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Abstract. We employ a symmetric gauge to describe the interaction of electrons in graphene
with a magnetic field which is orthogonal to the layer surface and to build the so-called partial
and bidimensional coherent states for this system in the Barut-Girardello sense. We also evaluate
the corresponding probability and current densities as well as the mean energy value.

1. Introduction
In 1925 Fock [1] solved the physical problem of a spinless particule moving in the xy-plane under

the action of a uniform magnetic field ~B directed along z-axis and an oscillator-like potential
V (x, y) employing the so-called symmetric gauge [2, 3],

~A =
1

2
~B × ~r =

B0

2
(−y, x, 0), ~B = ∇× ~A = B0k̂. (1)

Since then, the motion of a charged particle in a magnetic field became one of the most studied
quantum systems. In particular, Man’ko and Malkin [4] were able to build the simplest coherent
states for this system as 2-dimensional generalizations of the Glauber ones [5], taking as starting
point the results obtained by Landau [6].

On the other hand, graphene is a material that consists in a sheet of carbon atoms arranged
on a honeycomb lattice [7–9], in which the dynamics of the electrons close to Dirac points
is described by the (2+1) dimensional massless Dirac-like equation with an effective velocity
vF = c/300, what results in many relativistic phenomena [7, 9–13]. The interaction of electrons
in graphene and magnetic fields has attracted interest in many physics branches [14–23] with
the purpose of controlling or confining such particles for the design of electronic devices. Thus,
one can try to apply the coherent states formalism in this system considering e.g. homogeneous
perpendicular magnetic fields. In [24] coherent states with a translational symmetry along

y direction have been constructed assuming the Landau gauge ~A = B0xĵ, and the time-
independent Dirac-Weyl (DW) equation

HDWΨ(x, y) = vF ~σ ·
(
~p+

e

c
~A
)

Ψ(x, y) = EΨ(x, y), (2)

where ~σ = (σx, σy, σz) are the Pauli matrices and Ψ(x, y) are wave functions of two components.
Our purpose here is to look for generalizations of those quantum states that preserve the
rotational invariance through a symmetric gauge for describing the electron dynamics in
graphene.
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This work is organized as follows. In Sect. 2, Dirac-Weyl equation is solved for a symmetric
gauge and the associated algebraic structure is discussed. In Sect. 3, spinorial families of partial
coherent states are obtained as eigenstates of two independent generalized annihilation operators,
A− and B−. Also, the corresponding probability and current densities and the mean energy are
evaluated. In Sect. 4, bidimensional coherent states for graphene are presented as common
eigenstates of both operators A− and B−. Our conclusions are presented in Sect. 5.

2. Dirac-Weyl Hamiltonian
By substituting the symmetric gauge (1) in Eq. (2), we obtain

HDWΨ(x, y) = vF

(
σx

[
px −

eB0

2c
y

]
+ σy

[
py +

eB0

2c
x

])
Ψ(x, y) = EΨ(x, y), (3)

which can be expressed as

HDWΨ(x, y) =
√
ω~ vF

[
0 −iA−
iA+ 0

]
Ψ(x, y) = EΨ(x, y), Ψ(x, y) =

(
ψ1(x, y)
iψ2(x, y)

)
,

by defining the first order differential operators

A± = ∓ i√
ω~

[(
px −

ω~
4
y

)
∓ i
(
py +

ω~
4
x

)]
,

where ω = 2eB0/c~ is the cyclotron frecuency. The eigenvalue equation (3) encodes two coupled
equations:

A−ψ2(x, y) = εψ1(x, y), A+ψ1(x, y) = εψ2(x, y), ε =
E√
ω~ vF

.

which give place to the following equations for each pseudo-spinor component:

H+ψ2(x, y) = A+A−ψ2(x, y) = ε2ψ2(x, y),

H−ψ1(x, y) = A−A+ψ1(x, y) = ε2ψ1(x, y).

Since the problem has a geometrical rotational symmetry around z-axis, it is convenient to
express the Hamiltonians H± in polar coordinates (ρ, θ). Thus, by introducing the dimensionless
variable ξ and the parameter E , defined as follows:

ξ =

√
ω

2
ρ, E ≡ ε2 =

E2

ω~2v2F
,

the corresponding eiganvalue equations take the form

H+ψ2(ξ, θ) =
1

4

[
−
(
∂2ξ +

1

ξ
∂ξ +

1

ξ2
∂2θ

)
− 2i∂θ + ξ2 − 2

]
ψ2(ξ, θ) = E2ψ2(ξ, θ),

H−ψ1(ξ, θ) =
1

4

[
−
(
∂2ξ +

1

ξ
∂ξ +

1

ξ2
∂2θ

)
− 2i∂θ + ξ2 + 2

]
ψ1(ξ, θ) = E1ψ1(ξ, θ).

