested, in addition to the original
FaSE implementation (referred as ”original” in this text) run on the Windows Subsytem for
Linux (WSL), and used as reference: the cross-platform FaSE version run on the WSL, the
cross-platform FaSE-Jump version run on Windows, and the cross-platform FaSE-Jump
version run on the WSL. We tested the new versions against the same set of networks that
FaSE was tested against in its original paper [10]. Node and edge numbers can be found
in Table 2.2. For directed networks edge direction was ignored. The graphlets searched
for were all with k vertices, for k starting at 3 and stopping at the largest value that took
more than 20 seconds of runtime with the original implementation of FaSE. All tests were
conducted on the same machine, on a single-thread, with a CPU clocking at 3.8GHz and
16GB of RAM. For runtime analysis, data points for runs which took less than 15ms were
discarded due to accuracy limitations.

Results are summarized visually in Figure 2.4, for which the data is on Table 2.5 and
Table 2.4. These verify qualitatively that our cross-platform version of FaSE is as performant
as the original, and therefore give us some assurance that the modifications that were
necessary will not affect our evaluation of FaSE-Jump. The maximum memory usage
plot, together with the numerical data, indicates that for inputs with original high memory
usage, FaSE-Jump either did not increase the memory usage, or reduced it, by at most 3x.
Regarding runtime values, the slow-down values are consistent enough to make a regression,
which can be found in Table 2.3. These reveal that FaSE-Jump is roughly 2.7x slower
than FaSE. We confirmed that FaSE-Jump reduced the number of nodes in the GTrie
compared to FaSE (see Figure 2.5). It was also observed that the number of nodes in the
GTrie eventually directly correlates with the memory used by the original version of FaSE
(see Figure 2.6).

name directed #nodes #edges

starwars no 48 157
gloss yes 67 118
jazz no 198 2742
neural yes 297 2148
email yes 1133 5452
power no 4941 6594
foldoc yes 13356 91471
astroph no 18772 198110

Table 2.2.: Networks used as input for testing FaSE variants.
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Figure 2.4.: Runtime and maximum memory usage plots of new implementation of FaSE
and FaSE-Jump versus original FaSE code.

spec slope eintercept

FaSE in WSL 0.99 1.09
FaSE-Jump in WSL 0.97 2.79
FaSE-Jump in Windows 0.97 2.86

Table 2.3.: Linear regression results in log-log space for runtime of new versions versus
the runtime of the original implementation of FaSE. eintercept is therefore the
slowdown factor.
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Figure 2.5.: FaSE vs. FaSE-Jump in number of nodes in the GTrie.
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Figure 2.6.: Number of nodes in GTrie vs. memory for FaSE.
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network k original/bytes FaSE in WSL FaSE-Jump in WSL FaSE-Jump in Windows

gloss 3 2.9e+04 1.2e+00 3.7e-01 5.4e-01
starwars 3 3.3e+04 1.6e+00 4.7e-01 7.3e-01
jazz 3 3.7e+04 1.5e+00 6.0e-01 8.2e-01
starwars 4 3.7e+04 1.8e+00 4.5e-01 6.4e-01
jazz 4 4.1e+04 1.4e+00 5.9e-01 8.3e-01
neural 3 4.9e+04 1.0e+00 6.0e-01 8.0e-01
starwars 5 5.3e+04 1.4e+00 5.0e-01 4.6e-01
jazz 5 5.7e+04 1.4e+00 6.1e-01 7.4e-01
gloss 4 5.7e+04 1.2e+00 5.4e-01 6.7e-01
email 3 8.6e+04 8.4e-01 1.3e+00 1.9e+00
email 4 9.0e+04 8.5e-01 1.3e+00 1.8e+00
power 3 1.1e+05 7.9e-01 1.3e+00 1.9e+00
power 4 1.1e+05 8.2e-01 1.2e+00 1.8e+00
email 5 1.2e+05 9.1e-01 1.3e+00 1.1e+00
foldoc 3 1.2e+05 7.9e-01 1.3e+00 1.6e+00
power 5 1.3e+05 8.4e-01 1.0e+00 1.2e+00
astroph 3 1.3e+05 8.6e-01 1.6e+00 2.1e+00
gloss 5 1.8e+05 1.0e+00 6.9e-01 8.0e-01
neural 4 2.9e+05 1.0e+00 9.2e-01 9.4e-01
foldoc 4 4.2e+05 9.4e-01 1.3e+00 1.1e+00
power 6 4.3e+05 9.5e-01 1.5e+00 1.7e+00
starwars 6 4.4e+05 1.0e+00 1.6e+00 1.5e+00
email 6 6.3e+05 9.7e-01 2.2e+00 2.2e+00
gloss 6 1.1e+06 1.0e+00 1.0e+00 9.5e-01
power 7 2.6e+06 9.9e-01 2.1e+00 2.1e+00
starwars 7 4.3e+06 1.0e+00 3.0e+00 2.6e+00
gloss 7 6.0e+06 1.0e+00 1.1e+00 1.1e+00
neural 5 9.1e+06 1.0e+00 1.2e+00 1.2e+00
power 8 1.7e+07 1.0e+00 2.4e+00 2.4e+00
starwars 8 3.3e+07 1.0e+00 3.6e+00 3.5e+00
gloss 8 3.9e+07 1.0e+00 1.3e+00 1.4e+00

