
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Histological challenge

A digital book that is also a game

Paulo Sérgio Silva Babo

Dissertation carried out within the scope of :

 Master’s in informatics and Computing Engineering

Supervisor: António Fernando Vasconcelos Cunha Castro Coelho

Co-supervisor: Paula Cristina Paulo Videira da Silva

January 2020

-

Resumo

Histologia é o estudo da estrutura microscópica do material biológico e as maneiras pelas

quais os componentes individuais estão relacionados estrutural e funcionalmente. O ensino de

histologia envolve uma abordagem prática, e o acesso ao material histológico pode às vezes ser

problemático, o que causa desmotivação e perda de interesse por parte dos alunos.

Neste documento, o problema é analisado e é proposta uma solução para aumentar o

interesse e a motivação dos alunos em relação à disciplina. O resultado é uma plataforma on-line,

acessível em qualquer lugar, que permite que os alunos se envolvam em desafios histológicos,

apoiados por uma narrativa convincente e um atlas com imagens histológicas. Além disso, o

conteúdo da plataforma é proceduralmente gerado por ficheiros, o que significa que, ao editar

esses ficheiros, a plataforma pode oferecer desafios e conteúdo de contextos educacionais

diferentes da histologia.

Abstract

A histologia (“ciência que estuda a microanatomia de células, tecidos e órgãos como vista

através de um microscópio” [18]) hoje em dia é ensinada principalmente em sessões de

microscopia de laboratório. Isso representa um problema para os alunos, pois eles normalmente

não possuem um microscópio e o acesso a material de estudo de boa qualidade é restrito e escasso,

pois os alunos têm de procurar atlas impressos ou conteúdo on-line de outras universidades. A

disciplina de "Histologia Funcional" é oferecida pela Universidade Portuguesa do Porto, para os

alunos do 1º ano do Curso de Bioquímica. Durante o curso, os alunos recebem semanalmente 5

horas de contato, onde são ensinados por uma mistura de exposições teóricas, observação de

preparações microscópicas e jogos educativos. Nos últimos 2 anos, há uma discrepância entre a

nota média de 15,4 valores e a média de aprovações de 61%. Pensa-se que esta dificuldade em

obter aprovação esteja relacionada com a falta de disponibilidade de material específico de apoio

e, portanto, uma maior adversidade na motivação e autonomia do aluno ao tentar estudar e

aprender fora do ambiente de sala de aula.

Neste projeto, apresentamos uma ferramenta on-line que pode ser considerada uma mistura

entre um livro e um jogo digital e visa ajudar os alunos a alcançar as competências exigidas pela

disciplina. Essa ferramenta pode ser usada em qualquer lugar, inclusive na aula, e em qualquer

dispositivo eletrônico com acesso à Internet, fornecendo aos alunos conteúdo histológico e uma

maneira de testar e aprimorar seu conhecimento. Para aumentar a interatividade e a motivação, a

ferramenta utiliza a narrativa para fornecer conteúdo teórico ao aluno. Esta história tem um

personagem principal e um personagem lateral e, através de diálogos, exposições teóricas,

imagens histológicas digitais, diagramas e desenhos, fornece aos alunos o conteúdo da disciplina.

O conhecimento adquirido é então testado e aprimorado pela introdução de muitos desafios

diferentes relacionados ao conteúdo da história, que devem ser respondidos corretamente pelos

alunos para obter progresso. A ferramenta oferece também um atlas histológico feito de imagens

microscópicas e suas respectivas informações.

Todo o conteúdo informativo da ferramenta, incluindo histórias, desafios e imagens de atlas,

é gentilmente fornecido pela professora Paula Cristina Silva, da Histologia Funcional, do Instituto

de Ciências Biomédicas Abel Salazar, no Porto.

Table of Contents

Introduction ... 19

1.1 Context .. 19

1.2 Motivation ... 20

1.3 Objectives .. 21

1.4 Document Structure... 21

Problem Characterization .. 23

2.1 An online histologic book ... 23

2.2 Approach ... 24

State of the Art Review ... 26

3.1 E-learning .. 26

3.1.1 E-learning technologies. .. 27
3.1.1.1 CD-ROM 27

3.1.1.2 Learning Management Systems 27

3.1.1.3 Content Management Systems 27

3.1.1.4 Augmented / Virtual Reality 27

3.1.1.5 Games 28

3.1.2 Microlearning, a current strategy in E-learning. 28

3.2 Gamification .. 28

3.2.1 Gamification in E-learning. ... 29

3.2.2 Related Work. ... 30
3.2.2.1 Kahoot! – 30

3.2.2.2 Duolingo – 30

3.2.2.3 Codecademy – 30

Solution... 31

4.1 Overview ... 31

4.2 Folder/File Structure ... 32

4.2.1 Frontend .. 32

4.2.2 Backend ... 34

4.3 Database .. 39

4.4 Authentication/Authorization .. 42

4.4.1 JWT authentication/authorization. .. 43

4.4.2 Registration (signup) ... 43

4.4.3 Login ... 44

4.5 Procedural generation .. 44

4.5.1 Challenges and story. .. 44
4.5.1.1 Challenges and story file structure (for each chapter). 44

4.5.1.2 Parsing the files into the database. 47

4.5.2 Atlas. ... 48
4.5.2.1 Atlas file structure (for each chapter). 48

4.5.2.2 Parsing into the database. 49

4.6 API .. 49

4.7 User Interface. ... 51

4.7.1 Registration View. ... 51

4.7.2 Login View. ... 53

4.7.3 Main Menu View. ... 54

4.7.4 Leaderboard View. .. 55

4.7.5 Chapter Selection View (challenges). ... 56

4.7.6 Chapter Selection View (Atlas). .. 58

4.7.7 Storyboard View. .. 59

4.7.8 Challenge Selection View. .. 60

4.7.9 Challenge View (CHOICE). ... 61

4.7.10 Challenge View (MCHOICE) ... 63

4.7.11 Challenge View (CROSSWORD). ... 64

4.7.12 Challenge View (FILL). .. 66

4.7.13 Challenge View (LETTERS) .. 67

4.7.14 Challenge View (PAIR) .. 69

4.7.15 Challenge View (GROUP) .. 70

4.7.16 Challenge View (BOSS) ... 72

4.7.17 Atlas Item Selection View. .. 73

4.7.18 Amplified Atlas Item View. .. 74

4.7.19 Admin Area (Users) View ... 76

4.7.20 Admin Area (Chapter/Challenges) View. 77

4.8 User Testing. ... 79

Conclusions and Future Work ... 81

Attachments ... 83

6.1 Attachment 1 – API description. ... 83

6.2 Attachment 2 – User test questionnaire. 122

6.3 Attachment 3 – Example of .CSV files. 128

6.3.1 Chapter/Dialog file. ... 128

6.3.2 Atlas file. ... 128

xi

Pictures List

Figure 1 - ……………………………………………………………………………………… 34

Figure 2 - ……………………………………………………………………………………… 41

Figure 3 - ……………………………………………………………………………………… 55

Figure 4 - ……………………………………………………………………………………… 56

Figure 5 - ……………………………………………………………………………………… 57

Figure 6 - ……………………………………………………………………………………… 58

Figure 7 - ……………………………………………………………………………………… 60

Figure 8 - ……………………………………………………………………………………… 61

Figure 9 - …………………………………………………………………………………….... 62

Figure 10 - …………………………………………………………………………………….. 63

Figure 11 - …………………………………………………………………………………….. 65

Figure 12 - …………………………………………………………………………………….. 66

Figure 13 - …………………………………………………………………………………….. 68

Figure 14 - …………………………………………………………………………………….. 69

Figure 15 - …………………………………………………………………………………….. 71

Figure 16 - …………………………………………………………………………………….. 72

Figure 17 - …………………………………………………………………………………….. 74

Figure 18 - …………………………………………………………………………………….. 75

Figure 19 - …………………………………………………………………………………….. 76

Figure 20 - …………………………………………………………………………………….. 77

Figure 21 - …………………………………………………………………………………….. 79

Figure 22 - …………………………………………………………………………………….. 81

xii

xiii

Tables List

Table 1 – …………………………………………………………………………………. 35

Table 2 – …………………………………………………………………………………..37

Table 3 – …………………………………………………………………………………..42

Table 4 – …………………………………………………………………………………..42

Table 5 – …………………………………………………………………………………..42

Table 6 – …………………………………………………………………………………..43

Table 7 – …………………………………………………………………………………..43

Table 8 – …………………………………………………………………………………..43

Table 9 – …………………………………………………………………………………..44

Table 10 – …………………………………………………………………………………44

Table 11 – …………………………………………………………………………………46

Table 12 – …………………………………………………………………………………46

Table 13 – …………………………………………………………………………………47

Table 14 – …………………………………………………………………………………47

Table 15 – …………………………………………………………………………………48

Table 16 – …………………………………………………………………………………48

Table 17 – …………………………………………………………………………………48

Table 18 – …………………………………………………………………………………49

Table 19 – …………………………………………………………………………………49

Table 20 – …………………………………………………………………………………49

Table 21 – …………………………………………………………………………………49

Table 22 – …………………………………………………………………………………49

Table 23 – …………………………………………………………………………………51

Table 24 – …………………………………………………………………………………51

Table 25 – …………………………………………………………………………………54

Table 26 – …………………………………………………………………………………55

Table 27 – …………………………………………………………………………………57

Table 28 – …………………………………………………………………………………58

xiv

Table 29 – …………………………………………………………………………………59

Table 30 – …………………………………………………………………………………60

Table 31 – …………………………………………………………………………………62

Table 32 – …………………………………………………………………………………62

Table 33 – …………………………………………………………………………………64

Table 34 – …………………………………………………………………………………65

Table 35 – …………………………………………………………………………………66

Table 36 –………………………………………………………………………………….67

Table 37 –………………………………………………………………………………….69

Table 38 – …………………………………………………………………………………70

Table 39 – …………………………………………………………………………………72

Table 40 – …………………………………………………………………………………73

Table 41 – …………………………………………………………………………………75

Table 42 – …………………………………………………………………………………76

Table 43 – …………………………………………………………………………………77

Table 43 – …………………………………………………………………………………79

xv

xvii

Abbreviations and Symbols

EG - Educational games.

APP - Application.

API - Application Program Interface.

JWT – JSON web token.

xviii

Introduction

 19

Chapter 1

Introduction

1.1 Context

Histology is a biomedical science that studies the microanatomy of cells, tissues, and organs.

Histology is important as many diseases occur at cellular/tissue level and knowing how a tissue

normally looks and works can help to identify certain diseases, what causes them as well as if an

applied treatment is working [19].

It is usually divided into 2 big groups, general and systematic histology. While general

histology studies the four fundamental types of tissues (epithelial, connective, muscular and

nervous), systematic histology studies the microanatomy of the different organs and systems of

the human body.

As a course, histology is usually taught in a practical self-directed way, where students are

handed microscopes as well as slides and are motivated to make their own research. In the

beginning of this century, many advances were made regarding the capture of digital images from

microscopes and, therefore, big databases were created and shared online. This enables students

to study not only in class but also at home as complimentary practice. The problem is that using

these strategies the student studies, most of the time, alone, and this can affect his/her motivation

and engagement in a negative way. It is known that motivation is a key factor in human behavior

and that low motivation leads to a reduction of the time spent in an activity as well as the effort

and persistence invested in it. [1]

Nowadays university students use modern technology devices since they were kids and

dedicate big part of their time to technology activities. Since their contact with technology is so

developed and integrated in their daily life, why not take advantage of it? Technological devices,

such as a computer or a smart phone, can be powerful tools in the creation of unique and

unpreceded experiences for academic and training organizations that can be complementary to

Introduction

 20

the classical methods. Therefore, it is advantageous that teachers adapt their methods of teaching

and embrace these new technologies in their pedagogical practices in a way that everyone comes

out wining.

Teachers have an important role in the learning efficiency of their students and one key

competence is the ability of keeping student focus and engagement in their performing tasks [2].

To aid teachers in their quest towards education, Educational Games (EGs) can be introduced,

these EGs have great effect and have been used as educational tools for long, and with really great

results [3-7]. They are powerful, innovative learning tools that instead of having their focus in

entertainment are more education driven [8]. EGs can be used by the teacher to raise student’s

motivation, enthusiasm and moral, helping them integrate in and contribute to the learning

environments they constitute [9, 10].

Other powerful tool is storytelling, as old as humanity, it can be considered an art that greatly

impacts humans and their behavior. Stories can be told in a variety of ways including pictures,

messages, conversations, presentations, letters, audio and visual recordings. With the advance of

technology, it is now possible to tell stories in a digital way, making use of such powerful tool in

universities to teach students is only beneficial since they also can engage, motivate, inspire deep

reflection and support student centered activities [11].

Aimed to increase biomedical student’s internal motivation and self-regulation for learning,

it was planned the creation of a digital of book for General Histology. We propose the integration

of digital story with digital educational games. In the beginning of each book chapter the theorical

background is presented as a story and then students are confronted with some challenges related

with the story. The main goal of this digital histology book is to establish an environment that

optimize students’ internal motivation, active learning, and ultimately their intellectual

development and performance.