This set of differential equations reminds the known Fock-Darwin system [1, 3, 25]. The above
relations imply that the eigenvalues of the Hamiltonians H± are related as E1,n−1 = E2,n = n,
and therefore the spectrum of the DW equation (3) is

En = ±~vF
√
nω, n = 0, 1, 2, . . . ,

where the negative energies correspond to holes in graphene.
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Figure 1: The space of states ψm,n is represented by coordinates (m,n). Straight lines conect
states with the same angular momentum l. The region is divided in two sectors according to
the sign of the z-component of the angular momentum: l ≥ 0 and l < 0.

2.1. Algebraic treatment and eigenstates
Both Hamiltonians H± can be factorized in terms of two set of differential operators as [25–27]:

H+ = A+A− = B+B− + Lz, H− = H+ + 1.

where, in dimensionless polar coordinates (ξ, θ),

A+ =
exp(iθ)

2

(
−∂ξ +

−i∂θ
ξ

+ ξ

)
, A− =

exp(−iθ)
2

(
∂ξ +

−i∂θ
ξ

+ ξ

)
, (4a)

B+ =
exp(−iθ)

2

(
−∂ξ +

i∂θ
ξ

+ ξ

)
, B− =

exp(iθ)

2

(
∂ξ +

i∂θ
ξ

+ ξ

)
, (4b)

Lz = N −M = −i∂θ, N = A+A−, M = B+B−, (4c)

where Lz denotes the component in z-direction of the angular momentum operator. These
operators satisfy the following commutation relations

[A−, A+] = [B−, B+] = 1, [A±, B±] = [A±, B∓] = 0, (5a)

[Lz, A
±] = ±A±, [Lz, B

±] = ∓B±. (5b)

Therefore, Eqs. (5a) and (5b) imply that the operators A+ and A−, acting on an eigenstate of
Lz, increases or decreases, respectively, the eigenvalue of Lz in an unity; the operators B± have
the contrary effect.

The eigenstates of the Hamiltonians H± are labeled by two positive integer numbers m,n,
that are the eigenvalues of the number operators M and N , respectively (see Figure 1):

ψ1(ξ, θ) ≡ ψm,n−1(ξ, θ), ψ2(ξ, θ) ≡ ψm,n(ξ, θ),

while Eq. (4c) implies that the states ψm,n are also eigenstates of the operator Lz with eigenvalue
l = n−m. Also, the action of the operators A± and B± on such states is

A−ψm,n =
√
nψm,n−1, A+ψm,n =

√
n+ 1ψm,n+1,

B−ψm,n =
√
mψm−1,n, B+ψm,n =

√
m+ 1ψm+1,n.
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On the other hand, the normalized eigenfunctions of the Hamiltonian H+ turn out to be

ψm,n(ρ, θ) = (−1)min(m,n)

√
ω

4π

min(m,n)!

max(m,n)!

(√
ω

2
ρ

)|n−m|
exp

(
−ω

8
ρ2 + i(n−m)θ

)
L
|n−m|
min(m,n)

(ω
4
ρ2
)
,

(6)

n,m = 0, 1, 2, . . . , while the normalized eigenfunctions of the Hamiltonian H− are obtained as
ψm,n−1 = A−ψm,n/

√
n. These kind of solutions were obtained initially in [1].

Furthermore, we can label as Ψ+
m,n(x, y) the spinorial states whose two scalar components

have positive z-component of the angular momentum (l ≥ 0), and as Ψ−m,n(x, y) those ones
whose two scalar components have negative z-component of the angular momentum (l < 0),
i.e.,

Ψ+
m,n(x, y) =

1√
2

(
ψ+
m,n−1(x, y)

iψ+
m,n(x, y)

)
, Ψ−m,n(x, y) =

1√
2(1−δ0n)

(
(1− δ0n)ψ−m,n−1(x, y)

iψ−m,n(x, y)

)
,

where ψ+
m,n(x, y) ≡ ψ+

m,n(ρ, θ) (ψ−m,n(x, y) ≡ ψ−m,n(ρ, θ)) identifies the states that belong to the
upper (lower) sector in Figure 1, and δmn denotes the Kronecker delta.

