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Resumo  

 

O ácido retinóico é uma molécula sinalizadora, sintetizada a partir da vitamina A, 

necessária para o correto desenvolvimento embrionário dos vertebrados, uma vez que regula 

a transcrição de genes essenciais durante vários processos da embriogénese. A relação entre a 

sua produção e degradação, respetivamente através das enzimas Raldh2 e Cyp26a1, leva a que 

a sua atividade sinalizadora ocorra de uma forma bastante específica quer em termos de dose, 

localização da sua atuação (tecido) ou quer em termos temporais. De facto, a alteração dos 

níveis de ácido retinóico durante o desenvolvimento embrionário pode ser letal ou dar origem 

a doenças congénitas (como por exemplo, spina bífida)1–6. 

Uma das etapas mais importantes na embriogénese dos vertebrados é a gastrulação. 

Durante esta, para que a formação dos três folhetos germinativos (que mais tarde irão dar 

origem a todos os tecidos e órgãos do organismo) possa ocorrer devidamente, é necessário um 

correto controlo da atividade sinalizadora mediada pelo ácido retinóico, que nesta fase do 

desenvolvimento é fundamentalmente fornecido por via materna (caso dos ratinhos), dado 

que alterações na sua degradação enzimática pelas Cyp26 podem resultar na morte do 

embrião. Tal ocorre uma vez que o ácido retinóico controla a expressão de Nodal (excesso de 

ácido retinóico provoca a indução ectópica de Nodal), proteína indispensável para que se dê o 

início da gastrulação através da formação da linha primitiva, decorrente da migração das 

células do epiblasto para a parte mais posterior do embrião7. Aparentemente a introdução de 

um transgene (T-streakCreERT) juntamente com o alelo repórter ROSA26R-β-gal em ratinhos 

mutantes para o gene Gdf11, produziu letalidade embrionária durante a gastrulação8. Após 

verificarmos que o efeito não era devido ao transgene por si próprio, mas sim possivelmente 

ao local onde este foi inserido no genoma de uma linha particular (#47), procurámos 

caracterizar molecularmente os embriões Gdf11-/-::T-streak-CreERT#47+/0 de forma a tentar 

encontrar a causa desta aparente letalidade. A alteração dos níveis de ácido retinóico 

observada nos embriões Gdf11-/- durante a transição entre a formação de tecidos do tronco e 

da cauda, fez-nos considerar a possibilidade de durante a gastrulação ocorrer uma alteração 

semelhante desses níveis, que combinada com possíveis efeitos do transgene pudesse resultar 

na morte dos referidos embriões. No entanto, as experiências realizadas não só não 

permitiram a identificação de qualquer problema durante a gastrulação, decorrente da 

mutação no gene Gdf11 e/ou do transgene T-streak-CreERT#47+/0, como demonstraram a 

correta formação da linha primitiva nos embriões Gdf11-/-::T-streak-CreERT#47+/0. Estudos 

adicionais mostraram ainda viabilidade dos embriões Gdf11-/-::T-streak-CreERT#47+/0 a E10.5. 

Uma possível explicação para este facto prende-se com a estratégia utilizada na genotipagem 

do alelo mutante de Gdf11, pois usava iniciadores desenhados para amplificar parte da cassete 

de neomicina (introduzida para criar a mutação nesse gene9) que também está presente no 

alelo repórter ROSA26-β-gal, que formava parte das experiências originais que levaram à nossa 

hipótese inicial. Assim sendo, é bastante provável que os erros cometidos na determinação do 

genótipo dos progenitores dos embriões Gdf11::ROSA26R-β-gal+/0::T-streakCreERT#47+/0, 

tenham levado a utilizar ratinhos Gdf11+/+ e não Gdf11+/- nos cruzamentos, criando a ilusão de 

uma ausência de embriões Gdf11-/- nestas ninhadas. De qualquer forma, relativamente à 

hipótese da alteração dos níveis de ácido retinóico nos mutantes Gdf11, foi possível concluir 
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que aparentemente essa alteração não se verifica durante a gastrulação, uma vez que a 

expressão tanto de Cyp26a1, como de Nodal permaneceram sem alterações. 

Após a gastrulação, nos vertebrados, dá-se primeiro a formação da cabeça (na parte 

mais anterior do embrião) e depois por um processo de extensão axial, no sentido anterior 

para posterior, é formado o pescoço, a seguir o tronco e por último a cauda. Apesar do 

desenvolvimento destas estruturas ser progressivo e de depender dos progenitores axiais, 

parece que a forma como estas diferentes partes do corpo são criadas é diferente10. Mutações 

nos genes T, Cdx e Wnt3a11–17 suportam esta teoria, segundo a qual a posição dos membros 

superiores e inferiores delimita os referidos blocos estruturais do embrião (cabeça/pescoço, 

tronco e cauda). Como referido anteriormente, o mecanismo segundo o qual ocorre a 

transição tronco-cauda já foi demonstrado pelo nosso laboratório10, mas a transição entre a 

formação da cabeça e do tronco ainda permanece por esclarecer. Curiosamente a mutação da 

enzima Raldh2, que leva à inexistência de ácido retinóico nos tecidos neurais e na mesoderme, 

leva à morte do embrião após o desenvolvimento ser interrompido ao nível dos membros 

anteriores18,19. Mas, se for administrado ácido retinóico até essa altura do desenvolvimento 

(~E8.25) o embrião é capaz de ultrapassar esse bloqueio e formar as seguintes estruturas 

(tronco e cauda)20. Esse facto fez-nos considerar a hipótese de que o ácido retinóico pode estar 

a controlar o mecanismo de transição entre a formação da cabeça e do tronco. Para identificar 

essa necessária mudança nos progenitores axiais, dependente do ácido retinóico, efetuámos 

uma análise transcriptómica comparativa a partir de ARN isolado das caudas de embriões “tipo 

selvagem” a E8.75/E9.0 (ou seja, onde a transição já foi efetuada e estão a ser criados os 

tecidos do tronco) e de embriões Raldh2-/- da mesma idade (nos quais esta transição encontra-

se bloqueada). Após análise dos resultados presentes na RNA-seq, foi selecionado um grupo de 

genes candidatos com base na grandeza da expressão diferencial observada entre embriões 

tipo selvagem e Raldh2-/-, e tendo em conta a sua significância e função biológica. Vários genes 

desse grupo (exemplo: Wnt3a, Dkk1 e Cav1) estão associados à sinalização Wnt, cuja atividade 

canónica (via -catenina) parece estar diminuída na cauda dos embriões mutantes. Esta 

observação é bastante interessante, tendo em conta a comparação dos fenótipos dos 

embriões mutantes para Wnt3 (que apresentam ausência total de mesoderme), com o 

fenótipo dos embriões Wnt3a-/- (em que o desenvolvimento apenas ocorre de forma normal 

até ao nível do membro anterior)21, sugerindo que a atividade do ácido retinóico possa ser 

responsável por esta mudança na sinalização Wnt (de depender de Wnt3 e passar a depender 

de Wnt3a). Sendo que esta hipótese contrasta com a observação de que a expressão de 

Wnt3a parece estar aumentada na cauda dos mutantes22, é possível que a existência de 

regulação diferencial dos vários componentes da sinalização Wnt nos embriões Raldh2-/- possa 

resultar na incapacidade dos progenitores de responder apropriadamente a Wnt3a, ocorrendo 

dessa forma a inibição da sinalização canónica de Wnt. Por esse motivo, através de hibridação 

in situ procurámos observar a expressão de alguns desses genes envolvidos na sinalização Wnt 

e complementámos esses estudos com uma abordagem de sobre-expressão através da 

utilização de transgénicos (onde o gene avaliado foi associado ao promotor de Cdx2 que 

expressa nos progenitores do eixo). Estudos similares foram também feitos com outros genes 

não associados à sinalização Wnt (Mesp1 e Fgf4). No entanto as nossas experiências não 

permitiram determinar o mecanismo inerente à mudança nos progenitores, necessária para 

que o embrião termine de criar tecidos da cabeça e inicie a produção de tecidos do tronco. 
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Ainda sobre a forma como a atividade do ácido retinóico influência os progenitores axiais, 

através de hibridação in situ, confirmámos que na mesoderme pré-somítica, a área onde tanto 

T como Sox2 são expressos é menor nos embriões Raldh2-/-. Em experiências preliminares foi 

possível observar, através de imunofluorescência, a existência de células que expressam T e 

Sox2 (apesar de não ter sido possível contabilizá-las), indicando dessa forma a presença dos 

progenitores axiais nos embriões Raldh2-/-. Por último, surpreendentemente ao que está 

publicado, verificámos que em alguns embriões Raldh2-/- é possível observar umas pequenas 

protuberâncias onde Tbx5 (marcador da indução dos membros anteriores) encontra-se 

expresso mais tarde no desenvolvimento (do que aquilo que seria suposto) e em menor 

quantidade. Por isso, considerando o fenótipo decorrente da mutação de Cyp26a1 (onde 

ocorre uma transformação homeótica da vertebra cervical C5 para C6 e da C7 para uma 

vertebra torácica)23, é possível que o ácido retinóico seja crucial durante este período do 

desenvolvimento, definindo o tempo em que ocorre a transição entre a formação da cabeça 

(pescoço) e do tronco no embrião. Apesar desta hipótese necessitar de uma validação 

experimental, conectando a transição cabeça-tronco e a indução dos membros anteriores, 

todas as evidências apontam no sentido de que a atividade do ácido retinóico nos progenitores 

axiais é apenas necessária durante a transição cabeça-tronco (e não durante todo o processo 

de extensão axial) sendo depois restringida, pela Cyp26a1, a zonas mais anteriores do 

embrião24. 

 

 

 

  

Palavras-chave  
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Abstract 

 

Retinoic acid (RA) is a signalling molecule, derived from vitamin A, necessary for proper 

vertebrate embryonic development. It acts in a tissue, time and dose specific manner, shaping 

the embryo through the regulation of several master transcription factors. Alterations in RA 

levels during embryonic development are known to cause several problems, including 

embryonic lethality2. 

During gastrulation, the formation of the three germ layers requires balanced 

interaction between RA and Cyp26 molecules, which is crucial for Nodal expression7. 

Interestingly, in Mallo’s lab, embryos carrying a transgene (T-streakCreERT), the cre reporter 

allele ROSA26R-β-gal, and a total inactivation of Gdf11, seemed to die during this stage8. 

Considering the interaction between Gdf11 and Cyp26a125, we hypothesized that the 

transgene, together with Gdf11 might have affected RA signalling. However our experiments 

failed to find any indication of patterning problems that could justify the early lethality that 

was initially observed. Additional analyses indicate that the original phenotype might have 

resulted from incorrect genotyping of the parent lines. Also, we could conclude that despite 

what happens during the trunk to tail transition in Gdf11-/-, in these mutants RA signalling 

seems not to be affected during gastrulation. 

Embryos lacking RA (Raldh2-/-) become truncated at the forelimb level19. Since Raldh2 

mutant embryos exposed to acute RA treatments at E8.25 acquire trunk and tail structures20 

we concluded that RA signalling controls the mechanism regulating the head to trunk 

transition. To understand this process we performed a comparative transcriptomic analysis 

between tails of Raldh2-/- and wild type embryos. So far, we could not elucidate the 

mechanism for this transition but our evidence suggests that it possibly involves Wnt 

signalling. Also our experiments, concomitantly with data regarding Cyp26a123, seem to 

indicate that RA activity in the axial progenitors is only necessary during this transition, thus 

setting the time at which it occurs. 

 

 

 

  

Keywords 
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General Introduction  

 

I - Retinoic Acid 

Retinoic acid (RA) is a signalling molecule, derived from vitamin A (retinol), necessary 

for proper embryonic development. Once retinol is inside the cell it is converted by retinol 

dehydrogenases (Rdh enzymes) into retinaldehyde, from where RA is synthesized through 

retinaldehyde dehydrogenases (Raldh enzymes). Endogenously produced or exogenous RA 

then binds to specific retinoic acid receptors, which interact with retinoic acid responsive 

elements (RAREs) in the genome, in order to activate the transcription of target genes (Fig.1). 

Regarding these target genes, RA is known to regulate several master transcription factors 

necessary for key processes during formation of the vertebrate body (e.g. gastrulation and 

axial elongation). RA is also degraded by cytochrome P450 enzymes (e.g. Cyp26a1), which 

limits RA activity in a tissue, time and dose specific manner1–3. 

 

 

 

Alterations in RA signalling can produce a variety of problems during embryonic 

development, ranging from lethality to congenital spinal deformities in vertebrates (including 

spina bifida)4–6. Further below I will discuss several stages of vertebrate embryonic 

development to help better understanding how RA activity shapes the vertebrate embryo.  