Table 2.4.: Maximum memory usage data points, in the form of memory gain factors for new
versions, relative to the original version, which is in bytes. Entries are sorted by
the original version values. Relative memory gains greater than 2 are bolded.
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2.5. Conclusions and future work

name k original/ms FaSE in WSL FaSE-Jump in WSL FaSE-Jump in Windows

starwars 6 2.5e+01 1.2e+00 3.4e+00 2.8e+00
neural 4 3.6e+01 1.0e+00 2.4e+00 2.4e+00
gloss 7 3.8e+01 1.1e+00 3.1e+00 3.3e+00
jazz 4 5.1e+01 1.0e+00 2.3e+00 2.2e+00
email 4 5.2e+01 1.2e+00 2.3e+00 2.2e+00
power 6 6.2e+01 1.1e+00 2.3e+00 2.6e+00
foldoc 3 1.3e+02 1.1e+00 1.7e+00 1.7e+00
starwars 7 1.6e+02 9.9e-01 2.6e+00 3.1e+00
gloss 8 2.3e+02 9.4e-01 2.6e+00 2.9e+00
astroph 3 3.1e+02 1.1e+00 2.3e+00 2.0e+00
power 7 3.4e+02 9.0e-01 2.2e+00 2.5e+00
starwars 8 9.4e+02 9.6e-01 2.5e+00 2.8e+00
neural 5 1.2e+03 1.1e+00 2.6e+00 2.5e+00
email 5 1.5e+03 1.1e+00 2.2e+00 2.2e+00
jazz 5 1.7e+03 9.6e-01 2.0e+00 1.9e+00
power 8 1.8e+03 1.0e+00 2.4e+00 2.7e+00
foldoc 4 1.1e+04 1.1e+00 1.8e+00 1.9e+00
email 6 5.1e+04 1.1e+00 2.5e+00 2.2e+00

Table 2.5.: Runtime data points, in the form of slowdown values for new versions, relative to
the original version, which is in milliseconds. Entries are sorted by the original
version values.

2.5. Conclusions and future work

There is a memory improvement, but not always and not very significant with the inputs
used. FaSE-Jump is always more expensive on time. Depending on runtime/memory
constraints on a parallel version this might be advantageous. It might be interesting to
experiment with a mixed approach that only uses the new strategy at key depths.
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3. Analytical Approach to Orbit Counts

3.1. Introduction and Related Work

The concept of graphlets can be refined by considering orbits, i.e. the equivalence classes
under automorphism of the vertices in a subgraph. Here, by automorphism we mean an
isomorphism of a graph that does not change it: under such a transformation, vertices swap
to topologically equivalent positions. An example of isomorphisms and an automorphism
can be seen in Figure 3.1. The concept of orbits has been previously illustrated in Figure 1.2.

In this work we will call graphlet-orbit to a pair (g, o), where g is a graphlet and o is a
subset of vertices of g that form an orbit of g. We will often write θ to represent a generic
graphlet-orbit.

1

2

3

g

E = {(2, 3), (2, 1)}

(1 2 3)

1

2

3

σ σg

{(3, 1), (3, 2)} 6= E

σE

(3 1)

1

2

3
{(2, 1), (2, 3)} = E

Figure 3.1.: Example of two isomorphisms of graph g, of which the bottom one is an
automorphism. The isomorphism are the permutations written in cyclic notation
under the σ.

For a graphlet-orbit θ = (g, o), for each vertex v in V , one can consider what we will call
the graphlet-orbit vertex frequency fθ,v(θ, v) defined as the number of induced subgraphs
g′ ⊆ G isomorphic to g such that v maps to orbit o.

This measure can be further collapsed by dropping the dependency on v and instead
having a count for each distinct frequency, obtaining what we will call the graphlet-orbit
multiset, and is referred by others as the graphlet degree distribution (GDD) [16]: fθ(θ) :=

multiset ([fθ,v(θ, v)]v∈V ).
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3.1. Introduction and Related Work

To represent a multiset m, we will use a map, where each element v in m is mapped
to its count #(m, v). The values corresponding to the graph in Figure 1.1 can be seen in
Figure 3.2.

1
2

3
4

fθ,v
θ\v 1 2 3 4 fθ

1 1 1 0 {0 : 1, 1 : 3}

1 1 0 2 {0 : 1, 1 : 2, 2 : 1}

0 0 2 0 {0 : 3, 2 : 1}

Figure 3.2.: fθ,v and fθ for the graph G of Figure 1.1, and all graphlet-orbits θ for k = 3.

Computing these measures on data remains costly in both memory and time, despite
substantial research and improvement [10, 13]. Therefore there is interest in obtaining
analytical formulas for their statistical behavior under some null-model.

There is a decision in how much of the network being measured is to be inputted into
the null-model and how much is to be randomized. The model choice also constrains the
type of networks that can be fitted. An analysis of the asymptotic behavior of some of
these measures in the preferential attachment model can be found in [17]. We focus our
efforts on the expected degree model [18]. Our motivations are that it can conserve the
degree distribution of the input, and is mathematically simple and suited to the ensuing
calculations of moments of the measures being considered.

