
 

Testing the equation of state for viscous dark energy

Sergei D. Odintsov,1,2,3,4,* Diego Sáez-Chillón Gómez ,5,† and German S. Sharov 6,‡
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Some cosmological scenarios with bulk viscosity for the dark energy fluid are considered. Based on
some considerations related to hydrodynamics, two different equations of state for dark energy are
assumed, leading to power-law and logarithmic effective corrections to the pressure. The models are tested
with the latest astronomical data from type Ia supernovae (Pantheon sample), measurements of the Hubble
parameter HðzÞ, baryon acoustic oscillations and cosmic microwave background radiation. In comparison
with the ΛCDM model, some different results are obtained and their viability is discussed. The power-law
model shows some modest results, achieved under negative values of bulk viscosity, while the logarithmic
scenario provide good fits in comparison to the ΛCDM model.
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I. INTRODUCTION

Over the last years, the intriguing question behind the
late-time acceleration over the cosmological expansion
has drawn much attention over the scientific community,
being one of the most challenging problems in theoretical
physics. As the Universe is observed to be approximately
homogeneous and isotropic at large scales, the best
description for the cosmological evolution within general
relativity (and also within other geometrical theories) is
provided by the so-called Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime. Nevertheless, as can be easily
shown trough the equations, an accelerating expansion in a
FLRW universe requires generally an effective negative
pressure fluid, which violates the energy conditions and
has been called dark energy when talking on the late-time
acceleration, although it is also assumed for producing
the so-called cosmic inflation at early times. Dark energy
models have been deeply analyzed, by considering each
one’s pros and cons, inherent of every theoretical model
(see [1]). However, the main remaining problem strikes on
the similar predictions provided by a very large number of
dark energy models, including new fields or modifications

of general relativity. Hence, a great effort is being made to
reduce the number of models by studying more complex
features, going beyond in perturbation theory or getting
more accurate constraints by the use of the great amount of
incoming data.
Moreover, as the main property for the dark energy fluid

lies on the negativity of its pressure in order to achieve an
accelerating expansion, a plausible scenario is provided
by a viscous fluid, since its pressure is affected by a bulk
viscosity term, as is well described in hydrodynamics, such
that the fluid may keep the energy conditions satisfied, but
providing an effective negative pressure. Such a possibility
has been widely analyzed in the literature as well (for a
review see [2]) and some realistic scenarios have been
proposed where the well-established knowledge of hydro-
dynamics is applied to cosmology [3]. In general, most of
the analysis considers bulk viscosity as a possibility of
assuming a viscous fluid, as can keep the conditions on
homogeneity and isotropy, widely contrasted by the obser-
vations. In this sense, some authors have dealt with the
possibility of incorporating viscosity to dark matter [4],
which can lead to unifying dark matter and dark energy
under the same fluid, as for instance in the case of the
Chaplygin gas [5–7] or a logotropic fluid [8]. Some other
models consider a proper dark energy fluid with viscosity
[9–11]. Such a possibility may lead to a fluid with a
negative pressure that may even cross the phantom barrier
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[9,10,12–15]. In addition, the viscosity terms may play an
essential role during the early time inflationary stage [2,16].
In the present paper we consider two models for dark

energy with bulk viscosity, in the same line as proposed in
someworks previously. Here our models are based on some
phenomenological considerations or inspired by condensed
matter physics. In that sense, we study a model whose
viscosity depends on the powers of the energy density and
the Hubble parameter, being considered as effective cor-
rections to a perfect dark energy fluid, while the second
model is inspired by Anton and Schmidt’s equation of state
for crystalline solids [17]. We test the model by using some
recent observational data and techniques developed in
some previous papers [18–21]. The observational datasets
include the latest Pantheon sample [22] of type Ia super-
novae (SNe Ia), estimations of the Hubble parameter HðzÞ,
observational manifestations of baryon acoustic oscilla-
tions (BAO) and cosmic microwave background radiation
(CMB) [23–26]. By using the likelihood, we obtain the best
fits for the free parameters of the models and compare to the
ΛCDM model.
The paper is organized as follows: Section II is devoted

to a brief description of dynamical equations and the
models for the bulk viscosity. In Sec. III, we provide the
observational datasets used along the paper for testing
the models, which correspond to SNe Ia, HðzÞ, BAO and
CMB under investigation. Section IV is devoted to the
results of the analysis of the models. Finally, in Sec. V we
summarize the results of this work.