 

Fig. 1 – Summary of the retinoic acid signalling pathway, representing the activity of 

exogenous or intracellularly-produced RA as a transcriptional activator of gene expression. (From Rhinn 

and Dollé, 2012) 
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II - Vertebrate embryonic development – the mouse case 

Vertebrates display a large diversity of body shapes and sizes. They are formed 

through multiple tightly regulated and interdependent morphogenetic events during 

embryonic development. Despite the gross architectural differences observed early in 

development across vertebrate species, the fundamental principles of vertebrate embryonic 

development are maintained throughout vertebrate phylogeny (e.g. gastrulation, 

somitogenesis and axial extension). However, the environment where embryonic development 

occurs represents one of the main differences among species; for instance, birds develop 

inside independent eggs, whereas mammals develop inside the progenitor uterus. I will now 

focus on mammalian embryonic development, using the mouse embryo as example26,27. 

 

II.a - From a fertilized egg to the gastrulating embryo 

After fertilization, the egg undergoes cell divisions reaching the eight-cell stage, when 

apical-basal polarity is generated through a process known as compaction, forming a solid 

mass called morula27,28. Then the compacted embryo undergoes additional cleavages and cell 

fate decisions, eventually reaching the blastocyst stage27,28. At this stage it is possible to 

distinguish two different cell compartments, the trophectoderm (TE) and the inner cell mass 

(ICM). Cells from the TE will be necessary for implantation (which occurs around embryonic 

day (E) 4.5) and they will give rise to important extraembryonic tissues. The ICM contains 

pluripotent cells that undergo a second lineage separation, driven by Fgf signalling, to produce 

the visceral endoderm (positive for Gata4/6) and the epiblast (expressing Nanog and Oct3/4), 

which will give rise to the embryo proper27–29. Then, the epiblast changes morphologically to 

produce the so-called “egg cylinder” at around E5.5. At this stage the first signs of an AP axis 

are evident with the formation of the anterior visceral endoderm (AVE) (expressing Nodal and 

Wnt inhibitors). The AVE derives from the distal visceral endoderm (DVE) that migrates to the 

prospective anterior side of the embryo, shortly after being induced at the distal end of the 

embryo27–31. The molecular mechanism controlling the AP patterning of the embryo at this 

stage depends on interactions between β-catenin and Cripto. Other members of the Wnt and 

Nodal pathways, as well as Fgfs, are also involved in this important event27,28,32. Genetic 

experiments in the mouse and grafting experiments using other vertebrate model organisms 

showed that the AVE is involved in two main processes: the production of head structures later 

in the embryo and the induction/control of primitive streak (PS) formation in the opposite side 

of the egg cylinder, which will break the radial symmetry in the embryo and marks the onset of 

gastrulation27,30. 

 

II.b – The gastrulating embryo: formation of the primitive streak 

 Starting at E6.0 the mouse embryo undergoes a process called gastrulation. In this 

process, several cell movements rearrange the embryo to form the three germ layers 

(ectoderm, mesoderm and endoderm) that will eventually give rise to the different tissues and 

organs of the vertebrate body27,30. Maternally provided retinoic acid plays an important role at 

this stage by controlling Nodal expression in the epiblast. In particular, it has been shown that 
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when RA activity is not correctly buffered by Cyp26 enzymes, gastrulation fails7. Nodal is a 

protein belonging to the transforming growth factor β (Tgfβ) family responsible for sorting  

epiblast cells towards the posterior part of the embryo to generate the PS 33,34. Wnt3-activated 

canonical Wnt pathway is also required for PS induction/maintenance and for the 

transcriptional activation of Brachyury (T) in the newly formed mesoderm27,35–39. PS induction 

requires expression of Wnt and Nodal inhibitors from the AVE to concentrate Nodal and Wnt 

signalling in the posterior epiblast. Accordingly, loss of these inhibitors (e.g. Cerl1 or Lefty1) 

resulted in the production of ectopic/enlarged PS27. Wnt/β-catenin signalling is also necessary 

for the maintenance of Nodal expression in the epiblast through a feedback loop involving 

Nodal, Bmp4 and Wnt340. Epiblast cells in the PS will then undergo an epithelial to 

mesenchymal transition and ingress through the PS. These mesenchymal cells will give rise to 

the mesoderm and definitive endoderm27,40. This process also requires Fgf signalling (e.g. Fgf8) 

as its inactivation resulted in an accumulation of cells in the epiblast41. Epiblast cells located 

anterior to the newly formed PS are not affected by PS activity and therefore remain within 

the epiblast layer, eventually giving rise to the ectoderm27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

II.c – The node and the left-right asymmetry 

Using transplantation experiments, Spemann and Mangold discovered a group of cells 

in the amphibian embryo that have the capacity to induce the formation of a new vertebrate 

body axis. They coined the term organizer to describe this tissue, which is thought to be 

conserved across vertebrates. In the mouse it is referred to as the node42. This organizer is 

now considered as a secondary or later organizer, because the new axis it can induce does not 

Fig. 2 – (A) Development of a fertilized egg into a gastrulating embryo; (B) Gastrulae: the three germ 

layer embryo. (Adapted from Takaoka et al, 2011, and Arnold et al, 2009) 

DVE
AVE

ICM

Gastrulae

E7.5

A B
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include formation head structures (only trunk and tail, since the induction of head structures 

depend on the AVE). At the end of gastrulation, the node can be observed at the most anterior 

end of the PS, which at this stage is fully extended. Fate mapping experiments indicated that 

cells ingressing through the node are fated to produce the notochord43–45.  

 In addition to its role in gastrulation, the mouse node is also involved in the control of 

left-right asymmetry45. Disruption of the embryo’s bilateral symmetry is mainly controlled by 

cells located in the node, which have motile cilia that rotate in a clockwise direction to create a 

leftward flow of extracellular fluid43. Experiments using mutant mice with immotile cilia 

showed a total absence of flow in the node that later in development results in a 

randomization of the organ situs. Also, an artificial reversal in the flow’s direction was able to 

induce situs inversus. This flow seems then to direct some signalling activity from the node into 

the left side of the lateral plate mesoderm (LPM), once the reversal of the flow direction or its 

ablation results in changes of the organ situs43,44. The molecular components of this activity 

seem to vary among species (e.g. Shh in chicken46). However, Nodal signalling seems to be a 

key player in left-right asymmetry in most vertebrates. Nodal expression in the mouse can first 

be observed in the node during late PS and head-fold stages (~E7.75/E8.0). This expression is 

crucial for the creation of asymmetry in the embryo since blocking Nodal expression in the 

node inhibits later on Nodal expression on the left LPM, therefore creating left-right patterning 

defects43,47. A physical midline-barrier composed of the notochord and the floor plate, both 

derived from the node, has been proposed to maintain correct laterality of Nodal expression. 

The existence of a molecular midline-barrier, separating the expression of signals in the left-

right LPM near the node has also been proposed based on studies of Lefty1-/- embryos. Lefty 

genes are expressed on the left LPM and are thought to cooperate with Nodal to orchestrate a 

left fate in the embryo43,45. However, the processes that lead to left-right asymmetric 

morphogenesis in the embryo are not fully understood. RA signalling might play a role in this 

process since different RA levels seem to alter Nodal expression in the LPM48,49, thus creating 

several left-right patterning defects. Left-right alterations can also be observed in embryos 

lacking the RA synthesizing enzyme Raldh2, represented by asymmetric somite formation50. 

 

 

A B C

(ventral view) (dorsal view)

Fig. 3 – (A) Main molecular signallings responsible for the left-right asymmetry in an E8.0 embryo. (B, 

C) Segmentation in wild-type embryos (B) and in Raldh2 mutant embryos, which display asymmetric 

somite formation (C). (Adapted from Shiratori et al, 2006, and Vilhais-Neto et al, 2010) 
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II.d – From head to tail – axial elongation 

After gastrulation, embryo growth is progressive. The first structure to form is the 

head at the anterior embryonic end. The axis then extends progressively in an anterior to 

posterior direction, first to produce the neck, then trunk structures and finally the tail10,51. 

Tightly associated with these processes is the continuous production of mesoderm, which 

seems to depend to a large extent on Wnt signalling. Loss of Wnt3 blocks mesoderm 

production, which can be evidenced by the absence of T expression35,37,38. This phenotype is 

similar to that of β-catenin mutants, suggesting that Wnt3 signals through the canonical 

pathway39,52. Later in development Wnt3 expression begins to sag and, concomitantly, Wnt3a 

expression becomes activated at the posterior embryonic end. This change in Wnt ligand 

expression coincides with a switch in the Wnt molecule driving mesodermal production53. 

Accordingly, a null mutation in Wnt3a leads to strong axial truncation caudal to the forelimb 

level derived from the failure to produce mesoderm17. At this point, T expression, which 

initially depended on Wnt3, now requires Wnt3a signalling to be maintained. Interestingly, 

however, observations in Lef1-/-::Tcf1-/- embryos suggest that this transcription complex 

downstream of Wnt3a is required for maintenance but not initiation of T expression. This 

seems to indicate that Wnt3 and Wnt3a use a different set of effector complexes to regulate T 

expression17,21,54,55. Fgf signalling also plays a role in the regulation of T expression because 

Fgf4 and Fgf8 double mutants display reduced T expression in the axial stem zone56.  

Genetic experiments removing T and/or Cdx genes indicated that head structures are 

formed through a different process than trunk or tail. In particular, those experiments revealed 

that despite truncations in the main body axis these embryos were still able to produce head 

mesoderm and the first somites that originate cervical vertebra11–16. This important transition 

between head and trunk formation occurs at the level of the forelimb, which interestingly 

matches with the stage when Raldh2-/- stop developing (~E8.25)18. 

The progressive production of new tissues at the caudal end of the embryo relies on a 

pool of cells, known as the long term axial progenitors, located at the caudal tip of the embryo. 

These include the bipotent neural-mesodermal progenitors (NMPs) that give rise to the neural 

tube and the paraxial mesoderm57,58. Early in development, around E8.25/E8.5, NMPs are 

located at the node-streak border (NSB) and in the epiblast, between the node and the 

anterior PS. Later in development, after the mouse embryo underwent axial turning (~E9.5), 

NMPs are reallocated into the tailbud, to a region known as the chordoneural hinge (CNH)58,59 

– as roughly exemplified in Fig.4. Recent studies indicated that these cells co-express T and 

Sox2 and that they are able to self-renew within the embryo58. Also, they showed that Tbx6 is 

required to drive the NMPs into a mesodermal fate, through a down-regulation of Sox260. 

Accordingly, in the absence of Tbx6, embryos produce more neural tissue at the expense of 

paraxial mesoderm61. Other molecules, including Cdx proteins and signalling pathways 

activated by Wnt and Fgf ligands are also involved in the control of axial progenitors activity, 

although how is not fully understood62–66. 

Again RA plays a key role at different stages of axial elongation. A variety of 

experimental evidence indicates that RA is required for the tight balance between 

maintenance and differentiation of NMPs. RA activity is somehow required for the transition 
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from head to trunk development as revealed by the truncated phenotype of Raldh2-/- 

embryos19. Later in development, however RA signalling has to be kept on track (e.g. relocation 

of the NMPs into the CNH). This can be illustrated by genetic inactivation of Gdf11 signalling9,25 

or of Cyp26a1 23. This last mutation, results in axial truncation at the level of the trunk to tail 

transition (TTT), due to excessive levels of RA, since ablation of Rarg rescued the caudal 

truncation in Cyp26a1-/- embryos67. Also, treatments with high RA doses during axial extension 

cause similar truncation phenotypes68. 

 

 
 

 
 

II.e – From progenitors to body structures 

 During axial extension, the body forms all the primordiae of the different tissues and 

organs of the body. These primordiae include pairs of symmetrical segments of mesodermal 

tissue at both sides of the neural tube, the somites, which will give rise to the axial skeleton, 

the dermis and skeletal muscles of the body and limbs. Somites are produced from head to tail 

according to a tightly rhythmic segmentation that takes place at the anterior border of the 

h
ead

E8.25

E10.5

A

B

C

Fig. 4 – (A, B) Highlighted tailbud of an E8.25 (A) and E10.5 (B) embryo, showing the location of 

NM progenitors in the NSB/epiblast (A) and later in development in the CNH (B). (C) Expression domain 

of key molecular signals related with axial progenitors in an E8.5 embryo. (Adapted from Cambray et al, 

2002, and Neijts et al, 2013) 
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presomitic mesoderm51,69. All vertebrates undergo somitogenesis but the number of formed 

somites and the time necessary for the formation of new segments varies across species. The 

periodic formation of somites relies on the existence of a molecular oscillator coined as the 

“segmentation clock”69. These molecular oscillations can be observed by cyclic expression of 

several genes in the PSM. Although the specific identity of these genes seems to vary across 

vertebrate species (e.g. hairy1 in chicken70), most of them are members of the Notch signalling 

pathway or its target genes (e.g. Mesp2), whose requirement for the formation of inter-somitic 

boundaries seems to be conserved among vertebrates69,71. Apart from the “segmentation 

clock”, somitogenesis also relays on another system, the “wavefront”72 (Fig.5). It consists of 

complex signalling gradients responsible for translation of signals from the molecular oscillator 

into patterning information, necessary for the formation of new somites51,69,72. This molecular 

control of segmentation is thought to derive from the convergence of two opposite functional 

gradients provided by Fgf and Wnt signalling (posterior to anterior inhibitory gradient) and RA 

signalling (anterior to posterior activating gradient), thus generating the determination front 

within the anterior PSM, where new intersomitic borders are created69,71. 

