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Abstract: Accurate quantification of branch volume in trees is important for sustainable forest
management, especially as these fractions are increasingly used for bioenergy, and for precise
forest CO2 quantification. Whereas a large focus has been placed on the compatible estimation
of tree taper and bole volume with and without bark, little effort has been made to develop models
that allow a simultaneous prediction of these variables together with tree branch volume. In this
study, 595 Pinus cooperi trees and 700 Pinus durangensis trees were sampled in pine-oak forests in
the Sierra Madre Occidental, Mexico. A compatible system for predicting two segmented taper
functions, over and under bark; the corresponding merchantable volumes; coarse branch volume
and whole-tree volume was fitted using a modified continuous autoregressive structure to account
for autocorrelation. The proposed compatible equations explained more than 97% of the observed
variability in diameter over and under bark, volume over and under bark, and total tree volume and
more than 64% of the observed variability in branch volume in both species. The method described
can theoretically be replicated for any tree species, thus providing a better understanding of the
patterns of volume distribution by components, potentially improving carbon accounting system and
forest bioenergy planning.

Keywords: taper function; branch volume; bark volume; simultaneous fitting

1. Introduction

In contrast to a large body of literature focusing on modelling the merchantable stem volume
(e.g., [1,2]), the modelling of the volume of branches has received much less attention [2,3]. Whole-tree
volume models that include the volume of fractions such as tree branches are required in order to

Forests 2017, 8, 417; doi:10.3390/f8110417 www.mdpi.com/journal/forests

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional da Universidade de Santiago de Compostela

https://core.ac.uk/display/323369978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0002-2851-7517
https://orcid.org/0000-0002-5135-5739
https://orcid.org/0000-0002-2341-5458
https://orcid.org/0000-0003-1176-7330
https://orcid.org/0000-0002-5206-9128
http://dx.doi.org/10.3390/f8110417
http://www.mdpi.com/journal/forests


Forests 2017, 8, 417 2 of 18

provide information about the sustainable use of whole trees [2–6]. This could lead to an improvement
of our understanding of synergies and tradeoffs between different types of forest ecosystem services,
such as carbon storage, versus timber production [7]. Such models would help in decision-making
associated with the sustainable extraction of more biologically renewable fuels from forests
(e.g., [2,8]). This is particularly relevant considering the potential impacts of the removal of such
fractions, increasingly used as a bioenergy feedstock, on nutrient and carbon cycling (e.g., [9–13]).
Accurate information about bark and branch volume is also very important for planning silvicultural
practices, transportation and storage logistics in relation to use of these fractions for bioenergy
production (e.g., [14–17]).

Most of the research on tree volume has focused on the modelling of stem total volume and
volume profiles, commonly through the use of taper equations (e.g., [18–23]). Such equations predict
the upper stem diameter at any point on the tree bole, with the aim of determining possible end
uses for a single log. Therefore, they are important tools for establishing the most appropriate type
of silvicultural management for the desired tree dimensions and associated end uses (e.g., [18–23]).
Different stem profile modelling approaches have been developed during the last decades for this
goal. The majority of the models generate a solid of revolution from a single continuous function with
an exponent that may change from ground to top (e.g., [24–29]). A number of inflection points are
defined in this approach to describe the species-specific point at which changes occur and to establish
different functions for each segment (e.g., [30–33]). Other approaches are based on considering tree
taper within a cause-effect context and then, assume a specific stem development theory to link the
growth processes and the resulting realization of tree spatial structures (e.g., [34–36]).

Compatible taper and stem volume equations are readily obtained by including a constraint
that ensures that the total stem volumes obtained by integrating the taper function are equal to those
obtained with a volume equation (e.g., [33,37,38]). This is desirable because of the simplicity and
usefulness of total volume equations when classification of the products is not required [22,39,40]
and because the parameters of such algebraically consistent systems are often meaningful and better
reflect the underlying biological and physical relationships exhibited by the system [41]. Consequently,
several studies have focused on the compatibility between the diameter reduction described by the
taper function and the total stem volume (e.g., [33,39,42,43]) and some works have also extended
compatibility to bark (e.g., [22,32]). Compatible adjustment is also considered important for biomass
fractions prediction (e.g., [13,44,45]. In contrast to the relatively large body of literature on compatible
stem and taper prediction (e.g., [42,43]), little effort has been made to develop compatible models
for predicting the volume of important tree fractions such as branches (e.g., [4–7]). Clearly, the next
phase in tree volume modelling should be to describe the distribution of the volume of the different
fractions of the whole tree, not only of tree boles [3]. This approach should aim for compatibility
between the estimates of tree biomass and volume of the different fractions, potentially improving
carbon accounting systems [12,46–49].

