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Background: Epidemiological and clinical evidence points cancer comorbidity with 
pulmonary chronic disease. The acquisition of some hallmarks of cancer by cells affected 
with lung pathologies as a cell adaptive mechanism to a shear stress, suggests that could 
be associated with the establishment of tumoral processes.

Objective: To propose a bioinformatic pipeline for the identification of all deregulated 
genes and the transcriptional regulators (TFs) that are coexpressed during lung cancer 
establishment, and therefore could be important for the acquisition of the hallmarks 
of cancer.

Methods: Ten microarray datasets (six of lung cancer, four of lung diseases) comparing 
normal and diseases-related lung tissue were selected to identify hub differentiated 
expressed genes (DEGs) in common between lung pathologies and lung cancer, along with 
transcriptional regulators through the utilization of specialized libraries from R language. 
DAVID bioinformatics tool for gene enrichment analyses was used to identify genes 
with experimental evidence associated to tumoral processes and signaling pathways. 
Coexpression networks of DEGs and TFs in lung cancer establishment were created with 
Coexnet library, and a survival analysis of the main hub genes was made.

Results: Two hundred ten DEGs were identified in common between lung cancer 
and other lung diseases related to the acquisition of tumoral characteristics, which are 
coexpressed in a lung cancer network with TFs, suggesting that could be related to the 
establishment of the tumoral pathology in lung. The comparison of the coexpression 
networks of lung cancer and other lung diseases allowed the identification of common 
connectivity patterns (CCPs) with DEGs and TFs correlated to important tumoral processes 
and signaling pathways, that haven´t been studied to experimentally validate their role in 
the early stages of lung cancer. Some of the TFs identified showed a correlation between 
its expression levels and the survival of lung cancer patients.
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inTRODUCTiOn
Lung cancer is the leading cause of cancer death in men and 
women in the world (Siegel et al., 2015). Lung cancer is a 
malignant tumor of uncontrolled cell growth with the ability 
to metastasize in distant tissues (Dela Cruz et al., 2011). Lung 
cancer can be divided into two main histological types: non-
small cell cancer (NSCLC), representing 85% of all lung 
cancers, and small cell cancer (SCLC) (Gridelli et al., 2015). 
The global cancer burden reported by GLOBOCAN 2018 and 
the International Agency for Research on Cancer estimates that 
there will be 18.1 million new cancer cases (Bray et al., 2018). 
Lung cancer is the most commonly diagnosed cancer (11.6% of 
total cases) and the leading cause of cancer death (18.4% of total 
deaths due to cancer), followed by breast cancer (11.6%), prostate 
cancer (7.1%) and colorectal cancer (6.1%) (Bray et al., 2018). 
Lung cancer is the most frequent cancer and the leading cause 
of cancer death in men. In women, breast cancer is the most 
frequently diagnosed cancer and the leading cause of cancer 
death, followed by colorectal and pulmonary cancer (IARC 
and Boyle, 2018). The increase in mortality rates during the last 
decades have been associated with a late diagnosis, which limits 
their potential treatment, and is evidence of the important lack 
of biomarkers for the development of specific treatments against 
the disease (Dela Cruz et al., 2011).

The interstitial lung diseases (ILDs) are a heterogenic group of 
conditions with clinic, radiologic, and functional manifestations, 
among which the most important are anatomopathological 
alterations that affect alveolointerstitial structures, like the 
epithelium, alveolar walls, capillary endothelium and connective 
tissue (perilymphatic and perivascular) between the septa and 
the peribronchial and peribronchiolar tissue (Raghu et al., 
2018). Environmental factors (silica dust, asbestos fibers, grain 
dust, bird droppings, and animals), infections, medications 
(anti-inflammatory, antibiotics and cardiovascular), radiation 
exposure, and autoimmune, granulomatous, metabolic, systemic 
(connective tissue) and childhood-specific diseases are between 
the known associated causes (Raghu et al., 2004; Nathan et al., 
2012; Griese et al., 2015). The ILDs can affect men and women 
of any age who are exposed to specific concentrations of any of 
the environmental factors, and/or are carriers of genetic and 
epigenetic factors that predispose them for the development 
of the disease (Coultas et al., 1994; Griese et al., 2015). The 
ILDs include a wide range of diffuse pulmonary disorders that 
often end in pulmonary fibrosis and may occur in isolation or 
associated with systemic diseases (Spagnolo et al., 2014; Kropski 
et al., 2015).

In recent decades, studies have shown a possible relationship 
between pathological processes in lung tissue and the development 
of cancer. Specifically, ILDs and lung cancer share pathogenic 
mechanisms such as inflammation, increased resistance to 
apoptosis, focal hypoxia, an increase in proliferation, viability 
and accumulation of cells such as fibroblasts, in regions with 
repeated epithelial lesions (Archontogeorgis et al., 2012). The 
epithelial mesenchymal transition (EMT) process characteristic 
of tumor cells and essential to carrying out metastasis processes, 
is a phenomenon that also occurs in epithelial type II alveolar 
cells that are transformed into mesenchymal cells to produce 
fibroblasts and myofibroblasts that directly contribute to 
the fibrotic event in ILDs (Willis and Borok, 2009). In lung 
diseases, epithelial cells exposure to matrix metalloproteinases 
can lead to an increase in reactive oxygen species levels that 
promote myofibroblasts differentiation (Sokai et al., 2015). The 
deregulation of metalloproteinases expression associated with 
a defective matrix and increase levels of reactive oxygen species 
are also characteristic of malignancy, suggesting a relationship 
between the two pathologies (Radisky et al., 2007). Several 
studies suggest a possible association between other lungs 
diseases and lung cancer, through different physiopathogenic 
mechanisms. The presence of common tumorigenic processes 
between lung cancer and other lung diseases suggests a possible 
causal association in the establishment of this tumoral pathology, 
and that the joint transcriptomic analysis can ultimately result 
in identifying potential novel biomarkers/drug targets for lung 
cancer early diagnosis, if it is associated with the risk.

