
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Framework for collecting and
processing georeferencing data

Diogo Sampaio Duarte Cardoso

WORKING VERSION

Integrated Masters in Electrical and Computers Engineering

Supervisor: Dr. Prof. Luís Paulo Reis

Second Supervisor: Artur Dias

March 3, 2020

c© Diogo Cardoso, 2019

Abstract

Unprecedented amounts of data are constantly being generated by all kind of sources, from the
connected digital ecosystem to the internet of things. The ability to take advantage of this amount
of data plays an important role in achieving successful business strategies. In order to do this,
ingesting large amounts of data into a central repository and processing it is the first step, before
any analytics, predictive modeling or reporting can be done.

A use case for real-time data streams and processing is geolocation data. This facilitates the
tracking of a set of devices, from smartphones to GPS modules, which can be used to create an
overview of all the connected assets, in order to provide an easier and improved management
system. This can be combined with analytics and prediction models to provide extra data which
can backup and create new opportunities and improvements to the current workflows and
processes.

In this dissertation, a framework for real-time data ingestion and consumption is designed
and implemented. The data ingestion infrastructure is reponsible for ingesting geolocation data
which is generated by GPS modules installed in a fleet of vehicles and smartphones, cleaning and
transforming such data to match the desired output data schema, and storing it in a database for
real-time and on-demand use cases.

In order to present the geolocation data in real-time, a map-centered web application was
developed. This web application uses the real-time location of a fleet of vehicles to display markers
on a map, together with business data, which allows a operations team to extract more insights and
improve the scheduling and routing processes.

To provide more control over costs and aid internal auditing processes that are connected with
vehicle metrics such as distances and durations, an automated report was created using a business
inteligence software. This report is generated daily and uses business data to calculate estimated
trips durations and distances, which are then compared with the actual trips durations and distances
that are stored through the ingestion framework.

In summary, the geolocation data ingestion framework is the foundation for multiple
applications and use-cases. Some of these uses cases are described and implemented in this
dissertation, though there are many others. The goal is to provide a solid and scalable solution for
an infrastructure that is future-proof.

i

ii

Resumo

Hoje em dia, verifica-se uma quantidades de dados sem precedentes a ser constantemente gerada
por todos os tipos de fontes, desde o ecossistema digital à internet das coisas. A capacidade de tirar
proveito dessa quantidade de dados desempenha um papel importante na obtenção de estratégias
de negócios bem-sucedidas. Para isso, a ingestão de grandes quantidades de dados num repositório
central e o seu processamento são a primeira etapa, antes de qualquer análise, modelagem preditiva
ou relatório possa ser produzido.

Um caso de uso para fluxos de dados em tempo real e processamento são dados de
geolocalização. Isto permite, por exemplo, o rastreamento de um conjunto de dispositivos, desde
smartphones a módulos de GPS, que podem ser usados, posteriormente, para criar uma visão
geral de todos os ativos conectados, a fim de fornecer um sistema de gestão melhorado e mais
avançado. Este tipo de sistemas podem ser combinados com modelos de análise e previsão para
fornecer mais dados que podem ajudar a justificar ou criar novas oportunidades, e aprimorar os
processos existentes.

Nesta dissertação, é projetada e implementada uma framework para ingestão e consumo de
dados em tempo real. A infraestrutura de ingestão de dados é responsável pela ingestão de dados
de geolocalização gerados por módulos GPS instalados numa frota de veículos e smartphones,
pela transformação desses dados para fazer corresponder a estrutura de dados ao pretendido, e
pelo armazenamento em base de dados, para uso em tempo-real ou on-demand.

Para apresentar os dados de geolocalização em tempo real, foi desenvolvida uma aplicação
web. A aplicação usa a localização em tempo real de uma frota de veículos para pintar marcadores
num mapa, juntamente com dados de negócio, o que permite que uma equipa de operações extraia
mais informações e melhore os processos de agendamento e cálculo de rotas.

Foi também criado um relatório automatizado usando um software de business inteligence
que fornece métricas relacionadas com os veículos, como as distancias percorridas e durações das
viagens. Isto resulta num maior controlo sobre os custos do negócio e assiste em processos de
auditoria interna. Este relatório é gerado diariamente e usa dados do negócio para calcular as
durações e distâncias estimadas das viagens, que são comparadas com as durações e distâncias
reais das viagens.

Em resumo, a framework de ingestão de dados de geolocalização é a base para várias
aplicações e pode ser usada para diversos fins. Alguns desses casos de uso são descritos e
implementados nesta dissertação, embora existam muitos outros. O objetivo é fornecer uma
solução sólida e escalável para uma infraestrutura preparada para o futuro.

iii

iv

Acknowledgments

To my parents, my brother and my grandparents for the support throughout the journey of
becoming an engineer, and life in general.

To Wegho, the company where I worked the last 6 months, for providing the means to do my
dissertation and an healthy and enjoyable environment to work in. In particular, I’d like to thank
my co-supervisor Artur Dias, for his input on the numerous discussions we had, and support in
general.

To my supervisor, Dr. Professor Luís Paulo Reis, for taking this dissertation and providing
support, feedback and ideas which allowed me to improve a lot.

To all my friends, for accepting nothing less than excellence from me.
To each and every one of you - Thank you.

Diogo Cardoso

v

vi

“Luck is where opportunity meets preparation.”

Seneca

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Wegho . 2
1.4 Goals . 2

2 State of the art 5
2.1 Big Data . 5

2.1.1 Concept . 5
2.1.2 Applications . 6

2.2 Cloud Service Models . 7
2.2.1 Introduction . 7
2.2.2 SaaS: Software as a Service . 8
2.2.3 PaaS: Platform as a Service . 9
2.2.4 IaaS: infrastructure as a Service . 10
2.2.5 On-premise . 11
2.2.6 Conclusion . 11

2.3 Data Warehouse . 11
2.3.1 Concept . 11
2.3.2 Architecture . 12
2.3.3 Design . 12

2.4 Data Ingestion . 14
2.4.1 Data Ingestion Paradigms . 14
2.4.2 Challenges . 15
2.4.3 Evolution of distributed streaming platforms 15
2.4.4 Data processing . 16

2.4.4.1 Batch processing . 16
2.4.4.2 Stream processing . 16
2.4.4.3 Micro-batching processing 17

2.4.5 Message brokers . 17
2.5 Data visualization . 18

2.5.1 Concept . 18
2.5.2 Implementation . 18

2.5.2.1 Requirements . 18
2.5.2.2 Techniques . 19

2.5.3 Challenges . 19
2.5.4 Fleet tracking . 19

2.5.4.1 Concept . 19

ix

x CONTENTS

2.5.5 Tools . 20

3 Development 23
3.1 Real Time Location . 23

3.1.1 Data Ingestion . 23
3.1.2 Data Transformation . 27
3.1.3 Data Storage . 27

3.2 Trips . 28
3.2.1 Data Ingestion . 28
3.2.2 Data Transformation . 29
3.2.3 Data Storage . 31
3.2.4 Report . 32

3.3 Web Application . 33
3.3.1 Technologies . 33

3.3.1.1 Languages . 33
3.3.1.2 Libraries and Frameworks . 35

3.3.2 User Interface . 38
3.3.3 Implementation . 39

3.3.3.1 Map . 39
3.3.3.2 Location . 40
3.3.3.3 Suppliers . 42
3.3.3.4 Bookings . 43
3.3.3.5 Routes . 45
3.3.3.6 Timeline . 46

4 Tests and Results 49
4.1 Data Ingestion Framework . 49
4.2 Web Application . 50

4.2.1 UI/UX . 50
4.3 Trips . 50

5 Conclusion 53
5.1 Main Contributions . 53
5.2 Future Work . 53

References 55

List of Figures

2.1 Cloud Service Models . 8
2.2 Data Warehouse architecture [1] . 12
2.3 Inmon’s (top-down) design approach [2] . 13
2.4 Kimball’s (bottom-up) design approach [2] . 13
2.5 ETL paradigm . 14
2.6 ELT paradigm . 15

3.1 Google Cloud Functions overview [3] . 25
3.2 Using Pub/Sub as a bridge between Cloud Scheduler and Cloud Functions 25
3.3 Location function sequence diagram . 26
3.4 Trips function sequence diagram . 29
3.5 Sub-trip contained in a trip . 30
3.6 Sub-trip with different start timestamp . 30
3.7 Sub-trip with different end timestamp . 31
3.8 Trips Cloud Function . 32
3.9 Trips Report (Power BI) . 33
3.10 npm download stats for React, Angular, AngularJS and Vue[4] 36
3.11 React Virtual DOM [5] . 37
3.12 React one way data binding [6] . 38
3.13 UI prototype . 39
3.14 Map Component . 40
3.15 subscribeToLocationData function . 41
3.16 Location feature . 41
3.17 Suppliers feature . 43
3.18 Bookings feature . 44
3.19 Route component . 45
3.20 Routes feature . 46
3.21 Timeline feature . 46
3.22 Unassigned bookings . 47
3.23 Add Booking feature . 48

4.1 Trips Results . 51

xi

xii LIST OF FIGURES

List of Tables

3.1 Request schema for get_vehicle_detailed_events endpoint 23
3.2 Response schema for get_vehicle_detailed_events endpoint 24
3.3 CAN Bus events provided by get_vehicle_detailed_events 24
3.4 Filtered response schema for get_vehicle_detailed_events endpoint 27
3.5 Request schema for get_all_trips endpoint . 28
3.6 Response schema for get_all_trips endpoint . 28
3.7 Filtered response schema for get_all_trips endpoint 29
3.8 Request schema for GetSuppliers . 42
3.9 Response schema for GetSuppliers . 42
3.10 Request schema for GetBookings . 43
3.11 Response schema for GetBookings . 44

xiii

xiv LIST OF TABLES

Abbreviations

API Application Programming Interface
BI Business Inteligence
GPS Global Positioning System
REST Representational State Transfer
SOAP Simple Object Access Protocol
UI User Interface
UML Unified Modeling Language
UX User Experience

xv

Chapter 1

Introduction

1.1 Context

The 21st century is being marked by the disruption of a large number of markets. The possibility

to change how things have always been done, go outside of the traditional ways and offer services

that the costumers have always dreamed of, is now becoming possible due to the available

technologies. New product development, more targeted marketing and better decision-making are

happening thanks to Big Data and cross-referencing information across multiple data sources.

Unprecedented amounts of data are constantly being generated by all kind of sources, from

the connected digital ecosystem to the internet of things. Since the 1980s, the capacity to store

information per-capita has nearly doubled every 40 months. In 2012, there were 2.5 exabytes of

data being generated every day. By 2025, this number is expected to be around 163 zettabytes.[7]

To make sense of this amount of data is not an easy task.

The ability to take advantage of this amount of data plays an important role in achieving

successful business strategies. In order to do this, ingesting large amounts of data into a central

repository and processing it is the first step, before any analytics, predictive modeling or reporting

can be done. A large part of data-driven applications rely on real-time data processing, mostly due

to the use of many connected resources such as internet of things, mobile devices, social networks

and sensors, which adds new challenges. Real-time processing requires continuous and sequential

transactions of limitless streams of input data, which is why it is critical that the Big Data streams

are processed with very short latency.