To our knowledge there are no exact formulas for the distributions of these measures.
Formulas for the mean and variance for counts of (induced) subgraphs isomorphic to a
graphlet in the expected degree model have been derived several times [19, 20, 21]. An
analytical approximation to the real distribution that can be fitted using these two moments
can be found in [22]. In this chapter, we make our own derivation of the formulas for
the mean, and then proceed to our contribution, extending the calculation of the mean to
graphlet-orbit counts aggregated by vertex degree. We will call this measure the graphlet-
orbit degree frequency fθ,d. Defining:

Vd(d) := {v ∈ V : deg(v) = d} (3.1)

We can then write out the formula for fθ,d:

fθ,d(θ, d) =


∑

v∈Vd(d)
fθ,v(θ,v)

#Vd(d)
Vd(d) 6= ∅

0 Vd(d) = ∅
(3.2)
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3. Analytical Approach to Orbit Counts

Inadvertently, although this formula allows us to have a defined value no matter the graph
G, this confuses the cases where fθ,v is zero for all vertices with those where there are no
vertices with degree d. As we will see, this will actually slightly complicate our analysis, but
qualitatively appear to result in a smooth behavior versus degree.

Values for this quantity for the example in Figure 1.1 can be checked at Table 3.1.

θ\d 0 1 2 3 4

0 0 1 1 0

0 2 1 0 0

0 0 0 2 0

Table 3.1.: fθ,d for the example

3.2. Hidden Variables Model as Graph Null Model

We start by using an hidden variables model [23] as null-model. Let the undirected random
graph being generated be G = (V,E), where the vertices V = {v1, v2, ..., vn}. Let DG be the
graph distribution. This model is sampled by drawing for each vertex vi a hidden variable
hi from a distribution Dh. Let the hidden variables vector H = [h1, h2, ..., hn], hi ∼ Dh.
Then for each possible edge (va, vb), create it with probability:

P ((va, vb) ∈ E) = pe((va, vb),H)

= px,y(ha, hb)
(3.3)

Where px,y is a fixed, symmetric function with values in [0, 1].

3.3. Graphlets

Defining Graphlets

Define the transformation σg of a graph g = (V,E) by a bijection σ : V (g) → B as σg =

(B, {(σa, σb)∀(a, b) ∈ E}).

Define graph isomorphism as the relation ∼: a ∼ b ⇔ ∃ bijection σ : V (a) → V (b) : b =

σa.
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3.3. Graphlets

Let G+
k be the set of connected graphs on vertices [k]. Consider ∼ restricted to G+

k . For
these graphs the isomorphisms are generated by applying Sk, the set of permutations of [k],
in the form of bijections from [k] to [k]. For a graph g ∈ G+

k let Ig(g) be its isomorphism
class and Ic(g) the corresponding representant, i.e. its canonical form. Then by definition
there is σc : G+

k → Sk s.t. g = σc(g)Ic(g). For a canonical graph c with automorphism group
Aut(c) := {σ ∈ Sk : c = σc}, the orbit stabilizer theorem [24, Proposition 6.4 on p. 179]
gives us the size of its isomorphism class: |Ig(c)| = k!

|Aut(c)| .

Let Ik be the set of isomorphism classes on G+
k . Let Ik,c be the set of representants. These

are the graphlets of size k of G.

Examples of these objects can be found in Table 3.2 and Table 3.3.

In practice we use nauty [12] to generate all connected graphs of size k, their canonical
forms, and the size of the corresponding automorphism group.

g σc(g) Ic(g)

()

()

(2 1 3)

(1 2 3)

Table 3.2.: Example of g, σc(g), Ic(g) for g ∈ G+
3

c Ig(c) Aut(c){ }
S3{

, ,

}
{(2 3)}

Table 3.3.: Example of c, Ig(c), Aut(c) for c ∈ Ik,c

Mean graphlet count

We proceed to derive a formula for the mean number of occurrences of a graphlet c ∈ Ik,c with
G ∼ DG drawn from the previously described null-model. While formulas for this measure
have been previously derived, ours guided the implementation of a general evaluation routine
and is the basis for the next section on orbit counts.

Consider the number of induced subgraphs isomorphic to a graphlet c in a graph G:
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3. Analytical Approach to Orbit Counts

#c(G, c) :=
∑

s∈(V
k
)

χind(G,s)∼c (3.4)

Where k = #V (c),
(
V
k

)
is the set of subsets of V with size k and ind(G, s) is the subgraph

of G induced by s. We use the notation χv to mean 1 if v is true, and 0 otherwise.

Averaging over G ∼ DG, by linearity of expectation we obtain:

〈#c(G, c)〉G =

(
n

k

)
. 〈χg∼c〉g (3.5)

Where g is a k-vertex graph on vertices [k] that follows the same hidden variable model
(HVM). Expanding the average and splitting on the ways g can match c:

〈χg∼c〉g =
∑

g ∈ Gk

g ∼ c

〈pg(g,H)〉H (3.6)

Where H = [h1, ..., hk], pH(H) =
k∏

i=1
ph(hi) and:

pg(g,H) =
∏

e∈E(Ck)

pχ(e ∈ E(g), x)

∣∣∣∣∣ e = (i, j)

x = px,y(hi, hj)
(3.7)

And in this last formula, Ck is the complete graph on k vertices and:

pχ(b, x) :=

x b

1− x ¬b
(3.8)

For non-induced subgraphs, indicated by a suffix m, the same formula applies, and pg

simplifies to:

pm(g,H) =
∏

(i,j)∈E(g)

px,y(hi, hj) (3.9)

Let Sk be the set of permutations of [k].

If g ∼ c then ∃σ ∈ Sk : g = σc.
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In general we have:

∀σ ∈ Sk :

pg(σg,H) =
∏

(i,j)∈E(Ck)

pχ ((i, j) ∈ E(σg), px,y(hi, hj))

=
∏

(σ−1i,σ−1j)∈E(g)

pχ
((
σ−1i, σ−1j

)
∈ E(g), px,y(hσσ−1i, hσσ−1j)

)
= pg(g, σ

−1H) (3.10)

So pg(g,H) = pg(σc,H) = pg(c, σ
−1H).

