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In this note a one-dimensional band model is proposed based on a periodic Dirac comb having a periodic 
mass distribution m(x). The mass function is represented as a Hermitian, non-local separable operator. 
Two specific cases–a constant mass model and a sinusoidal mass model–are examined. The lowest 
electron and positron bands for the constant mass case are similar to those for the standard relativistic 
Kronig-Penney model, suggesting that non-locality has little influence. The results for the sinusoidal case 
are consistent with the expectation that at low wavenumber an electron “feels” it has an average constant 
mass, but at high wave number, the particle “sees” the periodic mass variation and the band is distorted.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The desire for considering spatially dependent electron masses 
in solid state systems was expressed as long ago as the early 
1940’s [1] and was made explicit through the work of Wannier, 
Slater, Luttinger and Kohn [2] with the development of effective 
mass theory in the early post-war years. Gora and Williams [3]
were, it seems, the first to adapt the kinetic energy operator to 
this situation, but after noting that their original expression was 
not Hermitian, they proposed the non-relativistic kinetic energy 
operator

K = − 1

4h̄2
[m(�r)−1/2∇ + ∇m(�r)−1/2] (1)

which was then derived by others from various physical perspec-
tives [4]. O. Von Roos [4] subsequently pointed out that (1) was 
not unique, being just a special case of

K = − h̄2

4
[ma∇mb∇mc + mc∇mb∇ma], a + b + c = −1. (2)

On the basis of Bargmann’s theorem [5] he also argued that (2)
was unphysical and proved explicitly that the ambiguity was re-
lated to a lack of Galilean invariance, i.e. observers in different 
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inertial frames would measure different results for physical prop-
erties of such a system. Thus, Von Roos maintained that the very 
concept of position dependent mass should be avoided as was 
possible by returning to more fundamental principles. Neverthe-
less the position dependent mass (PDM) concept has been popular 
and (2) (usually with c = a) has been the basis of a plethora of 
calculations over the last 30 years. A representative set of papers 
where PDM is applied to various simple quantum systems, both 
non-relativistic [6–9] and relativistic [10–18].

In the relativistic case, though Bargmann’s theorem, that phys-
ical wave packets cannot be constructed from components corre-
sponding to different masses, still cannot be avoided, at least it 
can be argued that non-uniqueness is less of a problem since the 
mass in the Dirac equation occurs simply as a scalar operator, sim-
ilar to the potential [16–18]. The aim here is to take advantage of 
this by introducing a class of exactly solvable relativistic Kronig-
Penney models (i.e. where the lattice potential is a periodic Dirac 
comb with amplitude v0) relative to a fixed frame where the mass 
is replaced by the non-local separable linear operator

m(x)ψ(x) = m0

N/2∑
l=−N/2

μ(x − la)

∞∫
−∞

dx′μ(x′ − la)ψ(x′), (3)

(a is the lattice spacing, N → ∞ the number of unit cells). As will 
be seen, to construct a particular model one need only specify the 
Fourier coefficients of μ(x), the mass profile in a unit cell. This 
note examines the case
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Fig. 1. Unit cell mass profile for b = .1,a = 5.

μ(x) = 1

2
[(1+b)+(1−b) cos(2πx/a)]θ(a/2−|x|), (0 ≤ b < 1)

(4)

illustrated in Fig. 1 for b = .1. For b = 1 the cosine component is 
eliminated and μ(x) = 1.

The Fourier coefficients for (4) are

μ̂n = 2
2π2(b + 1) − a2bk2

n

kn(4π2 − a2k2
n)

sin(kna/2) (5)

kn = k + Kn and Kn = 2πn/a is the n-th reciprocal lattice vector.
The constant mass case corresponds to b = 1.

We present the details of the calculation in the next section, 
followed by the numerical examination of the specific case (4); the 
results are discussed in the concluding section.

2. Calculation

The one-dimensional Dirac equation can be written

ih̄cφ′
1 = [E − m(x)c2 − V (x)]φ2(x) (6a)

ih̄cφ′
2 = [E + m(x)c2 − V (x)]φ1(x) (6b)

and after inserting the Bloch form of the wave function compo-
nents,

φ j(x) =
∑

n

C j
neiknx, (7)

where k is the crystal momentum (for simplicity we write kn =
k + Kn) one has∑

n

[h̄cknC1
n + EC2

n ]eikn x

=
∑
l,n

C2
n eiknla{v0δ(x − la) + u0μ(x − la)μ̂n} (8a)

∑
n

[h̄cknC2
n + EC1

n ]eikn x

=
∑
l,n

C1
n eiknla{v0δ(x − la) − u0μ(x − la)μ̂n} (8b)

where we write u0 = m0c2. For any integrable function g(x) define

ĝn =
∞∫

dx′eiknx′
g(x′). (9)
−∞
Next, we multiply each of (8a), (8b) by exp[−ikmx] and integrate 
over x, noting that

∞∫
−∞

dxei(kn−km)x = Naδn,m (10a)

∑
l

ei(kn−km)la = N (10b)

to find

h̄ckmC1
m + EC2

m = 1

a

∑
n

[C2
n [v0 + u0μ̂nμ̂

∗
m] (11a)

h̄ckmC2
m + EC1

m = 1

a

∑
n

[C1
n [v0 − u0μ̂nμ̂

∗
m] (11b)

These can be written

MC =
(

v0 D2 + u0d2μ̂
∗
m

v0 D1 − u0d1μ̂
∗
m

)
(12)

with

D j = 1

a

∑
n

C j
n, d j = 1

a

∑
n

C j
nμ̂n, (13a)