A use case for real-time data streams and processing is geolocation data. This facilitates the

tracking of a set of devices, from smartphones to GPS modules, which can be used to create an

overview of all the connected assets, in order to provide an easier and improved management

system. This can be combined with analytics and prediction models to provide extra data which

can backup and create new opportunities and improvements to the current workflows and

processes.

1

2 Introduction

1.2 Motivation

Wegho provides services to homes and offices, each having a team of 2 or 3 suppliers, that travel

using Wegho’s vehicle fleet. Most of the vehicles are equiped with GPS modules, provided by

CarTrack - a company specialized in vehicle location systems. The GPS modules transmit location

data and CAN events to a CarTrack server, which is accessible through a web application and a

SOAP API.

Until now, neither solution was actively being used by Wegho, due to several factors:

• The web application was developed several years ago, runs on Adobe Flash which is being

deprecated in 2020 [8], is extremelly slow and has a poor user experience. Its current use is

limited to alerts, in particular, for emergency scenarios such as theft.

• The lack of business data means that business insights and metrics are not easily obtained.

The web application doesn’t offer integration with external data sources so a real-time

overview of both the vehicles and services, and relevant metrics related to efficiency and

scheduling are not possible.

As Wegho’s focus shifts towards improving operational processes around its fleet and service

scheduling, the lack of a suitable tool was a big bottleneck.

Besides technical and logistic improvements, a fleet management system allows more control

over costs, opens the possibility of adopting a benefit program for suppliers which relies on

efficiency metrics, and integration with consumer products such as the mobile application.

1.3 Wegho

Wegho is a platform that provides services and connects services providers to costumers. Wegho

currently offers services in different areas such as cleaning, painting, plumbing, electrical and

fitness, though they are constantly adding new services. Wegho currently targets both B2C and

B2B channels and its services are available in Porto and Lisboa, Portugal.

1.4 Goals

In order to gain advantage over the competition through the analysis of data that originates from

their operations, Wegho is looking for a infrastructure to ingest and process data, which will feed

analytical models and generate analytics and reports. This data is mostly geolocation and

generated by GPS modules and smartphones.

The goal is to develop such infrastructure which is able to:

• Ingest data from multiple sources, such as GPS modules and smartphones, in real-time The

GPS modules equipped in every vehicle and the smartphones used by the service providers

generate geolocation data which should be ingested in real-time.

1.4 Goals 3

• Process data in real-time All ingested data must be transformed and processed in real-time,

for different reasons. The ingested data schema may require cleaning in case of duplicates

or invalid data, transformation in case the output data schema does not match the input data

schema, or even to merge the geolocation data with Wegho’s operational data.

• Store data in a database In order to be able to do further data analysis, all data must be saved

in a database or data-warehouse.

• Design and implement an analytical model for vehicle/driver gas consumption Given the

geolocation data from the vehicles and the services, an analytical model should be able to

predict gas consumption per vehicle/driver.

This infrastructure will provide the foundation for multiple applications and tools - one of

which to replace CarTrack’s web application. This application will join the ingested geolocation

data with Wegho’s reference data. The main features of this web applications are:

• Real-time map with fleet, employees and services location

• Trips history

• Schedule services

Besides the web applications, there are other use cases such as:

• Real-time map with the location of the service provider, in the costumer’s app In order to

enhance the costumer’s experience and improve transparency, the location of the service

provider can be displayed in real-time in the costumer’s app, providing a more precise time

of arrival and enable notifications in case of unexpected delays.

• Update service location The service location can lack precision due to the use of reverse

geocoding [9] in the booking process. In order to update the location for future services,

the service provider’s mobile application can be used to access the phone’s GPS and get its

exact location.

4 Introduction

Chapter 2

State of the art

In order to make the best decisions on the design and implementation of the system proposed in

this thesis, it is required to acquire knowledge of its related concepts, technologies, and previous

work and research. In this chapter, the goal is to describe the highest level of general development,

and the evolution of such level of development.

2.1 Big Data

2.1.1 Concept

Big Data refers to the large, diverse collection of data that grows at ever-increasing rates. While

the act of ingesting and storing large amounts of information is not new, the concept of Big Data

gained momentum in the early 2000s when industry analyst Doug Laney defined Big Data as the

“three V’s” [10]:

• Volume: refers to the amount of generated and stored data. Organizations collect huge

amounts of data from a variety of sources, which range from terabytes to petabytes of data.

Data size determines the potential value of the data, and whether it can be considered Big

Data or not.

• Variety: refers to the different types and nature of the data. Data comes in all types of

formats from a wide range of sources - from structured, numerical data in traditional

databases to unstructured text documents, emails, photos, videos, etc. This variety of

unstructured data adds new challenges to storage, mining and data analysis processes.

• Velocity: refers to the speed at which new data is generated and ingested. Data streams are

coming in at unprecedented speeds and must be dealt with in a timely manner. How fast the

data is generated and processed determines the real potential in the data.

With the growing adoption of Big Data in recent years, two concepts were added to what is

now refered as the “five V’s” of Big Data [11].

5

6 State of the art

• Veracity: refers to the trustworthiness of the data. With huge amounts of unstructured data

being generated, the quality and accuracy of such data is less controllable, though usually

volume makes up for the lack of quality or accuracy.

• Value: refers to the real value provided to the business. Extracting value from Big Data is

not an easy task, but it is important to measure the impact of the results and insights gathered

from all the data.

2.1.2 Applications

The primary goal of Big Data applications is to help businesses in decision making by relying

on data analysis which can be in the form of logs, activity reports, statistics or analytical models.

More and more organizations are leveraging the benefits provided by Big Data applications such

as enhancing customer experience, cost reductions, better targeted marketing or making existing

processes more efficient. Examples of industry domains that use Big Data include healthcare,

government and media. Below is a description of how Big Data is used in these industries and the

challenges they face in the adoption of Big Data applications.

• Healthcare

The healthcare sector has access to huge amounts of data but has been lagged in using

Big Data, because of limited ability of standardize and consolidate data. Other challenges

include the use of data from different readily available sensors. Some of the ways in which

Big Data has contributed to healthcare include:

– Reduction on costs of treatment since there is less chances of having to perform

unnecessary diagnosis

– Epidemic outbreaks prediction and setting up preventive measures

– Detection of preventable diseases in early stages which prevents them from getting

worse which in turn makes their treatment easier and more effective.

– Identification of drug’s side-effects

• Government

In governments, the adoption and use of Big Data creates opportunities to reduce costs and

increase productivity and innovation. Since governments act on a variety of different

domains, Big Data has a wide range of applications, namely energy exploration, financial

market analysis, cyber security, transportation management and homeland security. The

biggest challenges is the integration and interoperability of Big Data across different

government departments and affiliated organizations, since the same data sets are often

used between them.

• Media and Entertainment

2.2 Cloud Service Models 7

In the media and entertainment industry, the generation of large amounts of data is

inevitable. Internet connect devices and social media platforms are widely used and

continue to grow. Their goal is to serve content and messages that are in line with the

consumer’s mindset which is achieved by simultaneously analyzing costumer data along

with behavioral data. Some of the benefits extracted from Big Data include:

– Predicting the interests of audiences

– Getting insights from customer reviews

– Measure content performance

2.2 Cloud Service Models

2.2.1 Introduction

Thanks to the cloud, companies are now able to not only distribute developments remotely, but also

deploy them online. It also allowed users to access a wide variety of applications on-demand. In

cloud computing, these are known as "as-a-service" and are commonly identified with an acronym

ending in "aaS". Before these services were made available, the only option was to use an "on-

premises" solution, which takes a lot of time and resources.

Considering that all systems involved in this project require some sort of infrastructures, it is

important to understand the differences and advantages of the various deployment models.

There are three main "as-a-service" models:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

A summary of the key differences between these models and the legacy on-premise model is

shown below.

8 State of the art

Figure 2.1: Cloud Service Models

2.2.2 SaaS: Software as a Service

Also known as cloud application services, this model represents the most used option for

businesses in the cloud market. SaaS relies on the internet to deliver applications, which are

managed by a third-party. Most of these applications run directly on a web browser and usually

don’t require any downloads or installation on the client side.

• Delivery

SaaS usually eliminates the need to download, install and manage applications on every

computer, which would require extra IT staff. Vendors manage all of the potential technical

issues, such as data, middleware, servers, and storage, allowing business to streamline their

maintenance and support.

• Advantages

2.2 Cloud Service Models 9

Due to its delivery model, SaaS allows business to reduce the time and money spent on

IT staff to do the tedious tasks of download, install and upgrade applications. This allows

the company to focus on more pressing matters and issues. Most SaaS providers operate

a subscription model with a fixed, inclusive monthly fee, which makes it easier to budget

accordingly.

• Characteristics

– Centralized management

– Hosted on a remote server by a third-party provider

– Available over the internet

– Users are not responsible for hardware or software updates

• Use cases

– Startups and small companies and don’t want to allocate time and money for server

issues or software

– Short-time projects

– Low usage applications

– Applications that require both web and mobile access

• Examples

– Google Suite [12], Dropbox [13], Salesforce [14], GoToMeeting [15]

2.2.3 PaaS: Platform as a Service

PaaS or cloud platform services, provide a wide range of cloud components and are mainly

consumed by applications. By using PaaS, developers rely on frameworks supplied by the

provider to build and create customized applications. The servers, storage and networking can be

managed in-house or by a third-party while developers can maintain control of the applications.

• Delivery

While similar to the previous model, PaaS provides a platform for software development

instead of the software itself. This platform is delivered over the internet and allows

developers to focus on building the software while not having to worry about operating

systems, software updates, storage or infrastructure.

• Advantages

– Makes the development and deployment of applications a simple and cost-effective

process.

– Scalable

10 State of the art

– Highly available

– Greatly reduces the amount of coding, saving a lot of time and money

• Characteristics

– Resources can be easily scaled up or down as your business changes

– Provides a set of services which assist with the development, testing and deployment

of applications

– Easy to run without extensive system administration knowledge

• Examples

– AWS Elastic Beanstalk [16], Heroku [17], Google App Engine [18], OpenShift [19]

2.2.4 IaaS: infrastructure as a Service

IaaS or cloud infrastructure services, consist in highly scalable pay-as-you-go services such as

storage, networking, and storage, via virtualization. It’s a self-service model in the sense that

allows businesses to access and monitor things like servers, networking, storage, and other

services, and it allows them to purchase resources on-demand instead of having to invest in

expensive on-premise resources.

• Delivery

The infrastructure provided by these services usually include servers, network, operating

systems, and storage, through virtualization technology. These cloud servers are usually

accessible through a dashboard or an API, which provide full-access to the infrastructure.

IaaS offers the same capabilities as a traditional data center without having to manage or

maintain all of it, which is costly and labor-intensive.