1.2 Motivation

Regarding that Histology is a practical science that can only be taught, given its subject, by

making use of a microscope and theoretical slides, it is really hard for students to study at home,

as they either don’t own a microscope or can’t get their hands to good, free and usable study

material from their own university. They normally study by printed atlases and some digital tools

freely available from other universities. This can be very hard and frustrating and reduce student

motivation and efficiency in the leaning of Histology.

The course of “Functional Histology” given by the University of Porto to the 1st year’s

students of the Biochemistry Degree, is example of this problem, as during the course the students

are only provided with 5 hours of contact per week and even though they are provided with

Introduction

 21

content during classes by either theoretical expositions, observation of microscope preparations

or educational games it is not enough, and when students go home or are alone at the microscope

they suffer from a lack of supportive quality content. In the last 2 years of the course even though

the average grade was 15.4 values there was a significant 31% of students that didn’t obtain course

approval. The lack of supportive outside class environment material is seen as one of the main

reasons why this happened, because it creates a lack of autonomy in the study and therefore the

motivation of the student drops considerably. Motivation is a key feeling when aiming to achieve

goals and when it is missing the way to something can became a real challenge.

In order to battle this lack of content as well as the lack of motivation it was envisioned a

solution that not only provides theoretical content but also tries to increase student motivation and

focus by making use of the powerful motivational tools that are EGs and storytelling, this in the

form of an online application that can be used anywhere in any electronic device connected to the

internet and can be easily updated by the teacher to satisfy his/her needs.

1.3 Objectives

The main objective is to create an online application that is able to give the students quality

histological study material, available anywhere and in any smart electronic device, which

provides a histological atlas, a storytelling and EG’s challenges. Within the app there is also the

implementation of motivational factors such as points and progress that can also help students

give their best and be more focused and engaged while learning histology.

To allow that teachers must be able to update the app accordingly to their needs without having

any actual code knowledge, the proposed solution implements an procedural generation module

that can create/update the entire application (story, atlas and challenges) by making use of simple

editable and understandable files, this way the teacher can modify the entire application without

much effort.

1.4 Document Structure

The document is divided in 3 more chapters. In every chapter a different concept is presented

and subdivided. In the 2nd chapter, “Problem Characterization”, is where we analyze the

descripted problem, propose a solution and make an overview of the chosen approach taken

towards solving it. Next comes the 3rd chapter, “State of the Art Review”, in this chapter it is

made a literature review on the concepts related to the project, it is taken an approach on the

Elearning concept, explaining it and showing some technologies and methods and also on the

Gamification concept, where the concept and its application to e-leaning is descripted, it is also

shown some related work and projects. Following, the 4th chapter is presented, “Solution”, in this

Introduction

 22

chapter the implemented platform , per se, is described. An overview of it is done and more

technical concepts about the struture, database and the other platform modules , are shown. Also,

information about the user testing is provided. Finally , in the 5th chapter, “Conclusion and Future

Work”, conclutions about the project are given and possible future work is debated.

At the end of the document references are provided, followed by attatchemnts.

Problem Characterization

 23

Chapter 2

Problem Characterization

2.1 An online histologic book

As stated previously, the need for complementary material to teach Histology lead to a

solution that not only could provide the students with such material as well as try to help them

psychologically in the matters of motivation and focus towards the course. The idea came from

Prof. Paula Silva and it is an online “histologic book” that tells the story of the adventures of Karl

Mayer and the Cell Wizard, together they must save the “Histokingdom” from the hands of the

malefic villain. In their quest they must travel through different histologic places and overcome

all the trials left by the villain, so they can progress and free the Histokingdom. This story is used

to support the students learn the necessary complementary theoretical contents of the course and

explain the elements found in the four fundamental tissues present in General Histology. As for

the challenges they are used as a learning and testing tool and complement the story in the learning

of said tissues. There are 8 different types of challenges that can be used by the teacher:

CHOICE -

A quiz with multiple-choice questions and with a given number of possible answers but only

a correct one. Questions are similar to the ones of the theoretical final exam.

MCHOICE -

A quiz with multiple-choice questions and with a given number of possible answers but with

multiple correct ones.

CROSSWORD -

A crossword game in which the answers to histological questions, called hints, are written

in rows of squares that cross each other so that some letters are shared.

Problem Characterization

 24

FILL-

In this challenge the player must choose the most appropriate words, amongst a list, to

complete blank spaces in order to form a correct sentence.

GROUP-

Students must choose the appropriate group, between 2, for a given question.

LETTERS-

Students must find the answer to the question using some of the letters that are given.

PAIR-

Students must match left items to the right items, creating correct connections.

BOSS-

This challenge is a quiz competition where the goal is to correctly answer a series of

consecutive multiple-choice questions about the chapter. Four possible answers are given, and the

student who is playing must choose the correct one. Aimed to prepare students, the game

questions have the structure and the difficulty level of the ones of theoretical final exam and they

cannot fail, otherwise must start the challenge again.

Also, the teacher asked for the integration of a simple histologic atlas in the application

where histologic pictures are presented and a subtitle accompanies, explaining and giving

meaning to the image.

The thought solution that could put all this together was an online app with a simple interface

that could not only offer all this content to the student but also be easily and totally updatable by

the teacher without changing any code. This also enables teachers from other courses or areas to

be able to create a support tool regarding their context, easily creating an entirely different

experience. With this comes the necessity of a system implementation , which content can be

entirely and easily updated without any coding. Therefore, comes the need to implement a

procedural generation solution that aids teachers in the creation an update of the App content.

This solution implements a procedural generation module that handles all App’s content

management (story, challenges, atlas) by making use of simple files that can be easily edited by

the teachers, without any coding knowledge needed. This also enables the App to be flexible and

therefore used in many different contexts without having to change any code.

2.2 Approach

The approach used was the creation of an html/javascript/css/php gamified platform that

provides users with an atlas, a narrative that helps them understand and compliment class contents

and lets them engage in challenges to test and refine their knowledge, also there is the

implementation of a point system and leaderboards in order to boost motivation and healthy

competition between students. To access the app users must sign in into the system, this can only

Problem Characterization

 25

be done using “Validation Keys” distributed by the teacher, and after that, log in using the sign

in credentials. This Validation Keys as well as the all the database contents can be easily managed

by the teacher in an admin restricted area that allows them to manage and supervise the

application.

The entire app is done via an html/javascript/css interface that communicates with an online

server database by the means of a php API and AJAX requests. This database contents are flexible

and can be updated any time in the admin area by making use of .CSV files created from a simple

excel spreadsheet. These files have a fixed syntax that enables the above described procedural

generation module to work and create the application contents.

This allows the solution to be accessed anywhere by any device with a browser and an

internet connection, since the technologies used are multi-platform. Also, by making use of this

technologies it makes it easy to update code and refine the app without having much trouble with

version and deployment since the only thing needed is a webserver and database host.

By using the same code and altering the .CSV files opens horizons to many different

educational apps that can make use of the same APP model to teach and support many students

in many different areas of education.

State of the Art Review

 26

Chapter 3

State of the Art Review

3.1 E-learning

E-learning is the use of writing and communication technologies, visualization, and storage

in order to convey information with the principal objective of education. This concept was firstly

focused in the improvement of task accomplishment and only after some time it turned its focus

to student’s education. The term “E-learning” was not the first term used to describe the use of

computerized systems to aid in the learning and teaching process and was first used in 1983 by

Mary Alice White in a journal article entitled “Synthesis of Research on Electronic Learning.”

and was defined as “learning via electronic sources, such as television, computer, videodisk,

teletext, videotext.” (White, 1983, p. 13), E-learning stands for electronic learning and is

nowadays a very common and known term used to describe systems that make use of technology

and the internet to overcome space and time issues in the learning process.

As society progresses so does its demands, causes an increasingly need for students to adapt

and become even more efficient and autonomous in learning. Therefore, academics must also to

adapt and understand the process of acquiring information while trying to increase its efficiency.

Given the need in the fast search and acquirement of knowledge, E-learning development has

been a priority for many years now and many comparison studies, pedagogical aspects, perception

studies, and evaluation to monitoring studies were carried out. This has had great effect in the

development of e-learning strategies and models throughout the years. [20]

Nowadays, the benefits of e-learning are being systematically integrated as a complement of

traditional teaching by many universities around the world aiming to achieve better results in

many aspects of student performance, such as: satisfaction, motivation, efficiency and

effectiveness [14].

State of the Art Review

 27

3.1.1 E-learning technologies.

The attention gave to E-learning as well as its use has been continuously increasing, therefore

there is a constant need for both technologies evolution and upgrade used as a support mechanism

to teach. There are many technologies that can be used to provide information that have been used

since the early 90’s. Many technologies persisted with the passing of time and continued to be

used. However, with the appearance of new technologies, some of the older and less effective

ones have been exchanged. Some of the technologies used in the history of E-learning are:

3.1.1.1 CD-ROM

CD-ROM media was mainly used in the early 90’s a starting e-learning technology, it was

used to hand learning material in either text or multimedia formats to students in long distance

programs. This technology encourages students in learning alone and by themselves increasing

their autonomy in such activity. It was used special training programs that would not only provide

the student with information but also exercises in with he could train the acquired knowledge.

This computer-based training can be compared for example with the likes of foreign language

learning tutorials. [20]

3.1.1.2 Learning Management Systems

Learning management systems are information systems that make use of software to

deliver courses and training programs to students, teachers and administrators. These systems are

highly customizable software that can be used to analyze strengths and weaknesses of the user

and adapt accordingly, concentrating more in their weakness. They often provide a method of

long-distance communication with educators that helps users clarify any doubt they have. [20,

21]

3.1.1.3 Content Management Systems

Content management systems are systems that aim to facilitate a collaborative creation and

management of digital content. Users in this type of systems are usually given role-based access

to the management of documents and digital assets inside the system, all this in a unique and

centralized environment. Example of this type of system is the well-known Moodle. [20, 22]

3.1.1.4 Augmented / Virtual Reality

Whereas augmented reality can be described as a reality where real life objects are either

substituted by or integrated with virtual 3d objects, virtual reality is a full virtual 3d world created

with the purpose of appearing real creating a high state of emersion. Both virtual environments

State of the Art Review

 28

can be used to catch student’s attention while increasing their focus and engagement in learning

activities. Also, they help creating and showing abstract and nonexistent concepts that can be

easier interpreted by the student by looking at them than by imagining them in their mind. They

also allow the creation of “safe” environments that make possible the simulation and experience

of certain activities without any real word consequences. [20, 21]

3.1.1.5 Games

Gaming technologies can also be used to enhance and ease the process of learning, by using

built-in simulations and interactions games can provide the player a rich learning environment

without the pressure or boredom of classical methods, being fun and interactive are their biggest

advantages since it promotes in the students a wellbeing and relaxed feeling that can break many

learning barriers. Furthermore, some of these games can have an online component, which

motivates and facilitates knowledge sharing and creation. These types of games have many types

and concepts and range from text-based games to games with rich virtual environments and many

players that can play simultaneously. [20]

3.1.2 Microlearning, a current strategy in E-learning.

As stated previously, the world is evolving and with it so are learning processes, one of the

trending learning strategies and methods is microlearning. Microlearning is a learning process of

low duration that aims to only one small learning objective. [23] This type of learning is said to

have in average 20% better results than the classical learning method where students are given

high amounts of information at a time. [24] This is due to the fact that in classical learning

methods there is less interaction between students and the information given, whereas in the

microlearning process the student after acquiring a small amount of information is able to test it

right away, providing a more dynamic learning experience. Furthermore, when small parcels of

information are given it leads to the thought that said information is crucial and being able to the

know right away what is expected from it also facilitates the whole process of learning. [24] This

said, the use of microlearning as an e-learning strategy is advisable when possible since short bits

of information are more manageable and digestible and that helps students absorb and retain

information. [24]

3.2 Gamification

Games always have been present in a human being’s life. They are existent in our daily

routine and, more than providing entertainment, also help us develop physical and intellectual

capabilities that are useful in life. This happens because to play a game and meet its goals, the

State of the Art Review

 29

player must overcome challenges and, while also having fun. This helps to break psychological

barriers that are present in more classic methods of personal development. Having this principle

in mind, it is advantageous to create applications with mechanics that have the objective of

stimulating specific skills of the users. The use of applications that incorporate classic game

mechanics in order to make the user improve is called “gamification”.

The potential of the use of games as a tool for teaching has been studied for more than two

decades, and even though the term “gamification” has been introduced in the early 2000s, only in

2011, it was given the proper attention. From the broad area of the Ludification of Culture,

Sebastian Deterding defines Gamification as the use of game elements and game design

techniques in non-game contexts [17]. Since then, there has been an increasing number of

applications developed for this purpose under many domains, such as productivity, finance,

health, education, and sustainability [13].

The purpose of using gamification is to enhance the user experience in activities not related

to games, by the contact of the users with applications that drive them to have the same level of

engagement as if they were playing a classic game. This concept is said to work [12] because it

creates in the user motivational sensations that are typically induced by traditional games. These

sensations are generated by the implementation of fundamental game mechanics in the

application, such as the existence of points, leaderboards, achievements/badges, levels, story,

progress, challenge, and rewards. Most of these motivational elements present positive effects

when implemented and tend to engage better and captivate user attention, generating better results

when it comes to acquiring competencies or skills.

