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Porous electrodes based on polymethylmethacrylate and graphite foams (PMMA_G_F) have been developed and characterized.
Such devices have been successfully used as voltammetric sensors to analyze catechol, hydroquinone, and their mixtures. The
presence of pores induces important changes in the oxidation/reduction mechanism of catechol and hydroquinone with respect
to the sensing properties observed in nonfoamed PMMA _graphite electrodes (PMMA_G). The electropolymerization processes
of catechol or hydroquinone at the electrode surface observed using PMMA_G do not occur at the surface of the foamed
PMM_G_F. In addition, the limits of detection observed in foamed electrodes are one order of magnitude lower than the
observed in the nonfoamed electrodes. Moreover, foamed electrodes can be used to detect simultaneously both isomers and
a remarkable increase in the electrocatalytic properties shown by the foamed samples, produces a decrease in the oxidation
potential peak of catechol in presence of hydroquinone, from +0.7V to +0.3V. Peak currents increased linearly with
concentration of catechol in presence of hydroquinone over the range of 0.37-10°M to 1.69-10°M with a limit of
detection (LOD) of 0.27 mM. These effects demonstrate the advantages obtained by increasing the active surface by means

of porous structures.

1. Introduction

The assessment of antioxidants in foods is of great impor-
tance due to the health benefits associated to their intake, to
their influence in the organoleptic characteristics of foods
and beverages, and to their role in their preservation.
Catechol (1,2-dihydroxybenze, CT) and hydroquinone (1,4-
dihydroxybenze, HQ) are two dihydroxybenzene isomers
that occur naturally in many plant foods (onions, coffee, tea
leaves, etc.) and beverages such as wines [1].

Simultaneous detection of dihydroxybenzene isomers as
CT and HQ is difficult because they have similar structure
and characteristics. The main methods for the determination
of CT and HQ mixtures are high-performance liquid chro-
matography (HPLC) [2-5], gas chromatography coupled
with mass spectrometry [5, 6], spectrophotometry [7-9],

fluorescence [10, 11], chemiluminescence [12-14], or capil-
lary electrochromatography [15, 16]. Among all these
techniques, electrochemical methods represent an advantage
due to their low price, high sensitivity, short experimental
times, and portability [17, 18].

The simultaneous assessment of CT and HQ at conven-
tional carbon electrodes is difficult because their similar
chemical structures lead to resembling responses which
produce an overlap of their redox peaks [19-21]. In order
to overcome this problem, electrodes have been chemically
modified with many materials such as activated glassy carbon
[22], modified electrodes with graphene [18, 23-26], carbon
nanoparticles [27], carbon nanofibers [28, 29], carbon nano-
tubes [30], or gold nanoparticles [29, 31].

In addition, electrodes can be modified using different
techniques, leading to electrodes with distinct characteristics
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which depend (among other factors) in the number of active
sites at the electrode surface. Thus, the sensitivity and limits
of detection can be improved by increasing the number of
active sites at the electrode surface. Different strategies can
be used to increase the number of active sites such as the
use of layered hydroxide films [24], mesoporous materials
[25], or nanostructured sensing layers [32, 33]. A different
approach could be to use foamed materials as the sensing
element. Recently, foams from metals like nickel [34-36]
or copper [37-39] have been developed to obtain efficient
electrochemical sensors. These electrodes show a high
specific active surface, but they are not ideal materials to
fabricate electrodes because they have redox activity.
Foamed carbon materials are also good candidates, but
the electrodes are fragile.

Our group proposes here a new class of foamed elec-
trodes based on a polymeric matrix. The reason is that
polymeric foams are easy to obtain and the pore size and
structure can be easily controlled. In addition, their conduc-
tivity can be improved by doping the foam with a carbona-
ceous material. In particular, in this work, a composite
foam formed by a polymeric matrix of polymethylmethacry-
late (PMMA) and graphite as the conductive additive is
developed here using the gas dissolution foaming method
in which the saturation temperature, foaming temperature,
and saturation pressure are controlled parameters during
the foaming process [40]. The obtained foams have been
employed as electrochemical sensors for the detection of
CT and HQ which are two phenols of high interest for food
industry. The dynamic properties of the electrodes and the
limits of detection have been evaluated. The possibility of
distinguishing these similar isomers has been analyzed.