In addition, by defining the total angular momentum operator in z-direction as Jz =
Lz ⊗ I + σz/2, we have that

JzΨm,n(x, y) =
l − 1/2√
2(1−δ0n)

(
(1− δ0n)ψm,n−1(x, y)

iψm,n(x, y)

)
= jΨm,n(x, y), (7)

i.e., the states Ψm,n(x, y) are also eigenstates of Jz with eigenvalue j ≡ l − 1/2.

3. Partially displaced states
Defining generalized annihilation operators A− and B− in terms of the scalar ones A− and B−,
we can build bidimensional coherent states (2D-CS) Ψα,β(x, y) ≡ 〈x, y|α, β〉 such that [4,25,28]:

A−Ψα,β(x, y) = αΨα,β(x, y), B−Ψα,β(x, y) = βΨα,β(x, y), α, β ∈ C.

Moreover, if one takes specific sums over one of the quantum numbers, n or m, the so-called
partial coherent states (PCS) can be obtained [4,28]. In this section, we discuss the construction
of all these coherent states for graphene.

3.1. Annihilation operator B−
Let us consider the operator B− defined as

B− = B− ⊗ I =

[
B− 0
0 B−

]
, B+ = (B−)† =⇒ [B−,B+] = I, (8)

such that
B−Ψ±m,n(x, y) =

√
mΨ±m−1,n(x, y).

A first family of PCS Ψn
β(x, y) ≡ 〈x, y|n, β〉 is obtained from the eigenvalue equation

B−Ψn
β(x, y) = βΨn

β(x, y), β ∈ C, n = 0, 1, 2, . . . .

The PCS with a well-defined energy En =
√
nω ~vF turn out to be

Ψn
β(x, y) =

1√
2(1−δ0n)

(
(1− δ0n)ψn−1β (x, y)

iψnβ (x, y)

)
, n = 0, 1, 2, . . . , (9)
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where we have identified two scalar eigenstates ψnβ of B− for each energy level n.

Now, each scalar coherent state in Eq. (9) satisfies one of these equation systems:

B−ψnβ (x, y) = βψnβ (x, y), A+A−ψnβ (x, y) = nψnβ (x, y), (10a)

B−ψn−1β (x, y) = βψn−1β (x, y), A−A+ψn−1β (x, y) = nψn−1β (x, y). (10b)

Therefore, in order to find the solutions ψnβ , one should define the complex parameter z as

z =

√
ω

2
ρ exp(iθ) =

√
ω

(
x+ iy

2

)
, (11)

and the operators A± and B± should be also expressed in terms of z. Thus, after solving the
expressions in Eq. (10), the normalized spinorial PCS Ψn

β(x, y), n = 0, 1, 2, . . . , take the form

Ψn
β(x, y) =

1√
2(1−δ0n)π n!

exp

([
β − z

2

]
z∗ − |β|

2

2

)( √
n(z − β)n−1

i(z − β)n

)
. (12)

As a final comment, let us mention that the coherent states Ψn
β(x, y) can be also obtained by

operating an unitary displacement operator D(β, β∗) on the spinorial states Ψ0,n(x, y), i.e.,

Ψn
β(x, y) = D(β, β∗)Ψ−0,n(x, y), D(β, β∗) = exp

(
βB+ − β∗B−

)
. (13)

3.1.1. Probability and current densities. From Eq. (13), we can establish that the coherent
states Ψn

β(x, y) are displaced from the origin, similarly to the standard coherent states (SCS) in
phase space, being centered at the point

(x0, y0) =

(
2|β|√
ω

cos(ϕ),
2|β|√
ω

sin(ϕ)

)
, β = |β| exp(iϕ).