 

 

 
As new segments are being produced, somites located at more anterior positions of 

the axis start differentiating. This differentiation incorporates positional information 

responsible for producing specific structures at the different axial levels in order to create a 

properly organized body51,69. In this process, AP patterning of the axial skeleton is mostly 

controlled by Hox genes69,73 (Fig.6). Several Hox clusters/genes have retinoic acid responsive 

elements (RAREs) nearby18,74, which could explain the requirement of RA signalling for their 

proper expression and the many homeotic transformations resulting upon treatment with high 

doses of RA at different times of development68,75. 

Fig. 5 – A somitogenesis model integrating the segmentation clock and the determination front. 

Opposing gradients, Fgf-Wnt (purple) and RA (green) sets the determination front (black line), in the 

PSM, during axial elongation. The wave of cyclic gene expression (orange) is represented on the left side 

of the embryo, whereas on the right side is represented the acquisition of a future segmental domain by 

Mesp2 expression (in black). (From Dequéant and Pourquie, 2008) 
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In addition to the formation of the body structures described above, RA is also 

important in organ formation. Heart and kidneys are examples of organs where RA is crucial 

for morphogenesis3. RA signalling is also involved in the induction and/or AP patterning of non-

axial structures, like the forelimbs, where it is necessary for induction and initiation of the pre-

limb bud17,76,77 (Fig.7). 

 

 

In summary, RA is a key regulator of vertebrate embryonic development, required for 

a variety of process at different developmental stages. Importantly, its activity is often 

necessary during a specific time-window and in a dose and tissue dependent manner. 

  

Fig. 6 – Hox gene expression and genomic organization in the mouse embryo; the paralog 

groups within the four clusters are color-coded according to their anterior-most expression domain in 

the mouse embryo. (Adapted from Pearson et al, 2005) 

Fig. 7 – Model for forelimb bud induction, initiation and outgrowth. (From Logan et al, 2015) 
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General Aims 

 

The general aim of this MSc thesis was to contribute to a better understanding of how 

RA regulates vertebrate embryonic development. Two different projects were addressed 

during the period of this thesis and they are described here in Chapter II and III. Specific aims 

for each project of this thesis are specified in the referred chapters. 

 

  



18 

 

 

 

 

Chapter II 

 

 

Retinoic acid and the mechanism involving the head to 

trunk transition in the axial progenitor cells 
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Introduction 

 

Retinoic acid activity during axial elongation 

Studies using RA-responsive transgenic mice concluded that the Raldh2 enzyme is the 

main responsible for RA synthesis in neural and mesodermal tissues19. The genetic disruption 

of the Raldh2 enzyme leads to several abnormalities during development, after gastrulation, 

resulting in embryonic lethality at midgestation. This lethality could be rescued with RA 

treatments administered maternally at E8.25. Raldh2 mutant embryos (Fig 8) display a 

development block starting around E8.25, failing to form limb buds and they do not undergo 

axial rotation (normally occurring at E8.25-E8.5). These embryos have an open neural tube, 

small otocysts, only the one branchial arch and the heart has only a single and expanded 

cavity18–20. In the paraxial mesoderm these mutants form only 10 to 12 somites, which are 

smaller and more densely packed than in normal embryos, which results in shortened AP axis. 

Interestingly, however, analysis of rescued embryos using RA treatment indicated that RA is 

only essential for correct somite formation until the 6th somite18–20,78. 

 

 
 

As referred in Chapter I, Raldh2-/- show asymmetric development in the paraxial 

mesoderm around E8.25, during formation of the more anterior somites. This asymmetry is 

inverted in embryos with situs inversus. It is possible that this results from a requirement of RA 

to synchronize development in the paraxial mesoderm while maintaining asymmetric 

development in the lateral mesoderm50,79–81. Some of these patterning effects of RA have been 

shown to derive from interactions with Fgf8. In particular, it was found that RA antagonizes 

Fgf8 in the node ectoderm but not in the node mesoderm, where its expression is not uniform. 

In general RA sets the boundaries of Fgf8 expression domain in the epiblast and the heart 
18,50,74,82. On the basis of these observations and considering the extended Fgf8 expression 

domain in the presomitic mesoderm (PSM) of chicken embryos lacking RA signalling, it has 

been postulated that the asymmetry in the somites of Raldh2 mutants derive from asymmetric 

Fgf8 expression in the PSM2,83,84. The reciprocal interactions between RA and Fgf8 are also 

considered to be required for somitogenesis and axial extension by creating opposing 

gradients of activity in the PSM 6,22,63,69,84,85. However, the relevance of continuous RA signalling 

Raldh2-/-

WT

Fig. 8 – E9.5 Raldh2 mutant versus wild type embryo (h- heart, b-branchial arch, s-somites, fn-

frontonasal region, fl-forelimb bud, nt-neural tube). (Adapted from Niederreither et al, 1999) 
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for somitogenesis and axial extension is a question of debate because Raldh2-/- can be rescued 

upon RA treatments at E8.25 and keep extending their axis and forming somites in the absence 

of RA. The fact is that all available evidence suggests that RA is fundamental at a specific time 

point during vertebrate embryonic axial extension, coincident with the stage when the 

forelimb buds are formed. 

 

 

 
 

Raldh2 mutant embryos are unable to induce forelimb buds as estimated by both the 

absence of a physical bud and of Tbx5 expression, possibly due to an extension of the Fgf8 

domains and/or to a direct role of RA production in somites in the regulation of Tbx5 in the 

pre-bud18 . It has also been described that a strong and specific dose of RA (maternally 

administered) is necessary to induce forelimb outgrowth in these mutants76,78. Further 

analyses by Niederreither (2008) suggested that RA is essential for the induction and AP 

patterning of the pre-bud, but after this stage it must be removed for limb growth to continue 

normally. Interestingly, in rescued Raldh2-/- embryo hindlimb outgrowth was normal, indicating 

different RA requirements for forelimb and hindlimb development76,78,86. 

 

 

 

Fig. 9 – Model for Segment Determination (opposing RA and Fgf8 gradients during somitogenesis and 

axial entension). Adapted from Pourquie (2008) and Deschamps (2005) 
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RA coordinates the Head to Trunk Transition? 

As referred in Chapter I, vertebrate embryonic axial elongation relies on a pool of cells 

in the caudal tip of the embryo, characterized as long term axial progenitors58. In the last years, 

Mallo’s lab have been studying the way these cells control axial growth and are responsible for 

the existent diversity of body shapes among vertebrates. Arnon Jurberg showed that Gdf11 

signalling plays an essential role in the TTT10. This activity is in part mediated by the activation 

of Isl1 in the NMPs, which will be responsible for the terminal differentiation of progenitors of 

the lateral mesoderm to produce the hindlimb10. More recently, Rita Aires during her PhD 

work (unpublished) observed that the tailbud of Gdf11-/- embryos contained some Oct4 

expressing cells (much later than normal). This persistent Oct4 expression seems to be 

responsible for the increased body length of Gdf11-/- embryos since when Oct4 was 

transgenically overexpressed in the tailbud, under the regulation of a Cdx2 promoter, embryos 

had longer trunks and severe trunk to tail transition defects87. 

The phenotypic effects caused by inactivation of a variety of genes (e.g. T, Cdx1/2/4 

and Wnt3a11–17) indicate that during vertebrate body formation, the mechanisms supporting 

head, and trunk development are also fundamentally different, indicating the existence of 

mechanisms specifically regulating the head to trunk transition (HTT). Interestingly the stage at 

which RA signalling seems to be fundamental during embryonic body axis formation, matches 

with the time when the production of head tissues stops and the formation of trunk tissues 

starts. So the specific aim of this project was to address the hypothesis of possible activated RA 

targets, in the node streak border, be responsible for a switch in the long term axial 

progenitors necessary for the HTT in the vertebrate embryo. 
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Material and methods 
 

 

 

Mice/Embryos 

All experiments and procedures conducted on mice followed the Portuguese (Portaria 

1005/92) and European (Directive 2010/63/EU) legislations, concerning housing, husbandry, 

and welfare. These animals were kept in 12h dark/light cycle, some maintained in C57BL/6J 

background at the Rodent Facility and others (necessary for producing transgenic embryos) in 

FVB/N strain at the Pathogen-free Animal Facility, also at the IGC. 
 

The transgenic embryos (Cdx2.Cav1T1 and Cdx2.Cav1T2) were generated using 

standard transgenic procedures (e.g. Nagy et al 2003), through pronuclear microinjection by 

the Transgenic Unit at the IGC. 
 

The TOPGAL transgenic mice, Tg(TCF/Lef1-lacZ)34Efu/J, described in Gupta and 

Fuchs (1999) were purchased from Jackson Laboratory. 
 

RA mutant mice were created by producing a Raldh2 allele unable to produce the 

protein product, by the introduction of stop codons in the second exon using the CRISPR-Cas9 

technique. The mutation was confirmed by sequencing. Raldh2Ext designed oligos were used to 

amplify part of the Raldh2 coding sequence from genomic DNA obtained from the tails of the 

transgenic progeny. The band containing the mutation was isolated in a 1% agarose gel in TAE 

using the QIAEX II Gel Extraction Kit*. Molecular cloning procedures were performed as 

described further below. In this case, the amplified fragment was digested with XhoI and XbaI, 

and inserted into the XhoI and SalI sites of the pKXM plasmid#. Plasmids containing the insert 

were sequenced to confirm the introduction of the mutation. The lethality of the mutation was 

also phenotypically confirmed since no Raldh2-/- pups were found upon crosses between 

Raldh2+/- mice, and the phenotype of Raldh2-/- embryos matched with what is described in the 

bibliography. 

Matings were done late in the afternoon and plugs were checked in the morning of the 

next day (corresponding to E0.5). Embryos were collected by caesarean section on cold PBS§ 

and fixed in 4%PFA§, at 4oC overnight. They were then washed in PBT§ and dehydrated in 

graded methanol series (25%, 50%, 75% made in PBT), washed in 100% methanol and stored 

at -20oC in methanol. 

 

§
Solutions detailed information is present in Supplementary Information II 

*All manufacturer protocols are present in Supplementary Information III 

#
Plasmid maps are shown in Supplementary Information IV 
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PCR conditions and genotyping 

During the embryo harvesting process, the yolk sac was isolated and incubated 

overnight (ON) at 500C, in yolk sac lysis buffer§ containing proteinase K. Genomic DNA was 

isolated from mouse tail biopsies and incubated under the same conditions, but in PBND 

buffer§ containing proteinase K. After the ON incubation, proteinase K was inactivated at 950C 

for 15 min. Primers for several different PCR reactions and genotyping conditions are 

described in Tables 1 and 2. Exceptions are referred to in the corresponding sections. 

 

 

 

 
 
 
 
 
 

 

Primers for Forward Reverse

Raldh2 Mut TCTCCCACTGAATTCTATCAC

Raldh2 WT AACACTCTCCCACTCTCTGAG

Raldh2 Ext CATCTTCTAAGCAATACACAC

Raldh2 Clon GACTCGAGTTTTCTGATCTCCCAGATCTC GATCTAGATCTTCTAAGCAATACACAC

Cav1.T1 ORF CTGTCGACCTCCTCAGAGCCTGCAGCCAG GAGCGGCCGCGTCCCTCATATCTCTTTCTGCG

Cav1.T2 ORF CTGTCGACTGTTCCCATCCGGGAACAG GAGCGGCCGCGTCCCTCATATCTCTTTCTGCG

Cav1.T1 RT CTGTCGACCTCCTCAGAGCCTGCAGCCAG TTCTGGTTCTGCAATCACATC

Cav1.T2 RT ACAGCCAGGCTGACTCTTGAC TTCTGGTTCTGCAATCACATC

Mesp1 ORF CCGTCGACGGATAAAGCTACAGCGGACCC GAGCGGCCGCCAAAGGAAAAGTGTCTGTGC

Mesp1 Bridge

CAGTCCCTCATCTCCGCTCTTCAGCAGCGACA

TGCTG

GTCGCTGCTGAAGAGCGGAGATGAGGGACTG

GGCTCC

Mesp1 RT CGCAGAAACAGCATCCCAGG TGTCCCCTCCACTCTTCAGGC

Eno2 RT CAAGCTGGCCCAGGAGAATGG CTGGTTGTACTTCGCCAGACG

Fgf4 RT CCGGTGCAGCGAGGCGTGGTG GTACGCGTAGGATTCGTAGGCG

Dkk1 ORF TGCGTCCTTCGGAGATGATGGTTG CTGTCGGTTTAGTGTCTCTGGCAG

Actin RT ATGAAGATCCTGACCGAGCG TACTTGCGCTCAGGAGGAGC

TOPGAL CGTGGCCTGATTCATTCC CGTGGCCTGATTCATTCC

GTTTTCTGATCTCCCAGATCTC

Table 1 –Primers used for polymerase chain reaction  
(normal PCR, RT-PCR and RT-qPCR). 