M =
(

h̄ckm E

E h̄ckm

)
, C =

(
C1

m

C2
m

)
. (13b)

Therefore, by matrix inversion

C1
m = 1

�m(k)
{h̄ckm[v0 D2 +u0d2μ̂

∗
m]− E[v0 D1 −u0d1μ̂

∗
m]} (14a)

C2
m = 1

�m(k)
{h̄ckm[v0 D1 − u0d1μ̂

∗
m] − E[v0 D2 + u0d2μ̂

∗
m]}

(14b)

where �m(k) = h̄2c2k2
m − E2. So, in terms of the quantities

Ar
1 =

∑
m

kr
m

�m(k)
, Ar

2 =
∑

m

kr
m|μ̂m|2
�m(k)

, Ar
3 =

∑
m

kr
mμ̂∗

m

�m(k)
(15)

one has

(1 + E v0 A0
1)D1 − h̄cv0 A1

1 D2 − Eu0 A0
3d1 − h̄cu0 A1

3d2 = 0

h̄cv0 A1
1 D1 − (1 + E v0 A0

1)D2 − h̄cu0 A1
3d1 − Eu0 A0

3d2 = 0

E v0 A0
3 D1 + h̄cv0 A1

3 D2 − (1 − Eu0 A0
3)d1 + h̄cu0 A1

2d2 = 0

h̄cv0 A1
3 D1 − E v0 A0

3 D2 + h̄cu0 A1
2d1 − (1 + Eu0 A0

2)d2 = 0

(16)

Consequently, the band structure is given by the roots E(k) of the 
4 × 4 determinant

D(k, η) =

∣∣∣∣∣∣∣∣∣

1 + E v0 A0
1 −h̄cv0 A1

1 −Eu0 A0
3 −h̄cu0 A1

3

−h̄cv0 A1
1 1 + E v0 A0

1 h̄cu0 A1
3 Eu0 A0

3

−E v0 A0
3 −h̄cv0 A1

3 1 − Eu0 A0
3 −h̄cu0 A1

2

−h̄cv0 A1
3 E v0 A0

3 −h̄cu0 A1
2 1 + Eu0 A0

2

∣∣∣∣∣∣∣∣∣
(17)

A word about units is appropriate here. Lengths are given in 
Bohr radii, a0 and we set h̄c = 1 so η = E/h̄c, v0 and u0 are all 
reciprocal lengths.

The six series Ar
i can be evaluated analytically; for example:

A0
1 = a

2h̄2c2aη

[
sin(aη)

cos(aη) − cos(ka)

]
(18a)

A1
1 = a

2h̄2c2

[
sin(ka)

cos(aη) − cos(ka)

]
(18b)
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Fig. 2. Lowest particle band: a = 1, b = .3 (lower curve), b = 1 (upper curve) v0 = 2, 
u0 = 1000.

Fig. 3. First excited particle band: a = 1, b = .3 (initially upper curve), b = 1 (lower 
curve) v0 = 2, u0 = 1000.

3. Numerical example

As a test case, we set: a = 1, v0 = 2, u0 = 1000 and b = 0.3. 
Since the ratio u0/v0 = 500 is relatively small, this model may be 
considered mildly relativistic. The choice a = 1, which was selected 
for convenience, means that the lattice is rather dense and may 
emphasize anomalies. For comparison, we also examine the con-
stant mass version: b = 1.

The energy levels for the lowest electron band in each case, 
were found by plotting the determinant (17), with k specified, as 
a function of η and recording the lowest positive zero. We note 
that there may be zeros corresponding to vanishing energy denom-
inators �m(k) = 0, i.e. free, zero-mass bands, which are spurious. 
Lengths are measured in Bohr radii and we have set h̄c = 1, so 
that energies have units of reciprocal length. For model (3) with 
b = 1, 0.3, the lowest band E0(k), is shown in Fig. 2. Both bands 
are continuous and roughly parabolic.

In Fig. 3 we show the next higher band for the two cases. Here 
again, that for b = 1 lies above the one for b = 0.3.

4. Discussion

Since in the constant mass case b = 1 the lowest band resem-
bles that for the ordinary relativistic Kronig-Penney model [19–21], 
it appears that the non-local nature of the mass produces no 
anomalies. However, at the edge of the BZ, k = π/a, the energy 
is driven toward zero, as indicated by a vertical line. The relative 
Fig. 4. Antiparticle band: a = 1, b = .3 (initially upper curve), b = 1 (initially lower 
curve) v0 = 2, u0 = 1000.

nature of the two band structures in Fig. 2 can be heuristically ex-
plained as follows: At low wave vector k, for the sinusoidal case 
the particle has long wave length and “senses” only tan average 
mass, so the bands nearly merge, but separate at higher k value 
where the particle wave length is small enough that the mass vari-
ation is detectable. In which case the energy is depressed. At the 
zone boundary the particle and mass wavelengths are in resonance 
and the particle velocity is reduced.

As pointed out in [18] the upper and lower components of 
the two-component spinor here are particle and anti-particle wave 
functions, resp. Hence the negative roots of (17) correspond to 
positron energies. The fundamental bands of the two cases con-
sidered here are shown in Fig. 4.

In conclusion, a version of the relativistic Kronig-Penney model 
has been constructed which may be suitable for exploring the ef-
fects of variation of effective masses in semiconductor structures. 
It incorporates the unusual replacement of the mass as a non-local 
operator, but this does not appear to introduce anomalies in the 
band structure where the mass has purely sinusoidal variation. In 
a future report we hope to consider the more usual case where 
the mass is constant but its value varies from cell to unit cell. Fi-
nally, it is worth pointing out that the model is easily extended to 
two and three dimensions.
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