Although it has long been recognized that crown size is one of the main determinants of tree
bole shape [50], there are few quantitative theories relating crown characteristics and stem form
development [51]. Various approaches have been used to model the effect of crown architecture on
stem taper variation such as the inclusion of crown characteristics as independent variables in stem
taper curves [25,52,53]; using different models above and below a relative crown height [3,54] or
modelling the effect of crown size on the centroid of volume for different trees [2].

In Mexico, previous studies have compared different taper equations for several species
(e.g., [55–58]). Corral-Rivas et al. [56] and Quiñonez-Barraza et al. [58] compared several taper
equations for the simultaneous prediction of diameter and total volume in several pine species in
Mexico. Both studies found that the model proposed by Fang et al. [33] yielded the best predictions and
that species-specific parametrization of the model was more effective than genus-level parametrization
for improving the estimates obtained. However, none of the above-mentioned studies in Mexico
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attempted neither to predict taper and over and under bark stem volume simultaneously with branch
volume and total tree volume nor to consider the effect of crown architecture on stem taper variation.

The objectives of the present study were to simultaneously fit a system of equations for predicting
taper and merchantable over and under bark volume, coarse branch volume and total tree volume, for
two pine species growing in the state of Durango, Mexico: Pinus cooperi and Pinus durangensis and
to analyse the effect of crown size on the values of the inflexion points and the stem factors of the
taper equations.

2. Materials and Methods

2.1. Data

The study was conducted in the part of the Sierra Madre Occidental that lies within the State of
Durango, Mexico, and covers an area of about 6.3 million ha. The elevation above sea level varies
between 363 and 3190 m. The prevailing climate in the area is mostly temperate, with rainfall in
summer. The annual average precipitation ranges between 443 and 1452 mm and the annual average
temperature between 8 and 26 ◦C [59]. The predominant type of forest is uneven aged pine-oak
forest, often mixed with Arbutus spp., Juniperus spp., Pseudotsuga menziesii and other tree species [56].
According to Wehenkel et al. [60], P. cooperi typically grows on very strongly acidic soils (pH 4.5 ± 0.2
(standard deviation (SD))) and is mostly found on areas with a Julian date of the last freezing date of
spring (Sday) of 142 ± 11 (SD) days, while the P. durangensis is located on strongly to moderately acidic
soils (pH 5.3 ± 0.3 (SD)) in areas with a Sday of 146 ± 26 (SD) days.

A total of 595 P. cooperi trees and 700 P. durangensis trees were subjectively selected to represent the
existing range of site qualities and densities in the study area. Diameter at breast height (1.3 m above
ground level) (D, in cm) was measured to the nearest 0.1 cm in each tree. In each tree, the height to the
base of the live crown (HBLC, m), defined as the point on the stem of the lowest live branch above
which there were at least two consecutive live branches, and the largest crown diameter (Dcrown, m,
two measures taken at right angles) were also measured to the nearest 0.1 m in each tree. The trees
were later felled, leaving stumps of average height 0.1 m, and total tree height (H, in m) was measured
to the nearest 0.01 m. The trees were cut into logs as follows. The first two logs were of constant
length 0.3 m and the third log was of variable length, because the upper diameter coincided with D.
Subsequent logs were 2.5 m long. All coarse tree branches, defined as those with a diameter at base
of trunk greater or equal to 5 cm, were also sectioned at variable length. Branches of diameter <5 cm
were not included in the sampling because their contribution to the total volume is often considered
negligible [61] and are generally not considered worth being utilized for economic and biomass quality
considerations [9], in addition to potential impacts on soil nutrients [16]. Two perpendicular diameters
over and under bark were measured in each cross section (of trunk or branch) to the nearest 0.1 cm
and then arithmetically averaged. Log volumes (m3) were calculated using Smalian’s formula. The top
section was treated as a cone. Total stem and branch volumes under and above bark were obtained by
summing the volume of the sections and the volume of the tops. Summary statistics including number
of observations, mean, minimum and maximum values and standard deviation for the main tree
variables of both species under study are shown in Table 1. A plot of relative height against relative
diameter for both species is shown in Figure 1.
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Figure 1. Scatter plots of relative diameter (d/D) against relative height (h/H) for the Pinus cooperi trees
(a) and for the Pinus durangensis trees (b) under study.

Table 1. Summary statistics of the data on the tree species under study.