II. BACKGROUND

Let us start by introducing the basis of the paper. Here we
are assuming a flat FLRW metric, which can be expressed
in comoving coordinates as follows:

ds2 ¼ −dt2 þ a2ðtÞ½ð1 − kr2Þ−1dr2 þ r2dΩ�: ð1Þ

Here we are interested in the analysis of viscous fluids,
such that the bulk viscosity ζ is introduced as an effective
contribution to the pressure [2,9,10]:

p ¼ wðρÞ · ρþ BðHÞ; BðHÞ ¼ −3HζðHÞ: ð2Þ

Note that ζðHÞ depends on time and can be written in
terms of the Hubble rate H ¼ _a=a as we are assuming
a FLRW spacetime. Hence, the effective pressure p
includes the viscous term BðHÞ, which would satisfy
the transportation equation, and may be extended to
more general forms that contain derivatives of the
Hubble parameter B ¼ Bða;H; _HÞ (see Refs. [2,9,10]).
Here, we are considering two known models for the bulk
viscosity (2).
In the first scenario, we also assume a nonconstant

equation of state (EOS) but depending on powers of the

energy density w ¼ wðρÞ while the viscosity is given by
ζðHÞ ∼H2β−1. Then, the effective EOS yields [9,10,15]

p ¼ −ρþ Aρα þ BH2β: ð3Þ

The second model is inspired in the Anton-Schmidt
equation of state for crystalline solids [17], which includes
a logarithmic-corrected power-law fluid and the same
viscous term as above ζðHÞ ∼H2β−1, leading to the
following EOS [14]:

p ¼ A

�
ρ

ρ�

�
α

log

�
ρ

ρ�

�
þ BH2β: ð4Þ

For both models, A, α, B, β, and ρ� are constants,
essentially the free parameters of the model, while α ¼
γG þ 1

6
, where γG is the Grüneisen parameter. The density

ρ� shows the limit where standard pressure vanishes and
can be identified with the Planck density ρP ¼ c5=ðℏGÞ
(see Refs. [27,28]). For aesthetics, we assume the units
such as the speed of light reduces to unit c ¼ 1.
In the sections below, we will test the viability of models

(3) and (4) by confronting their predictions with recent
observational data, coming from different sources. Besides
the dark energy component ρx, we will also take into
account the other two components that play an important
role along the cosmological evolution, dust (baryons and
cold dark matter) ρm and radiation ρr, such that the total
energy density can be expressed as follows:

ρ ¼ ρm þ ρx þ ρr: ð5Þ

In addition, we also assume that there is no interaction
among the three components, such that they satisfy the
continuity equation independently:

_ρi þ 3Hðpi þ ρiÞ ¼ 0: ð6Þ

Let us now consider the scenario with the three matter
components (5) with energy densities ρm, ρx, and ρr, where
ρx is governed by the EOS given in (3) or (4). In particular,
by the power-law EOS (3), the expression for the pressure
leads to px ¼ −ρx þ Ãραx þ B̃H2β. As usual in a FLRW
universe, cold dark matter ρm and radiation ρr evolve
according to their continuity equations, respectively, (6):

ρm ¼ ρ0ma−3; ρr ¼ ρ0ra−4: ð7Þ

Here the index 0 refers to magnitudes measured at the
present time t0 while the scale factor at the present time is
set as unity: aðt0Þ ¼ 1. In this notation, the redshift z of a
luminous object is z ¼ a−1 − 1. On the other hand, it is
convenient to rewrite the equations of state (3) and (4) for
the viscous component in the following form:
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px

ρcr
¼ −Ωx þ AΩα

x þ B

�
H
H0

�
2β

ð“power-law” modelÞ;

ð8Þ

px

ρcr
¼ AΩx log

Ωx

Ω�
þ B

�
H
H0

�
2β

ð“logarithmic” modelÞ;

ð9Þ

where the dimensionless cosmological parameter Ωx is
defined as usual by the ratio among the dark energy density
and the critical density:

Ωx ¼
ρx
ρcr

¼ κ2ρx
3H2

0

; Ω� ¼
ρ�
ρcr

; ð10Þ

where the Hubble constant and the critical density are given
by H0 ¼ Hðt0Þ and ρcr ¼ 3H2

0=κ
2, respectively, while

the constant κ2 ≡ 8πG. In the logarithmic model (9) we
consider only the case α ¼ 1 because of too large number
of model parameters.
Then, by using the Einstein field equations, together with

the FLRW metric (1), the corresponding FLRW equations
are obtained:

H2 þ k
a2

¼ κ2

3
ρ; ð11Þ

2
ä
a
þH2 þ k

a2
¼ −κ2p; ð12Þ

where ρ ¼ P
ρi corresponds to (5). Recall that the con-

tinuity equation (6) can be retrieved by combining (11)
and (12), such that it is not an independent equation, as
usual in covariant theories. We can rewrite the FLRW
equations (11) and (12) in terms of the cosmological
parameters (10) as follows:

H2

H2
0

¼ Ω0
ma−3 þ ΩxðaÞ þ Ω0

ra−4 þ Ωka−2; ð13Þ

whereas the continuity equation (6) can be expressed as a
function of the scale factor instead of the cosmic time for
the models (8) and (9):

dΩx

dlna
¼
(−3½AΩα

xþBðH=H0Þ2β� ðpower-lawÞ;
−3

h
ΩxþAΩx log

Ωx
Ω�
þBðH=H0Þ2β

i
ðlogarithmicÞ:

ð14Þ

Here

Ω0
m ¼ ρ0m

ρcr
; Ω0

r ¼
ρ0r
ρcr

; Ωk ¼ −
k
H2

0

:

Hence, by solving the system of equations (13) and (14),
the cosmological evolution is obtained in terms of the scale
factor for some values of the free parameters, together with
the corresponding expressions for radiation and dust in
terms of the scale factor, given in Eq. (7).
In order to simplify the model and reduce the number of

free parameters, we are considering a flat FLRW universe,
such that the curvature is assumed to be zero and the
corresponding cosmological parameter leads to Ωk ¼ 0.
Moreover, we will also fix the cosmological parameter for
radiation density Ω0

r through the ratio among baryons and
radiation as provided by Planck [24]:

Xr ¼
ρ0r
ρ0m

¼ Ω0
r

Ω0
m
¼ 2.9656 × 10−4: ð15Þ

Since this value is rather small, the radiation density ρr is
assumed as negligible when fitting our models with SNe Ia,
HðzÞ and BAO observations in the range 0 < z ≤ 2.36, as
usual in most of the analysis of this kind. The component ρr
becomes important just at high redshifts, at which radiation
density turns out essential to deal with the corresponding
CMB observational data for redshifts z ≃ 1000.
Hence, by setting the spatial curvature to be zero Ωk ¼ 0

and by fixing the radiation-matter ratio (15), the free
parameters for both models (8) and (9) turn out to be

Ω0
m; A; α; B; β; H0 ðpower-law modelÞ;

Ω0
m; A; B; β;Ω�; H0 ðlogarithmic modelÞ: ð16Þ

Note that the large number of parameters Np is a lack of
strength for any model in comparison with other cosmo-
logical scenarios, as the ΛCDMmodel, since the increasing
number of free parameter may lead to a loss of information
and to weaker constraints on the free parameters, which
may flag the corresponding theoretical model from the
point of view of information criteria [29,30]. However, we
consider the Hubble constant H0 as a nuisance parameter
and reduce the effective number to Np ¼ 5. In addition, we
will also show that the power-law model (8) with α ¼ 1
provides similar fits and errors as the case when α is
considered as a free parameter, which together with the low
correlation among the parameters gives reliable results and
constraints on the models.

III. OBSERVATIONAL DATA

Let us introduce now the data that will be used to test and
compare the models (8) and (9). These sets of data include
the largest recent catalog of type Ia supernovae (SNe Ia),
the so-called Pantheon sample [22], BAO data [23,31],
estimations of the Hubble parameter HðzÞ [32] and
parameters from the CMB radiation [33,34].
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Here we use the technique of minimizing the likelihood,
where we assume a Gaussian distribution for the free
parameters:

L ∝ e−χ
2=2: ð17Þ

The Pantheon SNe Ia catalog [22] includes nSN ¼ 1048
data points with redshifts 0 < zi ≤ 2.26 and their corre-
sponding distance moduli μobsi . Then, the theoretical
models are compared with the data by calculating the
theoretical value of the distance modulus μthðz;Ω0

m; λiÞ for
each set of the free parameters:

μthðz;Ω0
m; λiÞ ¼ 5log10

DLðz;Ω0
m; λiÞ

10 pc
; ð18Þ

where λi are the free parameters of the theoretical model
and DLðz;Ω0

m; λiÞ is the free luminosity distance, which is
given by

DLðz;Ω0
m; λiÞ ¼ cð1þ zÞ

Z
z

0

dz̃
Hðz̃Þ : ð19Þ

Hence, the χ2 function yields

χ2SNðΩ0
m; A;…Þ ¼ min

H0

X1048
i;j¼1

ΔμiðC−1
SNÞijΔμj;

Δμi ¼ μthðzi;Ω0
m;…Þ − μobsi : ð20Þ

Here CSN is the 1048 × 1048 covariance matrix [22]. For
any set of the model parameters (16) we solve the system of
equations provided in (13) and (14), obtaining the Hubble
parameter HðzÞ and consequently the luminosity distances
(19) and the distance moduli (18). We also marginalize the
χ2SN function over the nuisance parameter H0 [18–21].
BAOs are provided by the analysis of galaxy clustering

and the following two magnitudes can be compared with
the observational data [23]:

dzðzÞ ¼
rsðzdÞ
DVðzÞ

; AðzÞ ¼ H0

ffiffiffiffiffiffiffi
Ω0

m

p
cz

DVðzÞ; ð21Þ

where

DVðzÞ¼
�
czD2

MðzÞ
HðzÞ

�
1=3

; DMðzÞ¼
DLðzÞ
1þz

¼c
Z

z

0

dz̃
Hðz̃Þ;

whereas rsðzdÞ is the comoving sound horizon at the end of
the baryon drag era zd, which corresponds to a peak in the
correlation function of the galaxy distribution.
As in previous works (see Refs. [18,19]), here we use 17

BAO data points for dzðzÞ and seven data points for AðzÞ
from Ref. [31] estimated for galaxy clusters with mean
redshifts z ¼ zi and represented in Table I.

For the sound horizon rsðzdÞ we use the fitting
formula [18–20]

rsðzdÞ ¼
104.57 Mpc

h
; h ¼ H0

100 km=ðsMpcÞ ; ð22Þ

which shows a dependence on the Hubble parameter
rsðzdÞ ∼H−1

0 and leaves dzðzÞ Hubble free. Then, the χ2

function for the BAO fits (21) is

χ2BAOðΩ0
m;A;…Þ¼Δd ·C−1

d ðΔdÞTþΔA ·C−1
A ðΔAÞT; ð23Þ

where Δd and ΔA are vector columns with elements
Δdi¼dobsz ðziÞ−dthz ðzi;…Þ; ΔAi ¼ AobsðziÞ − Athðzi;…Þ,
and Cd and CA are the covariance matrices for correlated
BAO data [31] described in Ref. [20].
In addition, the Hubble parameterHðzÞ data are given by

NH ¼ 31 data points HobsðziÞ from Ref. [32] for redshifts
0 < z < 2, whose χ2 function yields: χ2 function

χ2H ¼ min
H0

XNH

i¼1

�
HobsðziÞ −Hthðzi;α;…Þ

σH;i

�
2

: ð24Þ

Here we use only data [32] estimated by the method of
differential ages (cosmic chronometers), where the values
for the Hubble parameter at different redshifts,

HðzÞ ¼ _a
a
¼ −

1

1þ z
dz
dt

≃ −
1

1þ z
Δz
Δt

;

are estimated at differential ages Δt of galaxy clusters
with certain differences Δz of redshifts. These estimations
are not correlated with the BAO data points [31] at the
level (23).

