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Abstract: Monoamine oxidase inhibitions are considered as important targets for the treatment
of depression, anxiety, and neurodegenerative disorders, including Alzheimer’s and Parkinson’s
diseases. This has encouraged many medicinal chemistry research groups for the development of
most promising selective monoamine oxidase (MAO) inhibitors. A large number of plant isolates
also reported for significant MAO inhibition potential in recent years. Differently substituted
flavonoids have been prepared and investigated as MAO-A and MAO-B inhibitors. Flavonoid
scaffold showed notable antidepressant and neuroprotective properties as revealed by various and
established preclinical trials. The current review made an attempt to summarizing and critically
evaluating the new findings on the quercetin and related flavonoid derivatives functions as potent
MAO isoform inhibitors.

Keywords: monoamine oxidase; neurodegenerative disorder; mental disorders; quercetin; flavonoids;
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1. Introduction

Depression and anxiety are estimated as incapacitating mental disorders which impose a huge
health burden globally. According to the World Health Organization, major depression has now
recognized as the fourth extensive cause of the worldwide in incapacity balanced life-years and
could eventually turn into the second most critical cause by 2020 [1–3]. Treatment and therapies for
mental disorder are also not economical. In the United States, the expenses of depression treatment
and the costs experienced by less research work rate is estimated at more than $44 billion in 1990,
which currently raised many fold [4,5]. Hence, the research for the discovery of potent and safe
anti-depressant agents has attained importance due to a high mortality ratio of depressive disorders
and their contribution for the destruction of other routine physiological processes.

Moreover, neurodegenerative disorders constitute the third most essential health issue in different
developed countries. Alzheimer’s disease is the most widely recognized neurodegenerative disorder
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followed by Parkinson’s disease. Along with the aging problem of human society, Alzheimer’s disease
(AD) has become one of the biggest threats to the modernize population. Alzheimer’s disease is
indicated by nerve cells die in the cerebral cortex and accounts for 60 to 80 percent of dementia cases
which affected more than 25 million people worldwide in 2000 and may eventually to increase to
114 million by 2050 [6–9]. General treatment of this disease is the utilization of dopaminergic agonists.
Nonetheless, other medicinal options can be employed, like the utilization of specific monoamine
oxidase B inhibitors, or the use of neuroprotective antioxidant agents to prevent the oxidative damage
of neuronal cells. In the last few years, it has been proved that the overexpression of brain MAO-B
also causes the neurodegeneration via generation hydroxyl radicals [10,11]. This certainty provokes
an increase in free radical generation leads to oxidative stress, neuronal cell death and further the
formation of the β-amyloid plaques [12].

The theory of MAO-B inhibitors for the prevention of neuronal damage is also accepted due to
the reduction of hydrogen peroxide formation through inhibition of MAO. Clinical data suggests
that patients with major depression have symptoms that are reflected changes in brain monoamine
neurotransmitters, specifically serotonin (5-HT) and norepinephrine (NE) [13–15]. As per the most
accepted hypothesis of depression, including the monoamine theory, dopamine (DA) is also implicated
in the pathophysiology of various neurological disorders. Inhibitors of the enzyme monoamine
oxidase were the first clinically used antidepressants; however, their utilization has reduced due to
their documented serious adverse effects, their drug and food interactions, and the discovery of other
target proteins [16–19]. Moreover, reports of hypertensive crises, liver toxicity, and hemorrhages and
in some cases death resulted in the withdrawal of many MAO inhibitors from the market. Since then,
medicinal chemists have been continuously involved in developing novel lead compounds that can
selectively inhibit single isoform of MAO and can act as an effective therapeutic agent for various
mental and neurological disorders [20–22].

Monoamine oxidase (MAO; EC 1.4.3.4) is a flavin adenine dinucleotide (FAD) dependent enzyme
which is mainly localized on the outer mitochondrial membrane, responsible for the oxidative
deamination of monoamines, including neurotransmitters, such as norepinephrine, dopamine,
and serotonin (5-hydroxytryptamine [5-HT]) [23,24]. The two isoforms of MAO exists MAO-A
and MAO-B, which differ in amino acid sequence, susceptibility to specific inhibitors, substrate
specificity, and tissue distribution [25]. MAO-A preferentially deaminates noradrenaline and
serotonin (5-hydroxytryptamine), whereas MAO-B preferentially deaminates β-phenyl-ethylamine
and benzylamine. Inside the brain, MAO-B is mainly localized in the glial cells, while MAO-A found
in the extraneuronal compartment and inside the dopaminergic, serotonergic and noradrenergic nerve
terminals [26].

The oxidative deamination catalyzed through MAO leads to the formation of hydrogen peroxide
(H2O2) and different reactive oxygen species has sufficient deleterious reactivity which accounts for
associated health-related problems including neurological damage. The generation of H2O2 via MAOs
is also reported to be a cytotoxic factor involved in oxidative stress, causes degeneration of nigral cells
in Parkinson’s disease [27,28].

The modern search in the anti-MAO field is now directed toward the hybrid compounds, the latent
risks in bioavailability and safety is a big concern in their further development. Despite notable
progress in understanding their isoforms with respect to their 3D-structures, functionality, inhibitors,
and substrates, no general rules have been formulated for the rational design of efficient, selective and
reversible MAO inhibitors [29,30]. The current review made an attempt to identify the MAO inhibition
property of quercetin and related derivatives and establish the rational design of new MAOIs from
this investigation.

2. Chemistry and Therapeutic Journey of Quercetin and Related Derivatives

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is the significant illustrative of flavonols, a subclass of
flavonoids. Quercetin, a type of flavonoids called flavonols, has received significant consideration in
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view of its overwhelming existence in herbs and food [31,32]. The major sources of quercetin are fruits
such as citrus, apples, cherries and berries, vegetables such as broccoli, onions, and beverages such
as red wine and tea. Moreover, it has been likewise found in several therapeutic plants, for example,
Aesculus hippocastanum, Ginkgo biloba, and Hypericum perforatum. Research interest for this flavonol
derivative is because of its diverse range of biological properties [33,34].