Such a translation is generated through the magnetic translational operators that represent, in
a classical interpretation, the coordinates of the centre of a circle on xy-plane in which a charged
particle moves [29–32]. In complex number notation, the coordinates (x, y) with respect to the

origin of such a particle moving in a circular trajectory of radius ρ′ =
√
x′2 + y′2, will be

z =
√
ω

(
x+ iy

2

)
= (|β| cos(ϕ) + ξ′ cos(θ′)) + i(|β| sin(ϕ) + ξ′ sin(θ′)) = β + z′,

where ξ′ =
√
ωρ′/2 and z′ = ξ′ exp(iθ′). Hence, the probability density ρn,β(x, y) and the current

densities jn,n̂′β(x′, y′) along the directions of the vectors ρ̂′ and θ̂′ in the displaced frame are,
respectively (see Figure 2):

ρn,β(x, y) = Ψn†
β (x, y)Ψn

β(x, y) =
1

2(1−δ0n)π n!
exp

(
−|z − β|2

)
|z − β|2n−2

[
|z − β|2 + n

]
,

jn,n̂′β(x′, y′) = evFΨn†
β (x′, y′) (~σ · n̂′)k Ψn

β(x′, y′) =
2 evF

√
n

2(1−δ0n)π n!
exp

(
−|z′|2

) |z′|2n
ξ′
<[i(−i)k].

For k = 0 (k = 1), last equation gives the flux of probability in the radial (angular) direction.
As is expected, the function jn,ρ̂′β(x′, y′) is null for any value of n.
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(a) ρn,β(x, y) for n = 0 and

β = exp (iπ/2)

(b) ρn,β(x′, y′) and jn,θ̂′β(x′, y′)

with β = 1 and n = 1

(c) ρn,β(x′, y′) and jn,θ̂′β(x′, y′)

with β = 1 and n = 3

Figure 2: For PCS Ψn
β(x, y), the probability density ρn,β(x, y) (3D) as well the angular current

density jn,θ̂′β(x′, y′) (2D) are shown for different values of n, for B0 = 1/2 and ω = 1.

3.2. Annihilation operator A−
Now, let us consider the operator A− defined as

A− =
1√
2

[ √
N+2√
N+1

A− 1√
N+1

(A−)2

−
√
N + 1 A−

]
, A+ = (A−)† =⇒ [A−,A+] = I, (14)

such that

A−Ψm,n(x, y) =

√
n√

2δ1n
exp(iπ/4)Ψm,n−1, n = 0, 1, 2, . . . .

A second family of PCS Ψm
α (x, y) ≡ 〈x, y|α,m〉 is obtained from the eigenvalue equation

A−Ψm
α (x, y) = αΨm

α (x, y), α ∈ C, m = 0, 1, 2, . . . . (15)

By applying Eq. (15) and taking α̃ = α exp(−iπ/4), the corresponding PCS take the form

Ψm
α (x, y) =

[
2 exp(|α̃|2)− 1

]−1/2 [
Ψ−m,0(x, y) + (1− δ0m)

m∑
n=1

√
2α̃n√
n!

Ψ−m,n(x, y) +

∞∑
n=m+1

√
2α̃n√
n!

Ψ+
m,n(x, y)

]
.

(16)

3.2.1. Probability and current densities and mean energy. Using again the complex parameter
z in Eq. (11), the densities ρm,α(x, y) and jm,n̂α(x, y), and the mean energy 〈HDW 〉α are

ρm,α(x, y) = ρm,α(ρ, θ) = Ψm†
α (x, y)Ψm

α (x, y)

=
[
2 exp(|α̃|2)− 1

]−1 g2m(ρ) +

∣∣∣∣∣
∞∑

n=m+1

(α̃z)
n

n!
Ln−mm

(ω
4
ρ2
)
fm(ρ)

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑

n=m+1

(α̃z)
n

n!

√
n

z
Ln−m−1m

(ω
4
ρ2
)
fm(ρ)

∣∣∣∣∣
2

+ 2<

[ ∞∑
n=m+1

(α̃z)n

n!
fm(ρ)gm(ρ)Ln−mm (ρ2)

]

+ (1− δ0m)

∣∣∣∣∣
m∑
n=1

(
− α̃
z∗

)n
Lm−nn

(ω
4
ρ2
)
gm(ρ)

∣∣∣∣∣
2

+

∣∣∣∣∣
m∑
n=1

(
− α̃
z∗

)n
z∗√
n
Lm−n+1
n−1

(ω
4
ρ2
)
gm(ρ)

∣∣∣∣∣
2

+ 2<

[
m∑
n=1

(
− α̃
z∗

)n
Lm−nn

(ω
4
ρ2
)
g2m(ρ) +

(
m∑

n′=1

(
− α̃
∗

z

)n′

Lm−n
′

n′

(ω
4
ρ2
)
gm(ρ)

)
×
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×

( ∞∑
n=m+1

(α̃z)
n

n!
Ln−mm

(ω
4
ρ2
)
fm(ρ)

)
−

(
m∑

n′=1

(
− α̃
∗

z

)n′
1√
n′
Lm−n

′+1
n′−1

(ω
4
ρ2
)
gm(ρ)

)
×

×

( ∞∑
n=m+1

(α̃z)
n

n!