For a continuous hidden variable distribution Dh with support [hmin, hmax], we would
have:

〈X(H)〉H =

k̇

i=1

hmax

hmin

dhipH(H)X(H) (3.11)

For σ ∈ Sk let σH := [hσ−1i]i. The hidden variables are drawn independently so we have:

∀σ ∈ Sk : 〈X(H)〉H = 〈X(σH)〉H (3.12)

Therefore:

〈χg∼c〉g =
∑

g ∈ Gk

g ∼ c

σ : g = σc

〈
pg(c, σ

−1H)
〉
H

=
∑

g ∈ Gk

g ∼ c

〈pg(c,H)〉H

= |Ig(c)| 〈pg(c,H)〉H

(3.13)

Let Tg(c) be the right factor 〈pg(c,H)〉H .

For a non-induced subgraphs, we get the same formula, changing the suffix g by m. Let
Tm(c) be the right factor 〈pm(c,H)〉H .

Expanding the missing edges in pg, we have:
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3. Analytical Approach to Orbit Counts

pg(c,H) =
∑

g ∈ Gk :

E(g) ⊇ E(c)

(−1)|E(g)/E(c)|
∏

e∈E(g)

pe(e,H)

= (−1)|E(c)|
∑

g ∈ Gk :

E(g) ⊇ E(c)

(−1)|E(g)|pm(g,H)
(3.14)

Where Gk is the set of graphs on vertices [k].

An example of the expansion of pg can be seen in Equation 3.15.

pg

( )
=+ pm

( )
− pm

( )
− pm

( )
+ pm

( ) (3.15)

Therefore Tg can be written as signed sum of Tm terms:

Tg(c) = (−1)|E(c)|
∑

g ∈ Gk :

E(g) ⊇ E(c)

(−1)|E(g)|Tm(g) (3.16)

If px,y is separable in x, y, then pg can be separated in a factor per hidden variable,
making Tm a product of the expected values of these factors. Otherwise, as a last resort it
can be estimated by Monte Carlo methods, or variational methods [21] might be employed
to determine the region of probability space that dominates the expectation being calculated
in Tm.

Picking px,y We make the common choice of setting:

px,y(x, y) = x.y/w2 (3.17)

Where w is a constant so that w ≥ hmax. This is possible for all input distributions with
finite support, and is separable in x, y.

Using the expected degree model By using an intended degree distribution Dd as Dh,
and setting w =

√
〈h〉n, as long as max(h) ≤

√
〈h〉n, we obtain the expected degree model,
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3.3. Graphlets

named so in [18] since, in the limit of large n, we get:

〈deg(vi)〉 =
n∑

j=1

hihj
〈h〉n

= hi

1
n

n∑
j=1

hj

〈h〉
≈ hi (3.18)

However, this forces hmax ≤ w.

Fitting an arbitrary distribution to the expected degree model One can ensure max(h) ≤√
〈h〉n by truncating and re-normalizing the hidden variable distribution, restricting the

analysis to the vertices with degree ≤ w. We will call the resulting distribution Dc(Dh).
It has probability density ρ(x) = ρ(h=x|h∼Dh)

P (h≤w|h∼Dh)
, where w =

√
〈h〉h∼Dc(Dh)

n. Its support is
{h ∈ sup(Dh) : h ≤ w}. Sampling the graph distribution now means generating a graph not
with n vertices but with nP (h ≤ w|h ∼ D) vertices. In order to include the most out of the
original distribution Dh, we want to maximize w. This requires solving an implicit equation,
which in practice we solved numerically.

Developing Tm Using
px,y(x, y) = x.y/w2 (3.19)

, we get:

pm(g,H) =
∏

(i,j)∈E(g)

px,y(hi, hj) =
k∏

i=1

(
hi
w

)deg(i,g)

(3.20)

Where deg(i, g) is the degree of vertex i in graph g.

Tm(c) = 〈pg(c,H)〉H

=

k∏
i=1

〈(
h

w

)deg(i,g)
〉

h

=
∏
i∈m

(〈(
h

w

)i
〉

h

)#(m,i)

=: Γ(m)

(3.21)

Where m = deg(g) is the multiset of the degrees of g, and #(m, i) is the count of element
i in multiset m. With this we can write the expected number of induced subgraphs as:
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3. Analytical Approach to Orbit Counts

〈#c(G, c)〉 =
(
n

k

)
|Ig(c)| (−1)|E(c)|

∑
g ∈ Gk :

E(g) ⊇ E(c)

(−1)|E(g)|Γ (deg(g)) (3.22)

Γ (deg(g)) =

k∏
i=1

〈(
h

w

)deg(i,g)
〉

h

(3.23)

We conclude this section by going over a practical concern when doing the summation in
Equation 3.22, presenting and justifying our exploratory choice for the degree distribution
Dh and studying the corresponding limits of Tm and Tg for large n.

Gathering identical terms in Tg Given a function f : A → B, let f# : 2A → B# be the
function that maps any subset of A to the multiset of the corresponding images, which we
will call B#. In short, it turns a function into a counting function.