2. Materials and Methods

2.1. Chemicals. Polymethylmethacrylate (PMMA) V 825T
was kindly supplied by ALTUGLAS® International
(Colombes, France) in the form of pellets. The material used
presents a density (p) of 1.19 g.cm ™ (measured at 23°C and
50% HR) and a glass transition temperature (Tg) of 114.5°C
measured by differential scanning calorimetry (DSC). Medi-
cal grade CO, (99.9% purity) was used as blowing agent.

Catechol (CT), hydroquinone (HQ), and KCI were pur-
chased from Sigma-Aldrich, and graphite (G) (>99%) was
purchase from Fluka. Chloroform stabilized with ethanol
was purchased from Scharlab. All chemicals were used as
received. Aqueous solutions were prepared using high-
quality water (resistivity of 18.2MQ-cm™") from a Milli-Q
system (Millipore, Billerica, MA, USA).

2.2. Sensor Preparation. 1.4g of PMMA was dissolved in
32mL of hot chloroform (50°C). Then, the solution was
placed in a Petri dish to evaporate the solvent until a PMMA
film was obtained.

Working in a similar way, films of PMMA/graphite (2/1)
were prepared. Previously, the mixture was homogenized
using a sonicator probe (Vibra Cell sonics) to get a good
dispersion of graphite in the PMMA solution. This PMMA/
graphite ratio was chosen according to preliminary
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experiments that showed that using lower amounts of
graphite did not produce enough conductivity to be used as
sensitive material.

Foamed samples were produced in a high pressure vessel
(model PARR 4681) provided by Parr Instrument Company
(Moline, IL, USA). The pressure system comprises an accu-
rate pressure pump controller (model SFT-10) provided by
Supercritical Fluid Technologies Inc. With this set-up, a set
of foaming experiments has been performed through the
so-called gas dissolution foaming process. This process
consists of two basic steps. The first one is the saturation of
the polymeric sample with gas under high pressure. In this
step, the gas reaches an equilibrium concentration when
given enough time for diffusion of gas into the polymer,
giving rise to a gas-polymer system. In the second step, bub-
bles are nucleated in the gas-polymer system by means of a
thermodynamic instability which, in this specific case, can
be obtained by a sudden drop in pressure [41]. The foaming
experiments have been performed by a single-step foaming
process [40] to prevent fast diffusion of the gas during the
extraction of the polymer films from the autoclave after satu-
ration. In this process, the gas saturation temperature is
higher than the T, ¢ of the polymer (which is in a rubbery
state), allowing the gas expansion during the pressure release.
Hence, the samples are already foamed when extracted from
the pressure vessel. In these tests, the saturation pressure has
been set at 30 MPa. Saturation temperature and saturation
time were fixed at 50°C and 24 h. After saturation, the pres-
sure was released at a high depressurization rate (90 MPa/s)
by means of an electrovalve.

Moreover, gas diffusion can provoke heterogeneous
cellular structures in the samples even on the single-step
foaming method. Consequently, films have been confined
in a mold consisting of two aluminum frames (Figure 1),
restricting CO, surface diffusion and increasing the gas avail-
ability for cell nucleation and growth [42]. The mold was
closed by means a torque wrench so as the screws reach the
same tighten level, achieving the desired constrainment effect.

2.3. Structure Characterization by SEM. A scanning electron
microscope (Quanta 200 FEG, Hillsboro, OR, USA) was used
to obtain images of both the surface and the inner structure
of the foams. Images of the surface were obtained by covering
the surface with gold using a sputter coater (model SDC 005,
Balzers Union, Balzers, Liechtenstein). Images of the inner
structure were obtained by fracturing the samples: samples
were cooled down with liquid nitrogen and then fractured
and coated with gold using a sputtering.

2.4. Electrochemical Measurements. Electrochemical experi-
ments were carried out using a PARSTAT 2273 potentio-
stat/galvanostat (AMETEK scientific instrument) in a
three-cell configuration. A platinum foil with a size of
2cmx1cm and a Ag/AgCl/KCl 3M electrode was used as
counter electrode and reference electrode, respectively.
PMMA samples were used as the working electrode includ-
ing a PMMA film (PMMA), a PMMA foam (PMMA_F), a
PMMA film doped with graphite (2/1), which is denoted as
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FIGURE 2: SEM images of (a) PMMA_F inner structure, (b) PMMA_F surface structure, (c) PMMA_F_G inner structure, and (d)

PMMA_F_G surface structure.