Species Variable N of Observations Mean Standard Deviation Maximum Minimum

Pinus cooperi

dob 6090 27.9 15.5 84.0 0.0
dub 6090 25.4 14.1 75 0.0
D 595 45.12 12.51 84.00 10.65
H 595 19.15 4.74 33.23 6.14
vob 595 1.29 0.89 5.55 0.02
vub 595 1.10 0.78 5.05 0.02

Vbranches 595 0.10 0.11 0.89 0.00
Vtotal 595 1.39 0.96 5.74 0.02

Pinus
duragensis

dob 7724 28.0 15.9 88.0 0.0
dub 7724 25.6 14.5 82.25 0.0
D 700 46.35 13.34 88.00 11.40
H 700 20.50 4.99 35.42 7.43
vob 700 1.42 1.04 5.72 0.03
vub 700 1.23 0.92 4.87 0.02

Vbranches 700 0.10 0.11 0.59 0.00
Vtotal 700 1.52 1.12 6.31 0.04

dob: diameter over bark (cm); dub: diameter under bark (cm); D: tree diameter at 1.3 (cm); H: total tree height (m); vob:
merchantable volume over bark (m3); vub: merchantable volume under bark (m3); Vbranches: volume of branches
over bark (m3); Vtotal: total tree volume (m3).

2.2. Compatible System Fitting

The system is based on the compatible model proposed by Fang et al. [33]. This model assumes
that the stem has three sections, each with a different form factor.

The system comprises five equations:
The first (Equation (1)) is a stem taper function that estimates diameter over bark (dob, cm) to

a height limit (h, m). Integration of this equation to any height limit (h) produces the merchantable
volume over bark Equation (2), and integration of Equation (1) over total tree height produces the stem
volume over bark Equation (3).

(1) Over bark taper function:

dob = c1

√
H(k−b1)/b1(1− q)(k−β)/βαI1+I2

1 αI2
2 (1)

where q = h/H and {
I1 = 1 if p1 ≤ q ≤ p2; 0 otherwise
I2 = 1 if p2 < q ≤ 1; 0 otherwise

p1 and p2 are relative heights from ground level where the two inflection points are assumed by the
model to occur, dividing the stem in three sections

β = b1−(I1+I2)
1 bI1

2 bI2
3 α1 = (1− p1)

(b2−b1)k
b1b2 α2 = (1− p2)

(b3−b2)k
b2b3 r0 = (1− hst/H)k/b1
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r1 = (1− p1)
k/b1 r2 = (1− p2)

k/b2 c1 =

√
a0Da1 Ha2−k/b1

b1(r0 − r1) + b2(r1 − α1r2) + b3α1r2

where k is π/40,000, a metric constant for converting from diameter squared in cm2 to cross-section
area in m2; bi is the form factor of tree section i; D is the diameter at breast height over bark (1.3 m
above ground, cm); dob is the top diameter over bark at height h (cm); H is the total tree height (m); h is
the height above ground to top diameter d (m); hst is the stump height (m) and a0–a2, b1–b3, p1 and p2

are parameters to be estimated.

(2) Equation for estimating merchantable volume over bark

vob = c2
1Hk/b1

(
b1r0 + (I1 + I2)(b2 − b1)r1 + I2(b3 − b2)α1r2 − β(1− q)k/βαI1+I2

1 αI2
2

)
(2)

(3) Equation for estimating stem volume over bark

Vob = a0Da1 Ha2 (3)

where vob is the merchantable volume over bark (m3), i.e., the volume from stump to the point where
diameter = d, and Vob is the total stem volume over bark (m3).

Diameter under bark (dub) was also estimated using the model described by Fang et al. [33]
(Equation (4)).

The merchantable volume under bark (vub) was therefore effectively obtained by integrating
Equation (4) to a height limit (h) (Equation (5)), and bark thickness (bt) was estimated by subtracting
the diameter under bark (dub) from the diameter over bark (dob) (bt = dob − dub).

Integration of Equation (4) over total tree height produces the stem volume under bark (Vub,
Equation (6)).

(4) Under bark taper function

dub = c2

√
H(k−b1)/b1(1− q)(k−β)/βαI1+I2

1 αI2
2 (4)

where

c2 =

√
e0De1 He2−k/b1

b1(r0 − r1) + b2(r1 − α1r2) + b3α1r2

Equations (1) and (4) differ in relation to the parameters affecting the compatible volume equation
(a0–a3 and e0–e3), while the form factors (b1–b3) and the inflection points (p1 and p2) are common to
both equations.