3.2.1 Gamification in E-learning.

As previously said, gamification is being applied in different context domains to improve

specific activities and processes. This method was highly used to improve corporation employee’s

skills and in education. The correct use and combination of e-learning and gamification is a

powerful tool and can raise, as referred previously, the satisfaction, engagement, effectiveness,

and efficiency of the students. The right combination of e-learning, gamification, and well-

designed tasks takes the student to a different level of engagement and concentration only typical

of games, creating like this a more efficient and fun learning environment. The essence of this

method does not reside in the technology itself but more in the creation of said productive learning

environment. With a decision/reward system, designed proposedly to increase concentration

levels in the learning experience, makes the student not only engage in learning activities with a

more significant frequency but also makes them engage with a clearer mind. This provides the

student with continuous self-improvement and feedback experiences that adapt to his actions and

help the student progress fast.

State of the Art Review

 30

3.2.2 Related Work.

Due to the growth and use of this concept, more and more game based applications, whose

purpose is to motivate and help the user are emerging, and being used in various contexts of

application like, education, business and personal chores. These platforms are used to provide the

user with different good sensations, such as motivation, engagement, enjoyment, sense of

achievement and status in order to increase their productivity and efficiency in the desired tasks.

[26]

3.2.2.1 Kahoot! –

Kahoot! is an online gamification platform for quiz generation and being designed to

serve as a social learning tool as it is an application for group sessions. It lets a user create a series

of quizzes and playable questions in which participants compete against each other. As a

motivational context, at the end of each game session, the results and statistics are shown. The

great advantage of this application is the existence of the functionality to export both the results

and a descriptive analysis of them in each session, as this data can be used later by instructors or

teachers. [15]

3.2.2.2 Duolingo –

As the previous platform, is a learning platform with gamification elements. It is one of the

most widely used language learning platforms [16]. To achieve the primary goal of teaching a

language, the application presents several challenges for the user to overcome, while points and

a rewards system motivates and propels the player.

3.2.2.3 Codecademy –

Codecademy is an online platform that aims to teach its users software development and

coding. In this platform it is asked the users to complete various lessons and exercises and awards

them with badges, progress and points in order to give users a sense of fulfillment.

Solution

 31

Chapter 4

Solution

4.1 Overview

It is proposed a solution supported by a gamified platform that allows the user to engage in

the histologic story and following challenges mentioned above, while also serving as an atlas that

aids students in their studies. This platform is composed of two modules (backend and frontend).

The backend is responsible for generating and storing all the data for the challenges,

authenticating the user, and sending data to the frontend. The frontend is accountable for

retrieving and processing that data and then providing it to the student as a fluid and game-like

experience.

The architecture of this solution is depicted in figure 1. The teacher/admin specifies the story

and the challenges on an XLS file that needs to be saved as a CSV file for an easier parsing. This

simple solution allows for any teacher to create or adapt a specific solution to their class. This file

is processed by the procedural generation module that stores in the database the required

information for deploying the digital book to the students. There is an authentication module for

the teacher/admin and a PHP API that create the HTML content for the frontend.

Built with the use of HTML, JavaScript, and CSS, the frontend is designed to have a game-

like and straightforward interface that allows the user to navigate fluidly between screens and

engage in a game scenario while presenting the challenges. It is also responsible for

communicating with the API, via AJAX, either to retrieve or to send data. These technologies

were chosen since any smart device with a browser and an internet connect can access and run

them.

Solution

 32

4.2 Folder/File Structure

The folder/file structure of the proposed solution is also organized in two main modules,

“Frontend” and “Backend”. These modules then open into more files and folders, their

organization and meaning are described in the next sections.

4.2.1 Frontend

This module (folder) contains all the files that take direct part on the user interface and

interaction with the platform. These files provide direct interaction between user and platform

and contain the html, javascript, css and assets used to create and enhance the user interface and

that allow the users to engage in the platform visually. In this module interfaces for platform

navigation, as well as for interfaces that let the user engage in the 8 types of challenges, explore

the atlas and experience the narrative are created and contact with the backend is stablished, this

contact is needed to retrieve persistent database information, that is then shown to the user,

making use of said interface Also, its where the files for the admin area interface are provided,

they allow a visual management of the platform and its users.

Its file structure is described below:

Frontend/

Table 1 – File/Folder description of the Frontend folder.

Figure 1 - Architecture of the platform.

Solution

 33

Name Description

assets/ Folder that holds the frontend module assets that are used in its

.html files.

assets/bootstrap/ Folder that holds bootstrap library include files.

assets/css/styles.css File that contains all personalized css of the user interface.

assets/datatables/ Folder that holds the datatables library include files.

assets/fonts/Prime-

Regular.ttf

File that contains the text font used in the platform.

assets/ images/ Folder that holds the platform static images (ex: icons).

assets/jquery/ Folder that holds the jquery library files.

admin_chapter.html File that contains the html and javascript of the admin area chapter

section.

admin_dashboard.html File that contains the html and javascript of the admin main

section.

admin_home.html File that contains the html and javascript of the admin area

sidebar.

admin_users.html File that contains the html and javascript of the admin area users’

section.

amplified_atlas.html File that contains the html and javascript of an atlas item page.

atlas.html File that contains the html and javascript of an atlas chapter items

page.

BOSS.html File that contains the html and javascript of a “BOSS” type

challenge.

CHOICE.html File that contains the html and javascript of a “CHOICE” type

challenge.

choose_atlas_chapter.html File that contains the html and javascript of the of the chapter

selection menu for the atlas.

choose_challenge.html File that contains the html and javascript of the challenge

selection menu.

choose_chapter.html File that contains the html and javascript of the chapter selection

menu for the challenges.

Solution

 34

CROSSWORD.html File that contains the html and javascript of a “CROSSWORD”

type challenge.

dialog.html File that contains the html and javascript of the storytelling page.

FILL.html File that contains the html and javascript of a “FILL” type

challenge.

GROUP.html File that contains the html and javascript of a “GROUP” type

challenge.

index.html File that contains the html and javascript of the index page (first

page)

leaderboard.html File that contains the html and javascript of the user’s leaderboard

page.

LETTERS.html File that contains the html and javascript of a “LETTERS” type

challenge.

login.html File that contains the html and javascript of the user’s login page.

Main_menu.html File that contains the html and javascript of the platform’s main

menu.

MCHOICE.html File that contains the html and javascript of a “MCHOICE” type

challenge.

PAIR.html File that contains the html and javascript of a “PAIR” type

challenge.

Signup.html File that contains the html and javascript of the user’s signup

page.

4.2.2 Backend

This module (folder) contains all the files that take part on the platform’s chapter, atlas and

users info creation and persistence as well as API files that retrieve said info. The backend

provides contact between the user interface (frontend) and all the persisted data (API files), a

mode of access and update of the database, as well as the authentication module, where files

responsible for authentication of the users, and generation module, where all the files responsible

for the generation of the chapters, challenges and story are, as well as the dynamic assets used.

It’s the destination of the csv files created by the admin in order to generate said content. Also, in

here, configuration of the platform constants is made.

Its file structure is described below.

Solution

 35

Backend/

Table 2 – File/Folder description of the Backend folder.

Name Description

API/ Folder that contains all API files.

API/clear_database.php File that contains the php that accepts an admin

associated token and empties the whole database.

API/generate_registation_key.php File that contains the php that accepts an admin

associated token and generates a registration key.

API/get_atlas_item.php File that contains the php that accepts an atlas item id,

retrieves its info and outputs it as JSON data.

API/get_BOSS_arguments.php File that contains the php that accepts a chapter id,

retrieves its BOSS challenges info and outputs it as

JSON data.

API/get_challenge_arguments.php File that contains the php that accepts a challenge id,

retrieves its info and outputs it as JSON data.

API/get_chapter_atlas.php File that contains the php that accepts a chapter id ,

retrieves its atlas items’ info and outputs it as JSON

data.

API/get_chapter_challenges.php File that contains the php that accepts a user associated

token as well as a chapter id, retrieves its chapters list

and outputs it as JSON data.

API/get_chapter_dialog.php File that contains the php that accepts a chapter id,

retrieves its dialog (story) info and outputs it as JSON

data.

API/get_chapter_info.php File that contains the php that retrieves chapter info and

outputs it as JSON data.

API/get_leaderboard.php File that contains the php that retrieves the 10 users

with more points info and outputs it as JSON data.

API/get_registation_keys.php File that contains the php that accepts an admin

associated token, retrieves all registration keys and

outputs them as JSON data.

API/get_show_dialog.php File that contains the php that accepts a user associated

token as well as a chapter id, retrieves if said user

Solution

 36

completed the first challenge of said chapter and

outputs that information as JSON data.

API/get_user_info.php File that contains the php that accepts a user associated

token, retrieves said user’s info and outputs it as JSON

data.

API/get_users_info.php File that contains the php that accepts an admin

associated token, retrieves every user’s info and

outputs it as JSON data.

API/login.php File that contains the php that accepts an email and

password, verifies if said email and password are

associated with a user, and if that’s true, outputs an

encrypted JSON web token as JSON data.

API/reset_users_progress.php File that contains the php that accepts an admin

associated token and resets all user’s challenge

progress.

API/signup.php File that contains the php that accepts, a valid email,

password, name and validation key and registers a user

in the platform.

API/unlock_lock_chapter.php File that contains the php that accepts an admin

associated token as well as a chapter id and either locks

or unlocks said chapter.

API/verify_BOSS.php File that contains the php that accepts a chapter id, a

BOSS challenge id, a user associated token and the user

selected answers and verifies if they are correct. If so,

completes the challenge for said user, unlocks the next

and outputs the number of points won as JSON data,

otherwise outputs the correct answer.

API/verify_CHOICE.php File that contains the php that accepts a CHOICE

challenge id, a user associated token and the user

selected answer and verifies if it is correct. If so,

completes the challenge for said user, unlocks the next

and outputs the number of points won as JSON data,

otherwise outputs the correct answer.

API/verify_ CROSSWORD.php File that contains the php that accepts a CROSSWORD

challenge id, a user associated token and the user

selected answers and verifies if they are correct. If so,

Solution

 37

completes the challenge for said user, unlocks the next

and outputs the number of points won as JSON data,

otherwise outputs the correct answer.

API/verify_FILL.php File that contains the php that accepts a FILL challenge

id, a user associated token and the user selected answer

and verifies if they are correct. If so, completes the

challenge for said user, unlocks the next and outputs

the number of points won as JSON data, otherwise

outputs the correct answer.

API/verify_GROUP.php File that contains the php that accepts a GROUP

challenge id, a user associated token and the user

selected answers and verifies if they are correct. If so,

completes the challenge for said user, unlocks the next

and outputs the number of points won as JSON data,

otherwise outputs the correct answer.

API/verify_LETTERS.php File that contains the php that accepts a FILL challenge

id, a user associated token and the user selected answer

and verifies if it is correct. If so, completes the

challenge for said user, unlocks the next and outputs

the number of points won as JSON data, otherwise

outputs the correct answer.

API/verify_MCHOICE.php File that contains the php that accepts a GROUP

challenge id, a user associated token and the user

selected answers and verifies if they are correct. If so,

completes the challenge for said user, unlocks the next

and outputs the number of points won as JSON data,

otherwise outputs the correct answer.

API/verify_PAIR.php File that contains the php that accepts a PAIR challenge

id, a user associated token and the user selected answer

and verifies if is correct. If so, completes the challenge

for said user, unlocks the next and outputs the number

of points won as JSON data, otherwise outputs the

correct answer.

API/verify_token.php File that contains the php that receives a user associated

token, verifies if it is valid and outputs the result as

JSON data.

Solution

 38

API/verify_token_admin.php File that contains the php that receives a admin

associated token, verifies if it is valid and outputs the

result as JSON data.

authentication/ Folder that holds authentication related files.

authentication/libs/ Folder that holds JSON web token library include files.

authentication/TokenChecker.php File that contains the php class that creates and

validates JSON web tokens.

authentication/User.php File that contains the php class that persists new users

in the database and validates users’ credentials

database/ Folder that hold files that communicate directly with

the database.

database/config/db.php File that contains the php that is responsible for

connecting to the database.

database/DatabaseController.php File that contains the php class that is responsible for

directly executing queries on the database as well as

treating the retrieved info.

generation/ Folder that holds the procedural generation files.

generation/atlas/ Folder that holds the .CSV files needed for the

generation of the chapters atlas.

generation/chapters Folder that holds the .CSV files needed for the

generation of the chapters challenges and dialog.

generation/reload_atlas.php File that contains the php that is responsible for reading

the generation/atlas/ directory files and generating the

atlas contents in the database.

generation/reload_challenges.php File that contains the php that is responsible for reading

the generation/chapters/ directory files and generating

the challenges and dialog info in the database.

images/atlas/ Folder that holds the atlas items images.

images/challenges/ Folder that holds the challenges’ images

core.php File that contains the php used for the platform’s core

configuration.