√
nLn−m−1m

(ω
4
ρ2
)
fm(ρ)

)])]
, (17a)

jm,n̂α(x, y) = jm,n̂α(ρ, θ) = evFΨm†
α (x, y) (~σ · n̂)k Ψm

α (x, y)

=
2evF

2 exp(|α̃|2)− 1
<

[
i(−i)ke−iθ

{ ∞∑
n=m+1

(α̃∗z∗)n

n!

√
n

z∗
Ln−m−1m

(ω
4
ρ2
)
fm(ρ)gm(ρ)

+

( ∞∑
n′=m+1

(α̃z)n
′

n′!
Ln

′−m
m

(ω
4
ρ2
)
fm(ρ)

)( ∞∑
n=m+1

(α̃∗z∗)n

n!

√
n

z∗
Ln−m−1m

(ω
4
ρ2
)
fm(ρ)

)

− (1− δ0m)

(
m∑
n=1

(
− α̃
∗

z

)n
z√
n
Lm−n+1
n−1

(ω
4
ρ2
)
g2m(ρ)

+

(
m∑

n′=1

(
− α̃
z∗

)n′

Lm−n
′

n′

(ω
4
ρ2
)
gm(ρ)

)(
m∑
n=1

(
− α̃
∗

z

)n
z√
n
Lm−n+1
n−1

(ω
4
ρ2
)
gm(ρ)

)

−

(
m∑

n′=1

(
− α̃
z∗

)n′

Lm−n
′

n′

(ω
4
ρ2
)
gm(ρ)

)( ∞∑
n=m+1

(α̃∗z∗)n

n!

√
n

z∗
Ln−m−1m

(ω
4
ρ2
)
fm(ρ)

)

+

( ∞∑
n′=m+1

(α̃z)n
′

n′!
Ln

′−m
m

(ω
4
ρ2
)
fm(ρ)

)(
m∑
n=1

(
− α̃
∗

z

)n
z√
n
Lm−n+1
n−1

(ω
4
ρ2
)
gm(ρ)

))}]
, (17b)

〈HDW 〉α =
2
√
ω~vF

2 exp (|α̃|2)− 1

∞∑
n=0

|α̃|2n

n!

√
n, (17c)

where

fm(ρ) =

√
ωm!

4π

(
− 2√

ω
ρ−1
)m

exp
(
−ω

8
ρ2
)
, gm(ρ) =

√
ω

4πm!

(√
ω

2
ρ

)m
exp

(
−ω

8
ρ2
)
.

For k = 0 (k = 1), Eq. (17b) gives the flux of probability in the radial (angular) direction.
Both functions are not null for any value of m (see Figure 3). Meanwhile, the mean energy
function (17c) is shown in Figure 4.

4. Bidimensional coherent states
Finally, 2D-CS built in [4] can be also obtained for graphene as [28]:

Ψα,β(x, y) = N
∞∑
n=0

cnΨn
β(x, y) = N

∞∑
m=0

dmΨm
α (x, y) = NΨm

α (x, y)Ψn
β(x, y),

where N is a normalization constant. Hence, employing the coherent states shown in Eqs. (12)
and (16), we obtain the following expressions for 2D-CS, as well their corresponding probability
and current densities (see Figure 5):

Ψα,β(x, y) =
exp

([
β − z

2

]
z∗ − |β|

2

2

)
√
π(2 exp(|α̃|2)− 1)

∞∑
n=0

α̃n

n!

( √
n(z − β)n−1

i(z − β)n

)
, (18a)

ρα,β(x, y) =
exp

(
−|z − β|2

)
π(2 exp(|α̃|2)− 1)

[
1 +

∣∣∣∣∣
∞∑
n=1

[α̃(z − β)]n

n!

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
n=1

[α̃(z − β)]n
√
n

n!(z − β)

∣∣∣∣∣
2

+ 2<

[
∞∑
n=1

[α̃(z − β)]n

n!

]]
,

(18b)
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(a) α = exp(iπ/2), m = 0. (b) α = exp(iπ/2), m = 0. (c) α = 5 exp(iπ/2), m = 0.

