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1 Introduction

The ridge phenomenon — the existence of long range pseudorapidity two-particle correla-

tions peaking for identical or opposite azimuthal directions — is one of the main findings of

the Relativistic Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC)

at CERN concerning Quantum Chromodynamics (QCD). First discovered in AuAu colli-

sions at RHIC [1, 2], it was later found in pp collisions at the LHC [3–5] and subsequently

observed in all collisional systems, including the small ones (pp, pPb, dAu, 3HeAu) for high

multiplicity events [6–13]. More recently, sizeable azimuthal anisotropies have also been

observed in small systems for events with multiplicities much closer to average [14–17].

The standard explanation of the ridge in heavy-ion collisions comes through the cou-

pling of an initial long range pseudorapidity correlation to an expanding medium. This

medium is accurately described by viscous relativistic hydrodynamics [18–22]. Neverthe-

less, the validity of the assumptions underlying the hydrodynamical explanation becomes

tenuous for small systems where isotropization and smallness of the mean free path are dif-

ficult to justify. One alternative currently under exploration is that hydrodynamics seems

to be applicable for out-of-equilibrium systems. This has been argued in both weak and

strong coupling approaches [23–25]. The ridge phenomenon is thus a key observable for

our understanding of the emergence of a macroscopic description in hadronic and nuclear

collisions from the underlying QCD microscopic dynamics [26].

On the other hand, explanations alternative to hydrodynamics exist that may shed

light on the emergence problem and, in any case, should be used to provide the initial

conditions for and characterise the dynamics prior to hydrodynamic evolution. In this work

we focus on those given by the weak coupling but non-perturbative realisation of QCD at

high energies provided by the Color Glass Condensate (CGC) effective field theory [27],

but other approaches exist based on different non-perturbative ideas, see e.g. [28–31].
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In the CGC framework, the ridge was phenomenologically addressed through an

approximation valid when both projectile and target are dilute, called the “glasma

graphs” [32–34], see [35, 36] for an analogous calculation in slightly different language.

Such an approximation for gluon-gluon correlations, assuming that it can be translated

to the final particles, was used to successfully describe the measurements in pp [37, 38],

and was later extended to pA collisions in various phenomenological ways [39–42]. The

dilute-dilute results have been argued recently to stem from coherence in parton radia-

tion [43] without any reliance on the CGC formalism. The extension to high densities has

been explored recently to quantify the validity of the glasma graph approach and to ana-

lyze the odd Fourier harmonics in the azimuthal particle correlations [44–49]. It has also

been extended to partons other than gluons [50–52] and to the forward region linking with

the multiple parton scattering language [53–55]. On the other hand, other ideas within

the CGC framework exist, considering the existence of domains of oriented chromoelectric

fields in the hadron or nucleus [56–59], or justifying the azimuthal correlations through the

density profile of the hadron [60].

In [61], the origin of the ridge azimuthal correlations in the glasma graph approach

was identified to come from the Bose enhancement of gluons in the wave function of the

incoming hadrons. Similar calculations also showed the existence of Hanbury-Brown-Twiss

(HBT) correlations of the produced particles [35, 36, 62]. The aim of the present work

is to establish whether the Bose enhancement contribution found in the glasma graph

approach survives the density corrections that appear in the dilute-dense situation and, if

so, to identify which contributions from the color ensembles in the target are dominant.

We anticipate that our answer is positive and that, somewhat unexpectedly (although

previously claimed in e.g. [54]), we find that the contribution to the Bose enhancement

terms (also to the HBT ones) comes from the quadrupole distribution of Wilson lines

in the target. The contribution from the target average of two dipoles turns out to be

suppressed by a relative factor of 1
N2

c−1
.

The plan of the paper is as follows: in section 2 we present the setup and describe

the previous results on Bose-enhanced contributions to the ridge. Section 3 contains our

main results. In section 4 we illustrate them using a toy model. Finally, in section 5 we

summarise and present our conclusions.

2 Setup and previous results

2.1 Bose enhancement and the ridge

As mentioned in the Introduction, in the Color Glass Condensate particle correlations have

been studied for phenomenological purposes using the glasma graph approach, which has

produced successful comparisons with experimental data. In this approach, it was shown

in [35, 36, 61, 62] that the ridge receives two contributions:

• One contribution comes from the Bose enhancement of the gluons in the projectile

wave function, that results in a form of the normalised two-particle correlation of
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Figure 1. Diagrams corresponding to the glasma graph calculation of two-particle correlations.