• Advantages

– Flexible and highly scalable

– On-demand resources

– Complete control over the infrastructure

– Accessible by multiple users

– Cost-effective

• Characteristics

– Resources are available as a service

– Services are highly scalable

– Offers complete control over the infrastructure

– Flexible and dynamic, as they can be replaced at any time

2.3 Data Warehouse 11

• Examples

– Digital Ocean [20], Linode [21], AWS EC2 [22], Google Compute Engine [23]

2.2.5 On-premise

Before cloud computing solutions were made available, companies had to rely on on-premise

solutions which can be costly in terms of hardware and maintenance. This model is usually not as

scalable as cloud services, since it requires hardware updates, and in a situation of downgrade, it

results in resource wasting. Although this type of hosting is not used in most situations nowadays,

there are still certain companies that benefit from it. Industries and services like healthcare and

financial services companies are usually required to have their infrastructure hosted locally or on

an authorized local third-party provider as they are required to collect, store, and process private

data. Public and government institutions also usually require on-premise infrastructures as a matter

of national security.

2.2.6 Conclusion

The increasing popularity of IaaS, PaaS, and SaaS is reducing the need for on-premise hosting. Its

crucial for a business to understand the differences between each model and choose accordingly.

Each model offers different features and functionalities and different levels of control over the

entire system which on-premise hosting cannot provide.

• IaaS provides the most flexibility, specially when building custom applications, as well as

providing a general data center for storage.

• PaaS is built on top of an IaaS platform in order to reduce the need for system administration.

It allows developers to focus on the development of the application instead of infrastructure

management.

• SaaS offers ready-to-use, out-of-the-box solutions that meet a particular business need.

Usually built on top of IaaS or PaaS platforms.

2.3 Data Warehouse

2.3.1 Concept

A data warehouse (DW), also known as enterprise data warehouse (EDW), is a core component of

business intelligence, which enables data consolidation, analysis and reporting. It integrates data

from multiple sources, usually on a regular frequency, in a central repository. In a data-centric

age, data and analytics provide a lot of value to businesses in order to stay competitive. The

use of reports, dashboards, and analytics tools to extract insights from their data, allows them to

monitor business performance and support decision making. These resources are powered by data

12 State of the art

warehouses, which store data efficiently and deliver query results at fast speeds, to multiple users

concurrently.

2.3.2 Architecture

Traditional data warehouses are typically structured in three tiers:

• Bottom tier: a database server, usually a RDBMS, that stores extracted data from different

sources

• Middle tier: an OLAP or OLTP server that implements the operations, transforming the data

• Top tier: query and reporting tools for analysis and business intelligence

Figure 2.2: Data Warehouse architecture [1]

2.3.3 Design

When designing a DW, there are three approaches worth considering:

2.3 Data Warehouse 13

• Top-down: also known as the Inmon approach [2], its where the data warehouse is built

first and is seen as the core component of the analytical environment. Data is extracted,

summarized and distributed from the centralized warehouse to one or more data marts.

Figure 2.3: Inmon’s (top-down) design approach [2]

• Bottom-up: also know as the Kimball approach [2], its where data marts are created first.

Each data mart focuses on a specific business process, and are later integrated using a data

warehouse bus architecture.

Figure 2.4: Kimball’s (bottom-up) design approach [2]

• Hybrid: this approach includes aspects from both the top-down and bottom-up methods. It

seeks to combine the speed of the bottom-up approach with the integration achieved in a

top-down design.

14 State of the art

2.4 Data Ingestion

Data ingestion is a process by which data is moved from one or more sources to a destination,

whether for immediate use or stored for further analysis. Sources may be in-house applications,

databases, SaaS, or anything capable of generating data. The destination is typically a data

warehouse, data mart, database, or a document store. Incoming data may be in different formats

and usually requires cleaning and transformation in order to be analyzed together with data from

other sources. Data can be ingested in batches or streamed in real-time. When data is ingested in

batches, data items are imported regularly in scheduled intervals, which is useful to generate logs

or reports. When data is ingested in real time, each item is imported as it is emitted by the source,

which is useful when the information is time-sensitive such as in monitoring critical systems. An

efficient data ingestion process starts by prioritizing data sources, validating individual files and

routing data items to the correct destination.

2.4.1 Data Ingestion Paradigms

For a long time, data ingestion paradigms would rely on an extract, transform and load (ETL)

procedure, in which data is taken from the source, manipulated to fit the schema of the destination

system or the needs of the business, then added to that system.

Figure 2.5: ETL paradigm

Today, cloud data warehouses like Amazon Redshift [24], Google BigQuery [25] and

Microsoft Azure SQL Data Warehouse [26] can scale compute and storage resources in a matter

of seconds or minutes in a cost-effective way. This allows data engineers to skip the

transformations step and load all the raw data into the storage system. This raw data can then be

transformed by using SQL at query time. This new approach has changed ETL into ELT, which

is an efficient way to replicate data in a cloud infrastructure.

2.4 Data Ingestion 15

Figure 2.6: ELT paradigm

ETL is not only used to replicate data to a cloud platform, but it removes the need to write

complex transformations as part of the data pipeline. Most importantly, ETL gives different teams

the freedom to develop ad-hoc transformations according to their particular needs.

2.4.2 Challenges

One of the main aspects of delivering value though the use of BI tools, analytics or any insights

powered by data pipelines, is to ensure data is being ingested efficiently. A faulty ingestion pipe

can emit incomplete and inaccurate data, which will result in errors. It’s important to know the

limitations and properly design the ingestion platform before the actual implementation. Some of

the main challenges are described below:

• Multiple source ingestion

In order to draw better insights from combined data, it’s important to define what data is

needed and how it can be transformed and ingested into different systems. This also includes

the definition of the best data store and format to store the data in.

• Scaling

Heavy-data applications can have a very fast growth in terms of velocity and volume of data.

To mitigate this, it’s important that companies realize the need to scale up before choosing

the solution they are planning to adopt, for example, between on-promises or a managed

service.

• Moving data

Data must be transported and processed between the sources and the destination. There are

primarily two approaches to this: batch jobs and streams. The choice between these

approaches depends mainly on the necessity of real-time analysis. A more in-depth

explanation is presented on the next section.

2.4.3 Evolution of distributed streaming platforms

Due to the rapidly expanding data scale, distributed streaming platforms have been under

research for over a decade. Most of the early research focused on single-node systems such as

16 State of the art

Aurora [27], which are currently outdated due to their inefficiency. The introduction of

MapReduce [28] has revolutionized modern distributed streaming platforms given its scalability

and fault-tolerance features. MapReduce has become the core of multiple data stream processing

frameworks such as S4 from Yahoo [29], Apache Storm [30], Apache Samza [31], Apache Spark

[32] and TimeStream from Microsoft [33]. Although most of these solutions are widely used,

they are built for batch-processing applications. Due to the requirements of low-latency

high-update frequency data streams, stream-processing platforms, such as Apache Kafka

Streams [34], Apache Spark and Apache Druid [35], have been developed to better fit this need.

2.4.4 Data processing

2.4.4.1 Batch processing

The analysis of large sets of data, which are collected over past time periods, is done with batch

processing. This is the most common approach to data ingestion. In this approach, the ingestion

layer collects and groups source data periodically and sends it to the destination system. The

groups of data can be defined in multiple ways: any logical ordering, conditional, scheduled or by

size. Batch processing is used when data is not time-sensitive and there’s no need for real-time

analysis, which usually results in an easier and more affordable solution than streaming ingestion.

2.4.4.1.1 MapReduce

MapReduce is a programming paradigm that enables processing and generating Big Data with a

parallel, distributed algorithm on a cluster. The term "MapReduce" refers to two different and

separate tasks. The first is the map job, which processes tuples by running a user-defined mapping

function, usually filtering and sorting, and generates a new, intermediate tuple for the reduce job.

This reduce job performs a summary operation, usually merging intermediate values associated

with the same key.

The "MapReduce Framework" orchestrates the processing of data by automatically running

tasks in parallel, managing all communications and data transfers between multiple sources and

destinations, between multiple distributed servers, and also providing redundancy and fault

tolerance features.

Though multiple libraries have been written in many programming languages, with different

levels of optimization, the most popular implementation of this model is the open-source

software Apache Hadoop [36]. Most cloud providers offer PaaS solutions based on Hadoop:

AWS EMR [37], Google Cloud Dataproc [38] and Microsoft Azure HDInsight [39].

2.4.4.2 Stream processing

A stream-based application needs to be able to ingest, process and analyze data in real-time, and,

in many cases, combine multiple streams, both live (unbounded streams) and archived (bounded

streams), in order to provider better insights. To this end, Big Data processing runtimes (eg:

2.4 Data Ingestion 17

Apache Spark, Apache Kafka Streams and Apache Druid) designed for both batch and stream

processing are being widely adopted and replacing more traditional batch-oriented processing

models (eg: MapReduce, Hadoop) that are unable to fulfil the requirements of low-latency high-

update frequency data streams. Some PaaS solutions include Amazon MSK [40], Confluent Cloud

on GCP [41] and Microsoft Azure HDInsight.

2.4.4.3 Micro-batching processing

Some streaming platforms (such as Apache Spark Streaming) also use batch processing. The

difference is that ingested groups of data are smaller or prepared at shorter intervals, though not

processed individually like in pure streaming platforms. This type of processing is often called

micro-batching.

2.4.5 Message brokers

To make the process of data exchange simple and reliable, communication between sources and

data processing platforms usually rely on message brokers. These message brokers can act as a

buffer for messages, to ensure a logical order between incoming messages, and route the messages

to multiple applications or users. It effectively creates a centralized store for data which becomes

the source of truth.

For a distributed architecture, there are four typical message patterns that are widely used [42]:

• PAIR: communication is established strictly within one-to-one peers

• Client/Server: server distributes messages according to client’s requests

• Push/Pull: messages are distributed to multiple processors, arranged in pipeline

• Pub/Sub: connects a set of publishers to a set of subscribers

In a context of data ingestion, not all four patterns are suitable for stream processing, which

needs to handle high velocity and large volume of data. The PAIR message pattern clearly limits

the distribution of large volume of messages since it distributes messages on an one-to-one basis,

which makes it not suitable for a processing node due to unpredictable nature of data content and

format. The above mentioned problem also affects the Client/Server pattern. The remaining two

patterns - Push/Pull and Pub/Sub - are the common choice for stream processing systems. The

Push/Pull pattern is a one-way stream processing pattern, where the upstream nodes invoke the

downstream nodes when they are finished processing tasks. This means that streams can go

through several processing stages, depending on the number of consumers, and no messages are

sent upstream. Pub/Sub is the most popular messaging pattern. Systems that implement this

pattern have a broker that manages the distribution of messages, by matching the topics

subscribed by receivers to the topics published by producers. Any application can be a subscriber

or a publisher, and the broker will always transmit the topics from the publisher’s end to the

subscribers’ end.

18 State of the art

There are various message brokers available, being the most popular Apache Kafka and

RabbitMQ [43]. There are also PaaS solutions namely Amazon Kinesis [44], Google Cloud

PubSub [45] and Microsoft Azure Event Hub [46].