Solution

 39

4.3 Database

The database for the solution’s platform is a MySql database hosted in the localhost and with

the name “histology_db”. The platform makes use of the database module (db.php) to connect to

this database using the MySql private credentials, this returns a MySql connection that is used to

directly interact with the database via php. The database structure was created having in mind the

need of a platform with registered users and its information (‘users’ table) that can only signup

with the use of one-time use keys (‘registationKeys’ table). Also, there is the need to persist data

about the generated chapters (‘chapter’ table) and its contents, namely, challenges info and data

(‘challenge’ and ‘arguments’ table, respectively), atlas items description and images (‘atlas’ table)

and the storyboard moments associated with every chapter (‘dialog’ table). There is also a need

for the persistence of user progress, otherwise users would see their challenges progress disappear

after logout, this is made by persisting information that relations users and challenges

(‘userchallenges’ table).

This database holds all the persistent info of the platform and can be controlled by the users

and the admin via an API and the use of a database controller that interacts directly with it. Its

tables relation is depicted in figure 2 and the entities configuration and description are presented

after.

• users – represents and holds the platform’s user data.

Table 3 – ‘user’ table’s columns description.

Column name Type Description

id Integer /

AUTO INCREMENT

User’s id in the system.

Figure 2 - Database's relational schema

Solution

 40

name VAR CHAR User’s first and last name.

email VAR CHAR User’s registration email.

password VAR CHAR User’s password encrypted hash. (using bcrypt

php algorithm)

points Integer User’s current number of points.

admin Boolean Represents if the user is or is not a system admin.

• registration Keys – represents and holds data of the keys that can be used for user

registration.

Table 4 – ‘registationKeys’ table’s columns description

Column name Type Description

Id Integer /

AUTO INCREMENT

Key id in the system.

keyValue VAR CHAR 13-character, unique string that represents the key

value used for user registration.

.

• chapter – represents and holds existent chapter’s info.

Table 5 – ‘chapter’ table’s columns description.

Column name Type Description

id Integer Chapter’s order number.

name VAR CHAR Chapter’s name.

color1 VAR CHAR Chapter’s primary color code in hexadecimal.

color2 VAR CHAR Chapter’s secondary color code in hexadecimal.

color3 VAR CHAR Chapter’s ternary color code in hexadecimal.

textcolor VAR CHAR Chapter’s text color code in hexadecimal.

locked Boolean Represents if the chapter is or is not locked.

• challenge – represents and holds all the platform’s challenges info, this table represents

challenges and does not store the actual challenge data. Every challenge is related to one,

one only chapter.

Table 6 – ‘challenge’ table’s columns description.

Solution

 41

Column name Type Description

id Integer Challenge’s id in the system.

number Integer Challenge’s order number in its chapter.

chapterId Integer Challenge’s chapter id. Id that identifies a chapter

table row.

• argument – represents and holds every challenge actual data (arguments), every

argument is related to one, and one only challenge.

Table 7 – ‘argument’ table’s columns description.

Column name Type Description

id Integer/

AUTO INCREMENT

Argument’s id in the system.

challengeId Integer Argument’s challenge Id. Id that identifies a

challenge table row.

number Integer Argument identifier number. This gives a meaning

to the argument in a challenge context.

content VAR CHAR Argument value (content) string.

• users challenges – represents every user’s progress in every challenge and holds a

relation between a user and a challenge.

Table 8 – ‘userchallenges’ table’s columns description.

Column name Type Description

userId Integer User’s id associated with the relation.

challengeId Integer Challenge’s id associated with the relation.

locked Boolean Represents if the specified challenge is locked or

not for the specified user.

completed Boolean Represents if the specified challenge was or not

successfully completed by the specified user.

firstTry Boolean Represents if the specified user already tried to

complete the specified challenge.

Solution

 42

• dialog – represents and holds all the dialog data, every row represents a dialog moment

and is related to one, and one only chapter.

Table 9 – ‘dialog’ table’s columns description.

Column Name Type Description

Id Integer /

AUTO INCREMENT

Dialog moment id

chapterId Integer Dialog moment chapter Id. Id that identifies a

chapter table row.

number Integer Dialog moment order number in the specified

chapter.

content VAR CHAR Dialog moment string. (Quote)

backgroundImg VAR CHAR Name of the background media of the dialog

moment.

characterName VAR CHAR Name of the character that speaks the content

(quote).

• atlas – represents and holds every atlas item data.

Table 10 – ‘atlas’ table’s columns description.

Column name Type Description

id Integer Atlas item id in the system.

image VAR CHAR Name of the atlas item image.

subtitle VAR CHAR String that explains the atlas item image.

4.4 Authentication/Authorization

The platform is protected by an authentication module that controls the access to its

information as well as its pages. To access its contents a user must register in the system and after

log into it, only then he is able to play the challenges, view the story and access the atlas. There

is a restricted access area and functionalities only available to admins. The authorization and

authentication control are made using JSON Web Tokens (JWT) and is explained below.

Solution

 43

4.4.1 JWT authentication/authorization.

 In order to communicate with the backend API a user must first be authenticated by the

authentication module, this is done via JWT mechanism, that as said in [25] “is a compact, URL-

safe means of representing claims to be transferred between two parties”. This allows the

authentication of an user in the API via the exchange of an encrypted token that contains user

information (in this case, the user id, user email and user role) , the token is created at user login

using its information and is encrypted using the JWT library and with the use of a private key

(stored in Backend/core.php configuration file), it is then sent to the frontend via HTTP response

and stored in browser cookies. Every time the user needs to permission from the API it appends

the token to the AJAX request’s JSON used to communicate with the API, the token is then

decrypted by the JWT library, also making use of the same private key, and if it checks, it lets

the requested action take place, otherwise the access is denied. Also, the token contains

information about the user’s role and by decrypting it also lets the API perform authorization

operations by accessing that information. This method of authentication and authorization was

chosen because it is mostly safe, not safe only if someone gets access to the token or the private

key (highly unlikely) and allows for the creation of a stateless API.

4.4.2 Registration (signup)

To access the solution’s platform a user must first registry in the platform system, this can

be done by accessing the sign in page and providing the asked information by the registration

form (described below). This information is related to the user and holds its data, the provided

credentials (email and password) are then used to authenticate into the system. To register

successfully the user must provide a registration key handed by the admin, otherwise it is

impossible for it to register. The key is verified by the backend authentication module and if

accompanied of valid registration info the user is persisted in the database and the key discarded

so it cannot be used again.

• Required registration data.

Table 11 – Registration Form description.

Field name Description

Registration key 13-character key handed out by the admin.

First name User’s first name.

Last name User’s last name.

Email address User’s email address (any provider can be used).

Password User’s chosen password, needs to be bigger than 8 characters.

Solution

 44

Password confirmation Needs to contain the same string as the Password field.

4.4.3 Login

After registration, for the user to access the actual platform contents it must login into the

system. After inputting the login credentials and submitting them in the login page, the platform’s

backend authentication module verifies if they are valid by accessing the database and comparing

the values with the persistent ones in the users table. If the verification succeeds the user is given

a JWT that is then stored in browser cookies and enables the access of the user to the platform.

To access some information, it is then required the sending of this token, that is always verified

by the authentication module, for the user to be authenticated.

• Required login data

Table 12 – Login Form description.

Field name Description

Email address Registered user email address

Password Password associated with the email address.

4.5 Procedural generation

4.5.1 Challenges and story.

To create the challenges the admin must create both the story and the challenges. For that,

the only tool required is a spreadsheet to create an XLS file (then saved as a CSV) for every

chapter. These files are uploaded by the teacher to the platform and inserted in the

Backend/generation/chapters/ folder. On admin order, the folder with the .csv files for the

chapters is scanned and every chapter file is parsed on the backend of the application. This module

must account for the structure of the chapter file, and for every row, parse the content into the

appropriate database table. To parse the chapter files into the database, we rely on PHP to read

the content and, using the file structure described below, insert the parsed information into the

correct database table with the first chapter and challenge unlocked to all users.

4.5.1.1 Challenges and story file structure (for each chapter).

The challenges/story xls file structure is depicted in following table. Note that BOSS type

challenges must come at the end of the Challenges section since they are the final challenges of

a chapter and even though they are multiple rows, they are combined into only one challenge.

Solution

 45

Table 13 – Challenge/Story xls file structure.

Chapter CHAPTER NAME, COLOR1, COLOR2, COLOR3, TEXTCOLOR

 <indication row>

Challenges CHALLENGE NUMBER, TYPE, ARGUMENT 1, ARGUMENT 2, ARGUMENT N

 <empty row>

 <indication row>

Dialogs NUMBER OF QUOTE, TYPE, QUOTE, CHARACTER, BACKGROUND MEDIA

• Meaning of each element:

Chapter –

Table 14 – Chapter elements meaning.

Element Meaning

CHAPTER NAME Name given to the challenge.

COLOR1 Primary color of the chapter color scheme.

COLOR2 Secondary color of the chapter color scheme.

COLOR3 Tertiary color of the chapter color scheme.

TEXTCOLOR Text color of the chapter color scheme.

Challenges –

The meaning of each element differs on the TYPE of the challenge and is described in the

next tables.

Note: It is possible to use images in the arguments of the challenges by inserting a

variation of the string “Figure_name:imagename.png” where imagename.png is the name of

the image file in the Backend/images/challenges/ folder.

 CHOICE / BOSS –

Table 15 – BOSS type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“CHOICE” or “BOSS”)

ARGUMENT 1 Question of the challenge.

ARGUMENT 2 Index of the correct answer.

ARGUMENT [3-6] Possible answers to the question

Solution

 46

MCHOICE –

Table 16 – MCHOICE type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“MCHOICE”)

ARGUMENT 1 Question of the challenge.

ARGUMENT 2 Indexes of the correct answer. Syntax: “index1/index2/indexN”

ARGUMENT [3-…] Possible answers to the question

 FILL –

Table 17 – FILL type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“FILL”)

ARGUMENT 1 Question of the challenge. Syntax: “(_)” means it’s one of the

filling spots.

ARGUMENT 2 Indexes of the correct words in order. Syntax:

“index1/index2/indexN”.

ARGUMENT [3-…] Possible word for the filling spots.

 CROSSWORD –

Table 18 – CROSSWORD type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“CROSSWORD”)

ARGUMENT [1-15] Hint and respective word of crossword. Syntax: “hint:word”

LETTERS –

Table 19 – LETTERS type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“LETTERS”)

ARGUMENT 1 Question of the challenge.

ARGUMENT 2 Correct answer.

Solution

 47

 PAIR –

Table 20 – PAIR type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“PAIR”)

ARGUMENT [1-…] Correct pairs. Syntax: “leftN // rightN”

 GROUP –

Table 21 – GROUP type challenge elements meaning.

Element Meaning

CHALLENGE NUMBER Number of the challenge in the chapter.

TYPE Type of the challenge. (“GROUP”)

ARGUMENT 1 Left and right groups name. Syntax: “left // right”

ARGUMENT [2-…] Questions of the challenge.

Dialogs –

Table 22 – Dialog lines element meaning.

Element Meaning

NUMBER OF QUOTE Number of the quote in the chapter.

TYPE Type of the dialog. (“DIALOG”)

QUOTE Line of dialog.

CHARACTER Name of the character that speaks the quote.

BACKGROUND MEDIA Name of the media file used for background in the dialog scene.

4.5.1.2 Parsing the files into the database.

To parse the challenge/story files into the database it is used the

Backend/generation/reload_challenges.php that firstly cleans the database’s tables ‘chapter’,

‘challenge’, ‘argument’ and ‘dialog’. After it scans the Backend/generation/chapters/ directory,

an challenge id counter is initiated, as well as a chapter id counter and for every chapter file that

is found it is started a parsing instruction that analyses every line of the file separating the line

string into the elements, and then acting accordingly.

Solution

 48

If it is the 1st line of the file, it will analyze it as a chapter information row and insert every

element into the respective ‘chapter’ table column by using the element meaning described above

and the chapter id counter as the id.

The second line of the file is skipped since it is only a table header used to help the admin

fill the file correctly.

The following rows until it encounters an empty line are challenge rows. The first 2 elements

are challenge info (not arguments), so they are inserted into the respective ‘challenge’ table

columns using the meaning described above, in this case, challenge number and challenge type

and using the value of the challenge id counter as the id. The remaining elements are treated as

arguments of the respective challenge and inserted into the ‘argument’ table, being their number

the ‘number’ column and their content the ‘content’ column, also they are associated with the

current challenge by using the value of the challenge id counter. For every row the challenge id

counter value is incremented.

The empty line is skipped and the one after is also skipped since it is also used to help the

admin fill the file correctly.

The following rows until the end of the file are dialog rows. The elements are inserted into

the ‘dialog’ table respective columns by using the meaning described above and are associated

with the respective chapter using the chapter id counter value.

The chapter id counter value is incremented, and it proceeds to analyze the next file in the

directory if there’s any.

4.5.2 Atlas.

To create the atlas the admin must create the atlas. And like the challenges and story, the

only tool required is a spreadsheet to create an XLS file (then saved as a CSV) for every chapter.

These files are uploaded by the teacher to the platform and inserted in the

Backend/generation/atlas/ folder. On admin order, the folder with the .csv files for the chapters

is scanned and every atlas chapter file is parsed on the backend of the application. The insertion

mode is the same used in the challenges / story, but instead the PHP must account for the following

file structure.