We use this formulation to express our gathering of identical terms in Tg. This gathering
is a precaution against numerical inaccuracy. However, we could not avoid iterating over
all the 2k−|E(c)| possible supergraphs in order to generate the multisets, which become a
computational hurdle for larger k. The formula with gathered terms becomes:

Tg(c) = (−1)|E(c)|
∑

m∈M(c)

# (M(c),m) (−1)E#,m(m)Γ(m) (3.24)

Where:

M(c) := (g → deg(g))# ({g ∈ Gk : E(g) ⊇ E(c)}) (3.25)

E#,m(m) :=

∑
d∈m

d ·#(m, d)

2
(3.26)

An example of calculating M(c) can be found in Table 3.4.
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3.3. Graphlets

g deg(g)

c = {1 : 1, 2 : 2, 3 : 1}

{2 : 2, 3 : 2}

{2 : 2, 3 : 2}

{3 : 4}

→M(c) =


{1 : 1, 2 : 2, 3 : 1} : 1

{2 : 2, 3 : 2} : 2
{3 : 4} : 1



Table 3.4.: {(g, deg(g)) : g ∈ Gk ∧ E(g) ⊇ E(c)} and corresponding M(c)

Γ(m) in the limit of large n for power-law distributions In order to deduce more specific
results, we specialize our analysis to graphs with a power law distribution. We make this
choice for its close connection to scale-free networks, which degree distributions asymptot-
ically follow a power-law distribution. The discovery of scale-free networks in a myriad of
real world systems catalyzed network science [25] and thus using a power-law as degree
distribution allows us to work on well-established theoretical and practical ground.

This means we draw hidden variables from the truncated distribution Dc (Dpw
α ), where

Dpw
α : p(x) = (α − 1)x−α, x ∈ [1,+∞], i.e. the power law distribution starting at 1 with

parameter with α ∈]2, 3[.

We have:

Mh(d) :=

〈(
h

w

)d
〉

h

=

ŵ

1

α− 1

1− w−(α−1)
h−α

(
h

w

)d

dh

=
(α− 1)w−d

1− w−(α−1)

ŵ

1

hd−αdh

=
(α− 1)

1− w−(α−1)

(
w−(α−1) − w−d

)
d− (α− 1)

(3.27)

In the limit of large n, i.e. n → ∞ ⇔ w → ∞, the leftmost denominator goes to 1, and
the rightmost numerator simplifies to w−min(α−1,d). Therefore, since α ∈]2, 3[:

Γ(m) = (α− 1)k
(∏

d∈m

(
1

d− (α− 1)

)#(m,d)
)
w−(#(m,1)+(α−1)(k−#(m,1))) (3.28)

This means Γ(m) is proportional to ω raised to some fixed power.
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3. Analytical Approach to Orbit Counts

Tg in the limit of large n Tg is a sum of terms, one for each supergraph g′ of g, each scaled
by a factor of the form Tm(g′) = Γ(deg(g′)). Therefore, in the limit of large n, the dominant
terms are those that do not add edges touching vertices with degree 1.

3.4. Orbits & Defining Graphlet-Orbit Vertex Frequency

The orbit o of a vertex v, Orb(g, v) in a graph g is the right coset of Aut(g) with respect
to v, i.e. Aut(g)v, where Aut(g) is the group of automorphisms of g. In general terms, an
orbit contains vertices with the same topology in the graph. The set of orbits O(g) of a
graph form a partition of its vertices. Orbits are conserved by isomorphisms in the sense
that σOrb(g, v) = Orb(σg, σv).

Let Ok := {(c, o) : c ∈ Ik, o ∈ O(c)}, i.e., the set of the distinct graphlet-orbits on k

vertices.

Consider the set indk(G, k) of all induced subgraphs of size k on a graph G, and for a
vertex v, the subset of graphs that contain it, indk,v (G, k, v).

For each subgraph g, get its canonical form c, and map the graph-orbits ⊆ Ok back to the
vertices on G. In this fashion, each vertex v in V gets assigned an element og,v(g, v) in Ok

per induced subgraph g that contains v. See Figure 3.3 for an example.

v

G

g

disconnected

indk,v (G, k, v)

-og,v(g, v)

Figure 3.3.: Diagram exemplifying indk,v(G, k, v) and og,v(g, v). Grey nodes indicate both g
and, in a graphlet-orbit (c, o), the vertices in o.

Let the multiset of these graphlet-orbits be:

OG,v,k(G, v, k) = (g → og,v(g, v))
# (indk,v (G, k, v)) (3.29)

This is the same as a function from graphlet-orbit θ to graphlet-orbit vertex frequency
fθ,v(θ, v), with the domain restricted to those θ with at least one occurrence in G. For the
example in Figure 3.3, we would have:
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3.5. Graphlet-orbit h-frequency fθ,h

OG,k,v(G, v, k) =

 : 1

: 1

 (3.30)

3.5. Graphlet-orbit h-frequency fθ,h

We proceed to derive a formula for the mean graphlet-orbit vertex frequency, or a vertex v

in G, G drawn from the random model previously described, with a fixed hidden variable h.
We name this fh,θ the graphlet-orbit h-frequency, where θ is shorthand for the graphlet-orbit
(c, o):

fθ,h(θ, h) := 〈# (OG,v,k(G, v, k), θ)〉G =

(
n− 1

k − 1

)
〈χg∈Gθ

〉g|h1=h (3.31)

Where g is a random graph on vertices [k] that follows the same HVM as G, with the
constraint that h1 is fixed and set to h, and Gθ are the graphs that have vertex 1 in graph-
orbit θ:

Gθ = {g ∈ G+
k : g ∼ c ∧ σc(g)

−1(1) ∈ o} (3.32)

By symmetry we can change vertex 1 in this definition to any other in [k].