2.5 Data visualization

2.5.1 Concept

As seen in the section Big Data 2.1, the amount of data being created is growing every year, and

shows no sign of slowing down. Even if the data pipeline is properly designed and implemented,

this data is only useful if valuable insights can be extracted from it and acted upon. Data

visualization is the representation of data in a graphical format. Its purpose it to make it easier to

understand data values and communicate important concepts and ideas. Although this is not the

only way to analyze data, data visualization offers a fast and effective way to:

• Interpret information quickly: using a graphical representation allows businesses to interpret

large amounts of data in clear, cohesive ways and draw conclusions from that data. Given

the way the human brain works, the analysis of data in graphical form is usually easier and

faster than looking at spreadsheets or reports with hundreds of lines.

• Spot trends: spotting trends in large amounts of data is usually hard, specially when there

are multiple sources. Big Data visualization techniques can make it easy to spot these trends

and give businesses an edge over the competition.

• Identify correlations: a data visualization tool allows businesses to not only get answers to

their questions, but also to discover what unexpected insights the data can reveal. Identifying

relationships and unexpected patterns in data can provide huge value to businesses.

• Present the data to others: When new insights are uncovered, usually the next step is to

present those insights to others. The use of a graphical representation provides an effective

and easy way to understand and gets the message across quickly.

2.5.2 Implementation

2.5.2.1 Requirements

Before adopting any data visualization tools, it’s necessary to have a solid grasp on the data,

and define the goals, needs and audience of such tools. In order to prepare a business for data

visualization technologies, some requirements should be met.

• Understand the data, including its size and cardinality (the uniqueness of data values)

• Determine what metrics and information should be visualized

• Know the target audience and how it processes visual information

• Use visuals that get the message across quickly, in an effective and easy way

2.5 Data visualization 19

2.5.2.2 Techniques

One of the biggest challenges with data visualization is choosing the most effective way to

visualize the data to surface any insights it may contain. In some cases, simple BI tools such as

pie charts or histograms may show the whole picture, but with large and diverse data sets, more

advanced and complex visualization techniques may be more appropriate. Some examples of

data visualization techniques include:

• Linear: Lists of items.

• 2D/Planar/geospatial: Cartograms, dot distribution maps, symbol maps, contour maps.

• 3D/Volumetric: 3D computer models/simulations.

• Temporal: Timelines, time series charts, scatter plots.

• Multidimensional: Pie charts, histograms, tag clouds, bar charts, tree maps, heat maps.

• Tree/hierarchical: Dendrograms, radial tree charts, hyperbolic tree charts.

2.5.3 Challenges

Big Data visualization can provide a lot of value to businesses, but before being able to take

advantage of it, some issues need to be addressed. These include:

• Data quality: The insights provided by Big Data visualization are only as accurate as the

data that is being visualized. If the data is inaccurate or out of date, then any insights that

result from it are not reliable.

• Hardware resources: Big Data visualization is essentially a computing task, which can be

more or less demanding depending on the type of analysis required. This may demand the

use of powerful expensive hardware, fast storage systems, or even move to a cloud service.

Other challenges include perceptual and interactive scalability. The first usually happens when

visualizing large data sets where every data point is represented, leading to over-plotting and

consequently overwhelming users’ perceptual and cognitive capacities. The solution is to reduce

the data through sampling or filtering. The scalability issues arise when querying large data stores

which leads to high latency, disrupting the user experience.

2.5.4 Fleet tracking

2.5.4.1 Concept

Fleet tracking is a management system that uses vehicle tracking devices, usually equipped with a

GPS or GLONNASS module, and software to monitor and manage a fleet of vehicles. The typical

architecture of these systems includes:

20 State of the art

• GPS tracking: A device is installed in the vehicle and captures GPS information, apart from

other vehicle information such as CAN data, at regular intervals, and sends it to a remote

server. The CAN data can include fuel capacity, engine temperature, altitude, door status,

tire pressure, ignition status, battery status, odometer, engine RPM, throttle position, among

others. Some of these systems will also include connection ports to remotely control the

vehicle, through its ECU.

• Remote server: The server is responsible to receive, process and store data. Usually, it also

serves the data through an API.

• User Interface: The user interface provides a way for users to access fleet information in

real-time, past data and generate reports.

These systems can be used for several purposes, such as: fleet tracking, routing, dispatching

and security. More advanced use-cases include monitoring schedule adherence and automation

jobs based on vehicle location or routes. In early 2009, the American Public Transportation

Association estimated that around half of all transit buses in the United States were already using

a GPS-based tracking system to trigger automated stop announcements. [47] By gathering

location data in real-time as a transit vehicle follows its route, a computer is able to assert its

location relative to the next stop and trigger the announcement at the right time. The schedules

are also updated in real-time by comparing the current location and time with the programmed

schedule. Some transit agencies also provide online maps with real-time location of their vehicles

to provide information regarding waiting times, so the costumers can base their schedule on real

data instead of the schedulled time of arrival.

Other scenarios where this technology is used include:

• Vehicle recovery: The tracking devices, usually equipped with GPS modules, provide real-

time infomation which allow police to track and recover the vehicle. Some devices include

remote control, which can shut down the vehicle when necessary.

• Field service management: Companies that have a field service workforce for services such

as maintenance, cleaning and repairs, are able to plan field worker’s schedules efficiently or

site arrival information to costumers.

• Fuel Monitoring: Monitor the fuel through the tracking device in combination with a fuel

sensor.

• Asset tracking: Allows companies to track valuable assets for insurance purposes on to

closely monitor movement and operating status.

2.5.5 Tools

There are a lot of Big Data solutions in the market, including big names such as Microsoft

(Microsoft Power BI [48]), SAP (SAP Lumira [49]), SAS (SAS Visual Analytics [50]) and IBM

2.5 Data visualization 21

(Watson Analytics [51]). Other specialist software vendors include Tableau Software [52],

Qlik [53] and TIBCO [54]. Libraries like D3 [55] and Fusion Chart XT [56] enable the

development of web-based custom data visualization solutions.

22 State of the art

Chapter 3

Development

3.1 Real Time Location

3.1.1 Data Ingestion

The location data is generated by CarTrack’s GPS modules installed in Wegho’s vehicles. To

access this data, the CarTrack’s API provides an endpoint get_vehicle_detailed_event which

returns, among other data, the GPS coordinates of the vehicle. The request and response data

schemas are detailed below.

Request

Field Type Description

registration string The vehicle’s registration

start_ts date Start date

end_ts date End date

username string CarTrack credentials

Table 3.1: Request schema for get_vehicle_detailed_events endpoint

Response

23

24 Development

Field Type Description

id number

registration string Vehicle’s registration

event_ts date Event timestamp

event_description string Event description

longitude decimal GPS longitude

latitude decimal GPS latitude

odometer number Vehicle’s odometer value in km

bearing number Vehicle’s bearing in degrees

ignition boolean Engine ignition status

speed number Speed in kmh

mapzone

temp1 decimal Sensor 1 temperature in Co

temp2 decimal Sensor 2 temperature in Co

temp3 decimal Sensor 3 temperature in Co

temp4 decimal Sensor 4 temperature in Co

door1_status boolean Driver door status

door2_status boolean Passenger door status

received_ts date Event received timestamp

Table 3.2: Response schema for get_vehicle_detailed_events endpoint

Its important to note that this endpoint doesn’t always return data; it requires a CAN Bus event

to be triggered in order to generate data regarding that event. This results in no data being returned

when the vehicle is off.

If the car is moving, an event is generated every 10 seconds - the maximum update frequency

of the location data. Otherwise, the response will be either empty or contain information about an

event generated by the CAN Bus. Although these events are not documented in the API, it was

possible to extract a list of events from several requests.

Name Type/Values Description

ign boolean Ignition status

dHDG Unknown Unknown

dODO number Odometer

reverse boolean Reverse status

motion start/end Vehicle starts/stops moving

Table 3.3: CAN Bus events provided by get_vehicle_detailed_events

Now that the maximum frequency of location data updates is known, it is necessary to develop

3.1 Real Time Location 25

a solution to fetch it periodically, in an automated way. To achieve this, a script was developed

to make requests to the API. This script relies on a time-based job scheduler, also known as cron

job, to automate its execution. cron is a Linux utility which schedules a command or script to run

automatically at a specified time and date. A cron job is the scheduled task itself.

The script was deployed in Google Cloud Platform using Cloud Functions. A Cloud Function

is a "serverless execution environment for building and connecting cloud services" [3], in which

the user writes a single-purpose event-driven function that is executed in a managed environment.

Figure 3.1: Google Cloud Functions overview [3]

Unlike the traditional way of running a function (or script) which involves setting up and

managing an infrastructure, Cloud Functions provide an easy way to run the code in the cloud in

a fully-managed, highly available and fault tolerant environment. Other advantages include the

billing structure - the user is only billed when the function runs - and easy integration with other

cloud services, such as Google Firebase. For this particular use-case, given the maximum update

frequency of 10 seconds of the location data (ie: the function doesn’t need to run constantly) and

the connection to Google’s Firebase results in a great fit for using Google Cloud Functions.

A Cloud Function is event-driven, so it requires an event to trigger its execution. There are

multiple supported event types: Cloud Pub/Sub, Cloud Storage, HTTP, Stackdriver Logging and

Firebase. As previously established, the function needs to be executed periodically which requires

a time-based trigger. Although it’s not possible to use a job scheduller as an event source directly,

Google Cloud Platform provides a work-around [57] for this use-case. The solution is to use

Cloud Pub/Sub - a messaging queue service that allows sending and receiving messages between

applications - which acts as a bridge between the Cloud Sheduler job and the Cloud Function.

Figure 3.2: Using Pub/Sub as a bridge between Cloud Scheduler and Cloud Functions

In order to setup this workflow, it’s required to:

• Create a topic in Pub/Sub

26 Development

• Create a job in Cloud Scheduler that runs every 10 seconds and sends a message to a Pub/Sub

topic when the job is executed

• Create a script for the Cloud Function, and set its execution trigger to the Pub/Sub topic

created

The script was developed in JavaScript, and uses the strong-soap library [58] to make the

requests to the CarTrack’s SOAP API. In order to manage the API credentials, Google Key

Management System [59] was used. This system allows the credentials to be encrypted in the

script and only decrypted on run-time. It also requires execution previleges which are granted by

the Function owner, which limits the exposure if someone tries to decrypt the credentials outside

a particular environment. In order to store the location data, Google’s Firestore SDK [60]

provides an easy way to access the database from the Function environment.

Figure 3.3: Location function sequence diagram

The script starts by decrypting the API credentials using KMS. Then, it makes a request to

get_vehicle_details to fetch all vehicle registrations. This request is necessary in order to make

the function future proof, in case a new vehicle is added to Wegho’s fleet or an exiting vehicle

is removed, the only action required is to restart the function. Both the API credentials and all

vehicle registrations are served from cache [61] in subsequent calls, so it only runs on the first

execution. This saves execution time which results in faster data updates.