4.5.2.1 Atlas file structure (for each chapter).

 The atlas xls file structure is depicted in following table.

Table 23 – Atlas xls file structure.

 <indication row>

Atlas items IMAGE NAME, TEXT

Solution

 49

• Meaning of each element.

Table 24 – Atlas items element meaning.

Element Meaning

IMAGE NAME Name of the image file of the atlas item.

TEXT Text explaining the image of the atlas item.

4.5.2.2 Parsing into the database.

To parse the atlas files into the database it is used the Backend/generation/reload_atlas.php

that firstly cleans the ‘atlas’ database table. After it scans the Backend/generation/atlas/ directory,

a chapter id counter is initialized and for every chapter file that is found it is started a parsing

instruction that analyses every line of the file separating the line string into the elements, and then

acting accordingly.

The first line is skipped since it is used to help the admin fill the file correctly.

The following lines until the end of the file are analyzed as atlas items rows and the elements

are inserted into the ‘atlas’ table columns by making use of the element meaning described above,

also every atlas item is associated with the respective chapter using the chapter id counter value.

The chapter id counter value is incremented, and it proceeds to analyze the next file in the

directory if there’s any.

4.6 API

To stablish communication between the frontend and backend modules it was developed a

simple PHP stateless API. The API is accessed via AJAX requests present in the frontend files

and its responses analyzed via JavaScript. The requests as well as the responses are JSON encoded

strings. The following information describes the API, a more technical description is made in

Attachment 1.

• Authenticating in the API.

As described previously in the authentication/authorization section, the authentication in the API

is made via the sending of a valid JWT in the request made.

• Available API actions.

Solution

 50

The API provides access to the retrieve of user, chapter, story and atlas information, as well as

the updating of said data. Also allows the verification of user answers to the challenges and the

execution of admin actions like generating the platform content and managing it. A list with the

provided API operations and a small description is supplied next:

o Clear database – clears the whole database content, only used by an admin user.

o Generate registration key – generates a new registration key, only used by an

admin user.

o Retrieve atlas item – retrieves a given atlas item data.

o Retrieve BOSS challenge arguments – retrieves all BOSS type challenges data

related to a given chapter.

o Retrieve challenge arguments (not BOSS type) – retrieves a given challenge’s

data, the challenge can’t be BOSS type.

o Retrieve Atlas items – retrieves every atlas item of a given chapter.

o Retrieve user challenges information – retrieves the data regarding the progress

of a given user in the challenges.

o Retrieve story dialogs – retrieves the data of every dialog moment of a given

chapter.

o Retrieve chapters – retrieves the info of every chapter.

o Retrieve leaderboard users – retrieves info about the 10 users with the most

points.

o Retrieve every registration key – retrieves every registration key that can still be

used, only used by an admin user.

o Retrieve if first time playing the chapter challenges – retrieves if it is the first

time a user plays a given chapter.

o Retrieve user info – retrieves the info of a given user.

o Retrieve every user info – retrieves the info of every registered user.

o User authentication – authenticates a registered user, via JWT.

o Reset every user’s challenge progress – resets every user’s progress in the

challenges (locks them all but the first).

o User registration – registers a user if the provided registration key is correct.

o Lock/unlock chapter – locks or unlocks a given chapter.

Solution

 51

o Verify BOSS challenge answer – verifies the answer of a given BOSS type

challenge and retrieves its correct answer.

o Verify CHOICE challenge answer - verifies the answer of a given CHOICE type

challenge and retrieves its correct answer.

o Verify CROSSWORD challenge answer - verifies the answer of a given

CROSSWORD type challenge and retrieves its correct answer.

o Verify FILL challenge answer - verifies the answer of a given FILL type

challenge and retrieves its correct answer.

o Verify GROUP challenge answer - verifies the answer of a given GROUP type

challenge and retrieves its correct answer.

o Verify LETTERS challenge answer - verifies the answer of a given LETTERS

type challenge and retrieves its correct answer.

o Verify MCHOICE challenge answer - verifies the answer of a given MCHOICE

type challenge and retrieves its correct answer.

o Verify PAIR challenge answers - verifies the answer of a given PAIR type

challenge and retrieves its correct answer.

o Verify JWT – verifies if a JWT is valid.

o Verify admin JWT – verifies if a JWT is valid and of an admin.

4.7 User Interface.

The user interface was entirely made with the use of html elements, css and javascript and

can be used in any type of screen (desktop or mobile). The chosen design was applied in order to

provide a simple, direct and easy navigation. The navigation is made mainly using buttons that

let the user change views or select elements. The user must always enter via the index page and

navigate by using the buttons otherwise the views cannot be accessed, this was made so the

platform would feel more like a game or an APP.

4.7.1 Registration View.

Frontend/signup.html

In this view it is shown to the user a registration form, as well as an image that represents

the involved entities in the project. In order to register the user must fill the registration form and

click the “Signup” button. After, one or more messages appear in the screen reporting the status

of the registration.

Solution

 52

To change to the “Login” view the user must click the “Login here!” anchor that is shown

on the screen.

Javascript-

Table 25 – Registration View javascript description.

Event Action

Signup button click Whenever the “Signup” button is clicked a verification to the

registration form fields is performed and it is made sure that every

field is correctly filled, i.e:

• Registration Key: has 13 characters.

• First Name: is filled.

• Last Name: is filled.

• Email Address: has a correct syntax.

• Password: has 8 characters.

• Confirm Password: is the same as the password field.

If a field is not correctly filled the user is shown a message reporting

the error.

If everything checks these conditions an AJAX post request is made

to the Backend/API/signup.php. If the returned response is successful,

the user is now registered, and it is shown a “You can now login!”

message. Otherwise, the registration fails, and an error message is

shown.

“Login here!”

anchor click

Login View is loaded.

Solution

 53

4.7.2 Login View.

Frontend/login.html

In this view it is shown to the user a login form, as well as an image that represents the

involved entities in the project. In order to login the user must fill the login form correctly and

click the “Sign in” button. If the user successfully logs in, it gains access to the platform’s contents

and the Main Menu view is shown.

To change to the “Registration” view the user must click the “Sign up here!” anchor that is

shown on the screen.

Javascript-

Table 26 – Login View javascript description.

Event Action

Sign in button click Whenever the “Sign in” button is clicked an AJAX post request is

made to the Backend/API/login.php. If the request is successful, the

user is redirected to the Main Menu view, and it is shown a “You can

now login!” message. Otherwise, the login fails, and an error message

is shown.

Figure 3 - Mobile / Desktop Registration View Interface.

Solution

 54

“Sign up here!”

anchor click

Registration view is loaded.

4.7.3 Main Menu View.

Frontend/main_menu.html

In this view it is shown, at the top, an header that holds the authenticated user information

(name and points), as well as a “logout” button (if the user is an admin it also holds an Admin

button, that takes the user to an admin restricted area). The “logout” button is used whenever the

user wants to logout.

Also, there are two big main buttons, “Adventure” and “Atlas”, the first one takes the user

to a chapter selection screen related to the challenges, whereas the second one takes it to a chapter

selection screen related to the atlas.

In left down corner of the screen exists a “trophy” button, this button, if clicked, takes the

user to the leaderboard view.

Javascript-

Table 27 – Main Menu View javascript description.

Event Action

Figure 4 - Mobile / Desktop Login View Interface.

Solution

 55

On document load Whenever the document loads, an AJAX post request is made to the

Backend/API/verify_token_admin.php, if the request is successful

the previously mentioned “admin” button is added to the header.

After, an AJAX post request is made to the

Backend/API/get_user_info.php, if the request is successful the user

information (name and points) is shown in the header.

Adventure Button Click Chapter Selection (challenges related) view is loaded.

Atlas Button Click Chapter Selection (atlas related) view is loaded.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Trophy Button Click Leaderboard view is loaded.

Admin Button Click Admin Dashboard view is loaded.

4.7.4 Leaderboard View.

Frontend/leaderboard.html

In this view it is shown, at the top, a header that holds the authenticated user information

(name and points), a “back” button and a “logout” button. The “back” button is used to return to

the Main Menu view and the “logout” button to logout the user.

Figure 5 - Mobile / Desktop Main Menu View Interface.

Solution

 56

The rest of the view is composed with a leaderboard with the user’s name of the 10 users

with more points

Javascript –

Table 28 – Leaderboard View javascript description.

Event Action

On Document Load Whenever the document loads, an AJAX post request is made to the

Backend/API/get_user_info.php, if the request is successful the user

information (name and points) is shown in the header.

After, an AJAX post request is made to the

Backend/API/get_leaderboard.php, if the request is successful the

name and points of the 10 registered users with more points is shown.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Back Button Click Main Menu view is loaded.

4.7.5 Chapter Selection View (challenges).

Frontend/choose_chapter.html

Figure 6 - Mobile / Desktop Leaderboard View Interface.

Solution

 57

In this view it is shown, at the top, a header that holds the authenticated user information

(name and points), a “back” button and a “logout” button. The “back” button is used to return to

the Main Menu view and the “logout” button to logout the user.

The rest of the screen is filled with a button for each chapter, with the respective chapter’s

name in it. If clicked, these buttons take the user to the Challenge Selection view.

Javascript –

Table 29 – Chapter Selection (Challenges) View javascript description.

Event Action

On Document Load Whenever the document loads, an AJAX post request is made to the

Backend/API/get_user_info.php, if the request is successful the user

information (name and points) is shown in the header.

After, an AJAX post request is made to the

Backend/API/get_chapters_info.php, if the request is successful the

buttons for each chapter are created and decorated with the chapter’s

color scheme, if the chapter is locked a lock icon is shown next to

name. If the request fails an error message is shown.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Back Button Click Main Menu view is loaded.

Chapter Button Click Challenge Selection view of the clicked chapter is loaded, and the

selected chapter id and color scheme colors saved in variables.

Figure 7 - Mobile / Desktop Chapter Selection (Challenges) View Interface.

Solution

 58

4.7.6 Chapter Selection View (Atlas).

Frontend/choose_atlas_chapter.html

In this view it is shown, at the top, a header that holds the authenticated user information

(name and points), a “back” button and a “logout” button. The “back” button is used to return to

the Main Menu view and the “logout” button to logout the user.

The rest of the screen is filled with a button for each chapter, with the respective chapter’s

name in it. If clicked, these buttons take the user to the Atlas Item Selection view.

Javascript –

Table 30 – Chapter Selection (Atlas) View javascript description.

Event Action

On Document Load Whenever the document loads, an AJAX post request is made to the

Backend/API/get_user_info.php, if the request is successful the user

information (name and points) is shown in the header.

After, an AJAX post request is made to the

Backend/API/get_chapters_info.php, if the request is successful the

buttons for each chapter are created and decorated with the chapter’s

color scheme. If the request fails an error message is shown.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Back Button Click Main Menu view is loaded.

Chapter Button Click Atlas Item Selection view of the clicked chapter is loaded, and the

selected chapter id saved in a variable.

Solution

 59

4.7.7 Storyboard View.

Frontend/dialog.html

In this view it is shown, at the top, a “Back” button that is used to return to the Chapter

Selection view.

The rest of the screen is dialog area, with the media chosen to the background of the dialog

moment, in the back and the actual dialog on top of it. Whenever a character “speaks” it is show

is line of dialog, a portrait of the character and a “Next” button that advances for the next dialog

moment, if there’s any.

At the top right corner, there is a “skip” button that skips the whole story moment and loads

the Challenge Selection View.

Javascript –

Table 31 – Storyboard View javascript description.

Event Action

On Document Load On document load, an AJAX post request is made to

Backend/API/get_chapter_dialog.php, if the request is successful

the dialog info for the given chapter is saved in an array and the

Figure 8 - Mobile / Desktop Chapter Selection (Atlas) View Interface.

Solution

 60

first dialog moment is shown, otherwise an error message is

displayed.

Back Button Click Chapter Selection View is loaded

Skip Button Click Challenge Selection View is loaded.

Next Button Click The next dialog moment is shown, if it is the last one the of the

story moment happens.

End of the story

moment

Challenge Selection View is loaded.

4.7.8 Challenge Selection View.

Frontend/choose_challenge.html

In this view it is shown, at the top, a header that holds the authenticated user information

(name and points), a “back” button and a “logout” button. The “back” button is used to return to

the Chapter Selection view and the “logout” button to logout the user.

The rest of the screen is filled with a button for each challenge, with the respective

challenge’s number in it. If clicked, these buttons take the user to the actual challenge view.

Javascript –

Table 32 – Challenge Selection View javascript description.

Figure 9 - Mobile/Desktop Storyboard View user interface.

Solution

 61

Event Action

On Document Load Whenever the document loads, an AJAX post request is made to

the Backend/API/get_user_info.php, if the request is successful the

user information (name and points) is shown in the header.

After, an AJAX post request is made to the Backend/API/

get_chapter_challenges_info.php, if the request is successful the

buttons for each challenge are created and decorated with the

chapter’s color scheme, if a challenge is locked for the

authenticated user, a lock icon is shown next to its number, and if

it is complete a right icon is shown instead. If the request fails an

error message is shown.