See the text for explanations.

gluons in the projectile wave function

D(q1, q2) ∝ 1 +
1

S⊥(N2
c − 1)

[
δ(2)(q1 − q2) + δ(2)(q1 + q2)

]
, (2.1)

with q1, q2 the transverse momentum of the gluons, see figure 1. In this equation,

1 stands for the classical, uncorrelated term, and the δ-functions come from the

Bose statistics of the partons in the adjoint (real) representation, the gluons. Bose

enhancement can be clearly seen by the fact that these latter are suppressed by the

number of degrees of freedom: transverse area S⊥ times number of gluons. The wave

function of the projectile in the CGC is boost invariant up to rapidities y ∼ 1/αs,

large in the weak coupling regime. This is the correlation in the projectile wave

function; in order to get the corresponding cross section, one convolutes with the

probability density for scattering of the two gluons in the target, which amounts to

multipole distributions that would smear the correlations by momenta of order the

saturation scale of the target.

• Another contribution comes from the HBT correlations in the final state (with gluon

momenta k1, k2), so after rescattering with the target. These correlations are sensitive

to the size of the projectile, therefore they appear at smaller distance (in |k1 ± k2|)
from the peak than the previous ones, and are enhanced with respect to them by the

number of particle sources (S⊥ times the saturation scale of the target squared).

In figure 1 we show the relevant graphs for the computation of correlations in the CGC.

Two gluons are emitted from two different color sources (grey blobs) from the projectile,

with momentum q1 and q2. The curved blue lines indicate the color contractions of the pro-

jectile sources. The diagram on the right, type 3, does not produce any correlations (apart

from those that may stem from geometry, see below). Note that we have not yet performed

the rescattering with the target. In the glasma graph approach, such rescattering is done

at the lowest order in the target density (two gluon exchange leading to dilute-dilute scat-

tering), with the final state gluons coming from Lipatov vertices (black blobs). Both Bose

enhancement and HBT correlations result from the two leftmost diagrams, type 1 and 2.

The aim of this paper is the extension of these calculations to the dilute-dense situation,

i.e., beyond the lowest order in target density. For that we will use the language in [35,

– 3 –
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Figure 2. Diagrams corresponding to the kT -factorized calculation of two-particle correlations.

See the text for explanations.

36]. It was proved there that, after several manipulations, a kT -factorized form can be

written for two-particle correlations. In this formalism, analogous results were obtained

with geometrical (classical), HBT and Bose contributions. We present the kT -factorized

formalism in the next section and its correspondence to the glasma graph approach that

we have just discussed.

2.2 Two-particle correlations in the kT -factorized form

The two-gluon correlation function in the dilute-dense (or heavy-light) limit, where the

projectile is defined by two color sources as in the previous subsection and all rescatterings

in the target are taken into account, was originally derived in [35, 36] in a kT -factorized

form. Three distinct processes contributed, see figure 2:

• The ones exemplified on the right, type 3, where each projectile source emitted the

same gluon in the amplitude and in the complex conjugate amplitude. These di-

agrams, referred to as squared diagrams, correspond exactly to the type 3 ones in

figure 1 and, at large Nc, do not provide any correlations apart from trivial, geomet-

rical ones.

• The type 2 ones in which each projectile source is attached to one gluon in the

amplitude and to the other gluon in the complex conjugate amplitude. These are

part of the connected diagrams and correspond to type 2 diagrams in figure 1.

• The type 1 ones where one projectile source emitted two gluons in the amplitude

that are attached to the other projectile source in the complex conjugate amplitude.

They provide the remaining part of the connected diagrams and correspond to type

1 diagrams in figure 1.

Diagrams of type 3 contain the double trace of Wilson lines while type 1 and 2 contain the

quadrupole contribution.

One should note that, since we have two indistinguishable gluons, this process is invari-

ant under interchange of ~k1 and ~k2. The separated diagrams’ contribution is explicitly in-

– 4 –
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variant when ~k2 → −~k2 and diagrams of type 1 become diagrams of type 2 under this inter-

change. Thus, the total expression is invariant under the interchange of ~k1 and ~k2 and ~k2 →
−~k2. This means the two-gluon production cross section is explicitly even and will generate

a symmetric, in azimuthal angle, correlation function, a fact that in the previous subsection

resulted from the reality of the gluon color representation. This can be seen explicitly in the

full results presented in the original work and in the equations presented later in this one.

While the form presented in the original work [35] contains all the information required

to see if the Bose correlation terms survive the inclusion of higher order rescatterings

in the target, it is rather difficult to extract the terms that correspond to the various

correlations. In a follow up paper [36], a kT -factorized form was derived for the two-

gluon production cross section. Here we will explicitly see the way in which the gluon

distribution functions associated with the projectile and target nuclei conspire to produce

the correlations. This form ends up being much easier to manipulate in order to isolate

the Bose-enhanced contribution.