The next step is to make a request to get_vehicle_detailed_events in order to fetch the location

data. This request is executed for each registration. To mitigate a negative impact on performance,

3.1 Real Time Location 27

all the requests are prepared and executed in parallel. Ideally, this endpoint would allow multiple

registrations to be queried on a single request.

Finally, the response data is filtered to remove unnecessary data fields and match the database

schema, and then sent to Firebase. This process is described in detail in the following chapters.

3.1.2 Data Transformation

The data schema returned by the API endpoint consists of a large number of properties and values

that are not relevant for this system. In order to save storage space and, most importantly, match

the storage data schema, only the relevant data is kept and passed onto the next step.

Field Type Description

registration string Vehicle’s registration

event_ts date Event timestamp

longitude decimal GPS longitude

latitude decimal GPS latitude

Table 3.4: Filtered response schema for get_vehicle_detailed_events endpoint

At this stage, invalid or duplicate data is also removed.

3.1.3 Data Storage

The data storage solution must be capable of handling batch updates, multiple times per minute

(limited to the number of vehicles times 10s of maximum frequency, as described in the previous

sub-chapter) and provide a subscription-like feature to feed the data into the data view layer in

real-time. Most database engines, SQL and NoSQL, such as PostgreSQL and MongoDB, offer

both features, making any of them a valid choice - PostgreSQL uses the notify command [62]

while MongoDB uses change streams [63]. For this particular case, a NoSQL solution was chosen

due to its scalability features, better performance in write and read queries and the fact that there’s

no need for relational queries.

In regards to NoSQL, there are on-premises and PaaS solutions, namely MongoDB and Google

Firebase, and given the amount of data being relatively low, the cost of running and managing

an infrastructure for a MongoDB database outweighs its benefits, hence the decision of using

Firebase.

A collection named "geo-location" was created to store location data. The schema of the

documents matches the filtered schema 3.4 and each vehicle has its own document. Each document

is updated whenever a location update is received (ie: the location of the vehicle changes).

28 Development

3.2 Trips

3.2.1 Data Ingestion

As in the previous chapter 3.1.1, trip data is also provided by CarTrack. By taking advantage

of the ignition property in the location data, CarTrack can generate trips by looking for changes

in this property. When the ignition property changes from "off" to "on", a new trip is started;

otherwise, a trip is ended. While the ignition key has the same value, the trip distance and duration

is updated. The trip data is then stored in CarTrack’s database and made accessible through their

API, specifically, the get_all_trips endpoint. This endpoint has the following schema:

Field Type Description

registration string The vehicle’s registration

start_ts date Start date

end_ts date End date

username string CarTrack credentials

Table 3.5: Request schema for get_all_trips endpoint

Field Type Description

vehicle_id number Vehicle’s id

start_timestamp date Trip start timestamp

end_timestamp date Trip end timestamp

start_location string Trip start location

end_location string Trip end location

trip_distance number Trip total distance in meters

trip_time time Trip total duration

registration string Vehicle’s registration

driver_id number Driver’s id

driver string Driver’s name

client_vehicle_description string Vehicle’s description

Table 3.6: Response schema for get_all_trips endpoint

The solution used for extracting the trips data is similar to the solution described in section

3.1.1 - a Cloud Function triggered by a Pub/Sub message sent by a Scheduler event. The difference

being the execution frequency of the Scheduler job which, in this case, is every 5 minutes. Unlike

the location data, the non-periodic nature of trips makes it unnecessary to use a faster frequency,

so this value was defined according to the project requirements, in particular, the usage of trips

data by the end-users on the data visualization tool.

3.2 Trips 29

Figure 3.4: Trips function sequence diagram

The first part of the script uses the same principle as the location data script described in

the previous section 3.1.1, where the API credencials are decrypted and a request is made to

CarTrack’s API in order to fetch all vehicle registrations.

Afterwards, a request is made to get_all_trips in order to fetch the trips data. This request is

executed for each vehicle registration. The response data is then filtered to remove unnecessary

data and match the database schema, and then sent to Firebase and Azure Event Hubs. This process

is described in detail in the following chapters.

3.2.2 Data Transformation

Similarly to the location data transformation described in section 3.1.2, only a part of the data

returned by the trips endpoint is relevant for this use-case. The filtered data retains the relevant

fields, which are illustrated below.

Field Type Description

start_timestamp date Trip start timestamp

end_timestamp date Trip end timestamp

trip_distance number Trip total distance in meters

trip_time time Trip total duration

registration string Vehicle’s registration

Table 3.7: Filtered response schema for get_all_trips endpoint

30 Development

After filtering the data, there are more steps required in order to properly process trips. Given

the update frequency of 5 minutes, the trips returned by the API are not actual trips, but parts

of trips - which were named "sub-trips". Since the API does not provide a unique identifier for

each trip, the solution to handle these "sub-trips" is to query the database before actually inserting

or updating the trip data. This way, it’s possible to assert whether the "sub-trip" is actually a

valid "sub-trip", an invalid "sub-trip" or a new trip. These "sub-trips" were identified by executing

multiple requests to the API, and are described below:

• "Ghost" sub-trips

These sub-trips have the same value for start_timestamp and end_timestamp. Since trips

with 0 duration are not possible, these were called "Ghost" sub-trips and are discarded.

• Sub-trips fully contained in a trip

Figure 3.5: Sub-trip contained in a trip

These sub-trips have a start_timestamp greater than an existing trip start_timestamp, and an

end_timestamp smaller than an existing trip end_timestamp. This means that the sub-trip is

contained in an exisitng trip, and can be discarded as it doesn’t add new information.

• Sub-trips with different start timestamps

Figure 3.6: Sub-trip with different start timestamp

These sub-trips have the same end_timestamp as an existing trip, but a different

start_timestamp. These sub-trips are discarded since they are part of an existing trip.

3.2 Trips 31

• Sub-trips with different end timestamps

Figure 3.7: Sub-trip with different end timestamp

These sub-trips have the same start_timestamp as an existing trip, but a smaller

end_timestamp. Since a trip already exists with the same start_timestamp value, it is

correct to assume that the new end_timestamp is valid and means that the trip is still

ongoing.

• New trip

After checking all the previous scenarios, it is safe to assume that a new trip has started. In

this case, a new document is created.

3.2.3 Data Storage

The trips data will be used for different purposes: a web application, and report generation using

business inteligence tools. These applications have different requirements, so different storage

solutions were used.

The web application requires trips data to be updated regularly, so the user can check recent

trips for every vehicle. To this end, the trips data is stored in Firebase, similarly to the location

data. A collection named "geo-trips" was created, where the schema of the documents match the

filtered schema 3.7. Each document represents a trip.

The BI tools require business data to be taken into account, so they can generate better and

useful insights. Currently, Wegho’s operational data is stored on a SQL Server database, hosted

on Azure. Since the database is not accessible externally, the trips data has to be stored in Azure

as well. Although Azure offers different database engines, the need for relational queries and the

fact that Wegho’s operational database uses SQL Server, made decision to use a new SQL Server

database straightforward.

Two different solutions for sending the trips data to the database were considered: a Cloud

Function running on Azure, and Azure Event Hubs. The cloud functions on Azure work similarly

to Google Cloud Functions, while Event Hubs can be compared to Google Pub/Sub - a

fully-managed, real-time data ingestion service. The advantage of using Azure Event Hubs is its

integration with Azure Stream Analytics - a real-time analytics service - which allows trips data

32 Development

to be joined with business data in different SQL Server databases, in an easy way. Any of the

solutions would be a valid choice, but Event Hubs ended up being the one used for this.

3.2.4 Report

In order to generate a daily report, a business analytics software is the most suitable tool for the job.

To this end, Microsoft Power BI was used to generate the report. Power BI provides integration

with multiple data sources, including SQL Server, and has a variety of features including custom

dashboards, advanced reporting options, powerful data governance tools, and ad hoc analysis.

The goal of the daily report is to improve efficiency in the schedulling of bookings and routing

of vehicles. It can also be used to account for non-work related trips, which are allowed but not

unlimited. One way to accomplish this is by comparing estimated trips duration and distance with

the actual trips duration and distance. The estimated trips data is generated by a Cloud Function

hosted in Azure. This function starts by fetching all bookings for a given day from Wegho’s

operational database, groups them by vehicle registration and sorts them by start date, and makes

an API request to Mapbox Directions API [64] to get data regarding distance and duration. This

data is saved in the same database so it can be used for analytics and optimization processes. As

described in the previous section 3.2.3, the actual trips data is stored in a SQL Server database,

also hosted on Azure, which makes the process of joining data simpler.

Figure 3.8: Trips Cloud Function

The report created in Power BI is powered by a SQL query that retrives all data required for

populating the report fields. An example of such report can be seen below.

3.3 Web Application 33

Figure 3.9: Trips Report (Power BI)

The report is generated every day regarding trips from the previous day. The first section is

a summary of the most important data: the sum of estimated trips data and the sum of actual

trips data, deltas and gas cost. The table below shows the individual trips data by vehicle driver.

The duration and distance deltas are highlighted from green (small delta) to red (large delta) since

these are the values that are most relevant. The bottom table shows all bookings assigned to each

vehicle.

3.3 Web Application

3.3.1 Technologies

3.3.1.1 Languages

The core languages in front-end development are HTML, CSS and JavaScript. Although a simple

web site can be built with just HTML, current web sites and web applications use all three

languages. It’s also common to include jQuery, a JavaScript library that provides an abstraction

and easy-to-use API for DOM manipulation, event handling, animation, and AJAX requests. It

was originally used for browser compatibility, since it provides polyfills for modern Web APIs

that are not available in older browsers. Nowadays, browser compatibility has improved a lot, and

jQuery is not being used as much. On the other hand, JavaScript libraries and frameworks such as

React [65], Angular [66] and Vue [67] have gained popularity due to their performance and

features.

• HTML

34 Development

HTML stands for Hyper Text Markup Language, and it’s the standard markup language for

the Web. HTML elements are represented by <> tags and are the building blocks of HTML

pages. These elements can have attributes which come in keyvalue pairs, such as

id="some_id", and provide additional information about the element. The HTML

specification, written by WHATWG, defines all HTML elements, besides other Web

related technologies. Some of these elements include: <body> which is the element that

contains the visible page content, <h1> which is an heading, and <p> which is a paragraph.

• CSS

Cascading Style Sheets, or CSS, is a style sheet language used for adding style (e.g. fonts,

colors, spacing) to Web documents. It’s designed to enable the separation of presentation

and content. CSS is a rule-based language, where each rule consist of one or more selectors,

and a declaration block. A selector targets the HTML element that is going to be styled.

Inside the declaration block, one or more declarations, which take the form of property and

value pairs, specify a property of the selected element(s) and its value.