(5) Equation for estimating merchantable volume under bark

vub = c2
2Hk/b1

(
b1r0 + (I1 + I2)(b2 − b1)r1 + I2(b3 − b2)α1r2 − β(1− q)k/βαI1+I2

1 αI2
2

)
(5)

(6) Equation for estimating stem volume under bark

Vub = e0De1 He2 (6)

In an initial analysis, allometric models were fitted to estimate the branch volume (Vbranches) for
both species. The following different tree variables were combined: diameter at breast height (D),
total height (H), crown diameter (Dcrown, m), crown length (cl, m) and crown ratio (cr), defined as the
ratio between crown length and total height. The best results were obtained for both species with the
diameter at breast height and the crown ratio. Therefore, two new equations were included in the
system to estimate branch volume (Vbranches) and total tree volume (Vtotal) as the sum of stem volume
over bark (Vob) and branch volume (Vbranches).
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(7) Equation for estimating coarse branch volume

Vbranches = f0D f1 cr f2 (7)

(8) Equation for estimating whole-tree volume

Vtotal = Vob + Vbranches = a0Da1 Ha2 + f0D f1 cr f2 (8)

where f 0–f 2 are parameters to be estimated.

2.3. Model Fitting

The system comprises eight equations including endogenous and exogenous variables. The
endogenous variables are included on the left-hand side of the equations (dob, Vob, vob, bt, vub, Vbark,
Vbranches and Vtotal) and they are assumed to be determined by the model structure. The remaining
variables (D, H, h, hst and cr) are exogenous, i.e., they are independent variables. An endogenous
variable on one equation of the system can also appear on the right-hand side of the other equation.

As the compatibility between the different equations does not depend on the parameter estimation
process, three different methods can be used to fit the system: (i) estimation of the parameters of
the taper function (Equations (1) and (4) for diameter over and under bark, respectively), estimation
of the branch volume (Equation (7)) and recovery of the implied volume Equations (2), (3), (5), (6)
and (8); (ii) estimation of the parameters of some of the volume equations (Equations (2) and (3) and
Equations (5) and (6) for diameter over and under bark, respectively, and Equation (7)), substitution of
the estimated parameters in the system, and fitting the remaining parameters; or (iii) estimation of all
the parameters of the system simultaneously.

With options (i) and (ii) it is easier to achieve convergence of the parameter estimates and thus
obtain the best estimate of diameter at a certain height or of volume equation, depending on which
equation is prioritized; however, this may increase the bias and the standard error of the other
equation [39]. Option (iii) reduces squared error for the total system, i.e., it simultaneously minimizes
diameter at different heights and volume prediction errors. The forest manager must select the fitting
option by considering whether the system will mainly be used to estimate total volume and then to
estimate volumes in size assortments (or vice versa) or will be used for a mixture of these. In this
study, we selected the simultaneous fitting option for diameter over and under bark and option (ii) for
stem volumes.

Equations (1), (2), (4), (5), (7) and (8) were simultaneously fitted using the full information
maximum likelihood method (FIML), to properly account for cross-equation correlation, and
Equations (3) and (6) were obtained from compatibility relationships with the fitted equations.

In order to ensure that predictions of dub (Equation (4)) are lower than dov (Equation (1)) for the
ordinary range of tree conditions, a restriction was included in the fitting process. Provided that
Equations (1) and (4) differ only in relation to the parameters affecting the compatible volume equation
(a0–a3 and e0–e3), the logarithm of the ratio between Equations (3) and (6) was restricted to be greater
than 0, considering maximum values of diameter at breast height (D) and tree height (H) of 200 cm
and 50 m, respectively.

log
Vob
Vub

> 0⇒ log a0 − log e0 + (a1 − e1) log D + (a2 − e2) log H > 0 (9)

For simultaneous fitting of the system, the number of observations of the endogenous variables
must be equal. However, there is more than one diameter observation for each tree but only one
observation for total stem volume. To solve this problem, we created a special structure for the data: the
total volume of the tree was assigned to each diameter observation on the same tree. The inverse of the
number of observations in each tree (ni) was then used to weight the total volume in the fitting process.
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2.4. Autocorrelation and Heteroscedasticity

Because the data includes multiple observations for each tree (i.e., it is hierarchical data),
autocorrelation within the residuals for each individual might be expected, which would violate
the assumption of independent error terms. To overcome possible autocorrelation, the error was
modelled using a continuous autoregressive error structure (CAR(x)), which accounted for the distance
between measurements. The CAR(x) error structure was programmed to enable dynamic updating
of the residuals. The Durbin-Watson (DW) test was used to check for the presence of autocorrelation.
Based on a preliminary inspection, some problems of heteroscedasticity related to the use of the
allometric Equations ((7) and (8)) were identified, which would violate the general assumptions of
least squares regression. In order to account for this, we used weighted regression, by weighting each
observation by the inverse of its variance (σi

2). Although this variance is unknown, it is commonly
assumed that the variance of the error of the ith individual can be modelled as a power function of
a subset of the independent variables, i.e., σi