Before delving into the equation itself, it is first necessary to define the distribution

functions that compose the correlation function. The kT -factorized form of the single

inclusive gluon production cross section involves the usual unintegrated gluon distributions,

φA1(~q; y) =
CF

αs(2π)3

∫
d2b d2r e−i~q·~r ∇2

~r nG(~b+ ~r,~b; y) (2.2)

for the projectile nucleus and

φA2(~q; y) =
CF

αs(2π)3

∫
d2b d2r e−i~q·~r ∇2

~r N(~b+ ~r,~b; y) (2.3)

for the target.

Note that our wave function is rapidity independent and that in the semiclassical

calculation that we are presenting, no quantum evolution is allowed neither between the two

gluons not between them and any of the projectile or target hadrons or nuclei. Therefore y

is simply a label for the rapidity distance between projectile and target, i.e., for the collision

energy, that would correspond to the rapidity at which the target multipole distributions are

evaluated and, thus, it is not well determined without computing the quantum evolution.

Here nG(~b+ ~r,~b; y) is the distribution associated with the proton (or light nucleus or,

in general, dilute projectile) which in our semiclassical calculation is1

nG(~b+ ~r,~b; y = 0) =
1

4
Q2
s,1(~b) r2 ln

(
1

rΛ

)
, (2.4)

where Λ is an infrared (IR) cutoff and y is the rapidity. Note that usually this is notated as

nG(~x, ~y; y) where the ~r = ~x− ~y and the saturation scale, Q2
s,1(~b), is evaluated at 1

2 (~x+ ~y).

In our case we assume that the saturation scale is slowly varying such that Q2
s,1(~b) ≈

Q2
s,1(~b+ ~r) so the difference between these two notations is negligible. N(~b+ ~r,~b; y) is the

gluon dipole scattering amplitude on the target nucleus, where we have also assumed that

Q2
s,2(~b) ≈ Q2

s,2(~b+ ~r).

1In the toy model that we will present later, the saturation scale does not depend on impact parameter ~b.
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In order to write a kT -factorized form for the two-gluon production cross section one

must introduce new distribution functions that come with an extra transverse coordinate

dependence and various Wilson line objects. We have the unintegrated gluon distribution

functions with extra coordinate dependence associated with the projectile〈
dφA1(~q; y)

d2b

〉
A1

=
CF

αs(2π)3

∫
d2r e−i~q·~r ∇2

~r nG(~b+ ~r,~b; y) (2.5)

and target 〈
dφA2(~q; y)

d2b

〉
A2

=
CF

αs(2π)3

∫
d2r e−i~q·~r ∇2

~r N(~b+ ~r,~b; y). (2.6)

Here the coordinate dependence of the distribution functions only affects where the sat-

uration scale is measured, so for a translationally invariant nucleus the saturation scale

becomes a constant and this coordinate dependence is absent. Then, one finds that the

distribution function above can be written in terms of unintegrated gluon distribution

functions divided by the transverse area of the corresponding hadron or ion, S⊥,1 for the

projectile and S⊥,2 for the target,〈
dφAi(~q; y)

d2b

〉
Ai

=
1

S⊥,i
φAi(~q; y). (2.7)

In the kT -factorized form, the interaction with the target can be described through

two different distribution functions. We have the double trace distribution〈
dφDA2

(~q1, ~q2; y)

d2b1 d2b2

〉
A2

=

(
CF

αs(2π)3

)2 ∫
d2r1 d

2r2 e
−i~q1·~r1−i~q2·~r2 (2.8)

×∇2
~r1
∇2
~r2
ND(~b1 + ~r1,~b1,~b2 + ~r2,~b2; y),

where

ND(~x, ~y, ~z, ~w; y) =
1

(N2
c − 1)2

〈
Tr
[
1− U~xU †~y

]
Tr
[
1− U~zU †~w

]〉
A2

(y). (2.9)

U~x is the Wilson line in the adjoint representation,

U~x = P exp

[
ig

∫ +∞

−∞
dx+A−(x+, x− = 0, ~x)

]
, (2.10)

where A is the gauge field of the hadron or nucleus in the adjoint representation, x− = 0

is the position of the infinitely contracted target nucleus (the shockwave), the light-cone

gauge A+ = 0 is used and quantities with arrows (~x, ~y, . . . ) are two-dimensional vectors

that denote the transverse position.