PCR reaction contained Quantity

     Template (DNA) ~ 1µL

     Primer Forward 0,25µL

     Primer Reverse 0,25µL

     dNTPs 25mM 0,2µL (0,2mM)

     MgCl2 25mM 2,5µL (2,5mM)

     Taq Buffer 10x 2,5µL (1x)

     Taq polymerase (NZYTECH or Fermentas) 5und/µL 0,2µL (1und)

     H20 mili-Q up to 25µL
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# used for Mesp1 cloning 

Table 2 – PCR conditions 

 

RT-PCR 

To obtain the desired cDNAs from isolated RNA (described below), a Reverse 

Transcriptase reaction was performed using the NZYTECH RT Kit* according to manufacturer’s 

instructions. In these reactions, we used random hexamers for priming and the NZY 

Ribonuclease Inhibitor was substituted by nuclease-free water. At the end of the incubation, 

the cDNA was stored at -20oC. 

PCR reactions were then performed using about 4µL of cDNA under the conditions 

specified in Table 3. 

 

 

 

Raldh2 Mut
29 cycles (95oC for 45 sec, 60oC for 45 

min and 72oC for 1 min)

72oC for 

5 min

Raldh2 Ext TopGal Cav1.T2 RT
34 cycles (95oC for 45 sec, 62oC for 1 

min and 72oC for 2 min)

Raldh2 Clon Cav1.T1 RT Dkk1 ORF
34 cycles (95oC for 45 sec, 60oC for 1 

min and 72oC for 2 min)

4 cycles (95oC for 45 sec, 60oC for 

45sec and 72oC for 1,5 min)

72oC for 

5 min

37 cycles (95oC for 45 sec, 60oC for 

45sec and 72oC for 2 min)

72oC for 

10 min

Extension PCR (no oligos used
#

)

Mesp1 ORF (after extension PCR # )

40 cycles (95oC for 45 sec, 62oC for 1 

min and 72oC for 2 min)

Cav1.T1 ORF

Mesp1 ORF (Reverse)

+

Mesp1 Bridge

(Forward)

40 cycles (95oC for 45 sec, 60oC for 1 

min and 72oC for 2 min)

Oligos PCR conditions

Raldh2 WT

95oC for 

5 min

72oC for 

10 min

Cav1.T2 ORF

Mesp1 ORF (Forward)

+

Mesp1 Bridge

(Reverse)

Cav1.T1 RT Cav1.T2 RT Eno2 RT Mesp1 RT Actin RT

40 cycles (95oC for 45 

sec, 60oC for 1 min 

and 72oC for 2 min)

40 cycles (95oC for 45 

sec, 62oC for 1 min 

and 72oC for 2 min)

Oligos RT-PCR conditions

95oC for 

5 min

72oC for 

10 min

Fgf4 RT

Table 3 – Specific RT-PCR conditions 
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qPCR 

SYBR Green quantitative PCR analysis* was performed using cDNA obtained from RNA 

isolated from tails of Raldh2 embryos, according to the manufacturer’s protocol and under the 

conditions described in Table 4. The results were analysed by Bio-Rad CFX Manager software 

 

 
 
Agarose gel electrophoresis 

Agarose was dissolved in 1X TAE§, usually at the concentration of 0.8%, 1% or 2%. 

Ethidium bromide or GelRed (1:39 in H2O) was added ~1:4 in order to visualize the DNA when 

UV light was applied. 6x Gel loading dye was added to each sample (1x final concentration). An 

electric current of about 120V was applied to the gel immersed in 1X TAE. The QIAEX II Gel 

Extraction Kit* was normally used to extract the DNA from the agarose gels (eluted in TE§). 

 

Phenol-Chloroform extraction and standard digestions 

In several situations described below, DNA was purified by phenol-chloroform 

extraction. For this, TE buffer was used to make a final volume of 100μL and an equal volume 

of phenol-chloroform was added. The sample was mixed and centrifuged for 3 min at 14000 

rpm. The DNA was recovered from the aqueous phase and precipitated with a 1:10 volume of 

3M NaOAc pH 5.3 and 2.5 volumes of 100% ethanol for 30min on dry ice. The precipitated DNA 

was recovered by centrifugation at 14000rpm for 30min at 4ºC. The retrieved (air-dried) DNA 

pellet was resuspended in an appropriate volume of water or TE for further experiments (DNA 

concentrations were determined with a Nanodrop). Standard digestions using restriction 

enzymes were some of those applications. For that, to 5µL of DNA we normally added to 13 µL 

of H2O, about 0,5µL of Enzyme and 2µL of the 10X concentrated  buffer. The resulting mixture 

was incubated at least during 1h 30 min at 370C. 

 

RNA extraction from the tails of Raldh2 embryos 

To analyze the transcriptome of axial progenitor cells, we isolated tails from E8.75/E9.0 

Raldh2 embryos (resulting from Ralhd2+/- mouse intercrosses), which were stored immediately 

at -800C. Upon genotyping, tails were grouped according to their category in groups of about 8 

tails, as shown in Fig. 10. RNA was then isolated from these selected tissues, including two 

replicate groups for each category (WT and MUT) using TRI Reagent (Trizol), under the 

950C

950C 10 sec

600C 30 sec

720C 30 sec

650C

950C

Plate Read

5 min

39 cycles

Melting 

Curve

5 sec

increment 0,50C

Table 4 – qPCR conditions 
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conditions specified in the TRI REAGENT SIGMA protocol*. 11µL of nuclease-free water was 

added to the RNA pellet, which was dissolved at 650C during 10 minutes and then put on ice; 

finally samples were stored at -800C.  

 

Fig. 10 – Process for Raldh2 isolation and storage in biological groups  

and category (Raldh2+/+ or (Raldh2-/-) 

 

RNA-seq 

After the RNA was isolated from the selected group of tail tissues, a small amount was 

sent to the Gene Expression Unit (IGC), where the sample quality was assessed. Once the RNA 

integrity and concentration had the necessary levels, the four samples (RNAmut1, RNAmut2, 

RNAwt1 and RNAwt2) were sent to the EMBL in Germany where the RNA-seq was conducted. 

The RNA-seq results were analysed by the Bioinformatics Unit (IGC) using the Cuffdiff 

algorithm, which estimates expression at transcript-level resolution and controls for variability 

across replicates. 

 

Molecular cloning 

Specific DNA sequences, amplified by PCR (and purified using phenol-chloroform), and 

the chosen plasmids (vectors) were digested with the appropriate restriction enzymes before 

they were loaded in a 1% agarose gel in TAE and the bands separated by electrophoresis. The 

bands of interest were isolated and purified using the QIAEX II Gel Extraction Kit*. Then the 
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sample concentration was measured using a Nanodrop and the ligation reactions were 

performed with T4 DNA ligase using vector and insert in a 1-5 proportion. After 1h at room 

temperature the transformation was performed using DH5- competent cells in a 1/10 

reaction on ice followed by a heat shock (42oC) during 45 seconds and chilled on ice before 

being grown in LB medium at 37oC for 1 hour. Finally the bacteria were plated on solid LB 

medium with ampicillin (50 µg/mL) and incubated ON at 37oC. Single colonies were then 

picked and grown on LB medium with ampicillin at 37°C, during 3 hours with shaking. These 

cultures were used for screening purposes (see next section) and stored at 40C. 

 

Molecular screenings and Plasmid DNA, Mini- and Midi-scale preparations 

To perform a fast screen for positive colonies, 1µL of the above cultures was used for a 

PCR reaction, using the appropriate primers for each case. For colonies giving a positive PCR 

signal, 20µL of the culture was retrieved and added to 5mL of LB+ampicillin. Then, 1,5mL of 

that culture was spun down and the pellet resuspended in 100μl of TE with RNase (10μg/mL). 

Then, 300μl of TENS§ and 150μl of 3M KOAc (pH5,2) were added to the sample. After mixing, 

the mixture was centrifuged (4min at 14000rpm) and the supernatant was transferred into a 

fresh tube containing 900μl of 100% EtOH. Then a spin was performed to pellet DNA and RNA, 

which were dissolved in 50µL TE in order to be used in screening digestion reactions. When 

higher purity DNA was required, plasmids were purified using commercial plasmid preparation 

kits: “NZYTECH MINIPREP” kit* was used when small amounts of plasmid were needed (for 

sequencing reactions) and “MN Plasmid DNA purification (NucleoBond Xtra Midi)” kit* was 

used when larger amounts of plasmid DNA were necessary (e.g. for later in vitro transcription 

experiments). 

 

Sequencing reactions 

To confirm the sequences of the cloned DNA products, cycle sequencing reactions 

were performed as described below (Table 5). 

 

 

Table 5 – Standard cycle reaction conditions 

Reagent Quantity

Template ( plasmid DNA mini prep) ~3µL (normally about 350ng)

Primer (T7 or T3) 1 µL (~5pmol)

Buffer 2µL

Terminator 2µL

H20 Mili-Q Up to 10µL

960C

960C 10 sec

500C 5 sec

600C 4 min

40C

1 min

25 cycles

-
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The amplified DNA was then precipitated with 2µL of 3M NaOAc and 50µL of 95% EtOH 

(plus 10µL H20) for 30 min at RT, centrifuged during 30min at 4ºC, the pellet was washed with 

250μL of 70% ethanol and finally centrifuged at 14000 rpm for 15min at 4ºC. The supernatant 

was again removed and the pellet air-dried. The samples were then sent to the Genomics Unit 

at the IGC. The output sequences were analysed by the combined use of Finch TV software and 

BLAST (NCBI). 

 

Microinjection construct 

20 µg of the DNA construct was digested with the appropriate restriction enzymes to 

remove plasmid sequences and gel purified using the QIAquick Gel Extration Kit*. The DNA was 

eluted with 40µL of buffer EB and stored at -20ºC. 

 

Probe generation by in vitro transcription 

RNA probes for in situ hybridization were produced by transcription in vitro. First, a 

specific restriction enzyme was used to linearize 10g of plasmid containing the relevant 

cDNA, purified by a phenol-chloroform extraction and resuspended in 20µL of water. Then, 

about 1g of cDNA was used for RNA transcription (Table 6) for 3h at 370C. The RNA was 

recovered by NaOAc precipitation and its length confirmed in an agarose gel (normally 2%). 

 

Table 6 – RNA transcription reaction 

 

 

Cav1 cloning, probe and transgenic construct 

Cav1 has two transcript variants, Cav1.T1 representing the longer one and Cav1.T2 

representing the shorter one. Cav1.T1 was amplified by PCR using cDNA produced by reverse 

transcription of RNA isolated from ES cells. The PCR reaction used Pfu polymerase, 5mM MgCl2 

and Cav1.T1ORF oligos. Cav1.T2 was amplified (also with Pfu and with Cav1.T2ORF oligos) using the 

Cav1.T1 amplified sequence as template. They were inserted into the SalI and NotI sites of 

pBluescript II KS# using standard cloning procedures.  

To create the Cav1.T1 and Cav1.T2 transgenic constructs under the Cdx2 promotor, the 

cloned coding sequences were retrieved from the initial pKS plasmid with SalI and NotI and 

cloned into these sites of the pKS+Cdx2promotor+polyA plasmids#. The final specific constructs 

for microinjection were obtained through digestion with ClaI, according to the above-

described methodologies. 

DNA ~1ug

T7/T3 polymerase 1µL

Buffer 10x 2µL

DIG label 1µL

Nuclease free water Up to 20µL
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For in vitro transcription, the pKS.Cav1.T1 plasmid was linearized with SalI and the 

probe was synthesized with T7 RNA polymerase. 