Quercetin not only shows antioxidant activity like other natural flavonols but is also reported to
have antiviral, anti-inflammatory, and antibacterial activities [35–37]. The exact mechanism by which
quercetin shows these impacts are not completely clear, but rather it is conceivable that distinctive
biochemical procedures are included. This natural flavonol is generally exists in a glycosylated form
with its corresponding sugar part, generally glucose. The glycosylation may occur at any of the five
OH groups of the flavonol ring, the most widely recognized quercetin glycoside exhibits the sugar
moiety and structures speak to 60–75% of flavonoid intake [38]. Before oral ingestion, quercetin
glycosides undergo deglycosylation either by cytosolic β-glucosidase or lactase phlorizin hydrolase.
Further, the absorbed aglycone part is conjugated through sulphation, glucuronidation, or methylation.
However, the aglycones and associated conjugates can cross the blood-brain barrier. Quercetin consists
of a fused ring system with a benzopyran associated with an aromatic ring and phenyl substituents
(Figure 1) [39].
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Figure 1. Quercetin. 

In a study by Hwang and coworkers raveled the two natural flavonoids from the methanolic 
root extract of Sophora flavecens. The outcomes of the study indicated the dose-dependent MAO 
inhibition by kushenol F and formononetin with IC50 values of 69.9 and 13.2 µM, respectively (Figure 
2). Interestingly, kushenol F mainly inhibited the MAO-B than MAO-A isoform shown the IC50 values 
of 63.1 and 103.7 µM, respectively. However, formononetin exhibited potential inhibitory effect 
towards MAO-B (IC50:11.0 µM) than MAO-A (IC50:21.2 µM) [40]. 
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the MAO inhibitory and antioxidative potential (found in South American liana of the family 
Malpighiaceae, B caapi is known to contain β-carboline alkaloids) [41]. Activity-guided fractionation 
of aqueous extract of B. caapi stems on led to the isolation of two popular proanthocyanidins (−)-
procyanidin B2 and (−)-epicatechin (Figure 3). Epicatechin and (−)-procyanidin B2 showed 
considerable MAO-B inhibitory activity with IC50 66 and 36 µM, respectively and very weak MAO-
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Figure 1. Quercetin.

In a study by Hwang and coworkers raveled the two natural flavonoids from the methanolic
root extract of Sophora flavecens. The outcomes of the study indicated the dose-dependent MAO
inhibition by kushenol F and formononetin with IC50 values of 69.9 and 13.2 µM, respectively (Figure 2).
Interestingly, kushenol F mainly inhibited the MAO-B than MAO-A isoform shown the IC50 values of
63.1 and 103.7 µM, respectively. However, formononetin exhibited potential inhibitory effect towards
MAO-B (IC50:11.0 µM) than MAO-A (IC50:21.2 µM) [40].
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Figure 2. Structures of Formononetin (1) and Kushenol F (2).

In 2010 Samoylenko and coworkers screened Banisteriopsis caapi (Malpighiaceae) constituents
for the MAO inhibitory and antioxidative potential (found in South American liana of the family
Malpighiaceae, B caapi is known to contain β-carboline alkaloids) [41]. Activity-guided fractionation
of aqueous extract of B. caapi stems on led to the isolation of two popular proanthocyanidins
(−)-procyanidin B2 and (−)-epicatechin (Figure 3). Epicatechin and (−)-procyanidin B2 showed
considerable MAO-B inhibitory activity with IC50 66 and 36 µM, respectively and very weak
MAO-A inhibitory potential with IC50 8.5 and 51.7 µM for procyanidin B2 and (−)-epicatechin,
respectively. In addition, these components exhibited good antioxidant potential; both found to be
more effective than standard antioxidants, vitamin C (IC50 < 0.14 and 0.58 µg/mL vs. 1.35 µg/mL),
while (−)-epicatechin was found to be more active than Trolox (IC50 0.14 µg/mL).
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In another study, the flavan-3-ols (−)-epicatechin and (+)-catechin were isolated from the
hook extract of Uncaria rhynchophylla (Miq.) Jacks. using bioguided assay was found to inhibit
MAO-B with the IC50 values of 57.9 and 88.9 µM, respectively, while the standard MAO-B inhibitor
deprenyl showed an IC50 value of 0.3 µM [42]. (U. rhynchophylla (Rubiaceae), also known as
cat’s claw herb, is a rhynchophylline plant species utilized in conventional Chinese medication).
Lee et al., isolated flavonoids from 80% watery ethanol concentrate of entire plant of Artemisia
vulgaris (Mugwort), and their structures were confirmed by utilizing different spectroscopic techniques.
These compounds were recognized as jaceosidin, eupafolin, luteolin, quercetin, apigenin, aesculetin,
esculetin-6-methylether, and scopoletin and were appeared to inhibit MAO with the IC50 estimations
of 19.0, 25.0, 18.5, 72.9, 12.5, 1.0, 31.1, 32.2, and 45.0 µmol, respectively (Figure 4) [43].Molecules 2019, 24, x 5 of 19 
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Conversely, Kim and coworkers isolated a flavonoid, cynaroside from Angelica keiskei Koidzumi
(A. keiskei K.). Cynaroside showed notable MAO inhibition with IC50 values MAO-A400 µM and
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MAO-B 268 µM. Therefore, it is likely that that inhibition of MAO-B exerts antidepressant activity
(Figure 5) [44].
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Another study by in 2000 by Pan and coworkers showed the MAO inhibition of isoliquiritigenin
and liquiritigenin isolated from the methanolic extract of the flowering plant Sinofranchetia chinensis
(Lardizabalaceae) was studied on rodent monoamine oxidase A and B [45]. MAO inhibitory
activity was assessed radiochemically by using [14C] β-phenylethylamine (beta-PEA) and
[14C]5-hydroxytryptamine (5-HT) as MAO-B or -A specific radio labeled substrates, respectively.
Isoliquiritigenin and liquiritigenin acted as the potent MAO inhibitors against both MAO-B and
-A in a dose-dependent manner (Figure 6). The MAO inhibitory IC50 values were calculated for
isoliquiritigenin and liquiritigenin were 14 (12.8–15.6) and 32 (26–36) µmol/L for MAO-A isoform,
47.2 (39.5–54.5) and104.6 (89.0–118.9) µmol/L for MAO-B isoform, respectively.
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Monoamine oxidase B inhibitory and free radical scavenging activities were evaluated for
quercetin, rutin, isoquercitrin, and quercitrin, from the leave isolates of the Melastoma candidum
(Melastomataceae) D. Don. using bioassay-guided fractionation (Figure 7) [46]. Melastoma candidum is
a Chinese herb reported to clean heat and toxins, activating the blood and eliminating stasis, actuating
the blood and wiping out stasis, for treating traumatic wounds, and for enacting fundamental vitality.
The IC50 estimation of the four natural flavonoids, quercetin, rutin, isoquercitrin, and quercitrin on
MAO-B was found ass 10.89, 3.89, 11.64, and 19.06 µM and analysis of enzyme kinetics calculated
apparent inhibition constants (Ki) of 7.95, 1.83, 2.72, and 21.01 µM, respectively.
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The in-vitro MAO inhibition by leaf extract of Ginkgo Biloba was carried out on mouse brain or liver
monoamine oxidase (MAO)-A and -B activity [47]. The flavones apigenin and chrysin and the flavonols
kaempferol and quercetin were extracted from a validated Gingko biloba preparation by reverse-phase
HPLC system. All isolated flavonoid derivatives were observed as selective MAO-A inhibitors with
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the IC50 estimations of quercetin (4 µM), apigenin (2 µM), kaempferol (0.8 µM), and chrysin (1 µM).
In the same assay phenelzine (irreversible and non-selective inhibitor of MAO) was taken as a reference
compound (IC50 value 0.05 µM).