2 = (Xi)
r [62]. The exponential term r was optimized to

yield the most homogeneous studentized residual plot.
The MODEL procedure of SAS/ETS® [63] was used to include the modified k-order autoregressive

error structure and the weighting factor for heteroscedasticity 1/(Xi)
k and difference in number of

observations. Because the data used to fit the models were artificially modified (by weighting), the
approximate standard errors of the coefficients were also affected. The following expression was used
to calculate the standard errors [64]:

Approx Std Error true = Approx Std Error weight ·

√
Nweight − p
Ntrue − p

(10)

where Nweight is the number of observations used to fit the models, Ntrue =
Nweight

∑
i=1

wi, wi is the weighting

factor used to modify the data base and p is the number of model parameters.
The residuals were numerically and graphically analyzed to evaluate the goodness of fit by

using the coefficient of determination for nonlinear regression (R2) as a statistical criterion (see Ryan
1997, pp. 419 and 424). R2 is defined as the square correlation coefficient between the measured and
estimated values (rYiŶi

) and the root mean square error (RMSE), which can be defined as follows:

R2 = r2
YiŶi

(11)

RMSE =

√√√√√ n
∑

i=1

(
Yi − Ŷi

)2

n− p
(12)

where Yi and Ŷi are the observed and estimated values of the dependent variable, respectively, n is the
total number of observations used to fit the model, and p is the number of model parameters.

2.5. Effect of Crown Variables on Stem Form Variation

To analyze the effect of crown metrics on stem form, Equations (1), (2), (4) and (5) were
simultaneously fitted for each tree individually but considering only some parameters as specific for
each tree. The parameters associated with the total stem volume equations (a0–a2 for stem volume
over bark and e0–e2 for stem volume under bark) were common for all the trees of each species, and
their values were the estimates obtained in the previous fitting of the system to the complete database
for each species. The inflexion points (p1 and p2) and the form factors for each stem section (b1–b3)
were considered as specific for each tree and, therefore, estimated in the new simultaneous fitting for
each tree.
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Different variables related to crown architecture were calculated for each tree: the crown ratio
(cr); the ratio between crown diameter and crown length and the slenderness coefficient (s). Pearson’s
correlation coefficients between tree-specific parameters and crown metrics were calculated and when
strong correlation was observed, linear models were fitted to relate the tree-specific parameters with
the crown metrics. Finally, these relationships where included in Equations (1), (2), (4) and (5) to
generalize the stem taper models including crown characteristics.

3. Results and Discussion

The system was initially fitted without expanding the error term to account for autocorrelation.
As expected, because of the hierarchical nature of the data, the values of the Durbin-Watson test for
the taper functions (Equations (1) and (4)) and for the merchantable volumes (Equations (2) and (5))
of both species and the graphical inspection indicated that the residual trend could be described as
a function of lag1- and lag2-residuals within the same tree. The error term was therefore expanded
as a continuous autoregressive process, and a second order autoregressive structure was sufficient to
eliminate the autocorrelation of dov and duv predictions in the system for both species (Durbin-Watson
values close to 2 for the four equations and for both species: Table 2).

Table 2. Goodness of fit statistics for simultaneous fitting of the equation system.

Equation Variable Species RMSE R2 Durbin_Watson

(1) dob
Pinus cooperi 2.0868 0.9817 1.96

Pinus durangensis 2.2057 0.9802 1.98

(2) vob
Pinus cooperi 0.0242 0.9989 2.03

Pinus durangensis 0.0309 0.9989 2.01

(4) dub
Pinus cooperi 2.1444 0.9767 1.93

Pinus durangensis 2.0931 0.9789 1.97

(5) vub
Pinus cooperi 0.0242 0.9985 2.04

Pinus durangensis 0.0303 0.9986 2.04

(7) Vbranches
Pinus cooperi 0.0653 0.6411 –

Pinus durangensis 0.0524 0.7012 –

(8) Vtotal
Pinus cooperi 0.1555 0.9771 –

Pinus durangensis 0.1482 0.9832 –

dob: diameter over bark (cm); vob: merchantable volume over bark (m3); dub: diameter under bark (cm);
vub: merchantable volume under bark (m3); Vbranches: volume of branches (m3) and Vtotal: total tree volume over
bark (m3).

Scatter plots of residuals against predicted branch and whole tree volumes (Equations (7)
and (8)) showed an increasing variance in residuals as the diameter values increased. Therefore,
weighting factors of D4.95 and D4.65 were included in Equations (7) and (8) respectively, to correct
the heteroscedasticity. Inclusion of these factors allowed minimum variance estimates and reliable
prediction intervals to be obtained. The goodness of fit statistics of the simultaneous fit of the variables
of study are shown in Table 2 for both species under study.