PMMA_G, and a PMMA foam doped with graphite (2/1)
which is denoted as PMMA_F _G.

Electrochemical impedance spectroscopy (EIS) was
carried out in a 0.1 M KCI solution with a frequency range
from 31600 Hz to 0.1 Hz with signal amplitude of 10mV at
a working potential of 0.0 V.

Square wave voltammetry was used for studying the
response for our sensors towards phenols. The reason to
use this technique is that it reduces the faradaic current, pro-
ducing lower limits of detection than cyclic voltammetry
[43]. Calibration curves were built using square wave volt-
ammetry (SWV) as electrochemical technique from —0.6 V
to +1.0V at a scan rate of 50 mV/s with an amplitude pulse

of 50mV, a duration of pulse of 0.02s, and a step height of
2mV. Dynamic properties were evaluated carrying out a
cyclic voltammetry in a 0.1 M of KCI solution that contains
107> M of CT from —0.5V to +1.5 V for increasing scan rates
(from 0.1 V/s to 0.3 mV/s).

3. Results and Discussion

3.1. Structural Characterization of the Electrodes. In a first
step, both the internal and the surface structure of the foamed
samples were characterized using Scanning Electron Micro-
scope (SEM). This information was used to evaluate the
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FIGURE 3: (a) Nyquist and (b) impedance Bode plot and (c) phase Bode plot of PMMA_G film and PMMA_F_G in 0.1 M KCI. Frequency

swept from 31,600 Hz to 0.1 Hz at 0V in a 0.1 M KClI solution.

influence of the porosity of the samples in the sensing prop-
erties of PMMA/graphite composites.

Figure 2(a) shows the internal structure of the PMMA
foam (PMMA_F) where a homogeneous microporous struc-
ture with an average pore diameter of 2 ym was observed.
The image of the foam surface (Figure 2(b)) showed larger
pores with irregular shapes and sizes with an average
diameter of 7um. When PMMA foam was doped with
graphite (PMMA_F_QG), the internal porous structure chan-
ged. Large pores with 100 um diameter were accompanied
by many small pores with an average diameter of 12 um
(Figure 2(c)). It is also noticeable that the pores were more
irregular in shape than those observed in the undoped
PMMA_F. This effect can be attributed to the presence of
the graphite flakes that modify the foaming process. The sur-
face structure changed drastically in the presence of graphite,
and a profusion of small pores of about 4 um diameter
(Figure 2(d)) was observed.

3.2, Electrochemical — Impedance  Spectroscopy  (EIS)
Characterization. Electrochemical impedance spectroscopy
(EIS) was used to study the changes in the electrochemical
properties of PMMA induced by the insertion of graphite
and by the foaming.

As expected, the Nyquist plots of nonfoamed PMMA
and foamed PMMA_F immersed in 0.1M KCI showed
vertical straight lines, confirming that undoped samples
behaved as insulators.

When graphite was added to the structure of a PMMA
film (PMMA_G) or a PMMA foam (PMMA_F_G), samples
became conductive and the Nyquist diagram (Figure 3(a))
revealed two unfinished capacitive loops. The semicircle in
the high frequency region showed a smaller radius than the
large arc observed in the low frequency region. As observed
in Figure 3(a), the radii increased in foamed samples. Given
that radii of the semicircles are related to the efficiency of
the charge transfer, it can be concluded that the electron
transfer resistance was higher in the foamed sample. In good

Rs CPE1
R1 CPE2
>_
R2

FIGURE 4: Equivalent electrical circuit used to simulate the response
of the samples where Rs is the solution resistance, CPE1 is a first
constant phase element, R1 is a first resistance, CPE2 is a second
constant phase element, and R2 is a second resistance.

accordance, the Bode plots showed that the impedance mod-
ulus of the foamed PMMA_F_G was more than one order of
magnitude larger than in the nonfoamed PMMA_G
(Figures 3(b) and 3(c)).