Type 1 diagrams also contain the quadrupole distribution〈
dφQA2

(~q1, ~q2; y)

d2b1 d2b2

〉
A2

=

(
CF

αs(2π)3

)2 ∫
d2r1 d

2r2 e
−i~q1·~r1−i~q2·~r2 (2.11)

×∇2
~r1
∇2
~r2
NQ(~b1 + ~r1,~b1,~b2 + ~r2,~b2; y),

– 6 –
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with

NQ(~x, ~y, ~z, ~w; y) =
1

N2
c − 1

〈
Tr
[(

1− U~xU †~y
)(

1− U~zU †~w
)]〉

A2

(y). (2.12)

Using these distribution functions we can write the cross section for two gluon pro-

duction in dilute-dense collisions as the convolution of these various distribution functions

and a kinematic kernel (see [36] for details),

dσ

d2k1dy1d2k2dy2
=

(
2 αs
CF

)2 1

k2
1 k

2
2

∫
d2B d2b1 d

2b2

∫
d2q1 d

2q2 (2.13)

×

〈
dφA1(~q1; y = 0)

d2( ~B −~b1)

〉
A1

〈
dφA1(~q2; y = 0)

d2( ~B −~b2)

〉
A1

{〈
dφDA2

(~q1 − ~k1, ~q2 − ~k2, ; y)

d2b1 d2b2

〉
A2

+ e−i (
~k1−~k2)·(~b1−~b2) K(~k1,~k2, ~q1, ~q2)

N2
c − 1

〈
dφQA2

(~q1 − ~k1, ~q2 − ~k2; y)

d2b1 d2b2

〉
A2

}
+ (~k2 → −~k2),

with ~B the relative impact parameter between the target and the projectile (which is

considered to be homogeneous and small compared with the target, consistent with the

fact that gluons in the projectile should lie close enough to be correlated), and the kernel

K(~k1, ~k2, ~q1, ~q2) =
1

q2
1 q

2
2 (~k1 − ~q1)2(~k2 − ~q2)2

{
k2

1 k
2
2(~q1 · ~q2)2

− k2
1 (~q1 · ~q2)

[
(~k2 · ~q1) q2

2 + (~k2 · ~q2) q2
1 − q2

1 q
2
2

]
− k2

2 (~q1 · ~q2)
[
(~k1 · ~q1) q2

2 + (~k1 · ~q2) q2
1 − q2

1 q
2
2

]
+ q2

1 q
2
2

[
(~k1 · ~q1)(~k2 · ~q2) + (~k1 · ~q2)(~k2 · ~q1)

]}
. (2.14)

In the next section we will examine this expression and isolate the various contributions.

3 Isolating the various contributions

The first contribution to the two gluon production cross section beyond the dilute-dilute

limit (the glasma graph approximation) that one can isolate trivially is the classical con-

tribution which stems from treating the produced gluons as two distinguishable particles.

Effectively, this corresponds to ignoring all the interference diagrams and considering only

the diagrams of type 3. Moreover, in this contribution the emissions of the two gluons are

completely independent of each other.

The correlations encoded in the classical contribution only depends on the geometry of

the collision. Thus, it corresponds to uncorrelated production and it is the leading contribu-

tion in the large-Nc limit (as discussed in [61]). Therefore, one can isolate this contribution

by taking the large-Nc limit of the two gluon production cross section, eq. (2.13). In this

limit, the double dipole operator given in eq. (2.9) can be approximated as

ND(~x, ~y, ~z, ~w; y) ' 1

N2
c − 1

〈
Tr
[
1− U~xU †~y

]〉
A2

(y)
1

N2
c − 1

〈
Tr
[
1− U~zU †~w

]〉
A2

(y)

= ND(~x, ~y; y) ND(~z, ~w; y). (3.1)

– 7 –
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We would like to emphasize that this is not the only contribution containing the product

of two target averaged dipoles but it is the only one that gives the uncorrelated piece and,

moreover, the others are suppressed by factors 1
(N2

c−1)2
. This corresponds to approximating

the double trace distribution in the two gluon production cross section as

〈
dφDA2

(~q1 − ~k1, ~q2 − ~k2; y)

d2b1 d2b2

〉
A2

'

〈
dφA2(~q1 − ~k1; y)

d2b1

〉
A2

〈
dφA2(~q2 − ~k2; y)

d2b2

〉
A2

. (3.2)

Finally, the classical contribution to the two-gluon production cross section reads

dσclassical

d2k1dy1d2k2dy2
=

(
2αs
CF

)2 1

k2
1 k

2
2

∫
d2B d2b1 d

2b2

∫
d2q1 d

2q2 (3.3)

×

〈
dφA1(~q1;y= 0)

d2( ~B−~b1)

〉
A1

〈
dφA1(~q2;y= 0)

d2( ~B−~b2)

〉
A1

〈
dφA2(~q1−~k1;y)

d2b1

〉
A2

〈
dφA2(~q2−~k2;y)

d2b2

〉
A2

.