The taper equations predicted diameter reduction and associated volume over and under bark
with high precision, with R2 values of 0.98–0.99 for both species. High R2 values were also obtained
for the simultaneous prediction of whole tree volume, close to 0.98 for both species under study. The
RMSE values were low, approximately 2.1–2.2 cm for dob and dub, 0.02–0.03 m3 for vob, vub, 0.05–0.06 m3

for Vbranches and 0.15–0.16 m3 for Vtotal for both species. These values are similar to the R2 values of
0.94–0.95 obtained by Corral-Rivas et al. [56] in a study performed in the forest region of El Salto,
Durango for predicting taper and total volume for the same two species, and with similar RMSE
values. The precision is also similar to that obtained by Quiñonez-Barraza et al. [58] also with the
Fang et al. [33] taper equation- for several pine species in Mexico. As commonly found for branch
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components, the precision was lower, with R2 values of respectively 0.65 and 0.7 for P. cooperi and
P. durangensis. Similar R2 values for branch biomass prediction are commonly reported in the literature
(e.g., [11–13,49,64–66]). Tree branches are widely acknowledged to be difficult to model [67]. Moreover,
modelling branch volume is particularly challenging because of the variety of sizes and shapes present
in tree crowns and because tree crown attributes are expected to vary widely between trees and
between locations [3,68].

Scatter plots of the unweighted residuals against diameter classes are shown in Figures 2 and 3.
For most of the volume variables in both species, a narrower range in the unweighted residuals could
be observed for the higher diameter classes (above 60–70 cm). We speculate this could be due to a
limited number of trees sampled in this large diameter range, which are indeed very scarce in harvested
forest stands in the area of study. Although crown ratio was considered in predicting branch volume,
branch volume was slightly underestimated in the largest diameter classes for both species. Very
mature trees tend to have lower branch and leaf allocation (e.g., [13,69], together with some possible
crown senescence. Caution must therefore be taken in using the derived equations in very large trees
of diameters above 60–70 cm.

The estimated values of the parameters for the simultaneous system fitted are shown in Table 3.
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dob: diameter over bark (cm); dub: diameter under bark (cm); vob: merchantable volume over bark (m3);
vub: merchantable volume under bark (m3); Vbranches: coarse branches (>5 cm) volume (m3); Vtotal: total
tree volume (m3).
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Figure 3. Box-and-whisker plots of the unweighted residuals for the variables of study against diameter
class (cm) for Pinus durangensis. The boxes represent the interquartile ranges. The upper and lower
ends of the whiskers represent the maximum and minimum height prediction errors respectively.
where: dob: diameter over bark (cm); dub: diameter under bark (cm); vob: merchantable volume over
bark (m3); vub: merchantable volume under bark (m3); Vbranches: coarse branches (>5 cm) volume (m3);
Vtotal: total tree volume (m3).

Table 3. Parameters for simultaneous fitting of the equation system.

Parameter Equations
Pinus cooperi Pinus durangensis

Estimate Std. Error Estimate Std. Error

a0
(1), (2), (3), (8)

6.33 × 10−5 3.77 × 10−7 6.47 × 10−5 2.26 × 10−7

a1 1.8946 0.0017 1.9326 0.0007
a2 1.0057 0.0019 0.9410 0.0013

b1

(1), (2), (4), (5)

6.79 × 10−6 5.38 × 10−8 5.31 × 10−6 4.50 × 10−8

b2 4.35 × 10−5 6.67 × 10−8 4.23 × 10−5 4.26 × 10−8

b3 3.10 × 10−5 1.40 × 10−7 2.96 × 10−5 1.08 × 10−7

p1 0.0461 0.0003 0.0230 0.0002
p2 0.7133 0.0022 0.7353 0.0015

e0
(4), (5), (6)

3.49 × 10−5 2.68 × 10−7 4.73 × 10−5 2.24 × 10−7

e1 1.9564 0.0023 1.9572 0.0012
e2 1.0686 0.0025 0.9652 0.0016

f 0
(7), (8)

1.64 × 10−6 1.41 × 10−7 2.74 × 10−6 1.61 × 10−7

f 1 3.1004 0.0215 2.8844 0.0151
f 2 0.2861 0.0047 0.1211 0.0043
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The p1 parameter for P. cooperi suggests a first inflection point at 4.6% of the total tree height for
this species, similar to the values of 4.1 to 4.7% reported by Quiñonez-Barraza et al. [58] for several
pine species in Mexico, and to the value of 4.1% reported by Corral-Rivas et al. [56] for both of the pine
species considered here. In other studies, use of the same taper function yielded higher first inflection
points for other pine species: e.g., Castedo-Dorado et al. [70] reported a p1 value at approximately
6% for Pinus radiata plantations in NW Spain; Diéguez-Aranda et al. [39] reported a value of 10% for
Pinus sylvestris in Spain and Corral-Rivas et al. [56] reported values of 7–8% for other Mexican pine
species such as P. englemanii, P. leiophilla and P. teocote. In this study, the first inflection point was
lower for P. durangensis than the aforementioned species and P. cooperi, at approximately 2% of the
total height.