In order to calculate the charge transfer resistance, the
impedance values were fitted to the electrical circuit shown
in Figure 4. In the proposed model, two constant phase ele-
ments CPE (representing a nonideal capacitive response of
the interface material solution) and two resistances were
used. The depression in the Nyquist semicircle and the phase
angle of capacitor different from —90° are an indication of
this non-pure capacitive behavior. The impedance of a CPE
element was defined as:

1

ZCPE: C(]w)", (1)
where C is a parameter numerically equal to the admittance
at w=1 rad-s"', j is the imaginary unit, w is the frequency,
and n is the phase shift. When n=1 the CPE describes
an ideal capacitor, when n=0 is an ideal resistor and,
when n=0.5 is a finite-Warburg element accounting for
diffusion of mobile charge. In practice, n is in the range
of zero to one, and C can be approximately converted into
a capacitance.

The results are presented in Table 1. Chi-squared (x?)
values were used to evaluate the quality of fitting. The
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TaBLE 1: Analytical data obtained from the impedance spectroscopy measurements.

Rs (Q-cm?) Ceppy (8" Q7 hem™) Neppy R1 (Q-cm?) Ceppy (8" Q7 hem™) Nepps R2 (Q-cm?) ¥ (107

PMMA_G

610 6.7-107° 0.67 205.3 1.5107* 0.70 15270 3.7

PMMA_F G

3151 3.4.107° 0.58 13974 6.8.107° 0.75 418250 4.6

obtained values were in the range of 10*, indicating the suit-
ability of the circuit.

Table 1 shows that R1 values were always significantly
lower than R2. The addition of R1 and R2 (considered as
the electron transfer resistance) clearly increased in the
foamed sample and the CPE-C values were lower for the
foamed sample. The decrease in the capacitance and the
increase in the resistance was induced by porosity.

Moreover, the impedance behavior indicated that the
electron transfer resistance was higher in the foamed sample
due to the air trapped into the foam micropores, increasing
thus the resistivity [44]. In spite of this, the conductivity
was high enough to use the foams as highly porous electrodes
where the increase in the porosity and the subsequent higher
superficial area can be an advantage.

3.3. Sensing Behavior. Detection of Antioxidants. Once the
structure and the conductivity were characterized by SEM
and EIS, graphite-doped samples were used as working elec-
trodes in an electrochemical cell for the detection of CT and
HQ, two of the most interesting antioxidants found in foods
and beverages.

3.3.1.  Catechol and Hydroquinone Determination.
Figures 5(a) and 5(b) show the square wave voltammetry
(SWV) recorded for increasing catechol concentrations using
nonfoamed and foamed sensors. As observed, the foaming
process induced important differences in the electrochemical
responses. In the case of PMMA_G, low catechol concentra-
tions produced a single redox peak at about +0.35 V (peak 1);
as the concentration of catechol increased, a second peak
appeared at higher potentials (+0.75V) (peak 2), which is
usually attributed to the dimerization or polymerization of
phenols at the electrode surface [45, 46]. In contrast, the
response of the foamed PMMA_F_G to catechol was charac-
terized by a single peak centered at around +0.35 V, and poly-
merization was not observed. The absence of polymerization
is an advantage because polymerization is an important cause
of electrode fouling.

SWVs recorded at increasing hydroquinone concentra-
tions are shown in Figures 5(c) and 5(d) for PMMA_G and
PMMA_F G sensors, respectively. In the case of the non-
foamed electrode, two peaks were observed even at low con-
centrations: the first peak appeared at +0.15V (peak 1) and
the second one appeared at +0.55V (peak 2). When the con-
centration increased, a new peak at about +0.75V was
observed as a shoulder. In the voltammograms registered
using the foamed PMMA_F_G, the first peak was centered
about +0.12V (peak 1). This time, the polymerization peak
was observed at high concentrations (peak 2) and shifted to

higher potentials as the concentration increased, reaching a
final value of +0.9 V.

According to these results, the nonfoamed and the
foamed electrodes have different electrochemical behaviors.
Thus, the oxidation mechanism for catechol and hydroqui-
none on both surfaces is different. In addition, foamed elec-
trodes prevent polymerization processes that can cause
fouling of the electrodes.

Limits of detection (LOD) were calculated from the cali-
bration curves constructed by representing the current inten-
sity of the redox peaks versus catechol or hydroquinone
concentrations. It has to be noticed that in some cases, two
linear ranges were observed. Table 2 shows the linear ranges,
the analytical linear calibration curves, the analytical param-
eters obtained from the curves including the regression coef-
ficients (R?), the residual standard errors (syx), and the LODs

calculated form the curves using R-project as the program for
statistical computing.