Quercetin was isolated from the methanolic extract of heather (Calluna vulgaris (L.) Hull–Ericaceae)
and was evaluated for MAO inhibition [48]. By exhibiting IC50 value of 18 µM quercetin was
distinguished as a selective MAO-A inhibitor. However, clorgyline, an MAO-A selective inhibitor,
showed an IC50 value of 0.2 µM in the same assay. Bio-guided fractionation of the Rhodiola rosea L.
(Crassulaceae) prompted to the isolation of epigallocatechin gallate (EGCG) dimer (Figure 8) which
was tested for MAO inhibition. It showed a sigmoidal dose-response curve for MAO-B with pIC50 of
4.74 µM, whereas l-deprenyl showed the pIC50 value of 7.24 for MAO-B inhibition [49].
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Lee and coworkers isolated different structure analogues of myricetin galloylglycoside
from leaves of Acacia confuse, namely myricetin 3-O-(3”-O-galloyl)-D-rhamnopyranoside (1),
myricetin 3-O-(2”-O-galloyl)-D-rhamnopyranoside (2), 3-O-(3”-O-galloyl)-Drhamnopyranoside
7-methyl ether1(3), myricetin 3-O-(2”-O-galloyl)-D-rhamnopyranoside 7-methyl ether (4), myricetin
3-O-(2”, 3”-di-O-galloyl)-D-rhamnopyranoside (5) (Figure 9). All five derivatives were evaluated for
(semicarbazide-sensitive amine oxidase) SSAO inhibition and they all showed considerable amine
oxidase inhibitory activity. Notably, the gallic acid at R3 position plays an important role for both
biological activities [50].
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The neurological and neuroprotective properties of Melissa officinalis was also documented by
Lopez and coworkers. They assessed MAO-A inhibitory potential of methanolic extract of Melissa
officinalis the plant. The IC50 estimations for MAO-A by methanolic extract (19.3 ± 2.3) was found
to be better than the aqueous extract (48.3 ± 5.7) [51]. The antidepressant action of Morinda citrifolia
fruit extracts was evaluated by estimation of MAO inhibition studies [52]. The bioactivity-fractionation
led two flavonoids, quercetin, and kaempferol. Bioassay of kaempferol (Figure 10) and quercetin,
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for MAO-A, calculated IC50 values of 3.15 M and 0.72 M, and 20.4 M and 31.7 M for MAO-B,
respectively, selectivity indices for MAO-A shown as 28 and 10.
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Figure 10. Kaempferol.

Isolation of kaempferol and apigenin flavonoids from Sophorae flos and demonstration of their
strong MAO-A inhibitory effects over rat brain mitochondrial monoamine oxidase MAO-A with an
IC50 estimation of 10, and 14 µM were carried out by Ryu and coworkers [53]. They concluded that
both compounds do not preferentially inhibit MAO-B. Moreover, several other isoflavonoids were
isolated from Glycine max. and screened. In which the genistein (Figure 11) selectively inhibited rat
brain mitochondrial MAO-A with IC50 value of the 40 µM.
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Figure 11. Genistein.

Naringenin (Figure 12) was collected from the ethanolic extract of Mentha aquatica L. via by
bioactivity-guided fractionation on preparative TLC [54]. The MAO inhibitory IC50 values by
naringenin were calculated as 340 ± 30 M for the homogenate of rat liver mitochondrial fraction,
288 ± 18 M was calculated for MAO-B and for MAO-A 955 ± 129 M. However the MAO inhibitory
potential of was not more than quercetin.Molecules 2019, 24, x 8 of 19 
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Figure 12. Naringenin.