Also, the chapter’s color scheme is applied to the view.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Back Button Click Chapter Selection view is loaded.

Challenge Button Click Challenge view is loaded.

4.7.9 Challenge View (CHOICE).

Frontend/CHOICE.html

Figure 10 - Mobile / Desktop Challenge Selection View Interface.

Solution

 62

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge. After that comes the challenge question, the available answers

buttons and a “Check” button.

In order to answer the question, the user must click the desired answer button and click the

“check” button. When the “check” button is clicked a modal will appear with the result of the

challenge, if the user fails, the correct answer is displayed.

Javascript –

Table 33 – CHOICE type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_Arguments.php, if the request is

successful, the challenge’s question is displayed, the answers

buttons created, and the chapter’s color scheme applied. If the

request fails an error message is shown.

Back Button Click Challenge Selection view of the chapter is loaded.

Answer Button Click Saves the index of the clicked answers as the selected answer.

Check Button Click If an answer is selected, a modal is open and an AJAX post request

is made to the Backend/API/verify_CHOICE.php, if the request is

successful, it verifies the response contents to check if the answer

was the correct one. If so, the modal is filled with a congratulations

message and the won points, otherwise, it is filled with the correct

answer.

Solution

 63

4.7.10 Challenge View (MCHOICE)

Frontend/MCHOICE.html

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge. After that comes the challenge question, the available answers

buttons and a “Check” button.

In order to answer the question, the user must click the desired answers button and click the

“check” button. When the “check” button is clicked a modal will appear with the result of the

challenge, if the user fails, the correct answer is displayed.

Javascript –

Table 34 – MCHOICE type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_Arguments.php, if the request is

successful, the challenge’s question is displayed, the answers

Figure 11 - Mobile / Desktop CHOICE type Challenge View Interface.

Solution

 64

buttons created, and the chapter’s color scheme applied. If the

request fails an error message is shown.

Back Button Click Challenge Selection view of the chapter is loaded.

Answer Button Click Adds the answer index to an array of selected answers. If that

answer is already selected it deselects it and removes the index

from the array.

Check Button Click If an answer is selected, a modal is open and an AJAX post request

is made to the Backend/API/verify_MCHOICE.php, if the request

is successful, it verifies the response contents to check if the answer

was the correct one. If so, the modal is filled with a congratulations

message and the won points, otherwise, it is filled with the correct

answer.

4.7.11 Challenge View (CROSSWORD).

Frontend/CROSSWORD.html

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge. After that an empty crossword is shown, as well as a “check” button.

Figure 12 – Mobile/Desktop MCHOICE type Challenge View user interface.

Solution

 65

In order to complete the challenge, the user must complete the crossword and then click the

“check button”. When the “check” button is clicked a modal will appear with the result of the

challenge, if the user fails, the correct answer is available for the user to see.

If a word’s number button is clicked, the hint for the given word is shown at the top of the

challenge area.

Javascript –

Table 35 – CROSSWORD type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_Arguments.php, if the request is

successful, the challenge arguments in the response are treated and

a matrix for the crossword is generated using a developed

crossword generation algorithm, and the words mapped to the

respective hints. The matrix is then represented visually in the

challenge area and the chapter’s color scheme applied.

Back Button Click Challenge Selection view of the chapter is loaded.

Word Number Button

clicked

Hint for the respective word is shown.

Check Button Click A modal is open, and an AJAX post request is made to the

Backend/API/verify_CROSSWORD.php, if the request is

successful, it verifies the response contents to check if the answer

was the correct one. If so, the modal is filled with a congratulations

message and the won points, otherwise, the crossword is filled with

the correct answer , depending on the correctness of the words in

the user’s answer, the Word Number Buttons are colored green

(correct) or red (incorrect), and the model is filled with a

incompletion message. It is then possible for the user to close the

modal in order to check the correct answer.

Solution

 66

4.7.12 Challenge View (FILL).

Frontend/FILL.html

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge. After that the text with the space buttons, possible answer buttons

and the “check” button.

In order to answer the challenge, the user must fill the space buttons by clicking the possible

answer button and then pressing the “check” button. When the “check” button is clicked a modal

will appear with the result of the challenge, if the user fails, the correct answer is displayed.

Javascript –

Table 36 – FILL type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_arguments.php, if the request is

successful, the question is created by swapping every occurrence

Figure 13 - Mobile / Desktop CROSSWORD type Challenge View Interface.

Solution

 67

of a “ (_) ” with a space button, and the options buttons are created.

The chapter’s color scheme is applied.

Back Button Click Challenge Selection view of the chapter is loaded.

Space Button Click If filled with an option string, deselects the string’s correspondent

option button. Also removes the string from the button and the

option index from the array of selected options.

Option Button Click Fills the first empty Space Button with the option string, and the

option button is marked as selected. Also adds the option index to

an array of selected options.

Check Button Click A modal is open, and an AJAX post request is made to the

Backend/API/verify_FILL.php, if the request is successful, it

verifies the response contents to check if the answer was the correct

one. If so, the modal is filled with a congratulations message and

the won points, otherwise, it is filled with the correct answer in

order.

4.7.13 Challenge View (LETTERS)

Frontend/FILL.html

Figure 14 - Mobile / Desktop FILL type Challenge View Interface.

Solution

 68

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge. After that, the question, buttons representing the answer’s letters

(answer buttons), and the possible letters buttons.

In order to answer the challenge, the user must fill the answer buttons by clicking the possible

characters buttons and then pressing the “check” button. When the “check” button is clicked a

modal will appear with the result of the challenge, if the user fails, the correct answer is displayed.

Javascript –

Table 37 – LETTERS type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_arguments.php, if the request is

successful, the question is displayed, the answer buttons created,

and the possible letters buttons too. These last buttons are a

combination of the answer’s letters and random letters. Then, the

chapter’s color scheme is applied.

Back Button Click Challenge Selection view of the chapter is loaded.

Answer Button Click If filled with a letter, is filled with a blank and deselects the Letter

Button with the id associated with that position. Also removes the

letter from the answer array and button id from the association

array.

Letter Button Click Fills the first empty Answer Button with the correspondent letter,

and the button is marked as selected. Also adds the letter to an array

in the corresponding position and does the same with the button id.

Check Button Click A modal is open, and an AJAX post request is made to the

Backend/API/verify_LETTERS.php, if the request is successful, it

verifies the response contents to check if the answer was the correct

one. If so, the modal is filled with a congratulations message and

the won points, otherwise, it is filled with the correct answer.

Solution

 69

4.7.14 Challenge View (PAIR)

Frontend/PAIR.html

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge, after that, an area that holds a left and a right group of options, an

area that holds the pairs already made and the “check” button.

In order to answer the challenge, the user must make connections between items of the left

and right group and press the “check” button.

Javascript –

Table 38 – PAIR type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_arguments.php, if the request is

successful, the left and right group items are created. Then, the

chapter’s color scheme is applied.

Figure 15 - Mobile / Desktop LETTERS type Challenge View Interface.

Solution

 70

Item Button Click If no other item or an item from the same group is selected, selects

the item. If an item from a different group is selected, removes the

items from the respective groups, and creates a pair in the pair’s

holder.

Pair Button Click The pair is destroyed, and the composing items are returned to the

respective groups.

Check Button Click A modal is open, and an AJAX post request is made to the

Backend/API/verify_LETTERS.php, if the request is successful, it

verifies the response contents to check if the answer was the correct

one. If so, the modal is filled with a congratulations message and

the won points, otherwise, it is filled with the correct answer.

4.7.15 Challenge View (GROUP)

Frontend/GROUP.html

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

Figure 16 - Mobile / Desktop PAIR type Challenge View Interface.

Solution

 71

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge, after that, in a first instance a “start” button and then 2 vertical

buttons identifying each group.

When the start button is pressed a phrase is shown and a timer next to it starts counting.

The challenge advances for the next phrase (if there are more) if the user chooses a group or

the timer reaches 0.

If there are no more phrases left, the challenge ends and the results are displayed.

Javascript –

Table 39 – GROUP type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_challenge_arguments.php, if the request is

successful, the left and right groups are filled with their

correspondent name and the challenge phrases saved in an array.

Start Button Click Phrase is displayed and timer is shown.

Group Button Click The correct group of the phrase is shown and if there are more,

advances for the next phrase. Saves the selected phrase into the

correspondent clicked group array.

Timer reaches 0 The correct group of the phrase is shown and if there are more,

advances for the next phrase. Saves the selected phrase into the

wrong group array.

Game End A modal is open, and an AJAX post request is made to the

Backend/API/verify_GROUP.php, if the request is successful, it

verifies the response contents to check if the answer was the correct

one. If so, the modal is filled with a congratulations message and

the won points, otherwise, it is filled with the user’s correct answers

and wrong answers (properly indicated).

Solution

 72

4.7.16 Challenge View (BOSS)

Frontend/BOSS.html

In this view it is shown, at the top, a “Back” button that is used to return to the Challenge

Selection view.

The rest of the screen is challenge area, and at the top there is an indication of what to do in

order to complete challenge. After that comes the challenge question, the available answers

buttons and a “Check” button.

In order to answer the question, the user must click the desired answer button, and if it is a

correct answer, the next question is shown as well as its possible answers. If the user fails, the

correct answer to the given question is shown and a modal appears with an incompletion message.

When the last question is answered correctly the user completes the challenge, unlocking the

first one of the next chapter.

Javascript –

Table 40 – BOSS type Challenge View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_BOSS_arguments.php, if the request is

Figure 17 - Mobile / Desktop GROUP type Challenge View Interface.

Solution

 73

successful, the response is parsed and the arrays containing every

question info are saved, and the first question and its respective

possible answers are shown.

Back Button Click Challenge Selection view of the chapter is loaded.

Answer Button Click If the clicked answer was the correct one it advances for the next

question until there are no more left, and the challenge is complete,

else, it shows the correct answer and a modal is open with a

incompletion message.

On challenge

completion

A modal is open and an AJAX post request is made to the

Backend/API/verify_BOSS.php, if the request is successful, it

verifies the response contents to check if the answer was the correct

one. If so, the modal is filled with a congratulations message and

the won points, otherwise, it is filled with the correct answer.

4.7.17 Atlas Item Selection View.

Frontend/atlas.html

In this view it is shown, at the top, a “Back” button that is used to return to the Chapter

Selection View (Atlas).

Figure 18 - Mobile / Desktop BOSS type Challenge View Interface.

Solution

 74

The rest of the screen is filled with the atlas items (image and name), to amplify an item and

view its subtitle the user must click the item button.

Javascript –

Table 41 – Atlas Item Selection View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_chapter_atlas.php, if the request is successful,

the atlas items are shown. They are displayed one after the previous

one loads, in order to increase performance.

Back Button Click Chapter Selection View (Atlas) is loaded.

Atlas Button Click The Amplified Atlas View of the clicked item is loaded, also the

actual amplified item id is saved in a variable.

4.7.18 Amplified Atlas Item View.

Frontend/amplified_atlas.html

In this view it is shown, at the top, a “Back” button that is used to return to the Chapter

Selection View (Atlas).

Figure 19 - Mobile / Desktop Atlas Item Selection View Interface.

Solution

 75

The rest of the screen is filled with the amplified item info, this is, image and subtitle. The

user can navigate to the next and the previous item (if they exist) by clicking the arrow buttons in

the sides of the image.

Javascript –

Table 42 – Amplified Atlas Item View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_atlas_item.php, if the request is successful, the

atlas item image and subtitle are displayed.

Back Button Click Atlas Item Selection View is loaded.

“next” Button Click The actual item id is incremented, and an AJAX post request is

made to the Backend/API/get_atlas_item.php, if the request is

successful, the atlas item image and subtitle are displayed.

This button is disabled if there are no next Atlas item in the given

chapter.

“previous” Button

Click

The actual item id is decremented, and an AJAX post request is

made to the Backend/API/get_atlas_item.php, if the request is

successful, the atlas item image and subtitle are displayed.

This button is disabled if there are no previous Atlas item in the

given chapter.

Figure 20 - Mobile / Desktop Amplified Atlas Item View Interface.

Solution

 76

4.7.19 Admin Area (Users) View

Frontend/admin_users.html

In this area the admin can manage the user individually as well as in group. Also, it is in here

that the registration keys are shown and generated.

There is at the top, a header that holds the authenticated admin information (name), a “game”

button and a “logout” button. The “game” button is used to return to the Main Menu view and the

“logout” button to logout the admin.

The rest of this view is composed by a user’s data table, showing their information followed

by a registration key area, where it is possible to view and generate the keys.

Also, there is an action button that resets every user’s progress in the challenges.

To navigate between admin area views there is a side bar to the left, with the possible

sections.

Javascript –

Table 43 – Admin Area (Users) View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_users_info.php, if the request is successful, the

users info contained in the response is displayed in the user’s data

table.

There is also made an AJAX post request to the Backed/API/

get_registation_keys, if the request is successful, the registration

keys info contained in the response is displayed in the registration

key’s table.

Game Button Click Main Menu View is loaded.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Sidebar

Chapter/Challenges

section Click

Admin Area (Chapter/Challenges) View is loaded.