The second inflection point, defined by parameter p2, was obtained at respectively 71% and 74%
of the total tree height for P. cooperi and P. durangensis. These values are similar to those obtained
by Corral-Rivas et al. [56], for the same species in Mexico, and by Quiñonez-Barraza et al. [58], for
P. arizonica, P. ayacahuite (P. strobiformis) and P. teocote, with the same taper function.

However, the same taper function also yielded earlier second inflection points for other pine
species; e.g., Quiñonez-Barraza et al. [58] reported values of approximately 60% of the total height
for P. leiophylla in Mexico; Diéguez-Aranda [39] reported a value of 61% for Scots pine plantations in
northwestern Spain; and Fang et al. [33] reported values of respectively 54% and 57% for P. elliottii
and P. taeda, in plantations in the USA. These differences in the inflection point seem to confirm the
importance of species-specific fitting to account for differences in the diameter profile of different
pine species.

The form factors for the three segments (lowest to highest) as found by the ratio bi/k were 0.086,
0.550 and 0.395 for P. cooperi and 0.068, 0.538 and 0.377 for P. durangensis. As expected, the form factors
are smallest at bottom, largest in the middle and moderate at the top, and the values for the middle
and the top stem are very similar to those of respectively a paraboloid and a cone (0.500 and 0.333).
The form factors observed are similar to those obtained for other pine species in Mexico [56,58] and for
other pine species in different study areas (e.g., [33,39,70]).

To analyze the effect of crown metrics on stem form, Equations (1), (2), (4) and (5) were fitted
simultaneously for each tree individually but fixing the values of the parameters associated with the
total stem volume equations (a0, a1, a2 and e0, e1 and e2) obtained when the complete database is used
to fit the equations system. The mean, maximum, minimum and standard deviation of the estimated
values of the inflexion points (p1 and p2) and the form factors (b1, b2 and b3) are shown in Table 4.

Table 4. Summary statistics of the estimated parameters for simultaneous fitting of Equations (1), (2),
(4) and (5) for each tree individually.

Parameter

Pinus cooperi Pinus durangensis

Mean Standard
Deviation Max. Min. Mean Standard

Deviation Max. Min.

b1 9.1 × 10−6 6.1 × 10−6 6.0 × 10−4 3.5 × 10−7 8.6 × 10−6 5.2 × 10−6 4.4 × 10−5 2.8 × 10−7

b2 4.6 × 10−5 6.4 × 10−6 7.5 × 10−5 3.0 × 10−5 4.4 × 10−5 5.4 × 10−5 7.5 × 10−5 3.3 × 10−5

b3 3.2 × 10−5 7.8 × 10−6 5.5 × 10−5 7.3 × 10−6 2.9 × 10−5 8.9 × 10−6 6.9 × 10−5 2.4 × 10−6

p1 0.0422 0.0139 0.0804 0.0073 0.0349 0.0129 0.0770 0.0009
p2 0.5784 0.2025 0.9004 0.0163 0.6238 0.2143 0.9891 0.0158

The Pearson’s correlation coefficients between the tree-specific parameters and the tree and crown
variables only indicated a strong and significant linear relationship (p < 0.001) between the form factor
of the upper stem segment (b3) and two variables: the stem slenderness and the crown ratio.

Similar results were found by Garber and Maguire [71]; these authors showed that the inclusion
of functions of diameter-height ratio were important variables for distinguishing among tree forms
in plots of varying spacing and stand structure for Abies grandis Dougl. ex D. Don, Pinus contorta
Dougl. ex Loud., and Pinus ponderosa Dougl. ex Laws. In that study, crown ratio added also significant
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predictive power to the taper function for P. contorta; however, this variable was dropped from the
final model. Other previous research also established the desirability of incorporating some stem form
surrogate into taper models, typically a diameter–height ratio, height–diameter ratio, or crown ratio
(e.g., [24,26,72,73]).