• JavaScript

JavaScript, also referred to as JS, was initially created to "make web pages alive". It is a

high-level, just-in-time compiled, multi-paradigm programming language which

implements the ECMAScript standard. The programs written in this language are called

scripts. They can be written directly in an HTML document, using the <script> tag, or

imported. In a browser environment, it is used mainly for enhancing the user interaction

with the Web site. This is possible due to Web APIs such as the DOM API, which allows

JS to manipulate HTML and CSS, the Geolocation API, which accesses geolocation

information, the Canvas and WebGL APIs, which enable animated 2D and 3D graphics,

Audio and VIdeo APIs, which allow multimedia resources to be displayed, or even record

a web camera feed, among others.

With the increasing growth of the Internet, specially dynamic Web sites and Web applications,

new technologies were created and are being developed to improve the developer experience.

Some of these include:

• TypeScript

TypeScript is a typed superset of JavaScript, originally developed by Microsoft, which

compiles to plain JavaScript. The key feature TypeScript brings to JavaScript is a type

system. JavaScript is a dynamically typed language, meaning a single variable can contain

a string, a number, a function, or any other data type. What TypeScript does it define what

a given variable can contain. A summary of TypeScript features is described below:

– Static typing: Types can be added to variables, functions, properties, etc. This helps

the compiler and warns about potential errors in code, before even running the script

3.3 Web Application 35

or application. Types also help when using libraries and frameworks, as they let

developers know exactly what type of data APIs expect.

– Type Inference: Implicit typing performed by TypeScript itself, so that developers

don’t need to provide types where the compiler can find them on its own.

– Autocomplete tooling support: Autocomplete tools like Intellisense and most IDE’s

builtin autocomplete tools provide hints and tips as code is written. Due to the static

types, they are able to offer even more predictive assistance than usual.

– Syntax: Although the recent version of ECMAScript (2019) includes many of the

features that have been present in TypeScript from earlier stages, some are still

missing, such as, abstract classes and access modifiers.

These features result in a better experience for developers and are the reason why its

popularity has been growing in later years.

• Sass

Sass is a CSS preprocessor, which adds special features such as variables, inheritance, nested

rules and mixins into regular CSS. The aim is to make the coding process simple and more

efficient, that can be easily maintained, thus reducing the amount of CSS required otherwise.

3.3.1.2 Libraries and Frameworks

There are many libraries and frameworks for front-end development. A framework can be defined

as a large number of components which support the development of web applications. These

components aim to help developers by reducing the overhead associated with common activities

performed in web development, such as, routing, API interaction and session management. They

are usually used for developing dynamic web applications. The most used web frameworks for

new projects are, currently, React, Angular and VueJS.

A library can be defined as a lightweight version of a framework, as it doesn’t offer the same

range of capabilities. For this reason, they are more flexible and hand over more control to the

developer. Usually, it’s necessary to include other libraries as the complexity of the web

application increases, such as, state management and routing libraries. The most used web

framework for new projects is, currently, ReactJS.

Nowadays, React is the most popular among all frameworks and libraries, which results in a

bigger and better ecosystem around it, with multiple solutions.

36 Development

Figure 3.10: npm download stats for React, Angular, AngularJS and Vue[4]

There are multiple reasons for this popularity and why it’s a great solution:

• Virtual DOM

The Document Object Model is an interface for HTML documents, which represents the

page so that programs or scripts can change its structure, style and content. The document

is treated as a tree structure where each branch ends in a node, and each node contains

objects.

Updating the DOM is often considered slow, and most of the JavaScript frameworks update

the whole DOM, which makes it slower. In most cases, this is unnecessary since only part

of the DOM should be updated.

To solve this problem, React relies on the concept of virtual DOM, where a virtual

representation of the DOM is kept in memory and synced with the "real" DOM. This

process is called reconciliation and it’s current implementation is named React Fiber. The

reconciliation mechanism includes React elements, life-cycle methods and the render

method, and the diffing algorithm applied to a component’s children. The React Fiber

engine is what allows manipulating the virtual DOM to be much faster than the "real"

DOM. When an update is made, the whole virtual DOM is updated, and then React

compares the differences between the updated virtual DOM with the pre-updated "real"

DOM. This is the diffing process and its result is the actual update that will affect the "real"

DOM.

3.3 Web Application 37

Figure 3.11: React Virtual DOM [5]

• Components

A React application is made up of multiple components, where each component has its own

logic and controls. Conceptually, they are similar to JavaScript functions since they accept

inputs, called "props", and return React elements. There are two types of components:

functional and class components. The first type is literally a JavaScript function whereas the

later provides more features, such as life-cycle methods. They provide a way to split the UI

into independent, reusable pieces which help to maintain the code when working on larger

scale projects.

• One-way data binding

As seen in the previous point, React applications are made up multiple components. These

components are functional in nature: they accept inputs and return React Elements. One-

way data binding means that data flows only one way.

The view is a result of the application state. State can only change when actions are

triggered. When actions are triggered, the state is updated. A component owns its state.

Any data affected by this state can only affect the component’s children, and never its

parent, or its siblings, or any other component.

There are some key advantages to this approach:

– More control over data, resulting in a less error prone application

– Better debugging, as the data and its origin are well know

38 Development

Figure 3.12: React one way data binding [6]

A commonly used library in conjunction with React is Redux [68]. Redux is a "predictable

state container for JavaScript apps" [69]. It helps writing web applications that "behave

consistently, run in different environments (client, server, and native), and are easy to test".

3.3.2 User Interface

The user interface is the means that allows users and computers to interact. An UI can include

screens, keyboards or a mouse, but in a web application context it provides a way for users to

interact with the web application, usually through a web browser. The UI is often talked about

in conjunction with user experience (UX), which may include the interface’s aesthetics, response

time and the content that is presented to the user.

For a map-centered web application, the user interface must focus on the map while providing

a way for users to interact with it.

The first iteration of the user interface design was created by Wegho’s former UI/UX designer,

and is composed of a wide map, which clearly defines the focus of the web application, an header

where different features are toggled on and off, and a sidebar for filtering vehicles and districts.

3.3 Web Application 39

Figure 3.13: UI prototype

3.3.3 Implementation

In order to kick-start the web application development, a React boilerplate - Create React App

[70] - was used. This boilerplate is officially supported by Facebook (the React maintainers) and

its one of the most used to create single-page React applications. This boilerplate includes the

initial setup for a npm project, React core dependencies and the react scripts package. The latter

is the core of this boilerplate - it includes a linter (ESLint [71]), a transpiler (Babel [72]), a testing

library (Jest [73]), a bundler (Webpack [74]) and other tools.

3.3.3.1 Map

The map is provided by Mapbox [75] and integrated with the React web application through React-

Map-Gl [76], a component library developed by Uber. The pricing structure of Mapbox and its

easy integration with React supported the decision to use this stack, instead of Google Maps or

other map provider.

The ReactMapGL component provided by the React-Map-Gl library was used to display the

map. This component takes several props: style, width, height, latitude, longitude, zoom and a

onViewportChange function. The style prop is for setting up custom styles, which can be

designed with the Mapbox Studio [77]. The width and height props are related to the map

container, while the remaining props are used for the first render of the map, and are updated

when the user navigates the map by the onViewportChange function.

40 Development

Figure 3.14: Map Component

The Mapbox API access token is required to access the Mapbox API. Since this is a client-side

application running in a web-browser, the client will always have access to the token. To avoid

unauthorized requests to the Mapbox API, the token is configured to only allow requests from the

domain where the web application is hosted.

3.3.3.2 Location

As defined in chapter 3.1.3, location data is stored in Google Firestore. In order to interact with

the database from the web application, the Firebase JavaScript SDK [60] was used. This library

can be used in multiple environments, namely the web browser, and provides an easy way to query

Firestore databases.

The onSnapshot method from the SDK was used to access the location data in real-time. This

method "listens" to updates on documents from a given collection and triggers a callback function

whenever there are changes. The callback function updates the location data in the application

store by dispatching the updateLocationData action, which in turn updates the location markers

in the map.

3.3 Web Application 41

Figure 3.15: subscribeToLocationData function

The subscribeToLocationData function is called on page load since the vehicle location is

shown by default. Simultaneously, data regarding bookings and suppliers is fetched from Wegho’s

operational database. This includes driver information, which is merged with vehicle location data

in order to identify vehicle drivers and connect vehicles with booking.

Figure 3.16: Location feature

42 Development

3.3.3.3 Suppliers

Suppliers data is stored in Wegho’s operational database, which is accessible through an API, and

contains information about all suppliers that provide services for Wegho. This data is used to draw

markers in the map and provide general information about suppliers.

This endpoint accepts GET requests and its schema is described below.

Field Type Description

Date Date The date being queried

Table 3.8: Request schema for GetSuppliers

Field Type Description

SupplierID number Supplier unique identifier

SupplierName string Supplier name

HomeDistrictName string Supplier home district

HomeAddress string Supplier address

Latitude number Supplier address latitude

Longitude number Supplier address longitude

Registration string Supplier vehicle registration

Table 3.9: Response schema for GetSuppliers

3.3 Web Application 43

Figure 3.17: Suppliers feature

3.3.3.4 Bookings

Bookings data is also stored in Wegho’s operational database, and is accessible through the same

API. A booking is a service booked by a client. This data is used to draw markers in the map and

provide general information about the service.

This endpoint accepts GET requests and its schema is described below.

Field Type Description

Date Date The date being queried

Table 3.10: Request schema for GetBookings

44 Development

Field Type Description

BookingID number Booking unique identifier

StatusID number Booking status identifier

StatusDescription string Booking status description

Latitude number Booking address latitude

Longitude number Booking address longitude

DistrictName string Booking address district

Address string Booking address

Duration number Booking duration in hours

StartDate date Booking start date

EndDate date Booking end date

Notes string Booking notes

FirstName string Client first name

LastName string Client last name

PhoneNumber string Client phone number

LSuppliers Suppliers Suppliers assigned to the booking

Table 3.11: Response schema for GetBookings

Figure 3.18: Bookings feature

3.3 Web Application 45

3.3.3.5 Routes

Routes are created for each vehicle, for a given day. Usually, routes start and end at a suppliers

home address, since suppliers currently take vehicles home. All bookings associated with each

vehicle are sorted by start time and added to a list of coordinates. Using Mapbox’s Direction API

[64], a route is created between all points and then drawn on the map.

The Route component relies on the Source and Layer components of React-Map-Gl to draw

the routes effectively.

Figure 3.19: Route component

The Source component creates a map source from a geoJSON object. The geoJSON format is

the stardard format for encoding geographic data structures [78]. This object is created from the

route coordinates received by the Directions API call, which is executed in the useEffect hook.

The Layer component adds a layer to the map and is responsible for styling. In this case, the layer

is of type line, and will connect every point in the route.

46 Development

Figure 3.20: Routes feature

3.3.3.6 Timeline

The timeline feature allows users to navigate between past, current and future dates.

Figure 3.21: Timeline feature

3.3 Web Application 47

When selecting a past date, bookings and suppliers data are updated to that particular date.

Although location data is not be available for past dates (its not saved in the database), all trips are

available for analysis.