Solution

 77

Generate Keys Button Generates the number of desired keys by making that number of

AJAX post requests to the

Backend/API/generate_registation_key.php, if a request is

successful and not every key was yet generated it is sent another

request. Whenever the desired number of keys was generated or

there is an unsuccessful request, the generation process stops and it

is displayed a status message.

Reset Users Progress

Button

Makes an AJAX post request to the

Backend/API/reset_users_progress.php, a message is then shown

with the status of the request.

4.7.20 Admin Area (Chapter/Challenges) View.

Frontend/admin_chapters.html

In this area the admin can lock/unlock a chapter and view its info, reload the challenges and

the atlas and clear the database, by clicking the respective buttons.

There is at the top, a header that holds the authenticated admin information (name), a “game”

button and a “logout” button. The “game” button is used to return to the Main Menu view and the

“logout” button to logout the admin.

To navigate between admin area views there is a side bar to the left, with the possible

sections.

Figure 21 - Mobile / Desktop Admin Area (Users) View Interface.

Solution

 78

Javascript –

Table 44 – Admin Area (Chapter/Challenges) View javascript description.

Event Action

On Document Load When the document loads, an AJAX post request is made to the

Backend/API/get_chapters_info.php, if the request is successful,

the chapters info is displayed in the chapters data-table, otherwise

an error message is shown.

Lock/Unlock Chapter

Button Click

An AJAX post request is made to the

Backend/API/unlock_lock_chapter.php, if the request is successful

the chapter info is updated in the table, and a success message

shown. Otherwise an error message is shown.

Reload Challenges

Button

An AJAX post request is made to the

Backend/API/reload_challenges.php, if the request is successful

the chapters table is reloaded with the new chapter’s info, and a

success message shown. Otherwise an error message is shown.

Reload Atlas Button An AJAX post request is made to the

Backend/API/reload_atlas.php, if the request is successful a

success message is shown. Otherwise an error message is shown.

Clear Database Button An AJAX post request is made to the Backend/API/clear_database

.php, if the request is successful a success message is shown.

Otherwise an error message is shown.

Logout Button Click User is logged out (jwt cookies cleared) and login view is loaded.

Sidebar Users section

Click

Admin Area (Users) View is loaded.

Solution

 79

4.8 User Testing.

In the final stages of development, a user test was performed with 10 students that were

attending the course of “Functional Histology” in the Institute of Biomedical Sciences Abel

Salazar. In the test the users were asked to do simple tasks and then provide feedback about them.

The tasks were:

• Register and login into the system.

• Navigate to the challenge selection screen.

• Conclude a challenge of each type.

• Amplify an Atlas Item.

While the students were performing the tasks various problems were encountered, most of them

had to do with the code and not the interface navigation. Also, the students while performing said

tasks were giving verbal feedback on what they would like to be added or changed.

At the end it was asked them to answer a questionnaire (Attachment 2.) in order to evaluate the

usability and efficacy of the platform. Even though, there were a small number of answers, they

were positive and showed good forecasts.

Figure 22 - Mobile / Desktop Admin Area (Chapters/Challenges) View Interface.

Solution

 80

After the test some of given feedback was implemented and the problems encountered were

solved. Also, the user interface was enhanced.

Conclusions and Future Work

 81

Chapter 5

 Conclusions and Future Work

This work has been motivated by the difficulty of engaging the students in learning histology

beyond using microscopy sessions in the lab and the lack of material for them to do so.

So, in order to try solving this problem it was developed an online platform, that can be used

anywhere, with the use of a PC or a smartphone, and that incorporates not only information but

also engaging elements in order to help the students learning progress. The platform makes use

of game design elements such as an engaging narrative and challenges in order to offer students

an attractive and interactive way of learning.

To help the teacher create/manage the platform’s content it was added a restricted area where

the teacher can oversee the users and update the narrative and challenges with ease by uploading

a csv file to the backend of the platform.

This allows the students to not only access histologic content anywhere and anytime, but

also lets them test and improve their knowledge while participating in engaging and fun

challenges that are accompanied by a compelling narrative.

A major limitation of this solution is the fact that the professor still needs to create files and

fill them appropriately, otherwise the platform contents will not be correctly displayed. Future

work should focus on providing the teacher with a tool that lets them create and update the

challenges visually, so it is easier for them to create a personalized platform.

Also, in order to increase engagement and motivation from the students the interface should

be enhanced, and music and animations added.

Even though the expected platform was developed and the key mechanics implemented I

would have liked to have more time to work on it, as I would improve the admin area as well as

Conclusions and Future Work

 82

add more gamification elements so the students would be able to use it more and have more fun

with it while also learning.

Attachments

 83

Attachments

6.1 Attachment 1 – API description.

• Clear database.

API:

Backend/API/clear_database.php

Method:

 POST

Description:

Empties all database tables.

Permission:

Admin.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

Success:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “database successfully empty”

 }

Attachments

 84

Error:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “access denied”

 }

• Generate registration key.

API:

Backend/API/generate_registation_key.php.

Method:

 POST

Description:

Creates a new registration key and inserts it into the ‘registationKeys’ database table.

Permission:

Admin.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

Success:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “Successs”

 }

Error:

o message {string} – Message describing the result of the call.

Attachments

 85

Example responses:

HTTP /1.1 400 Bad Request

 {

 “message”: “Something went wrong”

 },

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied!”

 }

• Retrieve atlas item.

API:

Backend/API/get_atlas_item.php

Method:

 POST

Description:

Retrieves a given atlas item information from the database.

Permission:

None.

API parameters:

o itemId {number} – Id of the atlas item.

Success:

o message {string} – Message describing the result of the call.

o data {array} – Array containing the database information of the item.

• id {number} – id of the atlas item.

• image {string} – name of the atlas image.

• Subtitle {string} – text of the atlas item.

• chapterId {number} – id of the chapter associated to the atlas

item.

Attachments

 86

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success!”,

 “data”: {

 “id”: ”382”,

 “image”: “image.png”,

 “subtitle”: “subtitle text”,

 “chapterId”: “1”

 }

 }

• Retrieve BOSS challenge arguments.

API:

Backend/API/get_BOSS_arguments.php

Method:

 POST

Description:

Retrieves the arguments of all the BOSS challenge rows of a given chapter.

Permission:

None.

API parameters:

o chapterId {number} – id of the given chapter.

Success:

o message {string} – Message describing the result of the call.

o data {array} – Array of strings that represent JSON encoded BOSS challenge

rows information.

Example response:

Attachments

 87

 HTTP /1.1 200 OK

 {

 “message”: “Success!”,

 “data”: [“[{\“id\”:\”1\”,\”challengeId\”:\”42\” …}]”]

 }

• Retrieve challenge arguments (not BOSS type).

API:

Backend/API/get_challenge_arguments.php

Method:

 POST

Description:

Retrieves an array of the given challenge arguments independently of the challenge type.

Can’t be used for BOSS challenge types.

Permission:

None.

API parameters:

o challengeId{number} – id of the given challenge.

Success:

o message {string} – Message describing the result of the call.

o Data {array} – array with the argument information of the given challenge.

• id {number} – id of the argument.

• challengeId {number} – given challenge Id.

• number {number} – number identifier of the argument meaning.

• content {string} – argument text content.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “Success”,

Attachments

 88

 “data”: [

 {

 “id = 1,

 “challengeId” = 3,

 “number” = 1,

 “content” = “question text”

 },

 …

]

 }

• Retrieve Atlas items.

API:

Backend/API/get_chapter_atlas.php

Method:

 POST

Description:

Retrives the image name of every atlas item of a given chapter.

Permission:

None.

API parameters:

o chapterId {number} – id of the given chapter.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing every atlas item image name of the given chapter

• id {number} – id of the atlas item.

• image {string} – name of the item’s image file.

Example response:

Attachments

 89

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “id”:1,

 “image”: “image_name.png”

 },

…

]

 }

• Retrieve user challenges information.

API:

Backend/API/get_chapter_challenges_info.php

Method:

 POST

Description:

Retrieves the challenges info of a given chapter as well as the authenticated user progress

on them.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o chapterId {number} – id of the given chapter.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing the given chapter challenges information as well

as the user progress on them.

Attachments

 90

• id {number} – id of the challenge.

• number {number} – number of the challenge in the given

chapter.

• Type {string} – type of the challenge

• userId {number} – authenticated user id.

• Locked {Boolean} – 0 or 1, represents if the challenge is or isn’t

locked for the authenticated user.

• Completed {Boolean} - 0 or 1, represents if the challenged is or

isn’t completed by the authenticated user.

• firstTry {Boolean} – 0 or 1, represents if the authenticated user

already tried to complete the challenge.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “id”: 1,

 “number”: 1,

 “type”: “CHOICE”,

 “userId”: 1,

 “locked”: 0,

 “completed”: 0,

 “firstTry”: 1

 },

…

]

 }

• Retrieve story dialogs.

Attachments

 91

API:

Backend/API/get_chapter_dialog.php

Method:

 POST

Description:

Retrieves all the dialog items of a given chapter.

Permission:

None.

API parameters:

o chapterId {number} – id of the given chapter.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing the given story items.

• id {number} – id of the story item.

• number {number} – number of the item in the given chapter.

• characterName {string} – name of the character speaking.

• content {string} – quote of dialog.

• backgroundImg {string} – name of the background media file.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “id”: 1,

 “number”: 1,

 “characterName”: “character”,

 “backgroundImg”: “image_name.png”,

Attachments

 92

},

…

]

 }

• Retrieve chapters.

API:

Backend/API/get_chapters_info.php

Method:

 POST

Description:

Retrieves every chapter’s info.

Permission:

None.

API parameters:

 None.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing every chapter’s info.

• id {number} – id of the chapter.

• name {string} – number of the item in the given chapter.

• color1 {string} – hexadecimal code of the primary color of the

chapter.

• color2 {string} – hexadecimal code of the secondary color of the

chapter.

• color3 {string} – hexadecimal code of the tertiary color of the

chapter.

• textcolor {string} – hexadecimal code of the text color of the

chapter.

• locked {boolean} – 0 or 1, identifies if chapter is or isn’t locked.

Attachments

 93

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “id”: 1,

 “name”: “chapter name”,

 “color1”: “#000000”,

 “color2”: “#000000”,

 “color3”: “#000000”,

 “textcolor”: “#000000”,

 “locked”: 0

},

…

]

 }

• Retrieve leaderboard users.

API:

Backend/API/get_leaderboard.php

Method:

 POST

Description:

Retrieves the 10 users with most points, in descendent order.

Permission:

None.

API parameters:

Attachments

 94

 None.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing the user’s necessary info.

• name {string} – name of the user.

• points {number} – number of points of the user.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “name”: “user name”,

 “points”: 3000,

},

…

]

 }

• Retrieve every registration key.

API:

Backend/API/get_registation_keys.php

Method:

 POST

Description:

Retrieves every registration key available for use.

Permission:

Admin.

Attachments

 95

API parameters:

o jwt {String} – JSON web token of the authenticated admin.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing the keys.

• keyvalue {string} – key string.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “keyvalue”: “1b2b3j4m123l4”,

 },

…

]

 }

Error:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “access denied”

 }

• Retrieve if first time playing the chapter challenges.

API:

Backend/API/get_show_dialog.php

Attachments

 96

Method:

 POST

Description:

Retrieves if the user tried to complete the first challenge of a chapter.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o chapterId {number} – id of the given chapter.

Success:

o message {string} – Message describing the result of the call.

o data {boolean} – Boolean that indicates if user tried or not to complete the first

challenge of the given chapter.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: false

 }

• Retrieve user info.

API:

Backend/API/get_user_info.php

Method:

 POST

Description:

Retrieves the authenticated user’s necessary info.

Permission:

Attachments

 97

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

Success:

o message {string} – Message describing the result of the call.

o data {array} – Array with the necessary user info.

• name {string} - name of the authenticated user.

• points {number} – number of points of the authenticated user.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: {

 “name”: “user name”,

 “points”: 1000

 }

 }

• Retrieve every user info.

API:

Backend/API/get_users_info.php

Method:

 POST

Description:

Retrieves the info of every registered user.

Permission:

Admin.

API parameters:

Attachments

 98

o jwt {String} – JSON web token of the authenticated admin.

Success:

o message {string} – Message describing the result of the call.

o data {array} – Array containing the info of every user.

• id {number} – id of the user.

• name {string} – name of the user.

• email {string} – email of the user.

• points {number} – number of points of the user.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: [

 {

 “id”: 1,

 “name”: “user name”,

 “email”: “email@email.com”,

 “points”: 2000

 },

 …

]

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied!”

 }

Attachments

 99

• User authentication.

API:

Backend/API/login.php

Method:

 POST

Description:

Authenticates the user if it is registered in the system and retrieves its corresponding JWT.

Permission:

None.

API parameters:

o email {String} – email of the user to be authenticated.

o Password {String} – Corresponding password.

Success:

o message {string} – Message describing the result of the call.

o jwt {string} – Corresponding authentication JWT token.

o Admin {boolean} – 0 or 1, indication if the user is or isn’t an admin.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “Successful login.”,

 “jwt”: “tokenValue”,

 “admin”: 1

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

Attachments

 100

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Login failed.”

 }

• Reset every user’s challenge progress.