(d) α = 5 exp(iπ/2), m = 0. (e) α = 5 exp(iπ/2), m = 2. (f) α = 5 exp(iπ/2), m = 2.

Figure 3: For PCS Ψm
α (x, y), the probability density ρm,α(x, y) (3D), the radial current density

jm,ρ̂α(x, y) (2D, a, c, e) and the angular current density jm,θ̂α(x, y) (2D, b, d, f) are shown for

some values of α and m. In all the cases B0 = 1/2 and ω = 1.

Figure 4: 〈H〉α as a continous function of α for the PCS Ψm
α (x, y), with B0 = 1/2 and ω = 1.

jα,β,n̂(x, y) =
2evF exp

(
−|z − β|2

)
π(2 exp(|α̃|2)− 1)

<

[
i(−i)ke−iθ

(
∞∑
n′=0

[α̃(z − β)]n
′

n′!

)(
∞∑
n=0

[α̃∗(z∗ − β∗)]n
√
n

n!(z∗ − β∗)

)]
. (18c)

The expression for the mean energy 〈HDW 〉α for these states is the same than those ones in
Eq. (16) due to the coherent states Ψn

β(x, y) are actually stationay states (see Figure 4).
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(a) α = exp(iπ/2), β = 0. (b) α = exp(iπ/2), β = 0. (c) α = 2 exp(iπ/2), β = 2.

(d) α = 2 exp(iπ/2), β = 2. (e) α = 3 exp(iπ/2), β = 3. (f) α = 3 exp(iπ/2), β = 3.

Figure 5: For 2D-CS Ψα,β(x, y), the probability density ρα,β(x, y) (3D) and radial current density
jα,β,ρ̂(x, y) (2D, a, c, e), as well the angular current density jα,β,θ̂(x, y) (2D, b, d, f) are shown for

some values of α and β. In all the cases B0 = 1/2 and ω = 1. Red lines on xy-plane correspond
to the classical trajectory of a charged particle in a magnetic field: the coordinates of the center
of the circle are determined by β while α gives the coordinates in which the maximum probability
amplitude can be found respect to that point.

5. Conclusions
In this work, we have followed the ideas of Malkin and Man’ko [4] to obtain the simplest coherent
states for electrons in graphene interacting with a magnetic field through a symmetric gauge, in
order to describe the dynamics of such particles close to Dirac points.

For the gauge considered, DW solutions have axial symmetry (Eq. (6)) and infinite degeneracy
due to the existance of rotational symmetry, [H±, Lz] = 0. Two sets of scalar ladder operators
are identified and whith them, we can define two generalized annihilation operators A− and
B− (Eqs. (8) and (14)) with which we can build their associated coherent states. Hence, three
different kinds of coherent states Ψn

β(x, y), Ψm
α (x, y) and Ψα,β(x, y) with non-definite angular

momentum are obtained. For the coherent states in Eqs. (16) and (18a), there is a flux of
probability in both radial and angular directions that, we assume, it is due to the contribution of
the wave functions of both sublattices in the unit cell of graphene (Figures 3, 5). Meanwhile, for
the states in Eq. (12), there is only flux of probability in angular direction with axial symmetry
because these ones are actually stationary states that have been displaced on xy-plane (Figure
2).

On the other hand, both families of PCS Ψn
β(x, y) and Ψm

α (x, y) posses a Gaussian probability

distribution only for n = 0 and m = 0, respectively (Figures 2, 3), while 2D-CS Ψα,β(x, y) have
a stable Gaussian-like probability distribution regardless the value of α and β, as happens
with SCS in phase space. Similar to what is observed for the bidimensional coherent states
obtained by Malkin and Man’ko, in a semi-classical interpretation, the eigenvalue β determines
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the coordinates of the center of the circle while α is related with the coordinates of the charged
particle rotating around such center (see Figure 5). This allows us to conclude that these last
coherent states are the simplest ones that can be obtained for electrons in graphene interacting
with an external constant magnetic field for a symmetric gauge [4]. In addition, the behavior of
the mean energy function suggests the possibility of using both states Ψm

α (x, y) and Ψα,β(x, y)
in semi-classical treatments (Figure 4).

Finally, it is important to remark that, as has been discussed in [33–35], it is possible to
construct coherent states that are also eigenstates of the total angular momentum operator in
z-direction (Eq. (7)) through ladder operators K− = A−B−, K+ = (K−)† that, together with
the operator 2K0 = [K−,K+], are generators of su(1,1) algebra. This work is in progress.
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