5-Hydroxyflavanone and 2-methoxy-3-(1-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one
(Figure 13) were extracted from the dried bark methanolic concentrate of Gentiana lutea [55].
Monoamine oxidase activity was evaluated on rat brain mitochondria fraction. Compound
2-methoxy-3-(1-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one specifically inhibited
MAO-B isoform, whereas entire inhibition was observed at 9 µM. 5-hydroxyflavanone exhibited
more affinity for MAO for MAO-B than MAO-A isoform. Enzyme kinetics for the MAO
inhibition was carried out by Lineweaver-Burk plots and both compounds showed the reciprocal
plot curves for MAO inhibition activities, where the concentration of substrate also found
intersected to the ordinate. The apparent Ki values of compounds of 5-hydroxyflavanone and
2-methoxy-3-(1-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one for MAO-B were calculated
as 1.1 µM and 1.4 µM, respectively.
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In another study MAO inhibition studies were performed on pure anthocyanidins and the MAO-A
and MAO-B inhibitory IC50 values were calculated as for pelargonidin (28 µM and 45 µM), peonidin
(41 µM and 25 µM), malvidin (32 µM and 20 µM), delphinidin (36 µM and 38 µM), cyanidin (31 µM
and 33 µM), and petunidin (35 µM and 45 µM).

Furthermore, the various diglycosides and glycosides of the above- revealed anthocyanidins
were also investigated for MAO inhibition with IC50 estimation of 30–120 µM against MAO-A and
32–247 µM against MAO-B [56].

Bioactivity-guided isolation of seven flavonoids from the methanolic extract of Cayratia japonica was
carried out to evaluate MAO inhibitory potential [57]. The structures of the components were identified
as apigenin, apigenin-7-O-β-D-glucuronopyranoside, quercetin, luteolin, (+)-dihydro-kaempferol
(aromadendrin), (+)-dihydroquercetin (taxifolin), and luteolin-7-O-β-D-glucopyranoside. Among the
all titled compounds, flavonol, quercetin as well as the flavones such as luteolin and apigenin showed
potential MAO inhibitory effects with estimated IC50 values of 33.7 µM, 23.7 and 6.7 respectively.
Furthermore, quercetin was found as most active MAO-A inhibitor (IC50 value: 1 µM) than MAO-B
(IC50 value: 90 µM), whereas luteolin and apigenin also mainly inhibited MAO-A isoform (IC50 values:
5.0 and 1.0 µM, respectively) as compared with MAO-B (IC50 values: 60.0 and 13.0 µM, respectively).
Moreover, the flavanonol derivatives, aromadendrin, and taxifolin exhibited poor inhibition (IC50
values: 152.9 µM and 155.1, respectively). The flavone glycosides, luteolin-7-O-β-D-glucopyranoside
and apigenin-7-O-β-D-glucuronopyranoside exhibited less MAO inhibitory activity (IC50 values: 118.6
and 81.7 µM, respectively).

Fourteen types of herbal plants were evaluated for MAO-B inhibitory potential. The extracts of
Chrysanthemum indicum, Sophora japonica, Artemisia Messer-Schmidtiana, Ericibe obtusifolis significantly
inhibited the MAO-B enzyme. Among them, Chrysanthemi indicum was selected for fractionation and
identification of its active components, which led some flavonoids as diosmetin, acacetin, apigenin,
5,7-dihydroxy chromone, luteolin, and eriodictyol. The MAO inhibitory IC50 values for 5,7-dihydroxy
chromone and diosmetin were calculated as following: 2.50, 0.20, 2.10 µM respectively, while the other
principles showed weak inhibition [58].

Isoflavone daidzein and its various analogs such as daidzin, ononin, 7-o-ω-carboxypentylflavone,
7-O-r-carboxyheptyldaidzein, 7-o-isopropyldaidzein, 7-o-dodecyldaidzein, 7-o-ω-carboxyheptyldaidzein,
7-o-ω-carboxyundecyldaidzein, 7-o-ω-hydroxyethyl-2-(2-oxyethyl) oxyethyldaidzein (Figure 14) were
evaluated for MAO inhibition. It was concluded that presence of a free 4′-OH function on isoflavone
ring and a straight 7-O-alkyl chain substitution, that has a terminal polar function such as -COOH, -OH,
and -NH2 is crucial for MAO inhibition. Most preferable chain lengths for the MAO inhibition were
7-O-ω-hydroxy, 7-O-ω-carboxy, and 7-O-ω-amino substituent, were respectively [59].
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3. Molecular Docking Studies of Quercetin and Related Flavonoid Derivatives

In 2006, Zhang et al. determined MAO inhibition of natural flavonoids by docking experiments.
Docking methodologies revealed that the quercetin can thoroughly bind within the active site of the
hMAO-B (with drug score of −61.5). Close inspection of the docking poses shown that the binding not
only depends on the hydroxyl groups at 7th or 5th positions (that is equivalent to the positions 1st and
3rd in xanthone ring) but also on the OHs present at other positions (Table 1). Furthermore, the ring
B in catechol seems very important which notably contributes for the binding, and could increase
the MAO inhibiting capacity of quercetin. This special character of OH and ring B found unique as
compared to xanthones, which do not require catechol for the better restricting association with MAO
protein and can be justified to some degree by the more adaptability of flavonoids than xanthones.
This may because of the ring B in flavonoids that is rotatable through C2-C10 bond, through so the
flavonoids modify their conformational changes to tie inside the dynamic locales of MAO proteins,
pictured by the superimposed quercetin adaptations in the coupling pocket of MAO-B [60].