API:

Backend/API/reset_users_progress.php

Method:

 POST

Description:

Resets the challenge progress of every user, by emptying the ‘userchallenges’ database

table.

Permission:

Admin.

API parameters:

o jwt {String} – JSON web token of the authenticated admin.

Success:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

Attachments

 101

 “message”: “Access denied.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• User registration.

API:

Backend/API/signup.php

Method:

 POST

Description:

Registers the user in the system if the Registration Key is valid.

Permission:

None.

API parameters:

o name {string} – user’s name.

o email {string} – user’s email.

o password {string} – user’s password.

o registationKey {string} – user’s registration key.

Success:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “successful signup”

Attachments

 102

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Lock/unlock chapter.

API:

Backend/API/unlock_lock_chapter.php

Method:

 POST

Description:

Locks or unlocks a chapter.

Permission:

Admin.

API parameters:

o jwt {string} – JSON web token of the authenticated admin.

o chapterId {number} – id of the given chapter.

o action {string} – action to perform (lock or unlock).

Success:

Attachments

 103

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “challenge updated”

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Verify BOSS challenge answer.

API:

Backend/API/verify_BOSS.php

Method:

 POST

Description:

 Verifies if the answers selected by the user, in an unlocked BOSS type challenge, are

correct. And if so, unlocks the next challenge and increments the authenticated user’s points

accordingly.

Permission:

Attachments

 104

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o chapterId {number} – id of the chapter related to the challenge.

o challengeId {number} – id of the first BOSS type challenge of the given chapter.

o selectedAnswers {array} – array containing the indexes of the chosen answers

for the challenge.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

Example responses:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points” : 20

 }

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

Attachments

 105

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Verify CHOICE challenge answer.

API:

Backend/API/verify_CHOICE.php

Method:

 POST

Description:

 Verifies if the answer selected by the user, in an unlocked CHOICE type challenge, is

correct. And if so, unlocks the next challenge and increments the authenticated user’s points

accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o selectedIndex {number} – Index of the chosen answer for the challenge.

Attachments

 106

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

Example responses:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points” : 20

 }

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

Attachments

 107

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Verify CROSSWORD challenge answer.

API:

Backend/API/verify_CROSSWORD.php

Method:

 POST

Description:

 Verifies if the answers selected by the user, in an unlocked CROSSWORD type

challenge, are correct. And if so, unlocks the next challenge and increments the authenticated

user’s points accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o userAnswers{array} – Array with the chosen user anwers.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

Example responses:

 HTTP /1.1 200 OK

 {

Attachments

 108

 “message”: “success”,

 “result”: “correct”,

 “points”: 20

 }

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

Attachments

 109

• Verify FILL challenge answer.

API:

Backend/API/verify_ FILL.php

Method:

 POST

Description:

 Verifies if the answer selected by the user, in an unlocked FILL type challenge, is correct.

And if so, unlocks the next challenge and increments the authenticated user’s points accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o selectedIndexes {string} – string with the indexes of the selected answers ordered

and separed by a ‘/’.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

o answer {array} – string with the correct answers indexes, ordered and separated

by a ‘/’.

Example responses:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points” : 20

 }

Attachments

 110

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 “answer” : “1/3”

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Verify GROUP challenge answer.

API:

Attachments

 111

Backend/API/verify_GROUP.php

Method:

 POST

Description:

 Verifies if the answers selected by the user, in an unlocked GROUP type challenge, are

correct. And if so, unlocks the next challenge and increments the authenticated user’s points

accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o leftChoices {array} – Array with the left group chosen answers.

o rightChoices {array} – Array with the right group chosen answers.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

o answer {array} – string with the correct user answers.

• right {array} – array containing the correct right group string

answers.

• left {array} – array containing the correct left group string

answers.

Example responses:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points”: 20

 }

Attachments

 112

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 “answer”:

 {

 “right”: [

 “right1”,

 …

]

“left”: [

 “left1”,

 …

]

 }

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

Attachments

 113

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Verify LETTERS challenge answer.

API:

Backend/API/verify_ LETTERS.php

Method:

 POST

Description:

 Verifies if the answer selected by the user, in an unlocked LETTERS type challenge, is

correct. And if so, unlocks the next challenge and increments the authenticated user’s points

accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o selectedString{string} – String of the selected answer.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

Example responses:

Attachments

 114

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points” : 20

 }

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

Attachments

 115

 }

• Verify MCHOICE challenge answer.

API:

Backend/API/verify_MCHOICE.php

Method:

 POST

Description:

 Verifies if the answer selected by the user, in an unlocked MCHOICE type challenge, is

correct. And if so, unlocks the next challenge and increments the authenticated user’s points

accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o selectedIndexes {string} – string of the selected answer indexes separated by a

‘/’.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

o Answer {array} – Array containing the indexes of the correct answers.

Example responses:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points” : 20

Attachments

 116

 }

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 “answer” : [

 “1”,

 …

]

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

Attachments

 117

• Verify PAIR challenge answers.

API:

Backend/API/verify_PAIR.php

Method:

 POST

Description:

 Verifies if the answer selected by the user, in an unlocked PAIR type challenge, is correct.

And if so, unlocks the next challenge and increments the authenticated user’s points accordingly.

Permission:

User.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

o challengeId {number} – id of the challenge.

o selectedConnections {array} – array containing the selected pairs strings, pair

strings have the following syntax: “left // right”.

Success:

o message {string} – Message describing the result of the call.

o result {string} – Message describing the result of the verification.

o points {number} – Number of points won by the authenticated user.

o Answer {array} – Array containing the pair strings.

Example responses:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “correct”,

 “points” : 20

 }

Attachments

 118

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “result”: “incorrect”,

 “answer” : [

 “left1 // right1”,

 …

]

 }

Error:

o message {string} – Message describing the result of the call.

Example responses:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Challenge locked.”

 }

HTTP /1.1 401 Bad Request

 {

 “message”: “Something went wrong.”

 }

• Verify JWT.

Attachments

 119

API:

Backend/API/verify_token.php

Method:

 POST

Description:

 Verifies if a JWT is valid.

Permission:

None.

API parameters:

o jwt {String} – JSON web token of the authenticated user.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing the data associated to the JWT.

• id – id of the user associated with the JWT.

• email – email of the user associated with the JWT.

• admin – 0 or 1, identifies if the user is or is not an admin.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

 “data”: {

 “id”: 1,

 “email”: “email@email.com”

 “admin”: 0

}

 }

Error:

Attachments

 120

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

• Verify admin JWT.

API:

Backend/API/verify_token_admin.php

Method:

 POST

Description:

 Verifies if a JWT is valid and is associated with an admin.

Permission:

None.

API parameters:

o jwt {String} – JSON web token of the authenticated admin.

Success:

o message {string} – Message describing the result of the call.

o data {array} – array containing the data associated to the JWT.

• id – id of the user associated with the JWT.

• email – email of the user associated with the JWT.

• admin – 0 or 1, identifies if the user is or is not an admin.

Example response:

 HTTP /1.1 200 OK

 {

 “message”: “success”,

Attachments

 121

 “data”: {

 “id”: 1,

 “email”: “email@email.com”

 “admin”: 1

}

 }

Error:

o message {string} – Message describing the result of the call.

Example response:

 HTTP /1.1 401 Unauthorized

 {

 “message”: “Access denied.”

 }

End of attachment 1.

Attachments

 122

6.2 Attachment 2 – User test questionnaire.

Attachments

 123

Attachments

 124

Attachments

 125

Attachments

 126

Attachments

 127

Attachments

 128

6.3 Attachment 3 – Example of .CSV files.

6.3.1 Chapter/Dialog file.

6.3.2 Atlas file.

Attachments

 129

References

1. Ryan, R.M.J.P.o.m., “A motivational approach to self: Integration in personality edward l., deci

and”. 1991. 38(237): p. 237-288.

2. Duncan, G.J. and K.J.W.o. Magnuson, “The nature and impact of early achievement skills,

attention skills, and behavior problems”. 2011: p. 47-70.

3. Coulter, R., et al., “The effect of degree of immersion upon learning performance in virtual reality

simulations for medical education”. 2007. 15: p. 155.

4. Vogel, J.J., et al., “Computer gaming and interactive simulations for learning: A meta-analysis”.

2006. 34(3): p. 229-243.

5. Ke, F., “A qualitative meta-analysis of computer games as learning tools”, in Gaming and

Simulations: Concepts, Methodologies, Tools and Applications. 2011, IGI Global. p. 1619-1665.

6. DeSmet, A., et al., A meta-analysis of serious digital games for healthy lifestyle promotion. 2014.

69: p. 95-107.

7. Kordaki, M., A.J.C. Gousiou, and Education, “Digital card games in education: A ten year

systematic review”. 2017. 109: p. 122-161.

8. Michael, D.R. and S.L. Chen, “Serious games: Games that educate, train, and inform”. 2005:

Muska & Lipman/Premier-Trade.

9. Burguillo, J.C.J.C. and education, “Using game theory and competition-based learning to

stimulate student motivation and performance”. 2010. 55(2): p. 566-575.

10. Girard, C., J. Ecalle, and A.J.J.o.C.A.L. Magnan, “Serious games as new educational tools: how

effective are they? A meta‐analysis of recent studies”. 2013. 29(3): p. 207-219.

11. Barrett, H. “Researching and evaluating digital storytelling as a deep learning tool”. in Society for

information technology & teacher education international conference. 2006. Association for the

Advancement of Computing in Education (AACE).

12. Hamari, J., Koivisto, J., and Sarsa, H. “Does gamification work? - A literature review of empirical

studies on gamification”. In Proceedings of the Annual Hawaii International Conference on

System Sciences, (IEEE Computer Society). 2014. p. 3025–3034.

13. Groh, F. “Gamification: State of the Art Definition and Utilization”. In Proceedings of the 4th

Seminar on Research Trends in Media Informatics (RTMI’12), N. Asaj, B. Konings, M. Poguntke,

F. Schaub, B. Wiedersheim, and M. Weber, eds. (Institute of Media Informatics Ulm University).

2012. p. 39–46.

14. Urh, M., Vukovic, G., Jereb, E., and Pintar, R.. “The Model for Introduction of Gamification into

E-learning in Higher Education”. Procedia - Social and Behavioral Sciences 197. 2015. p. 388–

397.

15. Ismail, M.A.-A., and Mohammad, J.A.-M. “Kahoot: A Promising Tool for Formative Assessment

in Medical Education”. Education in Medicine Journal 9. 2017. p. 19–26.

16. Huynh, D., Zuo, L., and Iida, H. Analyzing gamification of “Duolingo” with focus on its course

structure. In Lecture Notes in Computer Science. 2016. p. 268–277.

17. Deterding, S., Dixon, D., Khaled, R., and Nacke, L.. “From game design elements to gamefulness:

defining "gamification"”. In Proceedings of the 15th International Academic MindTrek

Conference: Envisioning Future Media Environments (MindTrek '11). ACM, New York, NY,

USA, 2011, p. 9-15.

18. Histology Guide, virtual histology laboratorie. Available at:

http://www.histologyguide.com/index.html . Access in 20/January/2020.

19. Why Is the Study of Histology Important in Your Overall Understanding of Anatomy &

Physiology?. Available at: https://sciencing.com/study-histology-important-overall-

understanding-anatomy-physiology-23515.html . Access in 20/January/2020.

20. Kahiigi, Evelyn & Ekenberg, Love & Hansson, Henrik & Tusubira, Francis & Danielson, Mats.

2008. “Exploring the e-Learning State of art”. The Electronic Journal of e-Learning. 6.

21. 10 Emerging technologies in E-learning – e-leaning. Available at:

https://elearning.adobe.com/2019/03/10-emerging-technologies-e-learning/. Access in

22/January/2020.

http://www.histologyguide.com/index.html
https://sciencing.com/study-histology-important-overall-understanding-anatomy-physiology-23515.html
https://sciencing.com/study-histology-important-overall-understanding-anatomy-physiology-23515.html
https://elearning.adobe.com/2019/03/10-emerging-technologies-e-learning/

Attachments

 130

22. What is a Content Management System (CMS)?. Available at:

https://searchcontentmanagement.techtarget.com/definition/content-management-system-CMS.

Access in 22/January/2020.

23. Microlearning: learn what it is, its benefics and when to use this tool. Available at

https://mobiliza.com.br/conheca-o-microlearning/. Access in 22/January/2020.

24. Giurgiu, Luminiţa. (2017). “Microlearning an Evolving Elearning Trend”. Scientific Bulletin. 22.

10.1515/bsaft-2017-0003.

25 JSON Web Token (JWT). Available at https://tools.ietf.org/html/rfc7519. Access in

22/January/2020

26. Nah F.FH., Zeng Q., Telaprolu V.R., Ayyappa A.P., Eschenbrenner B. (2014) “Gamification of

Education: A Review of Literature”. In: Nah F.FH. (eds) HCI in Business. HCIB 2014. Lecture

Notes in Computer Science, vol 8527. Springer, Cham.

https://searchcontentmanagement.techtarget.com/definition/content-management-system-CMS
https://mobiliza.com.br/conheca-o-microlearning/
https://tools.ietf.org/html/rfc7519

 131