As it was mentioned previously, the only correlations contained in the classical contri-

bution are the ones that are related with the geometry of the collision. However, these

correlations (that are not of particular interest for this study) can be neglected assuming a

translationally invariant target. In this case, integrations over various impact parameters

can be performed trivially and the classical contribution to the two gluon production cross

section reads

dσclassical

d2k1dy1d2k2dy2
=

1

S⊥,2

(
2 αs
CF

)2 1

k2
1 k

2
2

∫
d2q1 d

2q2 (3.4)

× φA1(~q1; y = 0) φA1(~q2; y = 0) φA2(~q1 − ~k1; y) φA2(~q2 − ~k2; y)

which is just the square of the single-gluon production cross section divided by the trans-

verse area, i.e.,

dσclassical

d2k1dy1d2k2dy2
=

1

S⊥,2

dσg
d2k1dy1

dσg
d2k2dy2

. (3.5)

Our next order of business is to isolate the HBT and Bose enhancement contributions.

As it was discussed in detail in [61] and [62], these contributions are suppressed by a factor

of 1
N2

c−1
when compared to the classical contribution and they can originate either from the

quadrupole distribution or the double dipole distribution terms in the two gluon production

cross section, eq. (2.13).

First, we consider the quadrupole distribution and factorize the target averaging of

the four Wilson lines into averaging over the pairs as it was shown in [36].2 Then, the

2In principle, a pair of gluons can be found in all of the seven irreducible representations of SU(Nc) that

result from the product of two adjoints. However, we have approximated the quadrupole operator by only

considering the singlet projector which gives the factorized double dipole operator as it was argued in [36].

– 8 –
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quadrupole term reads〈
Tr
[
U
~r1+~b1

U †~b1
U
~r2+~b2

U †~b2

]〉
A2

(y) (3.6)

=
1

N2
c − 1

〈
Tr
[
U
~r1+~b1

U †~b1

]〉
A2

(y)
〈

Tr
[
U
~r2+~b2

U †~b2

]〉
A2

(y)

+
1

N2
c − 1

〈
Tr
[
U
~r1+~b1

U †~b2

]〉
A2

(y)
〈

Tr
[
U
~r2+~b2

U †~b1

]〉
A2

(y)

+
1

(N2
c − 1)2

〈
Tr
[
U
~r1+~b1

U †
~r2+~b2

]〉
A2

(y)
〈

Tr
[
U~b1U

†
~b2

]〉
A2

(y)

+ · · · .

Using this factorization, the gradients act on related dipoles and the quadrupole operator

can be written in terms of the dipole operators as

∇2
~r1
∇2
~r2
NQ(~r1 +~b1,~b1, ~r2 +~b2,~b2; y) = ∇2

~r1
N(~r1 +~b1,~b1; y)∇2

~r2
N(~r2 +~b2,~b2; y) (3.7)

+∇2
~r1
N(~r1 +~b1,~b2; y)∇2

~r2
N(~r2 +~b2,~b1; y)

+
1

N2
c − 1

∇2
~r1
∇2
~r2
N(~r1 +~b1, ~r2 +~b2; y)N(~b1,~b2; y)

+ · · · .

One can use this factorized form of the quadrupole operator, eq. (3.7), to get the

explicit expressions for the quadrupole distributions of the target in terms of the dipole

distributions which then will be used to identify various contributions to the two gluon

production cross section.

Once the first term of eq. (3.7) is substituted into the quadrupole distribution, one

gets〈
φterm 1(~q1 − ~k1, ~q2 − ~k2; y)

d2b1d2b2

〉
A2

=

(
CF

αs(2π)3

)2 ∫
d2r1d

2r2e
−i~r1·(~q1−~k1)−i~r2·(~q2−~k2)

×∇2
~r1
N(~r1 +~b1,~b1; y)∇2

~r2
N(~r1 +~b2,~b2; y)

=

〈
dφA2(~q1 − ~k1; y)

d2b1

〉
A2

〈
dφA2(~q2 − ~k2; y)

d2b2

〉
A2

. (3.8)

Now, this distribution can be plugged into the two gluon production cross section,

eq. (2.13), to get the contribution of the first term of eq. (3.7) which simply reads

dσterm1

d2k1dy1d2k2dy2
=

(
2αs
CF

)2 1

k2
1 k

2
2

∫
d2B d2b1 d

2b2

∫
d2q1 d

2q2

×

〈
dφA1(~q1;y= 0)

d2( ~B−~b1)

〉
A1

〈
dφA1(~q2;y= 0)

d2( ~B−~b2)

〉
A1

〈
dφA2(~q1−~k1;y)

d2b1

〉
A2

〈
dφA2(~q2−~k2;y)

d2b2

〉
A2

×

[
e−i(

~k1−~k2)·(~b1−~b2) K(~k1,~k2,~q1,~q2)