 

Dkk1 probe 

The Dkk1 coding sequence was amplified using cDNA obtained from RNA extracted 

from Raldh2-/- embryo tails. For this PCR, we used HotStart Taq* (QIAGEN) under the 

manufacturer conditions. The cloning was made with a PCRII-TOPO plasmid# using the TOPO 

TA cloning Kit*. Standard molecular cloning procedures were adopted and the plasmids 

transformed into DH5α competent cells. For in vitro transcription, the plasmid was linearized 

with SpeI and the probe was synthesized with T7 RNA polymerase. 

 

Mesp1 probe 

Once the entire coding sequence of Mesp1 is split by just one intron we designed 

oligos to amplify the cDNA from genomic DNA, linking the two exons in vitro. For this we 

performed two separated PCRs: “A” using Mesp1ORF (Forward) + Mesp1Bridge(Reverse) oligos and in 

“B” Mesp1ORF (Reverse) + Mesp1Bridge, both using Pfu polymerase. Then, after the amplified DNA 

was gel purified with QIAEX Gel Extraction Kit, equimolar amounts were mixed and used as a 

template for PCR cycles without primers, also using Pfu polymerase. Finally, we added the 

Mesp1ORF (forward and reverse) oligos to the PCR reaction. After the required band was isolated 

from a 1% agarose gel, we followed the standard cloning techniques to introduce the Mesp1 

coding sequence into the SalI and NotI sites of pKS bluescript (BLAST was performed against 

“Mus musculus mRNA for MespI, complete cds”, NCBI accession: D83674). For in vitro transcription, 

the plasmid was linearized with SalI and the probe was synthesized with T7 RNA polymerase. 

 

Other probes 

All the other probes used in this work were available in the lab synthesized by in vitro 

transcription. 

 

In situ hybridization 

All the whole mount in situ hybridizations were performed using DIG-labeled antisense 

RNA probes as described in Kanzler et al 1998. On the first day, the embryos were rehydrated, 

and washed in PBT. They were then bleached in 6% H2O2 at RT for 1 h and washed in PBT. They 

were then treated with proteinase K for time lengths that depended on their developmental 

stage. After inactivating proteinase K with glycine§ and several washes in PBT, the embryos 

were post-fixed with PFA/glutaraldehyde§. Pre-hybridization solution§ was then added and 

incubated for 1 hour at 65oC, after which it was changed for hybridization solution containing 

the probe (3 to 6μL of probe per mL of pre-hybridization solution), and incubated overnight 
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between 65oC and 70oC. On day 2, after several washes using a post-hybridization solution§ 

and TBST§ the embryos were incubated in blocking solution (MABT/block/10% sheep serum§), 

first without antibody during 2,5h and then with the antibody against DIG (1:2000), overnight 

at 4oC. On day three several washes were performed with MABT and on day four the embryos 

were incubated with a developing solution (NTMT§ plus NBT/BCIP), at RT, protected from the 

light. The reaction was stopped with PBT, the embryos fixed in 4% PFA and finally stored in 

PBT. 

 

 

Whole mount embryo immunofluorescent staining  

After rehydration from methanol to PBS, the embryos were washed 4x30 min in PBST§, 

incubated with 1M glycine in 0,1% PBST for 30 min to reduce unspecific binding and washed 3x 

in PBST to remove glycine residues. The embryos were then blocked in donkey serum blocking 

buffer§ overnight at 40C. On the next day, the embryos were incubated ON at 40C with new 

blocking serum containing (~1:250) anti-T (Goat AF2085 from R&D) and anti-Sox2 (Rabbit ab92494 

monoclonal from abcam) primary antibodies. On the third day, after several washes in PBST, the 

embryos were incubated in new blocking serum containing the secondary antibodies (donkey 

anti goat rabbit and donkey anti rabbit, ~1:1000). The last day, after several washes of PBST, 

the embryos were incubated with DAPI in PBST (~1:5000) during 2,5 hours and finally through 

a process involving graded washes in methanol to methyl salicylate to clear the embryos, 

which were prepared in a blade for confocal microscopy. 

 

Wnt reporter activity 

To observe β-catenin signalling activity in Raldh2 mutant embryos, we introduced the 

TOPGAL Wnt reporter mice into the Raldh2+/- background. Raldh2+/-::TOPGAL+/0 males were 

crossed with Raldh2+/-::TOPGAL+/0 females to obtain Raldh2-/-::TOPGAL+/0 embryos, which were 

fixed in Mirky’s ON at 4ºC. After 3x10 min washes with 0,02%Tween-20/NP40 in PBS, the 

embryos were stained (protected from the light) at 370C with X-gal staining solution§ and 

finally post fixed ON, at 4ºC, with Mirky’s§.  
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Results 

 

Looking for a change in the axial progenitors 

Previous studies indicated that RA signalling is essential for the vertebrate embryo to 

undergo HTT. We thus decided to use Raldh2 mutant mouse embryos, which lack neural and 

mesodermal RA activity, to search for the mechanisms controlling this transition. In the mouse 

embryo this transition occurs around E8.25/E8.5, roughly corresponding to the stage when the 

forelimb bud is induced. We therefore isolated tails from wild type E8.75/E9.0 embryos, which 

already started trunk development, and tails from Raldh2-/- littermates, which display a strong 

developmental delay, possibly resulting from a failure to undergo the HTT. We then analysed 

gene expression in these tissues by RNA-seq and compared their mRNA profiles (Fig. 10, 11 and 

Supplementary Information I). 
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Fig. 10 – Volcano plot (t-test) using RNA-seq data, with some highlighted genes that had a high fold 

change in the analysis.  
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Comparison of the data obtained with the biological replicates indicated high 

robustness of the RNA-seq assay. Similarly, in this study, it was possible to observe in this study 

variations in gene expression fitting previously described gene expression experiments using 

other strains of Raldh2 mutants. In particular, Fgf8 and Wnt3a expression values were 

consistent with in situ hybridization (ISH) studies from Duester et al (2006 and 2009) 50,88; 

Fgf17, Fgf18, Wnt8a, Axin2, Cdx1, Cdx2 and Cdx4 showed modifications similar to those 

described in Duester et al (2006)88; Meis1 and Meis2 were down-regulated, similarly to what 

was observed by Cunningham (2014)89; T, Sox2, Sprouty2 and Mkp3 showed expression 

differences similar to those in Ribes et al (2009)90; Hand1 and Fgf3 values were consistent with 

ISH experiments reported in Dollé et al (1999)19; and Pax6, Bhlhe40 as well as Crabp2 

expression profiles were congruent with those obtained by Niederreither (2013)91. We also 

performed a few control tests, through ISH (Fig.11), to further assess the quality of the 

transcriptomic data and our Raldh2 mutation. 

 

 

Fig. 11 – Transcriptome analysis data reflecting fold change (log2 (fold change)) differences between 

selected mRNA gene expression in wild type and Raldh2
-/-

 isolated tails. Regarding Hox expression: no 

major changes were noticed in anterior Hox genes, the differences in posterior Hox genes can be due to 

developmental stage of wild type embryos and the high fold change observed in the Hox12 cluster 

derives from very low absolute values. 
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Fig. 12 – ISH analysis was congruent with data from RNA-seq. Shh, Bmp4 and Wnt3a were up-regulated 

in the mutant tails (A, E, I respectively ) when compared with their expression in wild type littermates (B, 

F, J respectively. Wnt2 and Raldh2 expression was downregulated in the mutants (C, G) compared to 

wild type tails (D, H). 
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Considering the previous experiments and preliminary RT-qPCR analysis (Fig.13) on 

selected genes that had a high-fold change in the RNA-seq, which seem to confirm the 

analysed data, we concluded that the mRNA profiles obtained provide a faithful representation 

of gene expression in the analyzed tissues. 

 

 

Mesp1 was asymmetrically expressed in the Raldh2-/- presomitic mesoderm 

Mesp1 is one of the genes whose expression was severely decreased in the Raldh2 

mutant tails according to our transcriptome analysis. Considering that the phenotype derived 

from the mutation of this gene is very similar to that of Raldh2-/- embryos (e.g. growth 

retardation, failure to overcome axial turning and accumulation of cells in the PS)92,93, and 

because lineage tracing experiments showed that Mesp1-expressing cells seem to contribute 

to all head structures up to (and including) the forelimb buds94, we performed ISH experiments 

to observe Mesp1 gene expression in Raldh2-/- embryos. Shortly after gastrulation and during 

formation of the first somites, Mesp1 expression was unchanged in the absence of embryonic 

RA (Fig.14).  

 

 

Fig.13 – RT-qPCR analysis on selected genes from the RNA-seq: Cav1 (Cav1.T1 and Cav1.T2) was found 

overexpressed, while Mesp1 was downregulated in Raldh2
-/-

. 

A B

Fig. 14 – Mesp1 expression during the first somites formation was unchanged in the absence of RA. 

 A – Raldh2-/- E8.0/E8.25 embryo; B – wild type E8.0/E8.25 embryo. 
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At later stages, when the embryo is undergoing HTT, Mesp1 expression in Raldh2 

mutant embryos followed an asymmetric pattern similar to that observed by Vermot et al 

(2005)80 for Mesp2. We could also observe equivalent patterns for other genes involved in 

segmentation69 (Fig.15). 

 

 

 

Considering the expression patterns of these genes in the PSM, it is possible that the 

apparent downregulation observed in the RNA-seq data resulted from the left-right somite 

asymmetry present in Raldh2 mutant embryos80, which could have led to recovery of different 

amounts of expressing tissue in wild type and Raldh2 mutant embryos. Altogether, we can 

conclude that Mesp1 is not responsible for the failure of Raldh2 mutant embryos to undergo 

HTT. 

 

Possible Fgf4 overexpression in Raldh2 mutants is not the cause for the observed 

embryo truncation 

As referred in Chapter I, Fgf signalling is involved in a variety of important process 

during embryonic development (e.g. axial extension, somitogenesis and limb morphogenesis). 

Together with Fgf8, Fgf4 is the main Fgf signal responsible for controlling those processes. 

According to Duester et al (2009), the absence of RA does not seem to affect Fgf4 expression 

in the tails of E8.25 embryos. However, according to our RNA-seq data (which was performed 

C D E F

A B

Fig. 15 – Gene expression analysis for Mesp1 (A, B), Paraxis (C, D) and Ripply2 (E, F) in E8.75/E9.0 

embryos. An asymmetric expression of these genes can be observed in the Raldh2
-/-

 embryos (A, C and 

E) when compared to their wild type littermates (B, D and F, respectively). 
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in a slightly different developmental stage) Fgf4 expression in the Raldh2 mutant embryos was 

higher than in wild type embryos. Therefore to understand if a deviation from the normal 

timing of posterior Fgf4 down-regulation could be the cause for the mutants truncated 

phenotype, we tested Fgf4 expression by ISH in Raldh2 embryos (Fig.16). The patterns that we 

obtained for Fgf4 expression, and most particularly in the Raldh2-/- embryos, were not 

completely consistent. At E8.5, several Raldh2-/- embryos had expression in the axial stem 

zone, whereas from E8.75 onwards Fgf4 expression in the posterior part of the embryo was 

observed only in a subset of the embryos. When this expression was present, it was restricted 

to a small number of cells. After 8,75 we could not detect Fgf4 expression in the tailbud of any 

Raldh2-/-. So we concluded that even if posterior Fgf4 expression in some Raldh2 mutant 

embryos was maintained longer than in wild type embryos, the low number of Fgf4 expressing 

cells and the timing of their expression in Raldh2-/- embryos cannot explain the truncation 

observed in these mutants and therefore Fgf4 does not seem to play a major role in the HTT. 

 

 

 
 

Canonical Wnt signalling activity was reduced in the tails of Raldh2 mutant embryos 

In the RNA-seq data sets we could observe differential expression of several genes 

involved in the Wnt signalling in the Raldh2 mutant tails (e.g. Wnt3a, Cav1 and Wif1). 

Considering the role of Wnt signalling during axial extension, particularly the interactions and 

molecular functions of Wnt3 and Wnt3a (fully described in Chapter I) we decided to explore a 

possible RA-mediated change in Wnt signalling at the time of the HTT. For that we used the 

TopGal Wnt reporter transgenic mice in order to observe the activity of the canonical Wnt 

pathway (Fig.17). In the tail of Raldh2-/- embryos, we found that this activity was reduced when 

compared to wild type embryos, which suggests that a specific canonical Wnt activity indirectly 

depends on the presence of retinoic acid. This result was interesting since Wnt3a expression 

A B B’

C C’ D

B’

C’

Fig. 16 – Fgf4 expression was observed in the PSM of only some Raldh2 mutants: A – Example of E8.75 

Raldh2
-/-

 were no expression was detected; B and C – mutants embryos (E8.75 and E9.0, respectively) 

were Fgf4 was detected in the PSM. D – Wild type E9.0 were Fgf4expression was absent in the PSM. 
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was higher in Raldh2 mutant tissues than in wild type controls, indicating that the lower Wnt 

activity in the Raldh2-/- did not derive from lower signal production. Therefore, we decided to 

test the involvement of some Wnt inhibitors that were differentially expressed in the Raldh2-/- 

mutants according to the RNA-seq data (e.g. Dkk1, Cav1 and Eno2) in the molecular 

mechanism that controls the HTT. 