Cancer Biomarkers are used in clinical practice for diagnosis, 
prognosis, the identification of sensitive patients, and the 
prediction of cancer patients response to treatment (Kamel 
and Al-Amodi, 2017). There are several types of biomarkers: 
Prognostic biomarkers are used to identify the patients that need 
treatment in the future, Predictive biomarkers direct patient’s 
treatment selection, and Diagnostic biomarkers contribute to 
the diagnosis and classification of the disease, and can be useful 
to monitor the therapeutic response in patients (Fenton et  al., 
2011). Cancer research has identified a significant number of 
predictive biomarkers for some types of cancer according to 
their clinical usefulness (Kamel and Al-Amodi, 2017). In lung 
cancer NSCLC have been identified some predictive biomarkers 
whose expression can predict the response to a specific treatment 
(BRCA1, TP53, and KRAS) (Kamel and Al-Amodi, 2017).

The identification of genetic risk factors, as mutations in 
somatic and germ cells (EGFR, TP53, KRAS, BRAF, ERBB2, MET, 
STK11, PIK3CA), gene amplifications (EGFR, ERBB2, MET, 
PIK3CA, and NKX2), deletions (DOK2) (Berger et  al.,  2010), 

Conclusion: Our findings indicate that lung diseases share genes with lung cancer 
which are coexpressed in lung cancer, and might be able to explain the epidemiological 
observations that point to direct and inverse comorbid associations between some 
chronic lung diseases and lung cancer and represent a complex transcriptomic scenario.

Keywords: lung cancer, interstitial lung diseases (iLDs), pulmonary arterial hypertension (PAh), differentially 
expressed genes (Degs), coexpression networks, early detection and prognosis biomarkers, survival
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and presence of fusion genes (ALK/EML4) (Soda et al., 2007), 
have allowed to develop specific treatments, but although they 
increase the susceptibility to develop lung cancer (Braun et al., 
1994), they have not shown a concordance with the mortality 
rates because their limited ability to treat patients only with the 
associated risk factor (Blanchon et al., 2006). In the postgenomic 
era, the biomarker identification studies have begun to take into 
account two important components for clarifying the etiology 
of the tumoral diseases: First, the great inter and intratumoral 
variability at the molecular and cellular level in each individual 
and/or population of individuals; and second, the complexity 
of lung cancer, in terms of the huge number of deregulated 
genes that have been identified with genomic studies, which 
highlights the complexity of cancer and generates a problem 
in the development of therapeutic treatments for each possible 
variation, that must be solved.

Genomic studies such as microarrays and RNA-Seq have 
the ability to provide information for the identification of all 
groups of transcriptionally dysregulated genes involved in the 
modulation of biological functions and signaling pathways, 
describing expression patterns associated with tumor grade, 
differentiation state, metastatic potential, and patients’ survival, 
when comparing tumoral and healthy tissue (Wang and Liotta, 
2011; Barretina et al., 2012; Eswaran et al., 2013; Li et al., 2017; 
Ma et al., 2019). Our research group believes that the combined 
bioinformatics analysis of a selected group of these studies can 
take advantage of all the transcriptomic knowledge generated 
with these technologies, finding potentially valuable information 
that could be applied to increase the understanding of cellular 
processes related to complex diseases such as cancer. This kind 
of analysis can help us to understand the complexity of the 
disease from a global perspective, through the identification of 
all deregulated genes that participate in the establishment of lung 
cancer. Additionally, the comparison of different pathologies 
when performing a global analysis of several databases, allow 
us to find specificities and common processes, which, when 
analyzing each study separately, cannot be detected.

The study of complex systems can be based on communication 
between signaling pathways in gene networks, and on the 
identification of prognosis modules in co-expression networks 
associated with a biological process, which can become good 
targets for pharmaceutical treatment. (Zhou et al., 2019). Currently, 
published studies look for cancer biomarkers associated with the 
hallmarks of cancer (Hanahan and Weinberg, 2011), based on 
the generation of co-expression networks using transcriptomic 
studies in different types of cancer (Yu et al., 2019b), through the 
weighted gene coexpression networks (WGCNA) method, which 
identified more than 3,000 coexpression modules associated 
with tumoral processes such as cell proliferation, extracellular 
matrix remodeling, hypoxia, inflammation, angiogenesis, and 
cell differentiation (Ivliev et al., 2016); with Gaussian mixing 
models (GMM) an important number of modules in a pairwise 
gene comparison to reduce extrinsic background noise in 
the co-expression network (Ficklin et al., 2017); and using a 
permutations test, the communities present in all networks have 
been identified, followed by an enrichment analysis to identify 
the associated biological processes, and a survival analysis to 

differentiate communities capable of differentiating cancer 
patients from healthy individuals (Yu et al., 2019a).

We propose a new methodology for the creation of co-expression 
networks, which was developed by Dr. López-Kleine research 
group, based on the use of the library “Coexnet” (Henao 
et al., 2018). This method allows the creation of co-expression 
networks from microarray data sets, the identification of 
multiple nodes connected in an intersection network in 
common when comparing two or several biological networks, 
which have been called common connectivity patterns (CCPs) 
(Henao et al., 2018). Then, Coexnet allows to create coexpresión 
networks of lung cancer and other lung diseases, to compare 
them and identify CCPs in common between pathologies, and 
TFs deregulated and coexpressed during the establishment 
of tumoral pathology in the lung. Therefore, we were able to 
visualize the complexity of lung cancer, as the previous methods, 
however, we also generate within the same bioinformatic 
pipeline a methodology to address the huge complexity of 
the disease, identifying the transcriptional regulators of all 
deregulated and coexpressed genes in lung cancer associated 
with the acquisition of the hallmarks of cancers, in order to take 
a reasonable number of genes as candidate biomarkers into the 
experimental validation phase, for the future the development of 
specific and personalized treatments of lung cancer.

