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ABSTRACT: Spatial modelling of air temperature (maximum, mean and minimum) of the State of São
Paulo (Brazil) was calculated by multiple regression analysis and ordinary kriging. Climatic data (mean
values of five or more years) were obtained from 256 meteorological stations distributed uniformly
over the State. The correlation between the climatic dependent variables, with latitude and altitude as
independent variables was significant and could explain most of the spatial variability. The coefficients
of determination (P < 0.05) varied in the range of 0.924 and 0.953, showing that multiple regression
analysis is an accurate method for the modelling of air temperature for the State of São Paulo. Finally,
these regression equations were used together with the kriged maps of the residual errors to build 15
digital maps of air temperature using a 0.5 km2 Digital Elevation Model in a Geographic Information
System.
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MODELAGEM DA TEMPERATURA DO AR PARA O
ESTADO DE SÃO PAULO, BRASIL

RESUMO: Foram utilizadas técnicas de análise de regressão linear múltipla e krigagem ordinária para
a modelagem espacial das temperaturas máximas, mínimas, médias do Estado de São Paulo (Brasil). Os
dados climáticos foram obtidos de 256 estações climatológicas distribuídas na totalidade do Estado.
O período mínimo das séries climáticas utilizadas foi de cinco anos. Os resultados das análises de
regressão apresentaram uma boa correlação entre as variáveis dependentes analisadas (temperaturas
médias, máximas e mínimas) com a latitude, e a altitude como variáveis independentes. Os coeficientes
de determinação (P < 0,05) variam entre 0,924 e 0,953 indicando que a regressão múltipla é um método
preciso de estimativa da temperatura do ar no Estado de São Paulo. As equações de regressão obtidas
foram utilizadas, em conjunto com mapas dos resíduos interpolados por krigagem, para a elaboração
de 15 mapas de temperatura do ar sobre um modelo de elevação digital de 0,5 km2 de resolução espacial
com a ajuda de geoprocessamento.
Palavras-chave: DEM, SIG, regressão linear múltipla, krigagem, modelagem climática

INTRODUCTION

Knowledge of the spatial distribution of cli-
matic data is an essential tool for the management of
natural resources and the prediction of climatic data
is very useful in a wide number of scientific disci-
plines (e.g.: agronomy, geography, and ecology).
Moreover, the impact of fossil fuel burning and
deforestation on climatic change raised the
awareness for the development of adequate and reli-
able prediction models of air temperature around the
world.

Climatic data are usually measured in local
meteorological stations. Climatic maps, covering ex-

tensive areas depend on the estimation of data at
non monitored locations based on registered values
at neighbouring sites. Interpolation techniques
are used to convert the discrete data into continuous
data. Several interpolation methods are used
for climatic maps. Examples of methods are tradi-
tional hand-interpolated isopleths (Burrough
& McDonnell, 1998), and computational techniques
involving spatial Thiessen polygon interpolators, in-
verse distance weighting, cubic splining, trend sur-
face analysis, thin plate splines (Hutchinson, 1991;
Lennon & Turner, 1995; Saveliev et al., 1998;
Felicísimo-Pérez et al., 2001), Kriging (Dingman et
al., 1988; Bigg, 1991; Philips et al., 1992) or co-
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Kriging (Goovaerts, 2000) are frequently used. Mul-
tiple regression analysis is another method widely used
to compute the distribution of climatic variables from
discrete data (Collins & Bolstad, 1996; Goodale et al.,
1998; Ninyerola, 2000; Ninyerola et al., 2000; Lennon
& Turner, 1995; Valeriano & Picini, 2000; Silva et al.,
2006).

The objective of this study were i) to calcu-
late spatial models of both monthly and annual air tem-
peratures (mean, minimum and maximum) for the
State of São Paulo (Brazil) using multiple regression
analysis and ordinary kriging; ii) to use these models
to derive digital raster maps of air temperature for the
study area.