According to data listed in Table 2, important advantages
can be observed in the foamed samples: linear ranges are
larger in the foamed sensors, the residual standard errors
are smaller, and LODs are lower. For instance, using
PMMA_G, limits of detection for CT of 0.47mM and
0.29 mM were calculated for the first and second oxidation
peak, respectively, with a probability of false positive (&)
and false negative (f3) of 0.05. In contrast, LODs calculated
using PMMA_F_G were 0.06 mM and 0.17 mM. This means
that LODs are clearly diminished, mainly in the case of the
first linear range, where a decrease of one order of magnitude
was observed.

Similar results were obtained for HQ determination. In
this case, the decrease observed in the LODs calculated using
peak 1 was more marked than in peak 2, and a LOD of
0.12mM was attained for the foamed sensor.

3.3.2. Simultaneous Determination of Hydroquinone and
Catechol. Hydroquinone and catechol are two isomers and
therefore, their oxidation peaks occur at very close potentials.
This makes difficult the simultaneous assessment of both
compounds. According to the results shown in Figure 5, the
oxidation peak of CT is around +0.35V and the oxidation
peak for HQ is around +0.15V. In addition, the degree of
polymerization in foamed sensors is smaller. These results
point to the possible advantage of PMMA foamed sensors
to discriminate between both isomers, allowing the simulta-
neous assessment of both components.

In order to evaluate the capability of our foamed sensors
to discriminate between both isomers, voltammograms were
registered in solutions containing a fixed concentration of
hydroquinone (2mM) and increasing concentrations of
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F1GURE 5: SWV of (a) PMMA_G immersed in CT concentrations from 0 to 2.91 mM; (b) PMMA_F_G immersed in CT concentrations from
0 to 1.67 mM; (c) PMMA_G immersed in HQ concentrations from 0 to 3.15 mM; and (d) PMMA_F_G immersed in HQ concentrations from

0 to 2.68 mM. 0.1 M KCI was used as supporting electrolyte.

TABLE 2: Analytical data obtained from the calibration curves.

Linear range (mM) Calibration curves R? Syx LOD (mM)

PMMA_G

Peak 1 0.99-2.68 y=1.00-10"* +3.92.10 % 0.9812 3.20-1077 0.47
CT Peak 2 0.50-1.72 y=6.77-10" +1.99-10 >k 0.9890 1.10-107° 0.29

Peak 2 1.96-2.91 y=8.58-10"° +9.39-10 % 0.9906 3.44.1077 0.53
HO Peak 1 1.23-3.15 y=9.77-10"° +8.73-10 'x 0.9786 8.85.107° 0.62

Peak 2 0.50-2.44 y=7.86-10"" +6.39-10 % 0.9982 1851077 0.13
PMMA_F_G
or Peak 1 0.15-0.45 y=2.9410"° +3.44.10 ' 0.9931 3.09-107° 0.06

Peak 1 0.45-1.67 y=3.0410"° + 1.19:107x 0.9921 4301077 0.17
HQ Peak 1 0.37-1.11 y=3.09-10"° + 1.59-10 "x 0.9941 3.26:107° 0.12

Peak 2 0.37-2.68 y=2.9510"° + 1.64-10 'x 0.9991 3.55.107° 0.09

catechol, from 0.26 to 1.92mM. The response of the
PMMA_G sensor immersed in a solution that contains
2mM of hydroquinone and increasing concentrations of cat-
echol (Figure 6(a)) showed a peak at about +0.70 V that was
growing progressively with the catechol concentration. This
peak could be used to build a robust calibration curve in
function of the catechol concentration with a good regression
coefficient and low residual standard error (Table 3 collects
the regression parameters). The calibration curve showed a

linear range, from 0.61 to 1.92mM. A LOD of 0.34 mM was
obtained from the curve with a probability of false positive
() and false negative () of 0.05. Similarly, the response for
the PMMA_F_G towards hydroquinone 2 mM and increas-
ing amounts of catechol also showed a peak at +0.25V that
increased linearly with the catechol concentration. In this
case, the linear range was larger and ranged from 0.37 to
1.69mM. Carrying out a robust regression, it was possible
to obtain a calibration curve with a good regression
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FIGURE 6: (a) SWV recorded using PMMA_G for increasing concentrations of catechol from 0.61 to 1.92mM in the presence of 2mM
hydroquinone in 0.1 M KCI as supporting electrolyte, and (b) comparison for SWV recorded for PMMA_G (red line) and PMMA_F_G
(blue line) for 1.92 mM of catechol in the presence of 2 mM hydroquinone in 0.1 M KClI as supporting electrolyte.