 

 
 

Dkk1 expression does not seem to be altered in the absence of retinoic acid 

Dickkopf-1 is one of the Wnt inhibitors presumably overexpressed in Raldh2-/- tails 

according to RNA-seq data. The genetic knockout of Dkk1 showed that it is essential for the 

induction of anterior head structures and that an antagonist interaction between Dkk1 and 

Wnt3 is crucial not only for head but also for trunk morphogenesis95,96. Since in normal 

embryos its expression seems to decay from E8.25/E8.5 to E9.597–99 we decided to investigate 

if the apparent higher Dkk1 expression observed in Raldh2-/-  embryos could be involved in the 

lower Wnt signalling observed in these embryos. Dkk1 expression in Raldh2 mutants 

reproduced the patterns described in Lewis et al (2007) for E8.25/E8.5 wild type embryos. 

Also, and quite surprisingly, we detected Dkk1 expression in the tails of both E9.5 and E10.5 

wild type embryos, indicating that Dkk1 expression in the tailbud is compatible with normal 

axial extension. Therefore, our ISH experiments (Fig.18) do not support the requirement of a 

RA-dependent down-regulation of Dkk1 for HTT. A possible source for the differences in Dkk1 

expression observed in the RNA-seq datasets between wild type and Raldh2-/- tails might be 

differences in cycling behaviour of Dkk1 expression100, although evaluation of this hypothesis 

requires a direct experimental approach.  

 

 

A B C D

Fig. 17 – Wnt canonical activity using TopGal reporter in wild type (A) and in Raldh2
-/-

 (D). This activity 

is reduced in the tails of Raldh2
-/-

 (C) when compared to what occurs in wild type tails (B). 

A B C

Fig. 18 - Dkk1 expression in the PSM of Raldh2
-/-

 (A) and wild type littermates (B) around E9.0 and in 

wild type E9.5 embryos (C). 
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Is Caveolin 1 involved in the head to trunk transition? 

Cav1 has been suggested to block the canonical Wnt signalling pathway by retaining β-

catenin into the cell’s membrane101. In our RNA-seq dataset, Cav1 came out as a gene strongly 

up-regulated in the tails of Raldh2 mutant embryos. Although Cav1 inactivation does not lead 

to embryonic lethality102, it is still possible that its overexpression (as seen in the Raldh2 

mutants) could result in serious damages to the embryo due to inhibition of Wnt signalling. In 

wild type embryos Cav1 transcripts were observed in a small domain in the anterior PSM at 

E8.25/E8.5. Cav1 expression seemed more widespread in E8.75 Raldh2-/- embryos, where it 

presented a scattered pattern (in some embryos more expression was noticed than in others) 

(Fig.19). This difference in Cav1 expression between wild type and Raldh2-/- embryos led us to 

perform a transgenic experiment to evaluate if overexpression of Cav1 in the axial progenitors 

could block the HTT.  

 

Fig. 19 – Cav1 expression was detected in the PSM of some E8.75 Raldh2-/- (A and B) and in E8.25 (C) 

and E8.5 (D) wild type embryos. 

 

Cav1 has two transcript variants, Cav1T1 and Cav1T2 representing the longer and 

shorter isoforms, respectively. We produced transgenic embryos expressing each of the Cav1 

transcript variants under the regulation of a Cdx2 promoter. At E9.5 Cdx2.Cav1T1 embryos had 

no visible phenotype (Fig.20), whereas we were unable to obtain Cdx2.Cav1T2 embryos at E9.5 

and E8.25 (Table 7). Interestingly, it seems that only the smaller transcript variant of Cav1 

codes for the complete caveolin1 protein. Therefore, it is possible that our inability to recover 

A B

C D
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Cdx2.Cav1T2 embryos could derive from a negative effect of the protein encoded by Cav1T2 at 

earlier developmental times, which might have resulted from inhibition canonical Wnt 

signalling before gastrulation. Indeed, the Cdx2 enhancer used in these experiments contained 

an element driving expression at early developmental stages. Analysis of Cdx.Cav1T2 at earlier 

developmental times, together with additional transgenic experiments using other enhancers 

will be required to determine if this is indeed the case. 

 

 

 

 

 

 

Retinoic acid and the axial progenitor cells 

A hallmark of the transition from head to trunk development is the appearance of the 

bipotent NMPs that drive elongation of the neural tube and somites. These NMPs are loosely 

defined as Sox2+/T+58. Considering that Raldh2 mutant embryos are blocked at the HTT stage 

we decided to explore formation of the NMPs in these embryos. The RNA-seq data suggested T 

up-regulation and Sox2 down-regulation in the Raldh2-/- tails, which was congruent with the 

findings reported by Ribes et al (2009) for E8.5 embryos. ISH experiments on E8.75/E9.0 

embryos confirmed these data (Fig.21). Also, a close analysis of these data revealed an 

accumulation of T expressing cells in tip of the tail, whereas Sox2 appeared to be down-

regulated near the PS, in the region where the NMPs are localized at this stage. These 

observations suggested a loss of T and Sox2 co-localization, which at this stage of development 

indicates the presence and position of the axial progenitor cells. To further explore this finding 

we decided to perform immunohistochemistry experiments using antibodies for both proteins 

in order to characterize their localization in the tails of Raldh2-/- embryos. In preliminary 

experiments (data not shown) we could observe that T and Sox2 co-localized at the protein level in 

the Raldh2-/- tails, consistent with the presence of axial progenitor cells. However, although the 

data is limited, it is possible that the number of double positive cells was reduced compared to 

A B

Fig. 20 – Cav1 RNA in situ gene expression assay in Cdx2.Cav1T1 transgenic embryos (A) and 

in their wild type littermates (B) 

Microinjection Stage Embryos / Genotype Reabsorptions

1st using 5 females ~E9.5 13 – all WT 26

2nd using 4 females ~E8.25 16 – all WT 11

Table 7: Cdx2.Cav1T2 transgenic embryos genotype 
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wild type embryos. Further experiments will be required to perform a proper quantitative 

evaluation of the number of T+/Sox2+ progenitors in the Raldh2 mutant embryos. 

 

 

 

Tbx5 expression can be observed in Raldh2 mutants 

Finally, in the course of the previous experiments, we noticed the presence of a 

protuberance symmetrically located near the heart on both sides of Raldh2-/- embryos at 

~E9.5, resembling small forelimb buds. ISH experiments with Tbx5, the first known marker of 

the forelimb buds86, confirmed the identity of those protuberances (Fig.22). This was surprising 

because Raldh2 mutants have been reported to be unable to induce forelimbs76. To better 

understand how RA controls the HTT, further studies will be necessary to observe the timing of 

forelimb bud induction and the position it assumes relative to the forming somites in Raldh2-/- 

embryos.  

WT Raldh2-/-

T

WT Raldh2-/-

SO
X

2

Fig 21. Accumulation of T expressing cells in the tails of Raldh2
-/-

 E8.75 embryos, where Sox2 was 

downregulated near the PS. 
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Fig. 22 – Tbx5 expression domain in the presumptive forelimb bud domain of Raldh2 mutant embryos 

(B-D) and wild type littermates (A). Analysis was performed by ISH using a probe for Tbx5 alone (A and 

B) or combined with a probe for Uncx4.1 (C and D). 

  

A B

C

D
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Discussion  

 

Retinoic acid signalling seems to set the time for the head to trunk transition, possibly 

by controlling axial progenitor activity 

Raldh2 mutant embryos show a developmental block around E8.25, the time at which 

the HTT occurs19. The finding that this phenotype can be rescued by exogenous administration 

of RA coincident with the time of the developmental arrest20, suggests that RA signalling is 

crucial for the embryo to undergo HTT. In the embryo, the levels of RA result from the balance 

between its synthesis by Raldh2 and its degradation by Cyp26a124. Cyp26a1 mutant embryos 

are truncated at the lumbar level, indicating that removal of RA is required for the TTT10. 

Interestingly, however, Cyp26a1 mutant embryos also have a posterior transformation of 

cervical vertebra (C) 5 into C6 and of C7 into a thoracic vertebra acquiring an extra pair of 

ribs23, which could result from an earlier HTT. Because in the absence of Cyp26a1, which starts 

to be expressed around E8.2523,24, the embryo is expected to accumulate an excess of RA in the 

progenitor-containing area (after gastrulation this gene is expressed by the node), it is possible 

that the premature HTT observed in these embryos results from higher levels of RA activity. 

This effect would then be complementary to the inability of Raldh2 mutants to undergo proper 

HTT. 

One of the key features of the HTT is the appearance of NMPs that drive elongation of 

the neural tube and paraxial mesoderm in the trunk and tail areas. These progenitors are 

thought to be positive for T and Sox258. We have found that in the caudal end of Raldh2-/- 

mutant embryos the area containing both transcripts, as determined by ISH, was reduced 

when compared to wild type embryos. It is then possible that in Raldh2-/- the production of 

axial progenitors is reduced and/or its activity changed due to the inability to undergo HTT. 

Using an immunohistochemistry approach we could identify tail cells expressing both T and 

Sox2 proteins, indicating the possible existence of NMPs in Raldh2-/- embryos. These 

experiments are still too preliminary to determine if the number of double T/Sox2 positive 

cells is reduced in Raldh2-/- when compared to their wild type littermates. Also, experiments 

from Mallo’s laboratory indicate that the Sox2 protein is stable for much longer than the 

corresponding transcript. It is therefore possible that as a consequence of the reduced Sox2 

transcripts, the levels of Sox2 protein will be progressively reduced in the progenitor area as 

development proceeds, eventually resulting in exhaustion of NMPs. In the future we will 

continue to address experimentally these hypotheses to understand how RA affects the 

activity of the NMPs during this particular developmental stage, thus controlling the time at 

which the HTT occurs. 
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Does retinoic acid control the head to trunk transition by promoting a change in the 

Wnt signalling? 

The mechanism by which RA promotes the HTT is still unclear. Considering the Wnt3 

and Wnt3a expression patterns and their differential roles in head and trunk formation 

(described in Chapter I), it is possible that RA activity is necessary to change the specific 

requirements for Wnt signalling during the HTT. Such change in the Wnt signalling pathway at 

this stage is supported by the finding that stabilization of Axin2, while leading to a decrease of 

Wnt activity during gastrulation as expected from its known negative effects on Wnt signalling, 

it resulted in higher Wnt activity in the PS of E8.5 embryos103. Interestingly, when investigated 

what canonical Wnt activity in E8.5 Raldh2 embryos using a transgenic reporter assay, we 

found a decrease in Wnt activity in the tailbuds of Raldh2 mutant embryos, thus consistent 

with a hypothetical role of RA in the apparent change in Wnt signalling during HTT. These 

findings are, however, contradictory with the observations indicating that Wnt3a expression is 

apparently up-regulated in the Raldh2-/- tails relative to their wild type littermates. It is thus 

possible that the change in Wnt activity is not exerted at the level of the signal itself but results 

from a regulatory event affecting its ability to activate signalling in the recipient cells. Analysis 

Head Trunk Tail

h
e

ad

X

E8.25

E8.5

E8.75

Raldh2-/-

Raldh2+/+

+ RA

RA

Cyp26a1

NMPs

Fig. 23 – Requirement of RA during head and trunk formation. RA activity is necessary, 

between E8.25/E8.5, in axial progenitor cells in order to switch from producing head to trunk tissues in 

the embryo. Cyp26a1, which starts to be expressed from this stage onwards protects the NMPs from RA 

activity. 
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of our RNA-seq data indicated that several inhibitors of the β-catenin pathway, including Cav1, 

Dkk1, Eno2, Axin2, Wif1 and others, were present at higher levels in RA-negative embryos. So 

far, our functional data was not sufficient to evaluate the contribution of these factors to the 

hypothetical switch in the Wnt pathway during HHT, but we are performing additional 

experiments to test it. For instance, we intend to chemically stabilize Axin2 in the Raldh2-/- and 

then observe what happens to canonical Wnt activity. We are also in the process of performing 

gain and loss of function experiments in order to observe if these genes could alter Wnt 

signalling during the HTT and to observe the effect that the rescue of the Raldh2-/- phenotype 

with RA treatments has on the expression of these genes. Also, it will be interesting to 

understand the regulation of these genes by RA signalling. 