CASE STUDY
The State of São Paulo is located in the south-

ern hemisphere (19-25º S, 44-53ºW) in Brazil, with
an area of 248,816 km2. The State is divided into five
geomorphologic units (Figure 1). The Western Pla-
teau constitutes the main unit (60% of the area).
Sedimentary deposits form this plateau and its mor-
phology is dominated by flat to undulated landscapes
of low hills with slopes between 0-20% (Cacheiro-
Pose et al., 2002), and altitudes ranging between 250-
650 m a.s.l. The Basaltic Cuestas spread from SW
to NE in the middle of the State forming a range of
trapps with alternating layers of basaltic rocks and
eolian sandstones with altitudes between 500-900 m
a.s.l. The Peripherical Depression, situated in the cen-
tral portion of the State, constitutes a zone topo-
graphically lower between the Basaltic Cuestas and

the Atlantic Region, with sediments, including shales,
siltstones, sandstones and occasional basaltic
intrusions. The Atlantic Region is the most elevated
area formed by a plateau and two mountainous
regions (Serra do Mar and Serra da Mantiqueira)
with steep slopes between 0-20% in the plateau and
from 10-40% in the mountains. It is formed mainly
by igneous and metamorphic rocks, with altitudes
ranging between 650-800 m a.s.l. in the plateau and
up to 2703 m a.s.l. in the mountain ranges. These
mountainous chains act as topographic barriers for
oceanic fronts, therefore an important annual rainfall
gradient is found between both sides of the ranges.
The Coastal Region is a flat area along the coastal
line narrowing on the direction SW-NE, where the
ranges of the “Serra do Mar” come closer to the sea-
coast.

The predominant climatic type in São Paulo
is the tropical moist with dry winter (Aw) but
the moist with mild winter climates with dry winter
and hot (Cwa) and humid and hot (Cfa) according
to Köppen’s classification are also frequent. Mean
temperatures are smooth, ranging from 4.7-23ºC
in winter and up to 29ºC in summer. Mean annual
precipitation ranges from 1,350 to 1,550 mm.
Rainy season occurs during October-March, coincid-
ing with the higher temperature values (austral sum-
mer). The dry season starts in April and ends in Oc-
tober.

A total of 256 stations recording air tempera-
ture were utilized in these analyses (CIIAGRO data-

Figure 1 - Hipsometry of the State of São Paulo and location of the 256 meteorological stations used for temperature modelling (black
points).
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base). The temperature data available from the
CIIAGRO database had records ranging from 5 to 15
years. According to the World Meteorological Orga-
nization (WMO, 1967), to ensure the optimal climate
modelling, data series should extend to at least 30
years long. Such long time series are often unavail-
able. However good results have also been obtained
using shorter time series (Wotling et al., 2000;
Marquinez et al., 2003).

Multiple regression analysis was used, com-
bined with ordinary kriging, for air temperature mod-
elling. The mean values of the climatic variables were
considered as dependent variables in the multiple re-
gression analysis. As possible independent variables
nominal altitude (ALT), latitude (LAT) and longitude
(LON) of the meteorological stations were consid-
ered.

The adjusted regression model finally gives an
expression in the form:

y = E0 + b1(X1) + b2(X2) +…+ bn(Xn) + ε  (1)

where y is the estimated value of the dependent vari-
able, E0 is the intercept, bn are multiple regression co-
efficients, Xn the significant independent variables and
ε is the residual error of the estimation.

For each model, the multiple coefficient of de-
termination (R2) was computed, the multiple regres-
sion coefficients building the model equation and the
level of significance for each independent variable are
also shown. Regression analyses were made using the
stepwise method with inclusion of variables. Only in-
dependent variables with a level of significance greater
than 95% were accepted to build up the model.

These regression equations were converted
to air temperature maps using map algebra with
a Geographic Information System (ArcGIS 8.3),
processing the independent variables as map
layers in raster format. Altitude raster layer, in
meters, was obtained from a 0.5 km2 Digital Eleva-
tion Model (DEM) of the State (GTOPO30, 1996).
Latitude and longitude raster layers, in decimal de-
grees, were computed using the central cell coor-
dinates from the same DEM. At each station the
value of ε that expresses the difference between the
empirical and the modelled values of temperature
was also calculated. The multiple regression results
were improved by analyzing the variogram functions
of the residual errors. The variogram function
describes the average dissimilarity between the
residual errors in relation to their spatial distance
(Goovaerts, 1997). Sample variograms could be fit-
ted to spherical models (Figure 2) that finally were
used to obtain maps of the residual errors by ordi-
nary kriging. These maps were added to the regres-
sion maps to diminish the errors of the regression
model.