Table 1. Docking profile of natural flavonoids with target protein and interactions.

Flavonoids Target Protein
Important

Amino Acid
Residues

Comments Software References

Quercetin MAO-A PDB
(2Z5X)

Tyr444, Tyr197,
and Asn181

Quercetin fitted well within the hMAO-A
active site than in the hMAO-B active site

due to development of highest π-π
interaction and intermolecular

hydrogen bonds.

Schrodinger [61] Zhang et al. [62]

Baicalein MAO-B PDB
(2Z5Y)

Leu164 and
Leu167

Two catecholic OH groups of baicalein
showed hydrogen bonding with
Leu167and Leu164 respectively.

Schrodinger [61] Gao et al. [63]

6-prenyl
apigenin

hMAO-A PDB
(2Z5X)

Tyr 444 and
Tyr407

6-prenyl apigenin the structural shared π
electrons of the hydroxyl groups were

sandwiched between phenolic side chains
of TYR407 and TYR 444 composed the

‘aromatic cage’ of the hydrophobic pocket
of the enzyme.

AutoDock [64] Beula et al. [65]

Kaempferol hMAO-A PDB
(2Z5X)

Ile335 of
hMAO-A
Tyr326 of
hMAO-B

Kaempferol in the dynamic site of hMAO-A
established hydrophobic interactions with
important residues of hMAO-A for a longer

time than in the hMAO-B pocket.

Schrödinger [61] Gidaro et al. [66]

The methanolic extract from leaves of Hypericum hircinum showed monoamine oxidases
(MAO) inhibition. The bioactivity guided isolation prompted to the isolation of quercetin and
five different components, recognized for the first time from H. hircinum [67]. Quercetin was
the main compound with a specific inhibitory action against MAO-A, with an IC50 estimation of
0.010 µM. To illustrate the behavioral impacts of quercetin the in-vivo animal study on mice was
performed using the forced swimming test. The mechanism of inhibition was further confirmed by
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molecular docking studies by applying the graphical user interface by MacroModel (Maestro GUI),
Schrodinger [61]. The interaction energy has shown a good correlation between the exploratory
inhibition information and affirmed the particular MAO-A recognition in both configurationally
ensembles calculated along with molecular docking and full energy minimization. The authors
observed that quercetin associated well within the hMAO-A binding site than in the hMAO-B
binding site due to the formation of maximum π-π interaction and intermolecular hydrogen bonds.
Moreover Greeson and coauthors also discussed the pharmacological, toxicological, and clinical
aspects on MAO inhibitory action of St. John’s wort (Hypericum perforatum) [62]. Design of the
3-(4-methoxyphenyl)-1H-benzo[f]chromen-1-one (Figure 15) was carried out MAO-A inhibitor PDB
code (2Z5X) by in-silico techniques [68]. The strategy for the design was to modify the flavanone
(C6-C3-C6 three ring skeleton) to benzoflavanone composes naphthalene in spite of the first C6 ring.
The binding of this compound with MAO-A was investigated by molecular docking by FlexX
program [69]. Visual inspection of the docking poses indicated four more residues, Tyr69, Gly67,
Gly443, and Met350 in the complex of 3-(4-methoxyphenyl)-1H-benzo[f]chromen-1-one with MAOA.
Moreover, 31 hydrophobic inactions were established with the MAO-A binding cavity.

Molecules 2019, 24, x 10 of 19 

 

Quercetin 
MAO-A 

PDB 
(2Z5X) 

Tyr444, 
Tyr197, and 

Asn181 

Quercetin fitted well within the 
hMAO-A active site than in the 

hMAO-B active site due to 
development of highest π-π 

interaction and intermolecular 
hydrogen bonds. 

Schrodinger 
[61] 

Zhang et 
al. [62] 

Baicalein 
MAO-B 

PDB 
(2Z5Y) 

Leu164 and 
Leu167 

Two catecholic OH groups of 
baicalein showed hydrogen 

bonding with Leu167and Leu164 
respectively. 

Schrodinger 
[61] 

Gao et al. 
[63] 

6-prenyl 
apigenin 

hMAO-
A PDB 
(2Z5X) 

Tyr 444 and 
Tyr407 

6-prenyl apigenin the structural 
shared π electrons of the hydroxyl 
groups were sandwiched between 

phenolic side chains of TYR407 
and TYR 444 composed the 

‘aromatic cage’ of the hydrophobic 
pocket of the enzyme. 

AutoDock 
[64] 

Beula et al. 
[65] 

Kaempferol 
hMAO-
A PDB 
(2Z5X) 

Ile335 of 
hMAO-A 
Tyr326 of 
hMAO-B  

Kaempferol in the dynamic site of 
hMAO-A established hydrophobic 

interactions with important 
residues of hMAO-A for a longer 
time than in the hMAO-B pocket. 

Schro ̈dinger 
[61] 

Gidaro et 
al. [66] 