 

A retinoic acid-dependent dual origin for forelimb bud induction 

A surprising observation we made in this work was the identification of Tbx5-positive 

protruding structures next to the developing heart in Raldh2-/- embryos. Both the position of 

these structures and their expression of Tbx5 identify them as forelimb buds. This was striking 

considering that Raldh2-/- embryos have been reported to be unable to induce forelimbs19,20. 

Interestingly, this Tbx5-positve forelimb domain was very similar to what was observed in 

Rdh10trex/trex embryos, which undergo HTT forming both trunk and tail structures (including 

hindlimbs)18. Also, a small forelimb bud develops in Raldh2-/- that had been rescued by RA, in a 

dose-dependent manner78. As these embryos, similarly to Rdh10trex/trex, undergo HTT, it is 

possible that the absence of forelimbs in Raldh2-/- embryos has a dual origin, one derived from 

the inability to undergo HTT and another from a direct requirement of RA signalling to 

continue the induction and initiation process necessary for complete forelimb bud 

development. Similarly to the connection between hindlimb induction and TTT, our present 

results now suggest a link between HTT and forelimb induction. 
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Chapter III 

 

 

A novel approach to the Gdf11-/-::T-streakCreERT#47+/0 problem: 

The combination effect... 
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Introduction 

 

The Gdf11-/-::ROSA26R-β-gal+/0::T-streakCreERT#47+/0 apparent embryonic lethality 

Gdf11 signalling plays an essential role in axial patterning during vertebrate 

development. It is involved in a variety of processes, including the control of the trunk to tail 

transition, where it regulates the fate of the NMPs when they migrate from the epiblast into 

the chordo-neural hinge (CNH). The involvement of Gdf11 signalling in this process can be 

illustrated by the observation that some Gdf11-/- embryos exhibit split tails, where T expression 

is also segregated, due to the incorrect reallocation of NMPs into the CNH9,10,25.  

In the course of experiments conducted by Arnon Jurberg with the objective of 

understanding how Gdf11 signalling modulates the activity of these progenitors, an 

experimental approach was developed consisting in the introduction into the Gdf11 mutant 

background a transgene expressing CreERT under the control of a PS-specific regulatory element 

of T (T-streakCreERT) to activate the ROSA26R-β-gal reporter in the nascent axial progenitors. 

Results obtained from these experiments indicated that Gdf11-/-::ROSA26R-β-gal+/0::T-

streakCreERT#47+/0 embryos apparently died before E10.5, independently of whether or not 

they had been treated with tamoxifen (Table 8). Further preliminary studies also indicated a 

very early lethality when the T-streakCreERT#47 transgene was present in Gdf11-/- embryos8.  

 

 
 

 

 

Table 8 – Genetic background and crossings performed to obtain Gdf11
-/-

::ROSA26R-β-gal
+/0

::T-

streakCre
ERT

#47
+/0

 embryos. No such embryos were found at E10.5 according to Mendelian expectations 

(adapted from Jurberg PhD Thesis) 
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To understand the origin of the lethality of Gdf11-/-::T-streakCreERT mice, Jurberg 

determined the integration site of the T-streakCreERT transgene in the transgenic line #47 (the 

one used in his experiments). He found that it was integrated on chromosome 14, between 

Pcdh8 and Olfm4. Two additional uncharacterized putative protein-coding transcripts (Gm6999 

and Gm10845) were also present in this region. To see if the transgene integration disrupted 

regulation of these genes, Rita Aires performed ISH with a Pcdh8 probe. In these experiments, 

she observed a possible misexpression of this gene in the posterior region of T-streakCreERT 

#47+/+ embryos at E7.5 suggesting that this misregulation could be involved in the early 

lethality of Gdf11-/-::T-streakCreERT embryos8,87. 

 

Is the Gdf11-/-::T-streakCreERT#47+/0 lethality due to a combination effect? 

The specific aim of this project was to further explore the origin of the apparent early 

lethality of Gdf11-/- ::T-streakCreERT#47+/0 embryos, under the hypothesis of a possible 

combination effect resulting from the Gdf11 inactivation plus the disruption of a particular 

conserved region (involving Olfm4 and Pcdh8), caused by the insertion of the transgene in the 

#47 line.  
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Material and methods 
 

 

 

Mouse strains 

The Gdf11+/- strain was described in McPherron (1999) and was kindly provided by the 

authors. It was maintained at the IGC Rodent Facility on a C57BL/6J background. Transgenic 

mouse lines #47 and #49 were created by pronuclear injection of the T-streak-CreERT construct 

(provided by A. Gossler and B. Herrmann) in the FVB/N genetic background. The ROSA26R-β-

gal reporter was described in Soriano (1999) and was purchased from the Jackson laboratories. 

Housing conditions, mating and embryo harvesting were similar to what was 

described in Chapter II (material and methods section) 

 

Oligos  

 

Table 9 –Primers used for PCR. 

 

Genotyping and PCR conditions 

The process for genotyping mice (using tail biopsies) and embryos (using yolk sacs) was 

described in Chapter II (material and methods section). Specific PCR conditions are described 

on Table 10. 

§
Solutions detailed information is present in Supplementary Information II 

*All manufacturer protocols are present in Supplementary Information III 

#
Plasmid maps are shown in Supplementary Information IV 

Primers for Forward Reverse

Gdf11 Mut GGATCGGCCATTGAACAAGATG GAGCAAGGTGAGATGACAGGAG

Gdf1 WT1 GAGTCCCGCTGCTGCCGATATCC TAGAGCATGTTGATTGGGGACAT

Gdf11 WT2 CTGCTGCACCCCTACCAAGATG CCACTGTAGCCCACAACTTAGGAG

T-streak-CreER T CGAGTGATGAGGTTCGCAAG CACCAGCTTGCATGATCT

Olfm4 CLON CGCTCGAGGCGCTCCTTCTGTGATTCAGC CCGCGGCCGCTGAAGGCATTCGAAACAGATGG
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Olfm4 probe  

500 bps of the Olfm4 coding sequence were amplified from mouse genomic DNA (from 

E18.5 embryo intestines) with the Olfm4CLON primers (Table 9). The PCR-amplified fragment was 

then purified using the MinElute* and Qiaquick Kits* (both from QIAGEN) and cloned into the 

XhoI and NotI sites of pBluescript II KS#. Molecular cloning, MINI- and MIDI-scale plasmid 

preparations, as well as the sequencing reactions, were performed as described in Chapter II 

(material and methods section). For in vitro transcription, the plasmid was linearized with XhoI 

and the probe was synthesized with T7 RNA polymerase. 

 

Other probes 

All the other used probes were available in the lab and had been synthesized by in 

vitro transcription. 

 

In situ Hybridization 

The protocol used for ISH was described in Chapter II (material and methods section). 

For earlier stages than E8.0, after the rehydration step, embryos were placed in a box with 

grids (the box was previously washed with NaOH to remove RNases), where the whole ISH 

procedure was performed. These embryos were genotyped after ISH was completed. For this, 

after taking pictures of the stained embryos, they were incubated in PBND§ with ¼ of 

Proteinase K according to their stage. After inactivation, about 5 L of DNA was used in a PCR 

reaction with 40 cycles and with 5 mM of MgCl2.  

34cycles (95oC for 45 sec, 58oC for 

1 min and 72oC for 2 min)

Gdf11 WT2

T-streak-

CreER T Olfm4 CLON
34cycles (95oC for 45 sec, 62oC for 

1 min and 72oC for 2 min)

Oligos PCR conditions

Gdf11 Mut

95oC for 

5 min

72oC for 

10 min
Gdf11 WT1

Gdf11 Mut

+

Gdf11 WT1

34cycles (95oC for 45 sec, 55oC for 

1 min and 72oC for 2 min)

Table 10 – Specific PCR conditions 
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Results 

Gdf11-/-T-streak-CreERT#49+/0 embryos were alive at E10.5 

The first step to understand the origin of the apparent early lethality of Gdf11-/- ::T-

streakCreERT#47+/0 embryos was to introduce the Gdf11 mutation into another line of the T-

streakCreERT transgene (#49). When crossing Gdf11+/-::T-streak-CreERT#49+/+ females with 

Gdf11+/- males we could recover Gdf11-/-::T-streak-CreERT#49+/0 embryos at E9.5 and E10.5. 

These embryos were phenotypically similar to Gdf11-/- embryos, indicating that the T-streak-

CreERT#49 transgene did not induce early lethality to Gdf11-/- embryos or modified their 

phenotypic characteristics. Therefore, it is not the transgene per se but the position where it 

was integrated in the genome what might have contributed to the apparent lethality of Gdf11-

/-::T-streak-CreERT#47+/0 embryos. 

 

Phenotypic characterization of Gdf11-/-::T-streak-CreERT#47+/0 embryos 

A phenotypic characterization of Gdf11-/-::T-streak-CreERT#47+/0 embryos was then 

performed to determine the developmental stage and cause(s) of their death. Since Gdf11 

starts to be expressed around E7.5104, we isolated E7.5 embryos from intercrosses between 

Gdf11+/- males and Gdf11+/-::T-streak-CreERT#47+/+ females. Some of these embryos looked 

morphologically different from their littermates, displaying a softer texture (possibly because 

they were in the process of being reabsorbed). All these apparently affected embryos were 

Gdf11-/-::T-streak-CreERT#47+/0 (Fig.24), which lead us to speculate that indeed Gdf11-/-::T-streak-

CreERT#47+/0  embryos might die around E7.5, possibly due to a problem during gastrulation. 

 

 
 

Molecular characterization of T-streak-CreERT#47 embryos 

To address the hypothesis of a possible combination effect where the T-streak-

CreERT#47 transgene might strengthen the Gdf11-/- phenotype, we performed several gene 

expression studies to characterize molecularly the embryos from the line #47. Because in this 

line the T-streak-CreERT was inserted in a genomic region next to the Pcdh8 and Olfm4 genes, 

we tested if the presence of this transgene might have affected their expression. In several 

Fig. 24 – Phenotypic characterization of Gdf11-/-::T-streak-CreERT#47+/0 (A, B and C) and 

Gdf11+/+::T-streak-CreERT#47+/0 (D) embryos. 
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independent experiments, Olfm4 expression was not detected at E7.5 in neither WT nor T-

streak-CreERT#47+/+ embryos. At this stage, a very weak Pcdh8 expression was observed (data 

not shown) in the PS of some but not all analysed embryos (T-streak-CreERT#47+/+ and WT). 

Although ISH does not allow proper quantification of gene expression, the observed trend 

suggested a possible over-expression of this gene in E7.5 T-streak-CreERT#47 embryos, in 

agreement with previous preliminary observations made by Rita Aires. Only at the head-fold 

stage Pcdh8 expression was clearly detected  near the node (Fig. 25), fitting with previously 

described patterns105. However no abnormalities in expression were noticed when transgenic 

embryos were compared to wild type littermates. Through ISH we also observed patterns 

compatible with an oscillating behaviour of Pcdh8 expression in the PSM of E10.5 embryos. 

Again, no differences were found between the T-streak-CreERT#47+/+ and wild type embryos 

(Fig.25). These results indicate that if the insertion of the T-streak-CreERT transgene affected 

Pcdh8 expression in the #47 mice line this happened only at very early developmental stages. 

 

 

 
 

Gdf11-/-::T-streak-CreERT#47+/0 embryos gastrulate correctly 

Considering the possible alteration of Pcdh8 expression in T-streak-CreERT#47 

gastrulating embryos and the preliminary results, we searched for patterning defects at this 

stage in the Gdf11-/-::T-streak-CreERT#47+/0 embryos. In gastrulating Xenopus embryos, Pcdh8 

was found to inhibit the canonical Wnt signalling106, which in mouse embryos plays a role in 

mesoderm formation in part by regulating of Cripto (a Nodal co-receptor) expression32. During 

gastrulation Nodal signalling pathway is controlled by RA7. The observation that RA levels are 

altered in the tails of E9,5 Gdf11-/- embryos (because during the trunk to tail transition 

Cyp26a1 activity is reduced in these tissues10,25), led us to hypothesize that if RA signalling is 

reduced in E7.5 Gdf11-/-::T-streak-CreERT#47+/0 embryos, a combination effect could lead to 

abnormal Nodal expression, resulting in embryonic lethality. However, analysis of Nodal and 

Cyp26a1 in Gdf11 mutants and Nodal, Cripto and T expression in Gdf11-/-::T-streak-CreERT#47+/0 

and in gastrulating T-streak-CreERT#47+/+ embryos by ISH revealed no apparent differences 

when compared to wild type littermates (Fig. 26), indicating that neither altered RA signalling 

A B C D
E

F

anterior

anterior

*

*

(Fig 25) – In situ hybridizations in T-streak-Cre
ERT

#47
+/+

and WT embryos. Lateral (A, B) and frontal (C, D) 

views of Pcdh8 expression in T-streak-Cre
ERT

#47 (A, C) and wild type tails (B, D) of E10.5 embryos. In E8.0 

embryos, the expression domain can be observed near the node (*), both in T-streak-Cre
ERT

#47 (E) and 

wild type (F) embryos. 
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nor abnormal Nodal expression could justify the apparent early lethality of Gdf11-/-::T-streak-

CreERT#47+/0 embryos. 