RESULTS AND DISCUSSION

For each multiple regression analysis (Table
1), the significance value for longitude was higher
than 0.05, indicating that this variable does not con-
tribute to the prediction of the values of air tempera-
ture in the studied area. The accuracy of the regres-
sion models was greater than 90% in all cases, as
shown in the values of the coefficients of determi-

stneiciffeocnoissergerelpitluM Rdetsujda 2

naemTylhtnoM yraunaJ 74600.0-=TLA 761.0=TAL 809.13=tpecretnI 359.0

yraurbeF 56600.0-=TLA 441.0=TAL 936.13=tpecretnI 359.0

hcraM 06600.0-=TLA 442.0=TAL 113.33=tpecretnI 449.0

lirpA 13600.0-=TLA 554.0=TAL 177.53=tpecretnI 639.0

yaM 31600.0-=TLA 355.0=TAL 835.53=tpecretnI 149.0

enuJ 51600.0-=TLA 876.0=TAL 250.73=tpecretnI 429.0

yluJ 30600.0-=TLA 207.0=TAL 283.73=tpecretnI 729.0

tsuguA 94600.0-=TLA 778.0=TAL 173.34=tpecretnI 039.0

rebmetpeS 90600.0-=TLA 189.0=TAL 479.64=tpecretnI 929.0

rebotcO 81600.0-=TLA 828.0=TAL 786.44=tpecretnI 049.0

rebmevoN 84600.0-=TLA 535.0=TAL 959.83=tpecretnI 249.0

rebmeceD 26600.0-=TLA 853.0=TAL 516.53=tpecretnI 149.0

nimTlaunnA 31600.0-=TLA 517.0=TAL 717.73=tpecretnI 729.0

xamTlaunnA 56600.0-=TLA 441.0=TAL 936.13=tpecretnI 359.0

naemTlaunnA 53600.0-=TLA 445.0=TAL 486.73=tpecretnI 649.0

Table 1 - Results of the multiple regression analyses for air temperature.
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Figure 2 - Empirical (red dotted line) and adjusted (blue line) variogram functions of the residuals from the regression models. The
number of pairs at each lag distance, and the standard deviation (black dotted line) are also indicated.

Distance units correspond to km /10
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nation. All the months have similar predictors. The
lower fits were obtained for mean temperatures in
June, July and August (austral winter), with R2 val-
ues ranging from 0.924 to 0.930. This is expected
because mean values in months with extreme tem-
peratures are more difficult to predict than in those
with mean or modal values. Considering annual data,
the lower fit was obtained for the minimum air tem-
perature.

Regression coefficients for altitude always
have negative values. As expected, air temperature
is negatively correlated to increases of altitude.
For latitude, regression coefficients are positive.
In this case increases in latitude mean decreases in
final temperature values since latitudes in the
State of São Paulo were treated as negative values
(Southern hemisphere). The equations constructed
with each regression coefficient and interception
values were used to derive 15 equations predicting
the spatial distribution of air temperature by means
of map algebra using a Geographic Information Sys-
tem.

The spatial structure of the residual values by
ordinary kriging was also analyzed. The shapes of the
empirical semivariograms show that the residuals
present a pattern of spatial dependency (Figure 2).
Spherical models to describe the empirical variogram
functions of the residuals showed the best goodness
of fit according to the minimum weighted least squares
criteria.

Nuggets range between 0.05-0.1 and
variograms stabilize at approximately 100 km. These
residual values account for the local variations of tem-
perature not adjusted by the regression models. The
regression model accuracy can be increased by
adding the maps of the kriged residuals (Figure 3) to
those obtained with the regression equations. We
observe that residuals take the values of ± 0.5ºC
in the main part of the State, so that a good fit be-
tween the model and the empirical data was obtained.
The results for annual temperatures are shown in Fig-
ures 4 to 6. Monthly temperature results are in Fig-
ure 7.

Table 2 shows the mean minimum, mean
maximum and mean temperature results for
raster layers in monthly and annual basis. The
extreme months are June (5.41ºC) and February
(28.39ºC). Despite minimum temperatures in
May, June and July are lower than 5ºC it has to be
noted that mean temperatures are much higher,
around 18ºC, considering the whole study
area. These low values of temperature are located
in high altitude areas in the NE of the coastal moun-
tains.