TABLE I. BAO data dzðzÞ ¼ rsðzdÞ=DVðzÞ and AðzÞ (21).
z dzðzÞ σd AðzÞ σA Survey

0.106 0.336 0.015 0.526 0.028 6dFGS
0.15 0.2232 0.0084 � � � � � � SDSS DR7
0.20 0.1905 0.0061 0.488 0.016 SDSS DR7
0.275 0.1390 0.0037 � � � � � � SDSS DR7
0.278 0.1394 0.0049 � � � � � � SDSS DR7
0.314 0.1239 0.0033 � � � � � � SDSS LRG
0.32 0.1181 0.0026 � � � � � � BOSS DR11
0.35 0.1097 0.0036 0.484 0.016 SDSS DR7
0.35 0.1126 0.0022 � � � � � � SDSS DR7
0.35 0.1161 0.0146 � � � � � � SDSS DR7
0.44 0.0916 0.0071 0.474 0.034 WiggleZ
0.57 0.0739 0.0043 0.436 0.017 SDSS DR9
0.57 0.0726 0.0014 � � � � � � SDSS DR11
0.60 0.0726 0.0034 0.442 0.020 WiggleZ
0.73 0.0592 0.0032 0.424 0.021 WiggleZ
2.34 0.0320 0.0021 � � � � � � BOSS DR11
2.36 0.0329 0.0017 � � � � � � BOSS DR11
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Finally, we will also use the CMB parameters for testing
our models. Unlike the datasets coming from SNe Ia, BAO
and HðzÞ observations, measured for 0 < z ≤ 2.36, the
CMB observational parameters are related with the photon-
decoupling epoch z� ¼ 1089.90� 0.25 [24,26]. Hence,
as we are dealing with high redshifts here, the radiation
density is not negligible and enters in the equations through
the radiation-matter ratio Xr ¼ ρ0r=ρ0m in the form (15). We
use the CMB parameters released by Planck [24,25] in the
following form [33,34]:

x ¼ ðR;lA;ωbÞ; R ¼
ffiffiffiffiffiffiffi
Ω0

m

q
H0DMðz�Þ

c
;

lA ¼ πDMðz�Þ
rsðz�Þ

; ωb ¼ Ω0
bh

2; ð25Þ

where the comoving sound horizon rs at z� is calculated as

rsðzÞ ¼
1ffiffiffi
3

p
Z

1=ð1þzÞ

0

da

a2HðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½3Ω0

b=ð4Ω0
rÞ�a

q :

The current baryon fractionΩ0
b is considered as the nuisance

parameter and it is marginalized over ωb ¼ Ω0
bh

2 and H0 in
the χ2CMB function

χ2CMB ¼ min
H0;ωb

Δx · C−1
CMBðΔxÞT; Δx ¼ x − xPl: ð26Þ

The following data are provided in Ref. [34] from the Planck
Collaboration [25]:

xPl ¼ ðRPl;lPl
A ;ω

Pl
b Þ

¼ ð1.7448� 0.0054; 301.46� 0.094;

0.0224� 0.00017Þ; ð27Þ

which are given with free amplitude for the lensing power
spectrum. The covariance matrix CCMB ¼ kC̃ijσiσjk, C̃12 ¼
0.53, C̃13 ¼ −0.73, C̃23 ¼ −0.42 and other details are
described in Ref. [34] and also in Refs. [18,19].

IV. RESULTS AND DISCUSSION

Here the above SNe Ia, BAO, HðzÞ and CMB datasets
are used to constrain the models (8) and (9) described in
Sec. II, through the analysis of the parameter space (16) in
order to obtain the best fit and the confidence regions for
each of the free parameters. The CMB observations (26)
with small errors σi (27) produce the most strict limitations
in the parameter space in comparison with other data. For
that reason, we analyze separately the χ2 function obtained
after fitting the free parameters with SNe Ia, BAO andHðzÞ
data at redshifts 0 < z ≤ 2.36 [18,19]:

χ2Σ3 ¼ χ2SN þ χ2H þ χ2BAO; ð28Þ

whereas we estimate the total χ2tot separately:

χ2tot ¼ χ2SN þ χ2H þ χ2BAO þ χ2CMB; ð29Þ

where χ2CMB corresponds to redshifts near z� ≃ 1100.
Let us start by calculating the χ2Σ3 function (28) for the

power-law model (8), with the free parameters as given
in (16). The results are shown in Fig. 1; particularly,
the A − α contour plot is depicted in the top-left panel,
where we have minimized the χ2 function over the
other parameters and have calculated the difference among
the absolute minimum and its variation as a function
of A − α:

Δχ2Σ3ðA; αÞ ¼ min
Ω0

m;B;β
χ2Σ3 −mabs

Σ3 :

Heremabs
Σ3 ¼ minallχ2Σ3 is the absolute minimum of χ2Σ3 over

all its parameters A, α, Ω0
m, B, and β which in this case is

mabs
Σ3 ≃ 1085.35. In the top-left panel of Fig. 1 we depict the

two-parameter distribution Δχ2Σ3ðA; αÞ, where blue lines
represents the values of Δχ2Σ3, as indicated in the figure.
The dependence of min χ2Σ3 on A and α is very weak and the
whole depicted area in the A − α plane lies in the 1σ
confidence region. In the bottom panels, this weak depend-
ence is also shown for the corresponding one-parameter
distributions, where

min χ2Σ3ðαÞ≡ χ2Σ3ðαÞ ¼ min
A;Ω0

m;B;β
χ2Σ3 ð30Þ

is minimized over all the other parameters.
As shown in Fig. 1, the minimum value for Δχ2Σ3 in the