We will call fh,θ the graphlet-orbit h-frequency.

Let H− := H|h1 = h, that is, the distribution H with variable h1 fixed. Expanding the
right factor of Equation 3.31:

〈
χg′∈Gθ

〉
g′
=
∑

g∈Gk,θ

〈pg(g,H)〉H− (3.33)

In general, letting S−
k be the set of permutations on [k] that leave 1 unchanged, we have

∀σ ∈ S−
k : 〈X(H)〉H− = 〈X(σH)〉H− . For any g ∈ Gθ, ∃σg ∈ S−

k : g = σgγc, where γ is a
fixed permutation, function of c, o, such that the vertex vo := γ−1(1) is in orbit o in graph
c. Using this fact and Equation 3.10, we obtain:

27



3. Analytical Approach to Orbit Counts

〈
χg′∈Gθ

〉
g′
=

〈∑
g∈Gθ

pg(g,H)

〉
H−

=
∑
g∈Gθ

〈pg(σgγc,H)〉H−

=
∑
g∈Gθ

〈
pg(γc, σ

−1
g H)

〉
H−

=
∑
g∈Gθ

〈pg(γc,H)〉H−

= |Gθ| 〈pg(γc,H)〉H−
= |Gθ| 〈pg(c,H)〉H|hvo=h (3.34)

We now address calculating |Gθ|.

Formula for |Gθ| as a function of known quantities Consider vertices [1, . . . , k] =: V ,
forming a graph g. We want the number of ways Gθ of setting edges in g so that it is
isomorphic to c, and such that vertex 1 is in orbit o (θ = (c, o)). The first condition
we can rephrase as g ∈ I := Ig(c). As for the second condition, by symmetry, |Gθ|
will be the same if we exchange 1 by any other of the k vertices. Formally, let A(v) :={
g ∈ I :

(
(σc(g))

−1 v
)
∈ o
}

. Then by symmetry |A(v)| = |A(1)| ∀v ∈ V . We can therefore
sum all occurrences of θ over these k cases, which will be the number of vertices in orbit o

summed over all g ∈ I, i.e.:

|Gθ| ∗ k = |I| ∗ |o| =⇒ |Gθ| =
|I| |o|
k

.

The right factor 〈pg(c,H)〉H|hvo=h of Equation 3.34 can be simplified for non-induced
subgraphs, by using Equation 3.20 and extracting the dependency on the fixed hidden
variable h:

〈pm(g,H)〉H|hvo=h =

(
h

w

)deg(vo,g) k∏
i!=vo

〈(
h

w

)deg(i,g)
〉

h

=

(
h

w

)deg(vo,g)

Γ (deg(g)/{vo})

(3.35)

For a multiset m and a set s, by m/s we mean the multiset where all counts for the elements
of s were dropped; therefore in Equation 3.35, deg(g)/{v} = (v → deg(v, g))#(V (g)/{v}).
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3.5. Graphlet-orbit h-frequency fθ,h

By using Equation 3.14 to expand the pg factor in Equation 3.34, we can write Equa-
tion 3.31 in calculable terms as:

fθ,h((c, o), h) =

(
n− 1

k − 1

)
|Gθ| (−1)|E(c)|

∑
g ∈ Gk :

E(g) ⊇ E(c)

(−1)|E(g)|
(
h

w

)deg(vo,g)

Γ (deg(g)/{vo})

(3.36)

We finish this section by first specifying how to aggregate identical terms when calculating
the coefficients for the powers of h in Equation 3.36 for fθ,h.

Gathering identical terms in the computation of coefficients of fθ,h To prevent numerical
errors, for the summands in Equation 3.36 with h raised to the same power d, that is, vertex
vo with the same degree d, with exact integer calculations we can count those with the same
argument for Γ, which can be computed once and the result can be multiplied by the count.
For given θ = (c, o), we define the multiset that stores those tallies as:

M(c, d, v) = (g → deg(g)/{v})# ({g ∈ Gk : E(g) ⊇ E(c) ∧ deg(v, g) = d})

We can then write:

fθ,h(θ, h) =

(
n− 1

k − 1

)
|Gθ| (−1)|E(c)|

k∑
d=1

(
h

w

)d ∑
m∈M(c,d,vo)

(
# (M (c, d, vo) ,m) (−1)E#,m(m)+d/2Γ(m)

) (3.37)
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3. Analytical Approach to Orbit Counts

3.6. Experimental Confirmation

We measured the average over DG of fθ,d.

Theoretical approximation “using h ≈ d” A vertex’s assigned hidden variable h, deter-
mines the statistics of its degree; since it is the sum of n − 1 independently drawn random
variables, in general it will follow a normal distribution centered at its mean h, with a
comparatively small variance. Reversing this relationship, a vertex with degree d will very
likely have hidden variable h near d, and therefore for a graphlet-orbit θ we can approximate
the expected graphlet-orbit degree frequency for degree d by the graphlet-orbit h-frequency,
fθ,h(d, θ). We will call this approximation “using h ≈ d”.

Null model parameters We used as hidden variable distribution Dh = Dc(Dpw
2.5), that is the

truncated continuous power law distribution with minimum value 1 and parameter α = 2.5.
Solving for w resulted in w ≈ 50. Choosing a power law makes it possible to have closed
formulas for the moments of Dh and therefore closed formulas for the orbit counts.