The equations system was refitted for the complete database of each species including linear
relationships of the form factor b3 with these two variables; however, the parameters associated to
these variables were not significant and the generalization of the taper equations by including tree or
crown variables was dismissed. The reason could be the simplified stand conditions of these conifer
species where crown attributes may not add additional information into the model; moreover, it should
be taken into account that the taper functions fitted without including crown metrics explained more
than 97% of the observed variability.

The models obtained enable prediction of bark volume and bark thickness. Bark thickness
increased with increasing tree size (Figure 4, upper figures) in both species, in accordance with studies
reporting a positive correlation between bark thickness and diameter at breast height in other conifer
species (e.g., [74,75]). For the larger diameter classes, P. cooperi bark was thicker than P. durangensis
bark. Average percentages of bark volume relative to stem were respectively 17.2% and 19.8% for
P. cooperi and P. durangensis, ranging from approximately 10 to 30% for both species. Figure 4 (lower
figures) shows the percentage of volume for tree diameter classes. As expected (e.g., [76]), lower
values of relative bark volume were found as diameter at breast height increased. Lower percentage
values were found for P. durangensis. Such variation is an important criterion in considering the
target diameter in uneven-aged management of pinewoods, with important implications for log
merchandising (e.g., [77]).
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Figure 4. Observed bark thickness and percentage of bark volume for the diameter classes of the
studied trees of Pinus cooperi (left figures) and Pinus durangensis (right figures). BarkThickness: thickness
of bark in cm; dclass: normal diameter class (cm); VolBarkPerc: percentage of volume of bark to volume
of stem under bark (%).

The proposed equations enable bark thickness to be modelled across tree height. Figure 5
represents the variation in predicted bark thickness along the stem heights hi for two diameter classes
(i.e., above and below 35 cm) for both species. As expected, a decreasing pattern of bark thickness with
height is predicted for both species, with the thinnest values at the tree top for both diameter classes of
the two species of study. The P. cooperi bark was thicker than the P. durangensis bark for both diameter
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classes, and this difference was more marked for the smaller diameter (<35 cm) trees. The thickness
of bark relative to diameter variations along the stem is known to be related to the ability of pines to
resist fires of different intensity (e.g., [78]). Therefore, P. cooperi may potentially be more resistant to
intense fires.
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Figure 5. Predicted bark thickness (cm) across tree height (m) for two diameter (D) classes above and
below 35 cm for trees of both species under study. hi: measurement height (m); D: diameter at breast
height (cm): sp1: Pinus cooperi; sp2: Pinus durangensis.

Unlike previous studies that focused on the modelling of specific volume components such
as stem [56] or bark [79], the system of equations presented here enables compatible prediction of
stem, bark and branches volume, thus providing a more biologically consistent understanding of the
mechanisms of total tree volume allocation to different fractions. This may help to improve monitoring
of the carbon dynamics of these ecosystems. Compatible systems that help clarify the relationships
between branch and bark to bole volume could improve forest carbon inventories by reducing error in
whole-tree volume estimation [5].

In addition, precise estimation of the volume of bark and branches, combined with species-specific
piling coefficients for these fractions (e.g., [16,80], may be of great value for planning harvesting and
estimating the cost of transporting whole trees and residual biomass (e.g., [14,81,82] as well as for
dimensioning volume requisites for storage of the residual biomass in the biomass processing plants
(e.g., [16]).

Future research should focus on the compatibility between volume and biomass estimates for
different tree fractions. As in studies that have simultaneously predicted tree bole biomass and volume
(e.g., [49,83]), sometimes by considering the vertical changes in wood density (e.g., [11]), future studies
may expand this approach by simultaneously quantifying the density of bole and branches [5,84,85], to
yield a compatible, integral understanding of carbon and biomass allocation and volume distribution
in different tree fractions.

4. Conclusions

A compatible system for simultaneously predicting tree taper, stem volume over and under
bark, branch volume and total tree volume was developed for two pine species grown commercially
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for timber in the Sierra Madre Occidental, Durango, Mexico. The observed variability explained
by the compatible system was more than 97% for over and under bark diameters, close to 99% for
merchantable stem volumes, more than 64% for volume of branches and more than 97% for total tree
volume. Diameter-height ratio and crown ratio were significant and apparently adequate variables for
accounting for tree forms variability, although these variables were not finally included into the taper
functions. Use of the compatible system provides a better understanding of the volume distribution in
different fractions, thus potentially improving carbon accounting in these ecosystems. These models
may also be useful for optimizing harvesting, transportation and storage logistics and for sustainable
planning of forest operations involving the use of residual forest biomass or whole trees for bioenergy
production. Future work might explore the compatibility of volume and biomass predictions for a
better understanding of the mechanisms of carbon and biomass allocation and volume distribution in
these ecosystems.
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