N2
c −1

]
+(~k2→−~k2) . (3.9)
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This term was identified as the HBT contribution in [36] and in [62]. It is easier to

understand this identification in the case of a translationally invariant target:

dσHBT
d2k1dy1d2k2dy2

=
1

S⊥,1S⊥,2

(
2 αs
CF

)2 1

k2
1 k

2
2

∫
d2q1 d

2q2

× φA1(~q1; y = 0) φA1(~q2; y = 0) φA2(~q1 − ~k1; y) φA2(~q2 − ~k2; y)

× 2π

N2
c − 1

(
δ(~k1 − ~k2) + δ(~k1 + ~k2)

)
K(~k1,~k2, ~q1, ~q2) (3.10)

which clearly gives a peak at ~k1 = ~k2 and at ~k1 = −~k2 (as expected from the HBT

contribution), with ~k1 and ~k2 being the transverse momenta of the produced gluons. In

order to observe the relative enhancement of the HBT contribution with respect to the

Bose-enhanced one, we should consider the origin of the δ-functions in (3.10). They come

from an integral in ~b1− ~b2 and thus, in the non-translational invariant case, provide a factor

S⊥,1 that enhance this contribution by the number of sources S⊥,1Q
2
s,1 with respect to the

Bose-enhanced term that we discuss next.

In a similar manner, we can consider the second term of eq. (3.7). When substituted

in the quadrupole distribution, it reads〈
φterm 2(~q1 − ~k1, ~q2 − ~k2; y)

d2b1d2b2

〉
A2

=

(
CF

αs(2π)3

)2 ∫
d2r1d

2r2e
−i~r1·(~q1−~k1)−i~r2·(~q2−~k2) (3.11)

×∇2
~r1
N(~r1 + ∆~b+~b2,~b2; y)∇2

~r2
N(~r1 −∆~b+~b1,~b1; y),

where we have introduced ∆~b = ~b1 −~b2. It is convenient to define the shifted variables

~r ′1 = ~r1 + ∆~b,

~r ′2 = ~r2 −∆~b, (3.12)

in order to write the quadrupole distribution of the second term of eq. (3.7) in factorized

form as〈
φterm 2(~q1 − ~k1, ~q2 − ~k2; y)

d2b1d2b2

〉
A2

=

(
CF

αs(2π)3

)2

e−i(∆
~b)·(~q2−~k2−~q1+~k1)

×
∫
d2r′1d

2r′2e
−i~r ′

1·(~q1−~k1)−i~r ′
2·(~q2−~k2)∇2

~r ′
1
N(~r ′1 +~b2,~b2; y)∇2

~r ′
2
N(~r ′2 +~b1,~b1; y)

= e−i(∆
~b)·(~q2−~k2−~q1+~k1)

〈
dφA2(~q1 − ~k1; y)

d2b2

〉
A2

〈
dφA2(~q2 − ~k2; y)

d2b1

〉
A2

. (3.13)

We plug this factorized form of the second term of the quadrupole distribution into the

two gluon production cross section and the result reads

dσterm2

d2k1dy1d2k2dy2
=

(
2αs
CF

)2 1

k2
1 k

2
2

∫
d2B d2b1 d

2b2

∫
d2q1 d

2q2

×

〈
dφA1(~q1;y= 0)

d2( ~B−~b1)

〉
A1

〈
dφA1(~q2;y= 0)

d2( ~B−~b2)

〉
A1

〈
dφA2(~q1−~k1;y)

d2b2

〉
A2

〈
dφA2(~q2−~k2;y)

d2b1

〉
A2

× 1

N2
c −1

e−i∆
~b·(2~k1−2~k2−~q1+~q2)K(~k1,~k2,~q1,~q2) + (~k2→−~k2). (3.14)
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For convenience, let us define the average transverse momentum ~q and shifted transverse

momenta difference ∆~q as

~q =
1

2
(~q1 + ~q2), (3.15)

∆~q = ~q1 − ~q2 − 2∆~k,

where we have defined the transverse momenta difference of the produced gluons as

∆~k = ~k1 − ~k2. After these change of variables the contribution of the second term of

the quadrupole distribution to the two gluon production cross section can be written as

dσterm 2

d2k1dy1d2k2dy2
=

(
2 αs
CF

)2 1

k2
1 k

2
2

∫
d2B d2b1 d

2b2

∫
d2q d2∆q

1

N2
c − 1

ei∆
~b·∆~q

×

〈
dφA1(~q + ∆~q/2−∆~k; y = 0)

d2( ~B −~b1)

〉
A1

〈
dφA1(~q −∆~q/2−∆~k; y = 0)

d2( ~B −~b2)