The methanolic extract from leaves of Hypericum hircinum showed monoamine oxidases (MAO) 
inhibition. The bioactivity guided isolation prompted to the isolation of quercetin and five different 
components, recognized for the first time from H. hircinum [67]. Quercetin was the main compound 
with a specific inhibitory action against MAO-A, with an IC50 estimation of 0.010 µM. To illustrate 
the behavioral impacts of quercetin the in-vivo animal study on mice was performed using the forced 
swimming test. The mechanism of inhibition was further confirmed by molecular docking studies by 
applying the graphical user interface by MacroModel (Maestro GUI), Schrodinger [61]. The 
interaction energy has shown a good correlation between the exploratory inhibition information and 
affirmed the particular MAO-A recognition in both configurationally ensembles calculated along 
with molecular docking and full energy minimization. The authors observed that quercetin 
associated well within the hMAO-A binding site than in the hMAO-B binding site due to the 
formation of maximum π-π interaction and intermolecular hydrogen bonds. Moreover Greeson and 
coauthors also discussed the pharmacological, toxicological, and clinical aspects on MAO inhibitory 
action of St. John’s wort (Hypericum perforatum) [62]. Design of the 3-(4-methoxyphenyl)-1H-
benzo[f]chromen-1-one (Figure 15) was carried out MAO-A inhibitor PDB code (2Z5X) by in-silico 
techniques [68]. The strategy for the design was to modify the flavanone (C6-C3-C6 three ring 
skeleton) to benzoflavanone composes naphthalene in spite of the first C6 ring. The binding of this 
compound with MAO-A was investigated by molecular docking by FlexX program [69]. Visual 
inspection of the docking poses indicated four more residues, Tyr69, Gly67, Gly443, and Met350 in 
the complex of 3-(4-methoxyphenyl)-1H-benzo[f]chromen-1-one with MAOA. Moreover, 31 
hydrophobic inactions were established with the MAO-A binding cavity.  

O

O

OCH3

 
Figure 15. 3-(4-methoxyphenyl)-1H-benzo[f]chromen-1-one  Figure 15. 3-(4-methoxyphenyl)-1H-benzo[f]chromen-1-one

A series of homoisoflavonoids 3-benzyl-4H-chromen-4-ones, 3-benzylchroman-4-ones, and have
been synthesized and benzylidenechroman-4-ones was investigated for in vitro as inhibition of h-MAOA
and h-MAOB by Desideri et al. [70]. Rationalized docking studies provided the inhibitory affinity of
homoisoflavonoids with respect to isoforms of hMAO-A PDB (2XFN) and hMAO-B PDB (2Z5Y). Visual
inspection of the docking poses of the (E)-3-(4-(dimethylamino)benzylidene)chroman-4-one chromone
(Figure 16) and (E)-5,7-dihydroxy-3-(4-hydroxybenzylidene)chroman-4-one (Figure 17), chromanone rings
were positioned near to the flavin ring of hMAO-A. Interestingly, most of the docked ligands exhibited
the same kind of binding interactions. The only difference in MAO-A PDB (2Z5Y) binding interaction was
due to the presence of a hydroxyl OH in the former analog that established a single hydrogen bond with
N5 atom of FAD. Moreover, (E)-5,7-dihydroxy-3-(4-hydroxybenzylidene)chroman-4-one, nearby the FAD
cofactor, formed an exclusive bond with Tyr69. The (E)-3-(4-(dimethylamino)benzylidene)chroman-4-one
was found to be involved in hydrophobic interactions with Tyr444 and Asn181.
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Furthermore, Chimenti et al. [71] reported another series of synthetic flavanones, thioflavones,
and flavones, analogs, active against both monoamine oxidase isoforms (MAO-A and -B). To visualize
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the binding mechanism of both isomers of (R)-2j and (S)-2j enantiomers, docking studies were
carried out by the Glide with respect to both isoforms of hMAO [61]. The molecular modeling
studies showed good correlations to the experimental results, and hence proved the conformational
flexibility of both 3 dihydrochromen-4-one, 2-(4-fluorophenyl)-7-methyl-2 enantiomers to fit within
the active site of both hMAO isoforms with characteristic affinity. The most active compound
2-(4-fluorophenyl)-7-methyl-2,3-dihydrochromen-4-one exhibited nanomolar the inhibitory potential
as the racemate and was the most potent inhibitor in the two enantiomeric forms.

More recently Turkmenoglu et al. [72] evaluated the hMAO inhibitory activity of four flavonoids,
isoscutellarein 7-O-[6′ ′ ′-O-acetyl-β-D-allopyranosyl-(1→2)]-6”-O-acetyl-β-D-gluco-pyranoside,
xanthomicrol, isoscutellarein 7-O-[6′ ′ ′-O-acetyl-β-D-allopyranosyl-(1→2)]-β-D-gluco-pyranoside
and salvigenin from Sideritis using recombinant hMAO isoenzymes. Docking experiments showed
salvigenin as the most potent hMAO-A inhibitor by forming several van der Waals and electrostatic
interactions within the active site of the hMAO-A where aromatic coumarin ring of the salvigenin
established two π-π staking with TYR444 and TYR407 residues situated in the cavity. Moreover,
the xanthomicrol has shown selective inhibitory interactions towards hMAO-A by forming five
hydrogen bonds with the amino acids residues of the side chains of active site hMAO-A isoform
(between the hydroxyl and GLY66, hydroxyl and ASN181, hydroxyl and LYS305 and methoxy and
TYR444). The aromatic coumarine ring of xanthomicrol was observed sandwiched between the
TYR407and TYR444 amino acid residues, which established two π-π interactions with TYR407 and
formed a hydrophobic cage within the binding pocket. More relevant molecular binding interactions
among the natural leads and hMAO the docked complexes were analyzed by 2-dimensional methods.
The docking profile of the selected compounds is given in the (Table 2).

Table 2. Docking profile of natural flavonoids from Sideritis, against MAO-A PDB (2Z5X) and MAO-B
PDB (2XFU) with docking score and free binding energy (∆G) and Ki (µM).