Finally a linear regression analysis to isolate the
influence of altitude and latitude on the interpolated val-
ues of temperature was made. In Figure 8 the scatterplot
of the annual mean temperatures over altitude, and the
least square linear regression model are represented.
There is a good correlation between altitude and tem-
perature (R2 = 0.762). A trend of a decline in tempera-
ture with increases in altitude is observed. In this
scatterplot three groups of points are distinguished.

Points belonging to area A correspond to
data of meteorological stations from the Coastal Re-
gion. The oceanic influence in this area causes annual
mean temperatures to be lower than the modelled val-
ues explained by the simple linear correlation model of
altitude over temperature. For similar altitude values,
there is a gradient of temperature from points in zone
C to those in zone B that can be explained by their
latitude position. The cut point between both zones is
located at 22.11ºS. Real temperatures in this area tend
to be higher than modelled temperatures by this simple
regression model. The contrary occurs in zone C. This
shows that, in addition to the effect of altitude, there
is a certain contribution of latitude to the spatial dis-
tribution of temperature.

Plotting annual mean temperatures in relation
to latitude (Figure 9) a group of points (zone A) cor-
responding again to the same stations of the Coastal
Province can be observed. On the other hand, the co-
efficient of determination is low, showing a poor
weight of latitudes in relation to altitudes when explain-
ing the distribution of temperatures. For each latitude

Table 2 - Descriptive statistics for the monthly and annual
air temperature layers (451,534 raster cells).

)Cº(naemT
naeM .D.S niM xaM

yraunaJ 15.42 5.1 48.01 01.82
yraurbeF 66.42 5.1 46.01 93.82

hcraM 41.42 5.1 61.01 96.72
lirpA 60.22 6.1 27.8 71.52
yaM 57.81 6.1 37.5 85.12
enuJ 94.81 7.1 14.5 64.12
yluJ 43.81 7.1 35.5 14.12
tsuguA 81.02 9.1 43.6 77.32
rebmetpeS 96.12 9.1 66.8 64.5

rebotcO 57.22 8.1 45.9 71.62
rebmevoN 63.32 7.1 26.9 94.62
rebmeceD 98.32 6.1 98.9 03.72
niMlaunnA 33.81 7.1 13.5 34.12
xaMlaunnA 66.42 5.1 46.01 93.82
naeMlaunnA 89.12 6.1 15.8 79.42
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there is a temperature gradient due to the effect of al-
titude, the cut point being between zones B and C lo-
cated at 570 m.

Therefore, the multiple regression models pro-
posed in this study improves the accuracy of simple
linear regression models of temperature values over al-
titudes.

Altitudes and latitudes for the map raster
layers of this study were computed using the
GTOPO30 DEM, and the low resolution of this DEM
can be a cause of incertitude for the temperature
maps. The use of a more accurate DEM of the State
would lead to a more realistic distribution of air tem-
peratures.

Figure 3 - Maps of the kriged residuals for temperature in the State of São Paulo, Brazil.

Figure 4 - Annual mean minimum temperature in the State of São
Paulo, Brazil.

Figure 5 - Annual mean maximum temperature in the State of São
Paulo, Brazil.
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CONCLUSIONS

Multiple regression analysis is a suitable method
to model air temperature in the State of São Paulo. The
models created can predict air temperature with an ac-
curacy greater than 90% in all cases. The spatial dis-
tribution of temperature can be explained using only
latitude and altitude as independent variables. Longi-
tude was, in all analyses, a non-significant variable able
to predict air temperatures. The kriging of the residu-
als allows to take into account local anomalies into the
regression models and thus to improve the final results.Figure 6 - Annual mean temperature in the State of São Paulo,

Brazil.

Figure 7 - Monthly mean temperature in the State of São Paulo, Brazil.
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Linking these regression models to a more accurate
DEM would lead to a better spatial pattern of monthly
and annual air temperatures in the State of São Paulo.
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Figure 8 - Scatterplot of annual mean temperature over altitude.

Figure 9 - Scatterplot of annual mean temperatures as a function
of latitude.