A − α plane lies within the area with large negative values
of A and α ∼ 1 (see the top-left panel), so for convenience,
we can fix the value for α without loss of information and
effectiveness when minimizing χ2 for this model:

α ¼ 1: ð31Þ

Indeed, the minimum for χ2Σ3 under the assumption (31) is
only a bit larger than the absolute minimum:

min
Ω0

m;A;B;β
χ2Σ3

���
α¼1

≃ 1085.36;

mabs
Σ3 ≡ min

Ω0
m;A;α;B;β

χ2Σ3 ≃ 1085.35:

By fixing the value for α as given in (31), the remaining free
parameters are (recall we have marginalized over H0)

Ω0
m; A; B; β; ð32Þ

and its EOS (8) is reduced to
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px

ρcr
¼ ðA − 1ÞΩx þ B

�
H
H0

�
2β

: ð33Þ

The top-right panel of Fig. 1 shows theΩ0
m − B plane of the

two-parameter distribution min χ2Σ3ðΩ0
m; BÞ (minimized

over the other parameters) for the model (8) for a varying
α (blue filled contours) and for the restricted case α ¼ 1

(green contours). One can see that the contours of 1σ, 2σ
and 3σ confidence regions for both cases do not differ
much. This similarity is the most striking, when we
compare the one-parameter distributions minotherχ2Σ3ðΩ0

mÞ
in the panel below: the corresponding green and blue dash-
dotted lines practically coincide. The ΛCDM model is also
depicted for comparison with our model (the black dashed
line). Note that the power-law model (8) transforms into the
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FIG. 1. Contour plots and statistical distributions for the power-law model (8). The top panels show the contour plots filled in blue for
the corresponding confidence regions: the top-left panel depicts the A − α plane, where the blue regions indicate the values of
Δχ2Σ3 ¼ χ2Σ3ðA; αÞ −mabs
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m − B plane. Green lines refer to the contour plots when setting α ¼ 1. In the bottom panels we present the corresponding one-
parameter distributions min χ2Σ3 for the parameters α, A,Ω0

m and B, including the case of varying α (blue dash-dotted lines) and the fixed
one case α ¼ 1 (31) (green lines). The ΛCDM model is also depicted, represented by the black dashed line at the Ω0

m plot.
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ΛCDMmodel for Ωx ¼ const ¼ ΩΛ, which corresponds to
the particular case A ¼ B ¼ 0. In addition, the difference
among the cases α ¼ 1 and α ∈ R becomes more remark-
able in the bottom-right panel, where min χ2Σ3 depends on
B. As shown in Fig. 1 and Table II, both parameters fA; Bg
are unbounded, since the function χ2Σ3 extends its 1σ region
up to A → −∞ and B → þ∞, respectively.
Hence, the model (33) with α ¼ 1 provides effectively

the same results as the general model (8) with α ∈ R, since
there is no correlation among α and the other parameters,
as shown in Fig. 1. From here on, we assume α ¼ 1. In
addition, motivated by the behavior of χ2Σ3 in the parameter
space, we redefine the parameters as A� and B�, which are
related to A and B by

A ¼ sinhA�; B ¼ sinhB�: ð34Þ

In Fig. 2 we investigate in detail the EOS (33) with α ¼ 1 in
the Ω0

m − A�, Ω0
m − B� and β − B� planes including the

CMB data (26) and (27): the corresponding 1σ, 2σ, 3σ
contour plots (top panels) are depicted for the function (29)
χ2tot ¼ χ2Σ3 þ χ2CMB by red lines, and the red diamonds show
the local minimum points of χ2tot. Green filled contours and
green dash-dotted lines in all panels correspond to the
function χ2Σ3 (for the Ω0

m − B� plane these contours were
shown in Fig. 1).
As mentioned above, the CMB observational data, given

in (26) and (27), impose the most severe constraints,
specially for the parameter Ω0

m, as obtained after analyzing
the corresponding χ2tot ¼ χ2Σ3 þ χ2CMB (see Fig. 2). This is
connected to the observational data R ¼ 1.7448� 0.0054,
which is proportional to

ffiffiffiffiffiffiffi
Ω0

m

p
. One can see that the

function (29) has the additional local minimum at
Ω0

m ≃ 0.282, A� ≃ −0.55, and B� ≃ 0.38 but is not the
global minimum as shown in Fig. 2.
In the middle row of Fig. 2, the one-parameter distri-

butions of the type χ2Σ3ðpjÞ and χ2totðpjÞ are depicted for the
four parameters pj ¼ Ω0

m, A�, B� and β. The corresponding
likelihoods LΣ3ðpjÞ and LtotðpjÞ are shown in the bottom
panels. These functions are obtained for Ltot as follows:

χ2totðpjÞ ¼ min
other pk

χ2totðp1;…Þ;

LtotðpjÞ ¼ exp

�
−
χ2totðpjÞ −mabs

tot

2

�
;

where the function is marginalized over all the other free
parameters, mabs

tot being the absolute minimum for χ2tot.
In the middle-left and bottom-left panels we compare

these results with the corresponding distributions for the
ΛCDM model for χ2Σ3ðΩ0

mÞ, LΣ3ðΩ0
mÞ (black dashed lines)

and for χ2totðΩ0
mÞ, LtotðΩ0

mÞ (brown lines). One can see that
for the model (33) with α ¼ 1, the absolute minimum for
χ2Σ3 is essentially lower than the corresponding value for
the ΛCDM model, but it is not true for χ2tot, when including
the CMB data. In addition, we should also mention that the
optimal values for A and B go to −∞ andþ∞, respectively.
Note that the domain B > 0 corresponds to negative
viscosity ζ in Eq. (2).
The values for the absolute minimum and the best fits

(with 1σ errors) of the free model parameters for the model
(33) are given in Table II. The results of the logarithmic
model (9) are also included. The best fits and 1σ errors are
calculated via the distributions χ2ðpjÞ or LðpjÞ.
On the other hand, the logarithmic model (9) behaves

in another way and shows better results (see Table II and
Fig. 3). The minimums for χ2Σ3 and χ2tot are essentially
smaller than in the ΛCDM model and the power-
law case. Indeed, in Table II we can compare, for
example, min χ2tot ≃ 1084.05 for the logarithmic model
with the corresponding ΛCDM minimum 1089.03.
Moreover, unlike the power-law scenario, these mini-
mums in the logarithmic model (9) are achieved at finite
values of A and B with B < 0, corresponding to positive
viscosity ζ.
Figure 3 shows in detail the contour plots for the

Ωm − B�, β� − B�, and Ω� − A� planes and the one-param-
eter distributions for the logarithmic model (9). The points
of minimum are labeled as blue circles for χ2Σ3 and as red
diamonds for χ2tot. These functions behave nontrivially in
some domains of the parameter space as can be seen in

TABLE II. Best fits for the power-law model (33) with α ¼ 1 and the logarithmic model (9), when considering χ2Σ3 ¼ χ2SN þ χ2BAO þ
χ2H [the Pantheon SNe Ia, BAO and HðzÞ data] and for χ2tot ¼ χ2Σ3 þ χ2CMB (including the CMB data) in comparison with the flat ΛCDM
model. The table also shows the min χ2 and the 1σ errors for the model parameters. Here β ¼ sinhðβ�Þ, similar to the relations (34).

Model Data Ω0
m A� B� β� Ω� min χ2=DOF

Power-law χ2Σ3 0.2808þ0.0104
−0.0102 −8.8þ5.85

−∞ 7.94þ∞
−5.34 0.092þ0.108

−0.112 � � � 1085.36=1099

Logarithmic χ2Σ3 0.280þ0.008
−0.009 −3.22þ0.99

−0.66 −0.50þ0.265
−0.26 −4.68þ1.24

−0.95 −0.405þ0.062
−0.125 1083.20=1098

ΛCDM χ2Σ3 0.286þ0.0089
−0.009 � � � � � � � � � � � � 1087.25=1102

Power-law χ2tot 0.2815þ0.0019
−0.0018 −9.2þ5.04

−∞ 8.15þ∞
−4.75 −0.068þ0.068

−0.082 � � � 1088.98=1102

Logarithmic χ2tot 0.2815þ0.0012
−0.0009 −3.35þ0.84

−0.65 −0.45þ0.198
−0.235 −4.44þ1.16

−0.89 −0.41þ0.037
−0.08 1084.05=1101

ΛCDM χ2tot 0.2807þ0.0003
−0.0004 � � � � � � � � � � � � 1089.03=1105
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Fig. 3. In particular, in the contour plots for β� − B� and for
Ω� − A� (the top-center and top-right panels) the borders of
the 1σ and 2σ confidence region are not regular, whereas
the 3σ domain lies beyond. These unusual behavior can be
also seen in the corresponding one-parameter distributions
minotherχ2ðpiÞ of Fig. 3; particularly, these functions
decrease at large negative values of B� and A� and positive
values of B�. However, here the local minimum coincide