MeThODs

selection of gene expression Data
Ten sets of expression data (microarrays) were selected from 
the public repositories Gene Expression Omnibus (GEO) from 
NCBI and ArrayExpress from EBI. Six sets compare tumor tissue 
from patients with lung cancer and normal lung tissue, and the 
other four sets compare lung tissue affected with different lung 
diseases with normal lung tissue (Table 1). The analysis follows 
3 stages: 1) Data Pre-processing (quality verification, filter, 
normalization, etc.) based on the methodology proposed by Leal 
et al. (2014) 2) Detection of differentially expressed genes (DEGs) 
(Oshlack et  al., 2010), 3) Identification of transcription factors 
among DEGs detected. In the first stage, the quality of the data 
was evaluated in order to work with those that have acceptable 
experimental validity. In the second and third stage, an important 
number of DEGs associated with biological functions relevant to 
the oncogenic process were obtained from other lung diseases 
and lung cancer.

Differentially expressed genes (Degs) 
Analysis
Differentially expressed genes (DEGs) identification is based 
on finding if there is statistical evidence to declare that a gene 
is more or less active in a condition (“lung pathology”) with 
respect to a control (“normal lung”). R language (R Core Team, 
2019) and specialized libraries were used to identify DEGs in 
every selected data set. First, pre-processing and quality control 
of each data set was performed through exploratory analysis of 
the data. This analysis consisted of evaluating the similar gene 
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expression distribution per sample and examining that there 
were no genes with atypical expressions or samples that had a 
different behavior with respect to the others, through boxplots, 
density plots and summary statistics. Second, normalization was 
conducted in each data set in order to reduce data dispersion and 
make samples comparable each other using Variance Stabilizing 
Normalization (VSN) method using VSN library (Huber et al., 
2002; Gautier et al., 2004), evaluating the similar gene expression 
distribution per sample in boxplots and density plots to use only 
statistically comparable data sets. When each data set passed 
pre-processing and normalization steps, it proceeded with the 
detection of DEGs.

The DEGs were selected based on the method of Significance 
analysis of microarray data (SAM) employing SAM function of 
siggenes package (Schwender, 2012), with the lowest error rate 
(q-value < 0.01), and under 15% FDR (Tibshirani et al., 2018). 
The q-value (Storey’s q-value) indicates the probability that a 
DEG identified is a false positive, corrected by multiple tests 
significance. This analysis was carried out for both lung cancer 
(LC) and other lung diseases (LD) data sets and the DEGs list in 
each data set was divided into positive and negative deregulated 
genes according to its fold change. Finally, all common genes 
between LC and other LD, varying in the same sense (over-
expressed or repressed in the pathology with respect to healthy 
tissue) in the majority, 7 of the 10 sets analyzed, (in at least 
five of the six lung cancer sets, and one or two of other lung 
disease) were established as our “winner DEGs”. These were 
highlighted in the functional analysis, classifying those involved 
in tumorigenic processes.

Functional Annotation and enrichment 
Analysis
The analysis of enrichment and functional annotation allows 
the identification of significant and specific biologic functional 
categories within our list of genes, considering the current 
scientific knowledge and the organism. This analysis was carried 
out with the online DAVID tool (Bioinformatics Resources 6.8, 
NIAID/NIH” (https://david.ncifcrf.gov/summary.jsp) (Dennis 
et al., 2003), which associates the winner DEGs found with specific 
biological functions. The analysis of associated diseases and 
functional categories for winning genes positively or negatively 
deregulated in the majority of sets of lung cancer and in other 
lung diseases, allow us to identify the DEGs with greater scientific 

evidence associated with oncogenic processes. The P value was 
corrected (because of multiple tests analyses) with Benjamini’s 
method (Benjamini and Hochberg, 1995), and it was considered 
a significant enrichment for functional categories P values ≤0.05. 
An extensive literature search in the common overregulated 
winner DEGs related to cancer was preformed to validated its 
association with lung cancer and other lung diseases.

Coexpression network Analysis
The web-based system oPOSSUM (http://opossum.cisreg.ca/
cgi-bin/oPOSSUM3/opossum_human_ssa) was used to detect 
over-represented conserved transcription factor binding sites 
and binding site combinations in the 45 overexpressed genes 
related to cancer according to DAVIDs analysis and verified 
with literature searching. The common 45 DEGs and the 45 TF 
(90 genes in total) were used to construct a gene co-expression 
network, a heatmap and a corrplot. The normalized expression 
profiles of the 59 of the 77 genes of interest were extracted from 
the gene expression data set GSE19804 and a similarity matrix 
was constructed using the absolute value of Pearson correlation. 
On this matrix, the threshold was identified to establish a final 
edge on the co-expression network using the methodology 
of Leal et al. (2014), based on the comparison of the obtained 
clustering coefficient with the clustering coefficient of a random 
graph (Leal et al., 2014).