TABLE 3: Analytical data obtained from the calibration curves of mixtures CT/HQ.

Linear range (mM) Regression curve R Syx LOD (mM)
PMMA_G
CT 0.61-1.92 y= 9.73-107° +5.38-10 % 0.9806 3.32:1077 0.34
PMMA_F G
CT 0.37-1.69 y=3.2810"°+7.82:.10 % 0.9804 4.67-107° 0.27

coeflicient and low residual standard error (Table 3 summa-
rizes the regression parameters). Furthermore, this calibra-
tion curve could be used to calculate a limit of detection of
0.27 mM, with a probability of false positive («) and false neg-
ative (f3) of 0.05.

According to these results, both the PMMA_G and the
PMMA_G_F sensors can be used to assess catechol in pres-
ence of hydroquinone with very close limits of detection.
However, foamed sensors show two important advantages.
First, the foamed sensor has a larger linear range. But the
main advantage is the high electrocatalytic activity of the
foamed porous electrode that caused an important shift of
the catechol peak from +0.70 V to +0.25V that can reduce
considerably the potential that needs to be applied in the
working conditions of amperometry. This electrocatalytic
effect has been illustrated in Figure 6(b), where the SWV
recorded for the same concentration of catechol and hydro-
quinone (1.92 and 2mM, resp.) is displayed.

3.4. Dynamic Properties. Once the different electrocatalytic
properties of PMMA electrodes were established, the
dynamic properties were analyzed by registering cyclic
voltammograms at increasing scan rates. The dynamic prop-
erties for our PMMA_G and PMMA_F_G sensors were
characterized in a catechol solution of 107> M in 0.1 M KCI
as supporting electrolyte from —-0.50V to +1.50V at scan
rates from 0.1 to 0.3 V/s.

Representing the current intensity of the reduction peak
(at around +0.40 V) versus the square root of the scan rate,

TABLE 4: Dynamic character. Analytical data obtained from the
dynamic properties using a solution that contains catechol 107> M
and KCI 0.1 M as supporting electrolyte.

Regression curve R? Syx
PMMA_G
CT y=4.19-10"-4.31.10 *x 0.9994 8.20-1077
PMMA_F G
CT y=-2.30-10"°-1.29-10x 0.9951 7.17-107®

a linear relationship was obtained. Data could be adjusted
to the Randles-Sevcik equation (2), indicating a quasi-
reversible process controlled by diffusion [43] (Table 4).

(2)

FD 1/2
iP=0,4463-n.F.A.C.(” v )

RT

Where i, is the peak current, n is the electron number
transferred in the redox process, F is the Faraday constant,
R is the gas constant, T is the temperature, A is the area of
the working electrode, C is the concentration for the electro-
active species, D is the diffusion coeflicient for the electroac-
tive species, and v is the scan rate.

As observed in Table 4, the slopes of the curves were one
order of magnitude lower in the foamed sensor, indicating
that kinetics was clearly modified by the presence of pores
in the structure and a foamed surface.



4. Conclusions

Catechol (CT), hydroquinone (HQ), and their mixtures
have been successfully analyzed at nonenzymatic electrodes
based on PMMA doped with graphite. The porous structure
of foamed electrodes induced important advantages includ-
ing reduction of fouling effects, excellent electrocatalytic
activity, and decrease in the limits of detection of CT and
HQ that were one order of magnitude lower in foamed elec-
trodes. In the case of mixtures, the electrocatalytic effect
played an important role and LODs obtained were in the
range of 107*M. These results confirmed the promising
capabilities of foamed polymers as sensitive materials for
electrochemical sensors.

Data Availability

Data are available on request to Maria Luz Rodriguez-
Mendez (mluz@eii.uva.es).

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

This paper is dedicated to Professor Jose Antonio de Saja,
who passed away on November 20, 2017. This work was
supported by MINECO-FEDER (AGL2015-67482-R) and
the Junta de Castilla y Leon-FEDER (VA-011U16). C.
Fernandez-Blanco would also like to thank Junta de Castilla
y Le6n and FEDER for her postdoctoral grant (VA-011U16).

Supplementary Materials

Supplementary information present two figures with the
calibration curves described in the manuscript: Figure S1:
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