〉
A1

×

〈
dφA2(~q −∆~q/2− ~k1; y)

d2b1

〉
A2

〈
dφA2(~q + ∆~q/2− ~k2; y)

d2b2

〉
A2

× K
(
~k1,~k2, ~q +

∆~q

2
+ ∆~k, ~q − ∆~q

2
−∆~k

)
+ (~k2 → −~k2) . (3.16)

In the case of a translationally invariant target, this contribution reads

dσBose

d2k1dy1d2k2dy2
=

(
2 αs
CF

)2 1

k2
1 k

2
2

1

S⊥,1S⊥,2

1

N2
c − 1

∫
d2q K

(
~k1, ~k2, ~q + ∆~k, ~q −∆~k

)
× φA1(~q + ∆~k; y = 0)φA1(~q −∆~k; y = 0)φA2(~q − ~k1; y)φA2(~q − ~k2; y)

+ (~k2 → −~k2) . (3.17)

We have identified this term as Bose enhancement of the projectile even though the pro-

jectile gluon distributions seem to have different momenta. However, as discussed in detail

in [61], the Bose enhancement contribution to the correlated production is peaked when

the ~k1 = ~k2 for the nearside and when ~k1 = −~k2 for the away side ridge. Thus, for the

near side ridge, ∆~k → 0 and clearly we get the peak in the first term of eq. (3.17). Note

that, the same argument holds for the away side ridge and the second term of eq. (3.17).

In conclusion, the Bose enhancement contribution for the near side ridge reads

dσBose

d2k1dy1d2k2dy2

∣∣∣∣
~k1=~k2=~k

=

(
2 αs
CF

)2 1

k4

1

S⊥,1S⊥,2

1

N2
c − 1

∫
d2q K

(
~k,~k, ~q, ~q

)
(3.18)

× φA1(~q; y = 0)φA1(~q; y = 0)φA2(~q − ~k; y)φA2(~q − ~k; y),

with the kernel K
(
~k,~k, ~q, ~q

)
being

K
(
~k,~k, ~q, ~q

)
=

{
1 +

1

(|~k − ~q|2)2

[
4q2(~k · ~q)− |q2|2 + 2(~k · ~q)2

]}
. (3.19)

We have identified the HBT, eq. (3.10), and the Bose enhancement, eq. (3.17), con-

tributions to the correlated production that stem respectively from the first and second

– 11 –
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terms of the quadrupole distributions given in eq. (3.7). Besides, we have also identified

the classical contribution, eq. (3.4) that originates from the double dipole term, eq. (3.2).

It contributes to uncorrelated production and it is the leading term in the large Nc limit.

These are the main results of the paper. However, we would like to comment about the

remaining terms of the quadrupole and the double dipole distributions. It is clear from the

last line of eq. (3.7) that the third contribution of the quadrupole distribution is suppressed

by an extra power of 1
N2

c−1
with respect to the first two contributions that are responsible

for HBT and Bose enhancement contributions. On the other hand, the remaining two con-

tributions of the double dipole distribution are suppressed an extra power of 1
N2

c−1
as well.3

Therefore, the complete results for the uncorrelated, HBT and Bose-enhanced pieces of the

two-gluon production cross section in the dilute-dense limit correspond to eqs. (3.4), (3.10)

and (3.17) for the translational invariant case.

4 A toy model

In this section, we perform the numerical analysis of the main results of our study, namely

the HBT and the Bose enhancement contributions to the correlated two-gluon production,

by adopting a toy model for both the projectile and the target distributions.

The unintegrated gluon distributions of the projectile are defined in eq. (2.2) with

nG(~b+~r,~b; y) being the distribution associated with the dilute projectile, whose expression

is given in eq. (2.4). In our toy model, we assume translational invariance of the dilute

projectile. Effectively, this is equivalent to approximate the saturation scale of the projectile

that depends on the impact parameter b by a constant which serves as an infrared cut off, i.e.

Q2
s,1(~b) ≈ Q2

1. Within the limits of this approximation, the unintegrated gluon distribution

of the projectile can be written as

φA1(~q) ≈
CF S⊥,1Q

2
1

αs (2π)3

1

4

∫
d2r e−i~q·~r∇2

~r

[
r2ln

(
1

rΛ

)]
=
CF S⊥,1Q

2
1

αs (2π)3

2π

q2
. (4.1)

On the other hand, we adopt the Golec-Biernat-Wüsthoff (GBW) model [63] for the

dipole distribution of the target:

NG(~r +~b,~b; y) = 1− e−
Q2
2
4
r2 , (4.2)

with Q2 being the saturation scale of the target. Then, the target distribution reads

φA2(~q) =
CF

αs(2π)3

∫
d2rd2b e−i~q·~r∇2

~r

(
1− e−

Q2
2
4
r2
)

=
CF

αs(2π)3
S⊥,2

q2

Q2
2

4π e
− q2

Q2
2 . (4.3)

3This can be easily understood from the fact that two color projectors, one on the right and one on the

left, are required to express the double dipole term with a combination of coordinates that would result in

Bose enhancement, see [36].
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Figure 3. Eq. (4.5) divided by
(
CF

αs

)2
16 1

(2π)8 S⊥,1S⊥,2
1

k21k
2
2

for different choices of k1, k2 and

Q1 = 0.2 GeV and Q2 = 1 GeV, versus the angle φ between them.