The R library “Coexnet” was used to construct coexpression 
networks of one lung cancer data set (GSE19804) and the four 
sets of other lung diseases (GSE21411, GSE1650, GSE2052, 
GSE113439). Coexnet compared each lung disease network with 
the lung cancer network in order to identify common connectivity 
patterns (CCPs) between them, allowing the identification of 
molecular components linked together and common in the 
biological networks (Henao et al., 2018). CCPs networks analysis 
with Cytoscape (Shannon et al., 2003) and iRegulon application 
allowed the identification of transcription factors or master 
regulators of every CCP identified (Janky et al., 2014).

survival Analysis of Transcription Factors
The effect of the expression of the hub genes or TFs identified 
with the transcriptomic, enrichment and coexpression analyses, 
in the survival of patients with lung cancer was assessed with 
the Kaplan Meier-plotter tool (KM plotter: http://kmplot.com/

TABLe 1 | Analyzed data sets, each study code, subjects’ related disease, number of samples per condition and reference.

study code subjects disease number of samples Reference

gse19804 Non-smoking women with NSCLC Normal (60) vs. Cancer (60) (Lu et al., 2010)
gse10072 Patients with lung adenocarcinoma Normal (49) vs. Cancer (58) (Landi et al., 2008)
gse3268 Patients with Squamous lung cancer cells Normal (5) vs. Cancer (5) (Wachi et al., 2005)
gse108055 Typical and atypical carcinoid, and small cell lung cancer Normal (9) vs. Cancer (54) (Asiedu et al., 2018)
e-MTAB-5231 Patients with NSCLC Normal (18) vs. Cancer (22) (Willuda et al., 2017)
e-MTAB-3950 Pre-invasive and Invasive Early Squamous Carcinoma Normal (30) vs. Cancer (30) (Koper et al., 2017)
gse21411 Interstitial lung diseases (ILDs) Normal (12) vs. ILD (42) (Cho et al., 2011)
gse1650 Emphysema Normal (12) vs. Emphysema (18) (Spira et al., 2004)
gse2052 Idiopathic pulmonary fibrosis (IPF) Normal (11) vs. IPF (13) (Pardo et al., 2005; Kim et al., 2006)
gse113439 Pulmonary arterial hypertension (PAH) Normal (11) vs. PAH (15) None publications in PubMed
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analysis/index.php?p = service&cancer = lung) (Gyorffy et al., 
2013). KM plotter information about overall surviving (OS) is 
calculated and plotted with datasets from GEO, EGA and TCGA, 
based on hazard ratio (HR) of 95% confidence intervals and with 
a log rank P-value (LogrankP-value) associated.

ResULTs

Differentially expressed genes (Degs) in 
Common Between Lung Cancer and Other 
Lung Diseases
In general, there is a greater number of DEGs in lung cancer than 
in other lung diseases, and a greater number of overregulated 
genes than downregulated genes in both groups (Figure 1). 
However, there is a high number of deregulated genes in 
Pulmonary arterial hypertension (PAH) dataset equivalent to 
lung cancer datasets. The identification of 395 genes that were 
differentially expressed in lung cancer and other lung diseases 
in at least seven sets of the 10 data sets analyzed, indicated 
that the joint microarray data sets analysis allows us to find a 
characteristic metafirm of lung diseases establishment processes 
at molecular level. 210 of the DEGs were equally deregulated in 
both, lung cancer and other lung diseases, among which 116 were 
overregulated and 94 downregulated (Supplementary Table 1).

Functional Annotation and enrichment 
Analysis
The downregulated “winner” DEGs are associated with 
angiogenesis, cell adhesion and the negative regulation of 
transcription from RNA polymerase II promoter (Figure 2). The 
overregulated “winner” DEGs are associated with several cell 
cycle processes (Figure 3), DNA replication, mismatch repair, 
and p53 signaling pathways (Figure 4). The functional annotation 
analysis of the 116 overregulated common genes identified 45 
genes associated with cancer with a significant corrected P value.

Coexpression network Analysis
The heatmap and corrplot show The coexpression network 
created with the 45 DEGs associated with cancer in DAVIDs 
enrichment analysis and the 45 TFs identified with Opossum 
as their possible regulators, has 35 DEGs coexpressed with 
four TFs (YY1, ZEB1, E2F1, and NR4A2) (Figure 5) (Shannon 
et al., 2003). The heatmap and corrplot show the correlation 
between all the genes used to create the network (Figures 6 
and 7). YY1 is overregulated in three lung cancer datasets and 
downregulated in PAH dataset. NR4A2 is downregulated in five 
lung cancer datasets and overregulated in PAH dataset. ZEB1 
is downregulated in four lung cancer and ILDs datasets, and 
overregulated in PAH. E2F1 is only overexpressed in five lung 
cancer datasets. The extensive literature search associates most 

FigURe 1 | Differentially expressed genes (DEGs) in lung cancer and other lung diseases studies. The image was made using GraphPad Prism version 8.00 for 
Windows, GraphPad Software, La Jolla California USA, www.graphpad.com.

FigURe 2 | Biological processes associated to downregulated genes 
common in lung cancer and other lung diseases. The image was made using 
GraphPad Prism version 8.00 for Windows, GraphPad Software, La Jolla 
California USA, www.graphpad.com.
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of the coexpression network genes with lung cancer, and most 
of them with other lung diseases (Supplementary Table 2). 36 
genes of the coexpression network were deregulated in PAH, 12 
genes in IPF, 1 in ILDs, and 1 in emphysema dataset, but none 
was reported or analyzed in their specific lung disease study.

Furthermore, the coexpression network genes were related 
with the seven of the 10 Hallmarks of Cancer proposed by 
Hanahan and Weinberg (2011) (Figure 8). NR4A2 and E2F1 
function have been related with resisting to cell death and 
sustaining a proliferative signal processes in lung cancer. 
Meanwhile, YY1 and ZEB1 function have been related with the 

activation of invasion and metastasis processes (Figure 8). Most 
of the coexpression network genes carry out their function in the 
nucleus, some in the endoplasmic reticulum and the cytoskeleton. 
Additionally, the functional annotation of the coexpressed genes 
of the network showed an important association with cancer 
and the same signaling pathways of the overregulated genes in 
common between lung cancer and other lung diseases, with 
significant P values.