Sampling parameters 104 graphs G generated, each with 103 vertices. These parameters
were increased in tandem until the resulting measurements were qualitatively smooth.

Graphlet-orbits measured For practical reasons, we restricted ourselves to measuring the
graphlet-orbit degree frequencies for the 72 graphlet-orbits with k ∈ {3, 4, 5}. This kept
measuring runtime under 20 minutes and allowed us to visually inspect each graphlet-orbit
result in a short time-frame.

Implementation details Coding was done in the Python scientific stack. The hidden
variable distribution was handled as an opaque input parameter, so that it can easily be
swapped by arbitrary input. A version of a subgraph counting algorithm with graphlet-orbit
counting capabilities based on the data structure was modified to compute graphlet-orbit
vertex frequencies aggregated by degree. Generating and measuring the samples took in
total ≈ 1h.

Results In Figure 3.4 we show, versus degree, the experimental graphlet-orbit degree
frequency fθ,d (see Equation 3.2), together with the “using h ≈ d” approximation for two
graphlet-orbits. The same plots for all 72 graphlet-orbits with k ∈ {3, 4, 5} can be found
in the appendix, Figure A.1, plotted together with the better theoretical approximations
described ahead.

.
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3.6. Experimental Confirmation

The plots show qualitative deviation from our approximation, for both low degree and
close to w, after which our approximation is not defined while the results present values.
We detail two cumulative improvements, that together match the results exactly, further
ahead in section 3.7. While their derivation is general to our model, these refinements were
developed in response to this simulation.
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100 101 102 103

d

10−1

100

101

102
f θ
,d

w

0

0

1

measured

using h ≈ d

(a)

100 101 102 103

d

10−2

10−1

100

101

102

103

f θ
,d

w

0

0

1

1

2

measured

using h ≈ d

(b)

Figure 3.4.: Experimental orbit counts and h ≈ d approximation versus degree. In the lower
right, graphlet, with nodes labeled by orbit, and in red the orbit being counted.
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100 101 102 103

d

10−4

10−3

10−2

10−1

f θ
,d

w

0

0

0

0

measured

using h ≈ d

(c)

Figure 3.4 continued

3.7. Refinements

Simulation results for the graphlet-orbit degree frequency showed a large deviation from
fθ,h(θ, d) for high degree, and a smaller one for low degree (see Figure 3.4). Additionally, the
full range of measured degrees is outside the range of the hidden variable. In this section we
correct these deviations in two steps.

3.7.1. Correcting the high degree deviation

In a graph G, for a fixed degree d and graphlet-orbit θ, the experimental graphlet-orbit
degree frequency is the average orbit count over all vertices with degree d (see Equation 3.2).
However, this specific sample G of DG will not contribute to the average over DG if there is
not a single vertex with degree d.

The correction to be made is therefore a multiplication of fθ,h by:

P∃,d(d) := P (∃v : deg(v,G) = d|G ∼ DG) (3.38)

This can be approximated from the probability that a random vertex has degree d:
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3. Analytical Approach to Orbit Counts

Pd(d) := 〈P (x = d|x ∼ Binomial (n− 1, u 〈u〉))〉u (3.39)

Where u := h
w and consequently u 〈u〉 is the probability that a vertex with hidden variable

u forms an edge with some other random vertex.

We can use Pd to calculate the probability that none of the n vertices has degree d, and
negate that again to obtain:

P∃,d(d) ≈ 1− (1− Pd(d))
n (3.40)

100 101 102 103

d

10−2

10−1

100

P
∃,
d

w

Figure 3.5.: Probability of existing a vertex with degree d in a graph sampled from the
expected degree model.

Using the parameters of our experimental confirmation, as can be seen in Figure 3.5, Pd is
1 for low h and then goes exponentially down when arriving near w, the limit we established
for the value of the hidden variable.

As can be seen in Figure 3.6, specifically the “using P∃,d” line, this factor corrects the high
degree deviation, but does not extend the range beyond w.

If we had discarded samples without vertices with degree d and made the average of fθ,d
over the rest, this correction would not be necessary; however this might have resulted in
more noise in the experimental results.
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100 101 102 103

d

10−1

100

101

102
f θ
,d

w

0

0

1

measured

using P∃,d

Figure 3.6.: High degree correction example

3.7.2. Correcting the low degree deviation & extending the range beyond w

The low degree deviation and the missing range beyond w can be explained by dropping the
approximation h ≈ d. Consider that we are measuring the average number of times vertex
v1 ends up in a graphlet-orbit (c, o). Since any set of k − 1 vertices, put together with v1,
will statistically form the same mean number of said occurrences, we can consider that these
vertices are {v2, . . . , vk} =: vg− , and multiply the ensuing result by pre-factor

(
n−1
k−1

)
. There

are |Gθ| ways of placing edges between vg so that the subgraph g induced by v1, . . . , vk is
isomorphic to the graph c and v1 is in orbit o. For any possible concretization g′ of g that
is isomorphic to c, the odds of g = g′ and deg(v1, G) = d are the same. Without loss of
generality, we relabel the vertices so that g′ = c and v1 goes to vo, a vertex in the orbit o of
c, with hidden variable hvo . All that is left is to do is to calculate Nθ,d, the joint probability
of g = c and of vo having degree d in G. For now we can write:

fθ,d(θ, d) =

(
n−1
k−1

)
|Gθ|Nθ,d(θ, d)

Pd(d)
P∃,d(d) (3.41)

Where Pd(d) is the probability of a vertex in G having degree d, and we have already
taken the first correction in account with the P∃,d factor.