Using the projectile distribution, eq. (4.1), and the target distribution, eq. (4.3), the HBT

contribution to the two gluon production cross section, eq. (3.10), can be written as

dσHBT
d2k1dy1d2k2dy2

=

(
CF
αs

)2

16
1

(2π)8
S⊥,1S⊥,2

(
Q2

1

Q2
2

)2
1

k2
1k

2
2

∫
d2q1d

2q2
(~q1−~k1)2(~q2−~k2)2

q2
1q

2
2

× 2π

N2
c −1

e
− 1

Q2
2
[(~q1−~k1)2+(~q2−~k2)2]

K(~k1,~k2,~q1,~q2)
[
δ(2)(~k1−~k2)+δ(2)(~k1 +~k2)

]
. (4.4)

Similarly, the Bose enhancement contribution to the two gluon production cross section

reads

dσBose

d2k1dy1d2k2dy2
=

(
CF
αs

)2

16
1

(2π)8
S⊥,1S⊥,2

(
Q2

1

Q2
2

)
1

k2
1k

2
2

×
∫
d2q

(
~q − k̄ − ∆~k

2

)2 (
~q − k̄ + ∆~k

2

)2

(~q + ∆~k)2(~q −∆~k)2

2π

N2
c − 1

exp

{
− 2

Q2
2

(~q − k̄)2 − 1

Q2
2

(∆~k)2

}
× K(~k1,~k2, ~q + ∆~k, ~q −∆~k) + (~k2 → −~k2), (4.5)

where k̄ = (~k1 + ~k2)/2.

In figures 3 and 4 we plot the result of eq. (4.5) divided by
(
CF
αs

)2
16 1

(2π)8
S⊥,1S⊥,2

1
k21k

2
2

for different choices of k1, k2 and the angle φ between them, and Q1 = 0.2 GeV and Q2 =

1 GeV. The denominators in (4.5) resulting in divergent contributions have been regulated

by adding them Q2
1 or Q2

2 if they stem from the projectile or target dipole distributions

respectively.

While the model that we have used cannot be considered realistic, it illustrates several

of the features of the result. First, in figure 3 the ridge structure can be seen, symmetric for

the near and away side peaks in this calculation. The dip observed at φ ' 0.2, π−0.2 comes

from the double Gaussian structure in eq. (4.5) in this model. Second, a fast degradation

of the ridge for k1 6= k2 can also be observed, a clear signal of the effect of Bose statistics.
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Figure 4. Eq. (4.5) divided by
(
CF

αs

)2
16 1

(2π)8 S⊥,1S⊥,2
1

k21k
2
2

for φ = 0, Q1 = 0.2 GeV and different

choices of Q2, versus k1 = k2.

Finally, in figure 4 the height of the peak for k1 = k2 has a maximum for k1 slightly above

Q2 and is seen to decrease very fast for larger k1.

5 Conclusions

In conclusion, in this paper we have explicitly considered the two-gluon production cross

section in the CGC for the collision of a dilute projectile on a dense target, going beyond the

glasma graph approximation that has been used in the dilute-dilute limit. In this dilute-

dense limit, applicable for proton-nucleus or heavy-light ion collisions, we have identified

the HBT and the Bose enhancement contributions to the correlated production that are

given in eqs. (3.10) and (3.17) respectively. The latter comes suppressed by the number

of particles sources with respect to the HBT one, and shows the characteristic suppression

by the number of degress of freedom with respect to the uncorrelated contribution.

We have shown that both contributions survive the inclusion of higher order den-

sity corrections and that they stem from the quadrupole distribution of the target. We

have established the correspondence between the glasma graph approximation and the

kT -factorized approach, showing that these contributions come from type 1 and type 2 di-

agrams in the glasma graph approach that correspond to the interference diagrams in the

kT -factorized formulation. On the other hand, we have also identified the classical contri-

bution and have shown that it contributes to the uncorrelated production in the case of a

translationally invariant target. We have identified that the origin of this contribution is the

type 3 diagrams. Finally, we have developed a toy model that allows a simple numerical im-

plementation and whose results illustrate some of the features of the approach. The findings

in this study are coherent with the results of the previous works [35, 36, 61, 62] on two-gluon

production, and also with similar works [50, 52–55] on double and multi-quark production.
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