Sr. No Flavonoid
Binding Score

Energy Value for
MAO-A (Kcal/mol)

Calculated Ki for
MAO-A (µM)

Binding Score
Energy Value for

MAO-B (Kcal/mol)

Calculated Ki for
MAO-B (µM)

1
Isoscutellarein

7-O-[6′ ′ ′-O-acetyl-β-D-allopyranosyl-(1→2)]
-6”-O-acetyl-β-D-glucopyranoside

−3.81 1660.00 8.92 -

2 Salvigenin −8.30 0.867 −7.51 3.63

3
Isoscutellarein

7-O-[6′ ′ ′-O-acetyl-β-D-allopyranosyl-(1→2)]
-β-D-glucopyranoside

−4.15 930.10 5.79 -

4 Xanthomicrol −7.80 1.90 −5.78 64.26

In a subsequent paper, Gao et al. [63] reported a magnificent in silico target fishing
protocol based on mining of diverse database, molecular modeling, ligand similarity searching,
structure-based pharmacophore searching and docking protocols together for searching new
potential therapeutic anti-Parkinson agents. They concluded that the establishment of productive
enzyme-inhibitor interaction behavior of top two ranked targets monoamine oxidase B (MAO-B) and
catechol-O-methyltransferase (COMT) from the seven selected protein targets as important targets
for baicalein function by literature. For the study flavonoid, baicalein was isolated from the root
extract of Scutellaria baicalensis Georgi. Docking calculations were carried out using Glide software for
the comparison of binding energy of baicalein with the standard [61]. Two catecholic OH groups of
baicalein showed hydrogen bonding with Leu167and Leu164, respectively. Moreover, a network of
productive hydrophobic interactions also appeared between MAO-B and baicalein, which appreciably
contributed to the binding interactions. Baicalein notably reduced the formation of intracellular NO
(nitric oxide), reactive oxygen species, and extracellular NO, due to reduced cell death, exposure of
NMDA (N-methyl-D-aspartic acid). It was noticed that NMDA receptor with generally low agreement
score cannot be a valuable target for baicalein, having no inhibitory impact on [3H]MK-801 binding.
The authors validated and developed a consensus scoring formula for ranking of the targets of a
titled compound.
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Sivaraman and coworkers performed docking calculations to rationalize the MAO inhibitory
potency of luteolin, quercetin, kaempferol, and apigenin by using Auto Dock tools [64]. The binding
free energy (∆G) and inhibition constants (Ki) of the natural ligands were computed via the Lamarckian
Genetic Algorithm (LGA) of AutoDock application. Perfect to good correlations were established
between the experimental and calculated Ki values [73] (Table 3).

Table 3. Natural flavonoids docked against MAO-A PDB (2Z5X) showing docking score and free
binding free energy (Kcal/mol) and inhibition constant Ki (µM) with no. of hydrogen bonds along
with interacting amino acid residues.

Sr. No Name of the
Lead

Binding Free
Energy

(Kcal/mol)

Inhibition
Constant Ki

(µM)

No. of
Hydrogen

Bonds
Interacting Amino Acid Residue

1 Kaempferol −5.17 4.63 12
397 TRP, 352 PHE, 406 CYS, 444 TYR, 448
ALA, 303 VAL, 51ARG, 407 TYR, 52 THR,

435 THR, 305 LYS, 445 MET

2 Quercetin −4.40 636.60 9 436 GLU, 448 ALA, 52 THR, 435 THR, 407
TYR,51 ARG, 406 CYS, 23 ILE, 445 MET

3 Apigenin −7.65 2.61 8 305 LYS, 397 TRP, 448 ALA, 51 ARG, 406
CYS, 435 THR, 352 PHE, 407 TYR

4 Luteolin −7.67 2.42 11
448 ALA, 23 ILE, 435 THR, 406 CYS, 303

VAL, 52 THR, 51 ARG, 397 TRP, 445 MET,
407 TYR,444TYR

5 Brofaromine
(Standard) −7.55 3.06 10

303 VAL, 397 TRP, 51 ARG, 52 THR, 406
CYS, 305 LYS, 445 MET, 407 TYR, 435 THR,

448 ALA

In a later work, Beula and coworkers [65] isolated 6-prenyl apigenin (Figure 18) from a methanolic
extract of Achyranthes aspera seeds and computed molecular docking to get insight into the binding
modes of 6-prenyl apigenin within the monoamine oxidase-A enzyme pocket. Molecular docking
studies were carried out by using AutoDock [64], revealed 6-prenyl apigenin as a promising candidate
for hMAO-A inhibition by exhibiting calculated inhibition constant of about 1.23 µM and docking
score of −8.06. To understand the structural role of the isolated 6-prenyl apigenin the 3D structural
was divided into three fragments so-called flavones skeleton, the phenolic group at the 2nd position
of the nucleus and a distal side chain located at the 6th position. It is worthy to note that the π
electrons of the hydroxyl groups were sandwiched between phenolic side chains of TYR407 and TYR
444 composed the ‘aromatic cage’ of the hydrophobic pocket of the enzyme. Furthermore, another π-π
stacking interaction has appeared between flavone moiety and TRP 441 residue within the hMAO-A
binding site.
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More recently Zarmouh et al. [74] reported the MAO inhibitory activity of the natural
prenylflavanones, genistein (GST) and bavachinin (BNN) from the ethanolic extract of Psoralea
corylifolia seeds. Psoralea corylifolia is a medicinal plant widely documented for its antiaging properties.
These two unique prenylflavanones selectively inhibited MAO-B enzyme with the highest potential.
Docking methodologies predicted the binding affinity for both flavonoids, genistein (GST) and
bavachinin (BNN). Zarmouh and coworkers further explored their earlier studies in 2015 [75],
the flavanone bavachinin (BNN) and its other structural analog bavachin (BVN) from the seeds
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of Psoralea corylifolia L. for their human MAO inhibition. Docking studies were performed to
validate the correct binding and mechanistic insight into docking poses depicted in (Table 4).
The docking poses were analyzed with reference of the bound ligands of the crystal structures of
human MAOB-2-(2-benzofuranyl)-2-imidazoline complex and human MAO-A-harmine complex.

Table 4. Inhibition affinity by docking studies, of MAO isoforms by flavanones of Psoralea
corylifolia extract.