We proceed by determining Nθ,d. The vertex vo in g will have a fixed degree which we name
t. Therefore for vo to have degree d in G, it must have d− t edges to {vk+1, . . . , vn} =: vG/g.

35



3. Analytical Approach to Orbit Counts

Refer to Figure 3.7 for a diagram.

vo

g

d− t

S

n− d

G

Figure 3.7.: Diagram for Equation 3.42. Red edges are absent edges.

There is no condition imposed on the edges between the vertices vg− and vG/g, or in-
between vertices in vG/g so the corresponding factors are separable and through integration
on the hidden variables we obtain:

Nθ,d(θ, d) :=

〈
pg (c, [h1, h2, . . . , hk])

∑
S ⊆ vG/g

|S| = d− t

∏
i∈[k+1,...,n]

pχ(vi ∈ S,
hvohi
w2

)

〉

[h1,h2,...,hn]

=

〈
〈pg(c,H)〉H|hvo=h

(
n− k

d− t

)(
h 〈h〉
w2

)(d−t)(
1− h 〈h〉

w2

)(n−k)−(d−t)
〉

h

=

k∑
j=1

βj,θ
〈
ujP (x = d− t|x ∼ Binomial (n− k, u 〈u〉))

〉
u

(3.42)

Where in Equation 3.42 we use the random variable u := h/w, where h ∼ Dh, and

〈pg(c,H)〉H|h1=h using Equation 3.35 is written as the polynomial
k∑

j=1
βj,θu

j .

To give an example, we set θ = (c, o) so that c is the v-like graph of 3 vertices and o

contains the vertex with degree 2. In Figure 3.8 we plot the integrand inside the average
over u, ρ versus u for a different values of d, and in 3.9a we plot Nθ,d. In practice, this figure
helped us verifying our numerical integration and understanding how exactly the distribution
of the degree drifted beyond w.
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10−1 100

u

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ρ

100 101 102

d

w

Figure 3.8.: Probability density ρ corresponding to the integrand of the expression for Nθ,d,
vs. u in its full domain, for a representative discrete range of d, and a y-axis
minimum of 10−7.

Since the binomials in Nθ,d and Pd are very similar and have an exponential peak at
u = d/w, for large n and away from w they will practically have the same value. This

means that fθ,d(θ, d)/P∃,d(d) will be ∝ 〈pg(c,H)〉H|h1=d =
k∑

j=1
βj,θd

j (see Figure 3.10 and

Figure 3.9 for the numerator and denominator of fθ,d). In the result plots, the formula
in Equation 3.41 is refereed to by “using Nθ,d”. Comparing this approximation to the line
“using P∃,d” confirms this second correction can account for the low degree deviation (see
results in Figure 3.4), and the high range beyond w.
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Figure 3.9.: Leftmost numerator and denominator for Equation 3.41.
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fθ,d(θ, d)/P∃,d(d)

fθ,h(θ, d)

Figure 3.10.: fθ,d(θ, d)/P∃,d(d) and fθ,h(θ, d) versus d ∈ {t, . . . , n− 1}
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Figure 3.11.: Low degree correction example.
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Illustrative examples plotting together all approximations are in Figure 3.12.
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Figure 3.12.: Experimental orbit counts and theoretical approximations versus degree. In
the lower right, graphlet, with nodes labeled by orbit, and in red the orbit
being counted.
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Figure 3.12 continued

3.8. Conclusions and Future Work

Results qualitatively match the theoretical values well in the log-log scale. Further ver-
ification could involve varying the power-law α parameter, changing the hidden variable
distribution altogether, increasing the graphlet size k, and quantifying the error over these
changes via a global measure.

The formulas presented open the way for further analytical understanding of orbit counts.
Some derivations are general to any random hidden variables model, and most are applicable
to an expected degree model with an arbitrary distribution. The methods and steps used
seem to be flexible enough to derive different measures. While we are quite certain of
the initial mean value for the graphlet orbit h-frequency, the refinements made afterward
lack the same rigor. Future work should determine the range of parameters where these
approximations are sufficient or valid.

We did not cover the variance of the measures, which is essential for replacing simulation by
analytical formulas to obtain statistics of a null-model. The same works that have derived
formulas for the mean of graphlet counts also have derived the corresponding standard
deviation. Having analyzed the steps taken for these variance derivations, we concluded
that once means were calculated, applying the same logic to graphlet orbits should be
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possible. Therefore we prioritized understanding the mean behavior first, and left the
variance calculations for future work.

In respect to variance, in general we expect high degree vertices link to many low degree
vertices, and high degree vertices, since they have very low probability of appearing, will
likely create high variance in orbit counts due to the many orbits that appear between
one high degree vertex and many low degree vertices. Measurements on input data will be
comparable to the null-model in a degree interval of low uncertainty. Determining this usable
interval could be an interesting endeavor.
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A. Results Extended to All Graphlet-Orbits
With k ∈ {3, 4, 5}

Figure A.1.: Results and theoretical approximations for all 72 graphlet-orbits with k ∈
{3, 4, 5}.
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Figure A.1 continued
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Figure A.1 continued

49



A. Results Extended to All Graphlet-Orbits With k ∈ {3, 4, 5}

Figure A.1 continued
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Figure A.1 continued
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Figure A.1 continued
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Figure A.1 continued
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Figure A.1 continued
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Figure A.1 continued
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Figure A.1 continued
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