The library Coexnet was able to find a CCP in every 
comparison between the coexpression networks of the lung 
cancer study and the other lung diseases studies. The CCP of 
lung cancer and ILDs has 15 nodes and 99 edges, the CCP of 
lung cancer with emphysema has 185 nodes and 15,954 edges, 
the CCP of lung cancer and IPF has 353 nodes and 60,696 
edges, and the CCP of lung cancer and PAH has 3,389 nodes 
and 5,537,212 edges. DAVIDs analysis of the genes in every 
CCP showed important associations of LC-IPF CCP with 
biological processes related with the acquisition of tumoral 
characteristics, and the LC-PAH CCP with deregulation in 
metabolism and signaling pathways related to inflammatory 
processes in cancer. The Cytoscape network analysis showed 
that the CCPs are highly interconnected (Supplementary Table 
3), and highly associated with important signaling pathways 
deregulated in cancer, and regulated by specific TFs found in 
our joint transcriptomic analysis.

survival Analysis of Transcription Factors
The KM plotter analysis for the transcription factors identified 
during the present study revealed a statistically significant 
association between the expression levels of YY1 and NR4A2 
with the survival of lung cancer patients (Figure 9) (Gyorffy 
et al., 2013). The multivariate analysis showed association of 
some of the transcription factors expression with the stage, and 
smoking history of lung cancer patients (Table 2).

DisCUssiOn
Recent cancer studies have shown that it manifests as abnormal 
expression patterns of a significant number of genes, allowing 
the identification of more than 450 genetic variations through 
extensive GWAS association analysis (Stadler et al., 2010). The 
main genetic biomarkers identified have been associated with the 
increased risk of developing cancer (Sud et al., 2017). However, 
pharmaceutical gene expression regulation has not contributed 
significantly to stop and/or reverse tumor expansion in all patients 
affected with the tumoral pathology in the lung (Das et al., 2015). 
The great complexity of cancer etiology represented in the 
significant number of dysregulated genes identified, generates an 
intricate problem for therapeutic treatments development since 
it cannot be directed to each and every one of them (Gridelli 
et al., 2015). Moreover, until now, no biomarker has shown the 
ability to characterize the pathology, always reversing the tumor 
process in all patients affected.

Currently, neoplasms research has highlighted the ability 
of transcription factors (TFs) to regulate the expression of 
a large number of genes, which participate as important 

FigURe 3 | Biological processes associated with common overregulated 
genes in lung cancer and other lung diseases. The image was made using 
GraphPad Prism version 8.00 for Windows, GraphPad Software, La Jolla 
California USA, www.graphpad.com.

FigURe 4 | Signaling pathways associated with common overregulated 
genes in lung cancer and other lung diseases. The image was made using 
GraphPad Prism version 8.00 for Windows, GraphPad Software, La Jolla 
California USA, www.graphpad.com.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1260

http://www.graphpad.com
http://www.graphpad.com
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Transcriptomic Analysis of Lung CancerOtálora-Otálora et al.

7

FigURe 5 | Coexpression network of overregulated genes common in lung cancer and other lung diseases (LC&LD coexpression network). The red circles show 
the TFs coexpressed in the network.

FigURe 6 | Heatmap of the winner deregulated genes common in lung cancer and other lung diseases.
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terminal regulators, being points of convergence in oncogenic 
signaling pathways; therefore, becoming promising biomarkers 
for cancer therapies (Yeh et al., 2013). TFs are important for 
cell differentiation during embryogenesis, but when they are 

deregulated in adult tissue abnormally activate signaling pathways 
related to tumor phenotype acquisition (Cameron and Neil, 
2004). The LC&LD coexpression network analysis created with 
the DEGs identified with DAVIDs-Opossum analysis allowed the 

FigURe 7 | Corrplot of the winner deregulated genes common in lung cancer and other lung diseases.

FigURe 8 | Hallmarks of cancer related to the genes of the LC&LD coexpression network.
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identification of 4 TFs capable to regulate and important number 
of the 35 DEGs found in common between lung cancer and other 
lung diseases (Figure 5). LC&LD network represent the genes 
with strongest experimental evidence about its association with 
tumorigenic processes, that could be associated with early stages 
of lung cancer, as they are also deregulated in other lung diseases. 
On the other hand, the CCPs found in common between lung 
cancer and other lung diseases, comparing lung cancer (LC) 
and other lung diseases (LD) coexpression networks represent 
another approximation that allows to find new hub genes that 
could be even more important for lung cancer establishment than 
those previously studied, because these are highly and equally 
connected and deregulated genes coexpressed in lung cancer 
and other lung diseases. For every CCP a transcription factor 
that regulates and important number of genes in the subnetwork 
was identified.

The four TFs (YY1, ZEB1, NR4A2 and E2F1) found 
coexpressed and identified with the DAVID-Opossum analysis 
have evidence of its association with tumorigenic processes, 
that could relate them to establishment of lung cancer. YY1 is 

a highly multifunctional transcription factor that promotes cell 
proliferation and invasion in lung cancer cells (Huang et  al., 
2017), and EMT in H1155 cells (Gao et al., 2018). YY1 has 
been associated with a regulatory loop with cancer stem cell 
transcription factors (SOX2, OCT4, BMI1) during the cross-talk 
between the NF-kB/PI3K/AKT pathways (Kaufhold et al., 2016). 
Therefore, YY1 overexpression in lung cancer might suggest an 
association of these transcription factor in driving tumorigenic 
processes and the acquisition of stem-like characteristics in early 
stages of lung cancer. YY1 is directly connected with SHMT2, 
a gene that support tumorigenesis (Mattaini et al., 2016), 
stimulates proliferation of c-Myc deficient cells (Cooper et al., 
2003) and increases lung tumors growth (Zhang et al., 2012; Lee 
et al., 2014; DeNicola et al., 2015; Zhang et al., 2017). SHMT2 is 
overexpressed in all LC datasets, IPF and PAH datasets.