In case of selecting a future date, only the bookings and suppliers features are available, since

current location of the vehicles is not relevant, and its not possible to calculate routes while the

schedule is not closed. The existing bookings for that day will show as unassigned, represented

by a grey color, which helps the support team to build schedules.

Figure 3.22: Unassigned bookings

For bookings that had not been created at that time, a "Add Booking" feature was added. This

consists of a form where the user enters the costumer data and assigns a vehicle to that service.

48 Development

Figure 3.23: Add Booking feature

Chapter 4

Tests and Results

4.1 Data Ingestion Framework

The goal of the data ingestion framework is to ingest, process and store geolocation data. The

developed solution was deployed on September, 2019 and was improved upon in the following

weeks. It’s now considered stable, as it doesn’t produce any errors and the expected data matches

the source data.

In order to test data consistency between CarTrack’s data and the stored data, a test was

developed to compare both data sources at a given time. This test queries, in parallel, the

CarTrack’s API endpoint get_vehicle_detailed_event which is used in the ingestion function

3.1.1 and the Firestore collection "geo-location", and retuns whether or not the data for each

vehicle is the same.

This test was executed everytime the ingestion function was changed, for intervals between 1

hour and 1 day, to guarantee the accuracy of the data being visualized in the web application. This

test allowed sub-trips to be found and corrected, and it currently results in 100% accuracy.

A different test was developed in order to assert the performance of the new web application

against CarTrack’s current web application. This test was expected to show a slight advantage for

CarTrack’s web application, since its likely hosted on the same infrastructure as their ingestion

system and can take advantage of different communication systems and protocols that are not

available for external applications. Suprisingly, the latency between the location data updates

in the API and the corresponding web application view, was actually smaller on the new web

application, overall. Due to the fact that CarTrack’s web application is built on Adobe Flash, it

was not possible to implement an automated test. Instead, a visual test with both web applications

side-by-side allowed to draw some conclusions about the delay on the data updates. Altough a

precise number could not be obtained (order of miliseconds), it was clear that the location markers

were being updated faster in the new web application. This surprising result can be justified, most

likely, by the use of old and deprecated technologies by CarTrack, such as Adobe Flash.

49

50 Tests and Results

4.2 Web Application

4.2.1 UI/UX

The first user interface prototype was a good foundation for the web application, but the real test

relies on the actual end-users to test it and provide feedback about their user experience. The user

interface was improved after several iterations, until the results met the users expectations.

The first prototype of the web application had all features and the base styles that were worked

upon, but lacked an adequate user experience.

Some changes are more noticable than others, but overall result in a better user experience.

These changes include:

• Markers All markers were changed to icons that represent their meaning more clearly. They

are also colored to match the vehicle, so its easier to identify what markers are connected.

• Vehicles list The vehicles list now shows the vehicles registration instead of a sequential

numbering order. This helps identifying a vehicle when there’s a need to check any type of

information about it, or services and suppliers related to it. The vehicles registrations are

also colored to match the markers.

4.3 Trips

The goal of the daily trips report is to improve efficiency in the schedulling and routing processes.

It is also useful to account for non-work related trips, which are allowed but not unlimited.

The report has been generated daily since October 1st, 2019 and the results can be seen in the

following table. These results are from reports generated between October 1st, 2019 and January

16th, 2020.

4.3 Trips 51

Figure 4.1: Trips Results

To measure impact, the metric of choice was the average distance per booking, as it allowed

to better understand how efficient the human-drawn routes are despite a variation of the number of

bookings serviced. With an increase of over 30% from October 2019 to November 2019, mainly

due to the addition of two extra teams, the operational team managed to only increase the total

distance driven by 14%, lowering the average significantly.

The trend compares when comparing the most operationally similar months, November and

December 2019 – an increase of bookings executed with an actual reduction in distance covered,

thus resulting in a decrease of the main metric by 13.8%.

Delving into January 2020, with a partial sample of the month, nonetheless very relevant as

the efficiency keeps growing with a likeness of another absolute growth of bookings provided by

the same number of operational teams on the field.

52 Tests and Results

Chapter 5

Conclusion

5.1 Main Contributions

The primary goal of the work presented in this dissertation was to develop a framework for

ingesting and processing geolocation data in real-time. The work developed achieves this goal,

by providing the foundation for new tools and solutions to be developed. This foundation was

already used to develop a web application for a fleet management system that can be extended to

even more features, and to feed a BI tool for automated report generation.

5.2 Future Work

Even though the work described in this dissertation is self-contained, in the sense that it may

be readily used without further development, it does not constitute the ultimate solution for the

problems that it addresses.

Some of the possible improvements include:

• Schedulling The schedulling feature allows new services to be added to the database and

the map, but the current schedulling process at Wegho takes into account recurrent services,

that are unassigned by default, and one-time services, so the current implementation can’t

replace the schedulling process. The solution would be to extend the bookings feature, so

that unassigned services can be assigned to a vehicle and routes generated on-the-fly.

• Geofencing A geofence is a virtual geographic boundary around a physical location. This

concept can be used to trigger a response, such as notifications or alerts, when a device

enters or leaves a particular area. In this particular case, the devices are Wegho’s vehicles.

This can help in identifying scenarios where the drivers travel outside a certain zone that

they are assigned to, or even provide early detection of car theft.

• Automated delay notifications The ability to automatically notify costumers in case of

unexpected delays increases transparency and user satisfaction. By using the location data

53

54 Conclusion

and bookings information, with a service such as Mapbox Directions, its possible to get an

estimated time of arrival and display it on the costumer’s mobile application.

References

[1] Panoply. Data warehouse architecture: Traditional vs.
cloud. https://panoply.io/data-warehouse-guide/
data-warehouse-architecture-traditional-vs-cloud/. [Online; accessed
27-June-2019].

[2] Panoply. Data mart vs. data warehouse. https://panoply.io/
data-warehouse-guide/data-mart-vs-data-warehouse/. [Online; accessed
27-June-2019].

[3] Google. Google cloud functions. https://cloud.google.com/functions/docs/
concepts/overview. [Online; accessed 17-January-2020].

[4] npm trends. @angular/core vs angular vs react vs vue. https://www.npmtrends.com/
@angular/core-vs-angular-vs-react-vs-vue. [Online; accessed 24-January-
2020].

[5] Bonnie Eisenman. Learning react native. https://www.oreilly.com/library/
view/learning-react-native/9781491929049/ch02.html. [Online; accessed
24-January-2020].

[6] Flavio Copes. Unidirectional data flow in react. https://flaviocopes.com/
react-unidirectional-data-flow/. [Online; accessed 24-January-2020].

[7] Martin Hilbert. The World ’s Technological Capacity. The World ’s Technological Capacity,
332(April):60–66, 2011.

[8] Adobe. Flash and the future of interactive content. https://theblog.adobe.com/
adobe-flash-update/. [Online; accessed 17-January-2020].

[9] Google. Google maps reverse geocoding. https://developers.google.com/maps/
documentation/geocoding/intro#ReverseGeocoding. [Online; accessed 24-
January-2020].

[10] Doug Laney. 3D Data Management: Controlling Data Volume, Velocity, and Variety.
Application Delivery Strategies, page 4, 2001.

[11] Bernard Marr. Big data: The 5 vs everyone
must know. https://www.linkedin.com/pulse/
20140306073407-64875646-big-data-the-5-vs-everyone-must-know/,
2014. [Online; accessed 27-June-2019].

[12] Google. Google suite. https://gsuite.google.pt/. [Online; accessed 27-June-
2019].

55

https://panoply.io/data-warehouse-guide/data-warehouse-architecture-traditional-vs-cloud/
https://panoply.io/data-warehouse-guide/data-warehouse-architecture-traditional-vs-cloud/
https://panoply.io/data-warehouse-guide/data-mart-vs-data-warehouse/
https://panoply.io/data-warehouse-guide/data-mart-vs-data-warehouse/
https://cloud.google.com/functions/docs/concepts/overview
https://cloud.google.com/functions/docs/concepts/overview
https://www.npmtrends.com/@angular/core-vs-angular-vs-react-vs-vue
https://www.npmtrends.com/@angular/core-vs-angular-vs-react-vs-vue
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html
https://flaviocopes.com/react-unidirectional-data-flow/
https://flaviocopes.com/react-unidirectional-data-flow/
https://theblog.adobe.com/adobe-flash-update/
https://theblog.adobe.com/adobe-flash-update/
https://developers.google.com/maps/documentation/geocoding/intro#ReverseGeocoding
https://developers.google.com/maps/documentation/geocoding/intro#ReverseGeocoding
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know/
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know/
https://gsuite.google.pt/

56 REFERENCES

[13] Dropbox. Dropbox. https:/www.dropbox.com/. [Online; accessed 27-June-2019].

[14] Salesforce. Salesforce. https:/www.salesforce.com/. [Online; accessed 27-June-
2019].

[15] GoToMeeting. Gotomeeting. https:/www.gotomeeting.com/. [Online; accessed 27-
June-2019].

[16] Amazon. Aws elastic beanstalk. https://aws.amazon.com/elasticbeanstalk/.
[Online; accessed 27-June-2019].

[17] Heroku. Heroku. https:/www.heroku.com/. [Online; accessed 27-June-2019].

[18] Google. Google cloud app engine. https://cloud.google.com/appengine/.
[Online; accessed 27-June-2019].

[19] OpenShift. Openshift. https:/www.openshift.com/. [Online; accessed 27-June-
2019].

[20] Digital Ocean. Digital ocean. https:/www.digitalocean.com/. [Online; accessed
27-June-2019].

[21] Linode. Linode. https:/www.linode.com/. [Online; accessed 27-June-2019].

[22] Amazon. Aws ec2. https://aws.amazon.com/ec2/. [Online; accessed 27-June-
2019].

[23] Google. Google cloud compute engine. https://cloud.google.com/compute/.
[Online; accessed 27-June-2019].

[24] Amazon. Aws redshift. https://aws.amazon.com/redshift/. [Online; accessed
27-June-2019].

[25] Google. Google cloud bigquery. https://cloud.google.com/bigquery/. [Online;
accessed 27-June-2019].

[26] Microsoft. Microsoft azure sql data warehouse. hhttps://azure.microsoft.com/
pt-pt/services/sql-data-warehouse/. [Online; accessed 27-June-2019].

[27] Stan Zdonik, Michael Stonebraker, Mitch Cherniack, and Magdalena Balazinska. The
Aurora and Medusa projects. Data Engineering, 51:1–8, 2003.

[28] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[29] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed stream
computing platform. In 2010 IEEE International Conference on Data Mining Workshops,
pages 170–177. IEEE, 2010.

[30] Apache Foundation. Apache storm. https://storm.apache.org/. [Online; accessed
27-June-2019].