with the global minimum for the χ2 function, unlike the
power-law model.
Note that the narrow peak of χ2tot for the ΛCDMmodel in

the bottom-left panels of Figs. 2 and 3 is connected with the
CMB parameter R ∼

ffiffiffiffiffiffiffi
Ω0

m

p
in Eqs. (26) and (27) and with

the number of free parameters for the flat ΛCDM model,
that is, Ω0

m and the nuisance parameter H0, as shown in the
FLRW equation:
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H2=H2
0 ¼ Ω0

ma−3 þ 1 −Ω0
m:

Nevertheless, the logarithmic model shows a good behavior
in comparison to ΛCDM, as shown in Fig. 3 and Table II.

V. CONCLUSIONS

In this paper we have considered two cosmological
scenarios where dark energy is assumed to be described
by a viscous fluid, through bulk viscosity, which leads to an
effective pressure that can explain the late-time accelerating
expansion. For that, and inspired by some hydrodynamics
considerations, we have explored two different EOS for

viscous dark energy: the power-law model (8), precisely, its
variant (33) with α ¼ 1, and the logarithmic model (9). By
using data from supernovae Ia, BAO, HðzÞ measurements
and CMB, we have analyzed the viability of these scenarios
and compared to the ΛCDM model.
Our analysis shows that the power-law model (33)

behaves well, also in comparison with the ΛCDM model,
when considering the restricted set of observational data
that excludes CMB data, as depicted in Figs. 1 and 2 and
summarized in Table II. Actually, the model (33) provides a
slightly lower minimum when considering χ2Σ3 than the
ΛCDM model, but higher errors for Ωm and weak
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constraints on the free parameters fA;Bg, since they show
no bound from above or below, which may lead to a
negative viscosity, as given in (2); particularly, the model
(33) achieves the best χ2 values at the nonphysical domain
B → þ∞ that corresponds to large negative viscosity ζ in
Eq. (2). The other free parameter of themodel α is very well
constrained at α ∼ 1 and shows no correlations with the
other free parameters, such that we have assumed α ¼ 1 for
a great part of our calculations, as depicted in Figs. 1 and 2.
However, when assuming CMB data, the model (33)
provides larger values for the minimum of χ2tot but similar
to the one given by ΛCDM model. This means that the
viscous term as a power law behaves well at late times but
shows some issues when increasing the covered region of
the cosmological evolution. In addition, the same problems
with the parameters fA;Bg remain in this case (see
Table II), and one cannot obtain better constraints for both.
Unlike the power-law model (33), the logarithmic

model (9) has no these drawbacks: it provides essentially
lower values for min χ2Σ3 and min χ2tot, which are achieved at
reasonable values of the free parameters, and the constraints
on each parameter arewell defined and limited (see Table II).
The values of the minimums for χ2 show that the model (9)
fits better every set of observational data, in comparison to
the power-law model and the ΛCDM model. However,
despite the contour plots and statistical distributions in Fig. 3
that show awell-defined 1σ region, the errors increase much
when one goes to confidence regions of upper σ, which may

be interpreted as some lack of information on the free
parameters. For instance, the analysis of χ2tot provides the
best value for B as B¼sinhB�¼−0.465þ0.21

−0.275, which corre-
sponds to positive optimal values of viscosity ζ, strongly
depending on H because of negative β, but if one increases
the confidence region, B may take values that lead to a
negative viscosity and unconstrainedmodel. In any case, the
logarithmic model (9) seems to provide a very good
description of the cosmological evolution at any redshifts,
that is, also when including CMB data.
Hence, we have explored the existence of a viscous dark

energy fluid by using the last observational data coming
from different sources and by considering some theoreti-
cal models for the viscosity terms that play a role in other
areas of hydrodynamics. Our results show that the right
viscosity term can provide better fits in comparison to
other models, such that one should keep analyzing this
possibility by going beyond the analysis of the cosmo-
logical background evolution.
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