ZEB1 represses E-cadherin promoter, induces EMT by 
recruiting SMARCA4/BRG1 (Sánchez-Tilló et al., 2010), and 
promotes tumorigenicity by repressing stemness-inhibiting 
microRNAs (Wellner et al., 2009). ZEB1 expression has been 
related to early stage IB of NSCLC, tumor-node-metastasis stage, 
and EMT (Larsen et al., 2016). ZEB1 also has a tumor suppressive 
role, independent of its ability to induce EMT, given that ZEB1 is 
able to induce EMT in both KRAS- and EGFR mutant cell lines 
(Yochum et al., 2009). Therefore, ZEB1 downregulation in lung 
cancer could be related to its ability to inhibit tumor growth, which 
should be important to maintain in early stages of lung cancer. 
ZEB1 interacts with FEN1 and NR4A2, the third transcription 
factor coexpressed in LC&LD coexpression network. FEN1 is an 
enzyme that removes the 5 ‘ends during DNA repair, processes 
the 5’ ends of the Okazaki fragments during DNA replication 
(Tishkoff et al., 1997). FEN1 is an endonuclease XPG/RAD2 
essential for DNA replication and the protection of the genome 
against mutations (Gordenin et al., 1997). FEN1 promotes tumor 
progression (He et al., 2017a), proliferation and poor prognosis 

FigURe 9 | KM plots of the TFs associated with the survival of lung cancer patients. (A) YY1, (B) NR4A2.

TABLe 2 | Kaplan–Meier multivariate analysis of transcription factors.

Variable nR4A2 YY1

P value hazard ratio P value hazard ratio

grade 0.2562 0.75 (0.46–1.23) 0.7319 1.09 (0.68–1.74)
stage 0.0533 0.4 (0.16–1.01) 0.1776 0.51 (0.19–1.36)
AJCC stage T 0.0417 1.8 (1.02–3.16) 0.0973 1.62 (0.92–2.88)
AJCC stage 
n

0.0103 3.14 (1.31–7.52) 0.0505 2.53 (1–6.44)

gender 0.1274 1.52 (0.89–2.61) 0.187 1.45 (0.84–2.51)
smoking 
history

0.5075 1.65 (0.37–7.34) 0.5089 1.65 (0.37–7.31)

survival 0.0043 – 0.0066 –
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of NSCLC (Zhang et al., 2018a). FEN1 is overexpressed in all 
LC datasets and PAH dataset. YY1 and ZEB1 also appeared as 
the regulators of the CCP formed between LC and Emphysema, 
giving another layer of evidence of their importance in the 
establishment of LC in patients with an emphysema antecedent.

NR4A2 transcriptionally regulates cell proliferation, apoptosis, 
inflammation, neuronal development, and carcinogenesis (Safe 
et al., 2013; Safe et al., 2016). NR4A2 overexpression blocks p53 
target genes activation, like mir-34a, which rescues cells from 
p53-induced inhibition of proliferation (Beard et al., 2016). 
NR4A2 is downregulated in lung cancer and overexpressed in 
PAH dataset, suggesting an association with tumoral processes 
during early stages of lung cancer related to this lung disease. 
NR4A2 only interacts with ZEB1, the second transcription 
coexpressed in the network, which might suggest a possible 
coregulatory relationship between these two transcription factors 
and the association with the same tumorigenic processes related 
with ZEB1.

E2F1 is a transcription activator overexpressed in lung 
adenocarcinoma and squamous cell lung carcinoma tissues, 
associated with cellular proliferation by counteracting 
the negative effects of cyclin-cdk inhibitors (Eymin et al., 
2001). ANKRD22 promotes progression of NSCLC through 
transcriptional up-regulation of E2F1 (Yin et al., 2017). E2F1 
was one the transcription factor that Opossum selected as 
possible regulator of the 45 common genes overregulated and 
related to cancer, and appeared in the coexpression network, 
even when it is not deregulated in the selected sets of other 
lung diseases, probably suggesting its importance at the end 
of early stages of lung cancer. Moreover, E2F1 was the TF 
identified as the most important regulator with iRegulon for 
the LC&LD coexpression network, in terms of enrichment 
if its TFBS, and the number of network targets that can 
regulate. E2F1 interacts with SHMT2 like YY1, and RAD54L. 
RAD54L is a recombinational DNA repair protein, and a 
double-stranded DNA-dependent ATPase that stimulates 
homologous recombination, inducing a DNA topological 
changes and induces DNA repair of DNA double-strand 
breaks (Swagemakers et al., 1998; Ristic et al., 2002; Sigurdsson 
et al., 2002). RAD54L is upregulated in NSCLC and associated 
with dsDNA break repair (Välk et al., 2011). RAD54L is 
overexpressed in all lung cancer datasets and PAH dataset.

The CCP formed between LC and ILD is regulated by 
IRF1, a transcriptional regulator of cellular responses, during 
hematopoiesis, inflammation, immune responses, cell 
proliferation and differentiation (Romeo et al., 2002). IRF1 
regulation is associated with cell cycle, induction of growth 
arrest and programmed cell death following DNA damage 
(Bowie et al., 2008). IRF1 is downregulated in lung cancer, IPF 
and PAH datasets, probably because it represses the expression 
of genes involved in anti-proliferative response, such as BIRC5/
survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 (Armstrong 
et al., 2012) and in immune response, such as FOXP3, IL4, 
ANXA2 and TLR4 (Fragale et al., 2014). IRF1 stimulates p53/
TP53-dependent transcription, improving EP300 recruitment 
which leads to an increase of p53/TP53 acetylation (Dornan 
et al., 2004). IRF1 is also known as tumor suppressor, capable to 

avoid tumor cell growth (Bouker et al., 2005), and stimulate an 
immune response against tumor cells (Tanaka et al., 1996).