[31] Apache Foundation. Apache samza. https://samza.apache.org/. [Online; accessed
27-June-2019].

https:/www.dropbox.com/
https:/www.salesforce.com/
https:/www.gotomeeting.com/
https://aws.amazon.com/elasticbeanstalk/
https:/www.heroku.com/
https://cloud.google.com/appengine/
https:/www.openshift.com/
https:/www.digitalocean.com/
https:/www.linode.com/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://aws.amazon.com/redshift/
https://cloud.google.com/bigquery/
hhttps://azure.microsoft.com/pt-pt/services/sql-data-warehouse/
hhttps://azure.microsoft.com/pt-pt/services/sql-data-warehouse/
https://storm.apache.org/
https://samza.apache.org/

REFERENCES 57

[32] Apache Foundation. Apache spark. https://spark.apache.org/. [Online; accessed
27-June-2019].

[33] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong
Zhou, Yuan Yu, and Zheng Zhang. TimeStream: Reliable Stream Computation in the Cloud.
Proceedings of the 8th ACM European Conference on Computer Systems, pages 1–14, 2013.

[34] Apache Foundation. Apache kafka. https://kafka.apache.org/. [Online; accessed
27-June-2019].

[35] Apache Foundation. Apache druid. https://druid.apache.org/. [Online; accessed
27-June-2019].

[36] Apache Foundation. Apache hadoop. https://hadoop.apache.org/. [Online;
accessed 27-June-2019].

[37] Amazon. Aws emr. https://aws.amazon.com/emr/. [Online; accessed 27-June-
2019].

[38] Google. Google cloud dataproc. https://cloud.google.com/dataproc/. [Online;
accessed 27-June-2019].

[39] Microsoft. Microsoft azure hdinsight. https://azure.microsoft.com/pt-pt/
services/hdinsight/. [Online; accessed 27-June-2019].

[40] Amazon. Aws msk. https://aws.amazon.com/msk/. [Online; accessed 27-June-
2019].

[41] Confluent. Confluent cloud. https://www.confluent.io/confluent-cloud/.
[Online; accessed 27-June-2019].

[42] Pieter Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.", 2013.

[43] Pivotal. Rabbitmq. https://www.rabbitmq.com/. [Online; accessed 27-June-2019].

[44] Amazon. Aws kinesis. https://aws.amazon.com/kinesis/. [Online; accessed 27-
June-2019].

[45] Google. Google cloud pub/sub. https://cloud.google.com/pubsub/. [Online;
accessed 27-June-2019].

[46] Microsoft. Microsoft azure event hubs. https://azure.microsoft.com/pt-pt/
services/event-hubs/. [Online; accessed 27-June-2019].

[47] American Public Transportation Association. Comments to access board docket number
2007. https://web.archive.org/web/20101120113642/https://www.apta.
com/gap/fedreg/documents/apta_comments_access_board_bus_2009.pdf.
[Online; accessed 17-January-2020].

[48] Microsoft. Microsoft power bi. https://powerbi.microsoft.com/en-us/.
[Online; accessed 27-June-2019].

[49] SAP. Sap lumira. https://saplumira.com/. [Online; accessed 27-June-2019].

https://spark.apache.org/
https://kafka.apache.org/
https://druid.apache.org/
https://hadoop.apache.org/
https://aws.amazon.com/emr/
https://cloud.google.com/dataproc/
https://azure.microsoft.com/pt-pt/services/hdinsight/
https://azure.microsoft.com/pt-pt/services/hdinsight/
https://aws.amazon.com/msk/
https://www.confluent.io/confluent-cloud/
https://www.rabbitmq.com/
https://aws.amazon.com/kinesis/
https://cloud.google.com/pubsub/
https://azure.microsoft.com/pt-pt/services/event-hubs/
https://azure.microsoft.com/pt-pt/services/event-hubs/
https://web.archive.org/web/20101120113642/https://www.apta.com/gap/fedreg/documents/apta_comments_access_board_bus_2009.pdf
https://web.archive.org/web/20101120113642/https://www.apta.com/gap/fedreg/documents/apta_comments_access_board_bus_2009.pdf
https://powerbi.microsoft.com/en-us/
https://saplumira.com/

58 REFERENCES

[50] SAS. Sas visual analytics. https://www.sas.com/pt_pt/software/
visual-analytics.html. [Online; accessed 27-June-2019].

[51] IBM. Ibm watson analytics. https://www.ibm.com/watson-analytics. [Online;
accessed 27-June-2019].

[52] Tableau. Tableau software. https://www.tableau.com/. [Online; accessed 27-June-
2019].

[53] Qlik. Qlik. https://www.qlik.com/pt-br. [Online; accessed 27-June-2019].

[54] TIBCO. Tibco. https://www.tibco.com/data-visualization. [Online; accessed
27-June-2019].

[55] d3. d3js. https://d3js.org/. [Online; accessed 27-June-2019].

[56] Fusion Charts. Fusion charts xt. https://www.fusioncharts.com/. [Online; accessed
27-June-2019].

[57] Google. Google scheduler and pub/sub. https://cloud.google.com/scheduler/
docs/tut-pub-sub. [Online; accessed 17-January-2020].

[58] Strongloop. strong-soap. https://github.com/strongloop/strong-soap.
[Online; accessed 17-January-2020].

[59] Google. Key management service. https://cloud.google.com/kms/. [Online;
accessed 17-January-2020].

[60] Google. Firebase sdk. https://firebase.google.com/docs/admin/setup?hl=
en. [Online; accessed 17-January-2020].

[61] Google. Google cloud functions cache. https://cloud.google.com/functions/
docs/bestpractices/tips. [Online; accessed 17-January-2020].

[62] PostgreSQL. Postgresql notify. https://www.postgresql.org/docs/current/
sql-notify.html. [Online; accessed 17-January-2020].

[63] Google. Mongodb change streams. https://docs.mongodb.com/manual/
changeStreams/. [Online; accessed 17-January-2020].

[64] Mapbox. Mapbox directions. https://docs.mapbox.com/help/
how-mapbox-works/directions/. [Online; accessed 24-January-2020].

[65] Facebook. React. https://reactjs.org/. [Online; accessed 24-January-2020].

[66] Google. Angular. https://angularjs.org/. [Online; accessed 24-January-2020].

[67] Evan You. Vue. https://vuejs.org/. [Online; accessed 24-January-2020].

[68] Dan Abramov. Redux. https://redux.js.org/. [Online; accessed 24-January-2020].

[69] Dan Abramov. Getting started with redux. https://redux.js.org/introduction/
getting-started/. [Online; accessed 24-January-2020].

[70] Facebook. Create react app. https://create-react-app.dev/docs/
getting-started. [Online; accessed 24-January-2020].

https://www.sas.com/pt_pt/software/visual-analytics.html
https://www.sas.com/pt_pt/software/visual-analytics.html
https://www.ibm.com/watson-analytics
https://www.tableau.com/
https://www.qlik.com/pt-br
https://www.tibco.com/data-visualization
https://d3js.org/
https://www.fusioncharts.com/
https://cloud.google.com/scheduler/docs/tut-pub-sub
https://cloud.google.com/scheduler/docs/tut-pub-sub
https://github.com/strongloop/strong-soap
https://cloud.google.com/kms/
https://firebase.google.com/docs/admin/setup?hl=en
https://firebase.google.com/docs/admin/setup?hl=en
https://cloud.google.com/functions/docs/bestpractices/tips
https://cloud.google.com/functions/docs/bestpractices/tips
https://www.postgresql.org/docs/current/sql-notify.html
https://www.postgresql.org/docs/current/sql-notify.html
https://docs.mongodb.com/manual/changeStreams/
https://docs.mongodb.com/manual/changeStreams/
https://docs.mapbox.com/help/how-mapbox-works/directions/
https://docs.mapbox.com/help/how-mapbox-works/directions/
https://reactjs.org/
https://angularjs.org/
https://vuejs.org/
https://redux.js.org/
https://redux.js.org/introduction/getting-started/
https://redux.js.org/introduction/getting-started/
https://create-react-app.dev/docs/getting-started
https://create-react-app.dev/docs/getting-started

REFERENCES 59

[71] JS Foundation. Eslint. https://eslint.org/. [Online; accessed 24-January-2020].

[72] Babel. Babel. https://babeljs.io/. [Online; accessed 24-January-2020].

[73] Facebook. Jest. https://jestjs.io/. [Online; accessed 24-January-2020].

[74] webpack. webpack. https://webpack.js.org/. [Online; accessed 24-January-2020].

[75] Mapbox. Mapbox maps. https://www.mapbox.com/maps/. [Online; accessed 24-
January-2020].

[76] Uber. React-map-gl. https://uber.github.io/react-map-gl/#/. [Online;
accessed 24-January-2020].

[77] Mapbox. Mapbox studio. https://www.mapbox.com/mapbox-studio/. [Online;
accessed 24-January-2020].

[78] Internet Engineering Task Force (IETF). The geojson format. https://tools.ietf.
org/html/rfc7946. [Online; accessed 24-January-2020].

https://eslint.org/
https://babeljs.io/
https://jestjs.io/
https://webpack.js.org/
https://www.mapbox.com/maps/
https://uber.github.io/react-map-gl/#/
https://www.mapbox.com/mapbox-studio/
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Wegho
	1.4 Goals

	2 State of the art
	2.1 Big Data
	2.1.1 Concept
	2.1.2 Applications

	2.2 Cloud Service Models
	2.2.1 Introduction
	2.2.2 SaaS: Software as a Service
	2.2.3 PaaS: Platform as a Service
	2.2.4 IaaS: infrastructure as a Service
	2.2.5 On-premise
	2.2.6 Conclusion

	2.3 Data Warehouse
	2.3.1 Concept
	2.3.2 Architecture
	2.3.3 Design

	2.4 Data Ingestion
	2.4.1 Data Ingestion Paradigms
	2.4.2 Challenges
	2.4.3 Evolution of distributed streaming platforms
	2.4.4 Data processing
	2.4.4.1 Batch processing
	2.4.4.2 Stream processing
	2.4.4.3 Micro-batching processing

	2.4.5 Message brokers

	2.5 Data visualization
	2.5.1 Concept
	2.5.2 Implementation
	2.5.2.1 Requirements
	2.5.2.2 Techniques

	2.5.3 Challenges
	2.5.4 Fleet tracking
	2.5.4.1 Concept

	2.5.5 Tools

	3 Development
	3.1 Real Time Location
	3.1.1 Data Ingestion
	3.1.2 Data Transformation
	3.1.3 Data Storage

	3.2 Trips
	3.2.1 Data Ingestion
	3.2.2 Data Transformation
	3.2.3 Data Storage
	3.2.4 Report

	3.3 Web Application
	3.3.1 Technologies
	3.3.1.1 Languages
	3.3.1.2 Libraries and Frameworks

	3.3.2 User Interface
	3.3.3 Implementation
	3.3.3.1 Map
	3.3.3.2 Location
	3.3.3.3 Suppliers
	3.3.3.4 Bookings
	3.3.3.5 Routes
	3.3.3.6 Timeline

	4 Tests and Results
	4.1 Data Ingestion Framework
	4.2 Web Application
	4.2.1 UI/UX

	4.3 Trips

	5 Conclusion
	5.1 Main Contributions
	5.2 Future Work

	References