Sr. No
Natural
Ligands

MAO-A Active Site PDB
(2BXR)

MAO-B Active Site PDB
(1GOS) Overall Bonds MAO

Inhibition
SelectivityDocking

Score
Predicted
H-Bond

Docking
Score

Predicted
H-Bond H-Bond Active Site

Residue

1. Bavachinin −1.06 0 −6.82 2 OH· · ·O
HO· · ·HN

THR:201: A
THR:201: A B

3 Safinamide −0.22 0 −6.12 3
NH· · ·O
NH· · ·O
NH· · ·O

GLU:84: A
THR:201: A
PRO:102: A

B

4 Bavachin −8.72 H2O-726 −3.95 0 · · · · · · NA

The same group further studied the isoflavone genistein (GST) and its structural analog daidzein
(DZ) as promising MAO-A and MAO-B inhibitors Zarmouh et al. [76]. Molecular docking studies
of GST and DZ was performed within the binding pocket of MAO isoforms. In the case of the
hMAO-B, both analogs chromone ring were docked entirely within the hydrophobic part of the
binding site (substrate-binding domain). Due to their phenolic OH moiety near to the entrance cavity,
both derivatives were positioned far from FAD and its surrounding tyrosine amino acid residues.
The GST C4

′-OH group moiety formed maximum hydrogen bonds far from the hydrophobic sites
than DZ. This molecular network increased the reversibility due to not affecting the flavin structure
and possessing reversible H-bond interactions and hydrophobic. In case of MAO-A, the chromone
ring of two isoflavone ligands were positioned in the compact entrance cavity near the to the flavin
cofactor (FAD), whereas their hydroxy-phenyl group was located to the hydrophobic active site
entrance surfaces. Both isoflavones possessed crossed and similar orientation as compared with the
standard. A best-matched docking pose of the standard was contributed by a slight pull of GST toward
a hydrophilic zone at its C5-OH group. The docking studied observations are given in (Table 5).

Table 5. Docking scores of isoflavone genistein and daidzein within human monoamine oxidase-A and
-B binding sites.

Sr. No Name of
the Lead

MAO-A MAO-B
RMSD Å Amino Acid

Docking Score Predicted H-Bond Docking Score Predicted H-Bond

1 Genistein
(GST) −7.0 0 −12.8 2 (OH· · · N) 2.27 THR: 201: A

2 Daidzein
(DZ) −6.9 0 −12.8 1 (O· · · HN) 2.32 THR: 201: A

Recently Gidaro and coworkers reported a computational method to generate the binding modes
of quercetin and kaempferol to the active site of both hMAO isoforms [66]. All the lowest energy
conformations were generated through the application of the OPLS-2005 force field, before docking
simulations methods. Computation of free binding energy (∆G Bind) for each docked complex was
determined through Prime/MM-GBSA approach along with OPLS-2005 force field and the default
parameters settings. Subsequently, quantum mechanics/molecular mechanics (QM/MM) docking
calculations were carried out by the Schrödinger QM-Polarized Ligand Docking Protocol (QPLD)
application [61]. Finally, results of molecular dynamic simulations established the specificity of the
reversible inhibitors was mainly because of the structural shape and size of the substrate/inhibitor
cavity, restricted by PHE208 and ILE335 amino acid residues within hMAOA, which correspond to
ILE199 and TYR326 in hMAO-B. Binding mode of the kaempferol in the catalytic site of hMAO-A
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showed hydrophobic interactions with key residues of hMAO-A for a longer time than in the hMAO-B
pocket. Kaempferol retained 90% of the simulation time with PHE208 and 80% of the total simulation
time hydrophobic interactions with ILE335 of hMAO-A. Conversely, in the binding pocket of hMAO-B,
kaempferol retained 80% simulation time with TYR326 and 30% of the simulation time through
hydrophobic contacts with ILE199. The detailed description of docking analysis is given in (Table 6).

Table 6. Summary of the molecular docking studies and inhibitory activity of compounds against
MAO-A and MAO-B enzymes.

Sr. No Name of the Lead
hMAO-B hMAO-A

IC50 (µM) ∆G Bind (Kcal/mol) IC50 (µM) ∆G Bind (Kcal/mol)

1 Kaempferol >100 −42.66 0.525 ± 0.035 −49.52

2 Quercetin >100 −46.98 3.98 ± 0.265 −48.35

3 Harmine - - 0.029 ± 0.0042 −46.07

4 Safinamide 0.0479 ± 0.00472 −73.70 - -

4. Conclusions

This deep exploration of the quercetin and related flavonoid derivatives highlights the enthusiasm
of therapeutic science specialists towards finding new potent and selective monoamine oxidase
inhibitors or useful targeting agents for neurological and mental disorders. The current review is
aimed to demonstrate the tremendous pharmacological MAO inhibition profile of natural flavonoid
derivatives. The experimental in vitro studies suggested that natural flavonoids showed micro- to
nanomolar range IC50 values against both MAO isoforms. Furthermore, the docking studies correlated
in many experiments to explore the molecular mechanism of flavonoid at the MAO receptor level.
This may give the idea for the structural activity requirement of different classes of natural flavonoids
for the MAO inhibition. Compilation of overall SAR studied indicated some characteristics of flavonoid
moiety (Figure 19). The glycosylation with sugar reduces the hMAO inhibitory potential of flavonoid
as studies by Lee and coworkers [50]. Moreover, the mono-substitution enhance the selectivity
towards hMAO-A; di-substitution enhance selectivity towards hMAO-B as indicated by Chimenti
and coworkers [71]. The unsturation of chromone ring is crucial for MAO inhibition. Nevertheless,
Presence of OH group decrease the MAO inhibitory potential as observed by Turkmenoglu and
coworkers [72]. Hence, the perditions of in vitro and in silico properties on flavonoid moiety could
help to further modification and clinical exploration as flavonoid based potent MAO inhibitors.
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