The CCP formed between LC and IPF is regulated by NF1, 
a Ras‐GTPase activating protein, which function as negative 
regulators for Ras proteins (Ballester et al., 1990), preventing 
the downstream activation of Ras effector pathways, MAPK 
and PI3K/Akt/mTOR pathways that drive the pro-proliferation, 
survival, differentiation (Xu et al., 1990; Bollag and McCormick, 
1991), cell adhesion, and migration (Kweh et al., 2009). NF1 is 
a mutated tumor suppressor in both of the NSCLC subtypes, 
adenocarcinoma (Collisson et al., 2014) and squamous cell 
(Hammerman et al., 2012). Lung cancers with NF1 mutations 
have also been characterized by downstream activation of Ras 
signaling (Redig et al., 2016). Therefore, there is evidence that 
suggest that NF1 mutations in lung cancer con also activate 
Ras signaling pathway, playing a key role in the incorrect signal 
transduction, proliferation and malignant transformation 
(Reuter et al., 2000). The CCP formed between LC and PAH is 
regulated by BRCA1, a E3 ubiquitin-protein ligase that mediates 
‘Lys-6’-linked polyubiquitin chains formation, enabling cellular 
responses to DNA damage during DNA repair (Lee et al., 2000; 
Wang et al., 2007). BRCA1 has a tumor suppressor function 
related to the transcriptional regulation to maintain genomic 
stability, which is directly related to hereditary breast cancer (Li 
and Greenberg, 2012; Sedic et al., 2015). However, BRCA1 is 
overregulated in LC and PAH, and it expression has been related 
to the occurrence and development processes of NSCLC (Sun 
et al., 2018b).

The probability of surviving was associated with the expression 
of two transcription factors (YY1 and NR4A2) (Figure 9) 
identified with the coexpression analysis. Moreover, the Kaplan–
Meier Multivariate analysis also associate their expression with 
stage, gender and smoking history. Therefore, the clinical history 
of patients could help in the future to prevent or apply most 
accurate treatments to lung cancer patients. At the moment, the 
clinical data highlights that risk of developing lung cancer is 1.5 
times higher in patients with ILD compared with COPD and 
with the general population (Jung et al., 2011), while lung cancer 
prevalence in IPF patients can reach 48% (Le Jeune et al., 2007).

Most of the genes in the LC&LD coexpression network are 
deregulated in PAH and some in IPF, and only one in ILDs 
and Emphysema (Supplementary Table 2). The pathogenesis 
of PAH has been associated with genetic factors that confer a 
predisposition for development or progression, such as mutations 
of the bone morphogenic receptor type II gene (BMPR2), a 
member of the transforming growth factor superfamily TGF-β 
(Newman et al., 2001), mutations in the activin A receptor type 
II 1 (ACVRL1) (Girerd et al., 2010), endoglin (ENG) (Chaouat 
et al., 2004), SMAD9, caveolin-1 (CAV1) and KCNK3 (Ma 
et al., 2013). The majority of BMPR2 mutations result in a loss 
of function, but show low penetrance (~20%) in more than 70% 
of patients with familial PAH and in 11–40% of patients with 
sporadic PAH, affecting only 20% of carriers during their lifetime 
(Lane et al., 2000; Machado et al., 2001). However, BMPR2 is 
one of the “guardians” of pulmonary vessels homeostasis during 
repair processes, controlling both apoptosis and cell proliferation 
of pulmonary vascular smooth muscle and endothelial cells 
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(Morrell, 2006). Therefore, epigenetic studies have begun to 
study the regulatory mechanisms associated with BMP signaling 
in abnormal BMPR2 function, without necessarily implying 
a mutation in the BMPR2 gene, such as, for example, the 
importance of BMP/TGF-β signaling in maintaining normal 
pulmonary arteriolar structure (Trembath et al., 2001; Nasim 
et al., 2011), STAT3/miRNA-17-92 axis activation in normal 
human lung endothelial cells after interleukin (IL) -6 exposure 
(Brock et al., 2009), leads to the development of PAH (Steiner 
et al., 2009), and angiobliterant vascular remodeling and robust 
hypertrophy of the right ventricle (Gomez-Arroyo et al., 2012). 
Overexpression of miR-17 increases the proliferation of smooth 
muscle cells of human pulmonary arteries, and its inhibition 
improves pulmonary and cardiac function (Pullamsetti et al., 
2012). The miR-204 is negatively regulated in the smooth muscle 
cells of the pulmonary artery isolated from patients with PAH, 
and an apoptosis-resistant phenotype in smooth muscle cells is 
associated with induction (Courboulin et al., 2011).

Patients with pulmonary arterial hypertension (PAH) have a 
sustained elevation of resistance and pulmonary arterial pressure, 
which makes them increasingly narrow until they are completely 
blocked (Montani et al., 2013), leading to the pumping of blood 
by the heart weakens the muscles until they reach heart failure 
through the right ventricle (Bogaard et al., 2009). Likewise, 
PAH is characterized by vascular remodeling in the three layers 
(intimate, middle and adventitia) of the wall of small and medium 
pulmonary arterioles (<500 μm), in response to continuous 
vascular lesions that lead to abnormal muscle muscularization of 
distal and medial capillary arteries, loss of precapillary arteries, 
and thickening of arterial walls (Guignabert and Dorfmuller, 
2013). PAH begins to develop under constant stress conditions 
such as inflammation and pseudo-hypoxia, initially inducing 
the death of endothelial cells (Guignabert and Dorfmuller, 
2013). However, cells eventually acquire hyperproliferative 
abilities (Lee et al., 1998), associated with instability of short 
sequences of microsatellite DNA within plexiform lesions 
(Yeager et al., 2001), and the presence of somatic chromosomal 
abnormalities in the lung patients with PAH (Aldred et al., 2010); 
a deregulated cell metabolism (Xu et al., 2007; Aldred et al., 2010; 
Sutendra et al., 2010; Tuder et al., 2012), with reduced oxygen 
consumption, reduced mitochondrial respiration and increased 
glycolytic metabolism (Xu et al., 2007); and the ability to evade 
apoptosis (Masri et al., 2007), with an increase in the expression 
of important anti-apoptotic genes such as Bcl-xL, Bcl-2 and 
survivin (McMurtry et al., 2005; Tu et al., 2012); in clones of 
fibroblasts, smooth muscle cells (PASMC) and endothelial 
cells of the pulmonary arteries (PAEC), which allows vascular 
remodeling during PAH (Guignabert et al., 2013).

The hypothesis of establishment or “quasi-malignancy” is 
also associated with the concept of an angiogenic/stem cell 
tumor (CSC) niche (Rai et al., 2008). Precursor cells can divide 
and migrate to pulmonary vascular adventitia through the vasa 
vasorum (Ergün et al., 2011; Yeager et al., 2011), and stem cells of 
small microvascular pulmonary endothelial cells of small arteries 
can proliferate to the point of obliteration (Alvarez et al., 2008). 
The pathobiological model of intraluminal angioproliferation 
is based on the growth of endothelial cells in PAH, where the 

“endothelial cell monolayer law” has been broken in favor of a 
tumor-like intraluminal growth (Tuder et al., 2001; Sakao et al., 
2005). The endothelial cell such as the cell that initiates a complex 
lesion can come from three possible sources of proliferating 
endothelial cells: (1) An endothelial cell similar to a stem cell that 
is resistant to apoptosis and grows after neighboring monolayer 
cells intimate have been injured and have died (Yoder et al., 2007), 
(2) A precursor cell derived from the bone marrow (Sahara et al., 
2007), and (3) An endothelial cell derived from the vascular 
endothelial growth factor (VEGF) action in dendritic cell-
directed transdifferentiation (Steinman and Banchereau, 2007). 
The complex vascular lesions of PAH are governed by some, but 
not all, cancer characteristics. Therefore, although the lesions are 
not completely tumor, they are certainly neoplasms in the sense 
that there is a process of abnormal and uncontrolled cell growth.

Pulmonary arterial hypertension (PAH) showed great 
complexity as did cancer, something that could be evidenced by 
the large number of DEGs, comparable to those observed in lung 
cancer, which may be partly explained by PAH is so difficult to 
treat. Vasodilator-based treatments have not demonstrated the 
ability to reverse vascular remodeling and do not affect survival 
(Lajoie et al., 2016), but the acquisition of cancer characteristics 
in PAH-associated cells suggests the potential use of anticancer 
drugs in patients with PAH, such as imatinib, a tyrosine kinase 
inhibitor, which could potentially be beneficial in patients with 
PAH after evaluation of potential side effects for safe use in 
clinical practice (Hoeper et al., 2013).

COnCLUsiOn
In the present work, we show how the re-analysis of gene expression 
data available in the databases within an organized and focused 
bioinformatic pipeline can be used to obtain new knowledge and 
give more evidence that supports a biological hypothesis, as well 
as find potential biomarkers associated with molecular functions 
in common for different diseases. The methodology we propose 
for the identification of the transcriptional regulators of all 
deregulated genes related to the acquisition of the hallmarks of 
cancer during lung tumorogénesis, allowed us to truly visualize 
the massive complexity of lung cancer. The transcriptomic 
analyzes of multiple gene expression data and the creation and 
comparison of coexpression networks allowed to identify all the 
genes involved and the molecular events associated with the lung 
tumoral process, and the transcription factors or regulators of 
all these genes that can participate in the establishment of the 
disease, as biomarkers, which will lead in the future to establish 
in each patient the specific molecular event that causes the 
pathology, and to implement an effective personalized therapy 
against lung cancer.

The existence of common DEGs among different lung 
pathologies strengthens the experimental evidence that supports 
the hypothesis about a possible causal relationship between 
different lung diseases and lung cancer, because the deregulated 
biological functions in other lung diseases are related with 
oncogenic processes, and may be the first functions affected 
and those necessary for the establishment of a tumor pathology. 
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Therefore, this group of genes can be more specific for the 
early stages of lung cancer, and might be more useful for early 
detection, and eventually could be integrated into the clinical 
practice to increase early detection probability of lung cancer, 
and used in the development of personalized therapies. The TFs 
coexpressed in the LC&LD network and the CCPs LC–LD have 
experimental evidence of their association with the acquisition 
of hallmarks of cancer during its establishment that must be 
validated experimentally. Common DEGs and TFs among lung 
pathologies might have the potential to be used as possible 
biomarkers for diagnosis and treatment that should be evaluated 
experimentally in patients, to demonstrate that its deregulation is 
crucial for the initiation and establishment of the tumor process 
in the lung, and therefore, the regulation of its expression is 
sufficient to prevent, control and revert the tumor process in a 
more efficient and specific way in every patient.

The levels of expression of the TFs associated with the 
establishment of lung according to our joint transcriptomic and 
coexpression analysis must be evaluated experimentally, along 
with the expression of the winner DEGs coexpressed in lung 
cancer. Functional analysis must be performed for every TF and 
winner DEGs to establish the association with the acquisition of 
which hallmark of cancer are related. Moreover, all functional 
and direct targets of every TF identified in lung cancer must be 
identified to fully understand their regulatory function during 
early stages of the disease. Also, the TFs identified as the key 
regulators for its ability to control and reverse the tumor process 
must be studied in depth, to find the regulatory mechanisms 
associated with their expression in lung cancer, like histone 
modifications, DNA methylation and non-coding RNAs, as 
the basis to develop specific and effective techniques of early 
detection and treatments against the tumoral pathology of 
the lung.

The joint transcriptomic laid the foundation to guide the 
research field of our lab providing potential candidate biomarkers 
that must be experimentally validated within the all regulatory 
transcriptional network of lung cancer, to become prognostic, 
diagnostic, and predictor biomarkers of lung cancer, which in 
the future will also guide the clinician process to establish the 

specific molecular event that causes a tumoral pathology in each 
patient, and to implement an effective personalized therapy 
against the disease.
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