 

 

 

Fig. 26 – No significant differences were found in comparative gene expression analysis considering 

Gdf11-/-, Gdf11-/-::T-streak-CreERT#47+/0, T-streak-CreERT#47+/+ and wild type embryos during 

gastrulation. 

 

Although these are just preliminary results, they clearly indicate that at least some 

Gdf11-/-::T-streak-CreERT#47+/0 embryos survived through gastrulation and formed a defined PS 

as well as the three germ layers. With the exception of a possible misregulation of Pcdh8 in 

#47 embryos at E7.5, expression of all other genes analysed was indistinguishable between 

Gdf11-/-::T-streak-CreERT#47+/0 embryos, Gdf11-/-, T-streak-CreERT#47+/+ and wild type 

littermates. These results were surprising because not only did they fail to suggest any 

combinatorial effect between the Gdf11 mutation and the T-streak-CreERT transgene in the #47 

line, but also did not confirm the apparent early lethality of Gdf11-/- ::T-streakCreERT#47+/0, since 

these embryos were found at developmental stages at which earlier results suggested that 

they were already dead. 

A

B

C

D

E

F

G

H

I

J

L N

K M

WT

Gdf11-/-::T-
streak-

CreERT#47+/0

T-streak-
CreERT#47+/+

WT

Gdf11-/-

Cyp26a1 Nodal

NodalT Cripto T
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To further check this observation, Gdf11+/-::T-streak-CreERT#47+/+ females were again 

crossed with Gdf11+/- males and this time the embryos were harvested at E8.5. Surprisingly, we 

found Gdf11-/-::T-streak-CreERT#47+/0 embryos within these litters, with apparently normal 

phenotypes. The same happened at E9.5. Complementary crosses were also performed 

(Gdf11+/- females x Gdf11+/-::T-streak-CreERT#47+/+ males) to rule out the existence of some type 

of sex-linkage in the lethal phenotype. Normal Gdf11-/-::T-streak-CreERT#47+/0 embryos could be 

also obtained from such crosses at E9.5 and E10.5 (Fig. 27), which had phenotypic 

characteristics similar to those observed in Gdf11 mutant embryos. Also, although the sample 

size is still small, distribution of different genotypes in Gdf11::T-streak-CreERT#47 embryos are 

compatible with the expected Mendelian ratios (Table 11). 

 

 

 

 

 

Table 11 – Gdf11 genotyping in the T-streak-CreERT#47 background 

 

 

Together these studies show that the T-streak-CreERT#47 transgene has no negative 

effects on embryonic development either in a wild type or in a Gdf11 mutant background thus 

Fig. 27 - Gdf11
-/-

::T-streak-Cre
ERT

#47
+/0 

embryo at E10.5 

Observed Expected

Gdf11+/+ 4 6 7 2 2 21 20,59 25

Gdf11+/- 9 22 17 5 5 58 56,86 50

Gdf11-/- 5 7 6 4 1 23 22,55 25

Frequency (%)
Genotype/Stage Total (102 embryos)E6.5/E7.0 E7.5 E8.0/E8.5 E9.5 E10.5

The fit to Mendelian expectations was tested with chi-square test: 
2
=0,37, degrees of freedom =2, p>0,9. 
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failing to confirm the previously described early lethality of Gdf11-/-::T-streak-CreERT#47+/0 

embryos. 
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Discussion 

Gdf11-/-T-streak-CreERT#47+/0 at E10.5 - a twist of fate 

In this work we tried to identify the causes for the early lethality of Gdf11-/-::T-streak-

CreERT#47+/0 embryos. Surprisingly, the results not only did not allow the identification of a 

cause for such lethality but actually failed to confirm the previous observations with these 

embryos. The only alteration observed in embryos carrying the T-streak-CreERT#47 transgene 

was a possible small difference in early Pcdh8 expression. However, this apparent alteration 

seemed to have no negative effect on embryonic development, since no combinatorial effect 

was detectable between the absence of Gdf11 signalling and the T-streak-CreERT#47 transgene. 

Consistent with this, Gdf11-/-::T-streak-CreERT#47+/0 embryos were found to be viable at E10.5 

and following the expected Mendelian distribution. Indeed, we could recover living Gdf11-/-::T-

streak-CreERT#47+/0 embryos at this stage regardless of whether the transgene was provided by 

the father or the mother, therefore ruling out a sex-specific effect. Nevertheless it is still 

possible that a small proportion of Gdf11-/-::T-streak-CreERT#47+/0 embryos died early in 

development but if this was the case, the respective proportion should be very small. 

 

The neo cassette theory 

What is then the reason for the differences between the observations of previous and 

the present work? One possible explanation for the complete absence of Gdf11-/-::R26R-β-

gal+/0::T-streakCreERT#47+/0 at E10.5 was that the primers used for genotyping the Gdf11 

mutant allele in the parental Gdf11+/-::ROSA26R-β-gal+/0 lines, were not unique for this allele. 

We have recently realized that the primers used to identify the mutant Gdf11 allele, designed 

to amplify a part of the neomycin cassette inserted to inactivate the Gdf11 gene, also 

recognize a similar sequence in the β-gal portion of the ROSA26R-β-gal reporter. This means 

that when mice were genotyped to identify those with the Gdf11::ROSA26R-β-gal genotype, 

Jurberg could have mistakenly considered some Gdf11+/+::ROSA26R-β-gal+/0 mice as Gdf11+/-

::ROSA26R-β-gal+/0. In this case, if Gdf11+/+::ROSA26R-β-gal+/0 males were used instead of 

Gdf11+/-::ROSAROSA26R-β-gal+/+ to cross with Gdf11+/-::T-streak-CreERT#47+/0 females, it would 

be impossible to retrieve Gdf11-/-::ROSA26R-β-gal+/0::T-streakCreERT#47+/0 embryos at any stage 

(Fig. 28). As the wrongly genotyped parental strain could provide the males used in the 

experiments by Arnon Jurberg, the same wrongly genotyped mice could had been repeatedly 

used in the different experiments, thus reproducing the mistake in each experiment. Still, it is 

possible (although highly unlikely) that it was the introduction of the R26R-β-gal background 

what contributed to the lethality of the embryos in the original experiments. Therefore, to 

formally prove that in fact Gdf11-/-::ROSA26R-β-gal+/0::T-streakCreERT#47+/0 embryos are viable 

at E10.5, a new set of primers was designed to detect specifically the Gdf11 mutant allele. 

Current efforts in the lab are being made to repeat the initial experiments using this new 

genotyping strategy.  
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Fig. 28 – Mouse mating scheme as designed by Arnon Jurberg (green) and the results of the actual 

experiments (blue). Considering that he had chosen a progenitor male with only one reporter allele (*), 

this hypothesis fits Mendelian ratios with a probability higher than 95%.  

MM

(25%)

(25%)

(50%)

(50%)

Gdf11+/- x  R26Rβ-gal+/+

Gdf11+/-::R26Rβ-gal+/0 Gdf11+/+::R26Rβ-gal+/0Gdf11+/-::R26Rβ-gal+/0

(100%) (50%) (50%)

R26Rβ-gal+/+

X

Gdf11+/-:::R26Rβ-gal+/+

Gdf11+/-::R26Rβ-gal+/0

(25%)

(25%)

R26Rβ-gal+/+

X

Gdf11+/-::R26Rβ-gal+/+

Gdf11+/-::R26Rβ-gal+/0

Gdf11+/+::R26Rβ-gal+/+

Gdf11+/+::R26Rβ-gal+/0

(50%)

(50%)

R26Rβ-gal+/+

X

Gdf11+/+::R26Rβ-gal+/+

Gdf11+/+::R26Rβ-gal+/0

Gdf11+/-::R26Rβ-gal+/+ Gdf11+/+::R26Rβ-gal+/0

Gdf11+/-::T-streak-CreERT#47+/+

X

Gdf11+/-::T-streak-CreERT#47+/+

X

*

The fit to Mendelian expectations was tested with chi-square test: 2=0,000009248, degrees of freedom =1, p>0,95. 

(25%) Gdf11+/+::T-streak-CreERT#47+/0::R26Rβ-gal0/0

(25%)

(25%)

(25%) Gdf11+/+::T-streak-CreERT#47+/0::R26Rβ-gal+/0

Gdf11+/-::T-streak-CreERT#47+/0::R26Rβ-gal0/0

Gdf11+/-::T-streak-CreERT#47+/0::R26Rβ-gal+/0

wrongly genotyped as...

(25%)

(50%)

(25%) Gdf11+/+::T-streak-CreERT#47+/0::R26Rβ-gal0/0

Gdf11+/-::T-streak-CreERT#47+/0::R26Rβ-gal+/0

Gdf11+/-::T-streak-CreERT#47+/0::R26Rβ-gal0/0

Observed

Gdf11+/+ 68 44,2

Gdf11+/- 86 55,8

Gdf11-/- 0

Total 154 100

Genotyped as Obtained embryos
Frequency (%)

Expected

100

25

50

25

Observed

Gdf11+/+ 68 44,2 25 25

Gdf11+/- 86 55,8 50 75

Gdf11-/- 0 25

Total 154 100

Frequency (%)

Expected*

100

Genotyped as Obtained embryos
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Final remarks 

 

The general aim of this MSc thesis was to better understand how RA regulates 

vertebrate embryonic development. The work presented here provided evidence that RA is 

only necessary during the initial phase of axial elongation. RA activity in the axial progenitor 

cells seems to set the time at which HTT occurs. The controlling mechanism of such transition 

is still unknown, but could be related to Wnt signalling. After the HTT, Cyp26a1 protects NMPs 

from RA activity, allowing the embryo to continue its growth. In the case of Gdf11 mutants, 

due to abnormalities in the referred protection, an excess of RA in the tailbud results in an 

incorrect trunk to tail transition. However, although the RA-Cyp26a1 balance is changed in the 

absence of Gdf11 signalling at this developmental stage, according to the analysis described in 

this work, it does not change this balance during gastrulation, thus reinforcing the fact that RA 

acts in a tissue, time and dose-specific manner. Future studies will be necessary to better 

understand the role of RA during the HHT and how alterations in this signalling could lead to 

congenital diseases. It would be interesting to find out if these understanding could lead to 

possible therapeutic approaches to those diseases using external modulation of RA signalling 

levels during pregnancy. 
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List of Abbreviations 

 

AP anterior-posterior 

AVE  anterior visceral endoderm 

Bmp bone morphogenetic protein 

Bhlhe40 basic helix-loop-helix family, member e40 

Cav1 caveolin 1 

Cdx caudal-type homeobox 

Cerl1 cerberus 1 homolog (Xenopus laevis) 

Cyp26a1 cytochrome P450, family 26, subfamily a, 
polypeptide 1 

CNH chordoneural hinge 

Crabp2 cellular retinoic acid binding protein II 

CreERT tamoxifen-inducible Cre recombinase 

Dkk1 dickkopf homolog 1 (Xenopus laevis) 

DNA deoxyribonucleic acid  

Dusp6/Mkp3 dual specificity phosphatase 6 

DVE Distal visceral endoderm 

e.g. exempli gratia 

Eno2 enolase 2 

Fgf fibroblast growth factor 

Gata GATA binding protein 

Gdf growth and differentiation factor 

Hand heart and neural crest derivatives 

Hox homebox 

HTT head to trunk transition 

ICM Inner cell mass 

ISH in situ hybridization 

Isl1 islet1 

Lef1 lymphoid enhancer binding factor 1 

Lefty1 left right determination factor 1  

Lfng lunatic fringe 

MABT maleic acid buffer containing Tween 20 

Meis meis homebox 

Meox mesenchyme homeobox 

Mesp mesoderm posterior 

Nkx1-2 NK1 transcription factor related, locus 2 
(Drosophila) 

NMPs neural mesodermal progenitors 

NSB node streak border 

Olfm4 olfactomedin 4 

ON over-night 

Oct4/Pou5f1 octamer-binding transcription factor 4/POU 
domain class 5, transcription factor 1 

Pax paired box 

PBS phosphate buffered saline 

PBT phosphate buffered saline with Tween-20 

Pcdh8/Papc protocadherin 8 / paraxial protochaderin 
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PCR polymerase chain reaction 

PFA paraformaldehyde 

PS primitive streak 

PSM presomitic mesoderm 

RA retinoic acid 

Raldh2/Aldh1a2 aldehyde dehydrogenase family 1, subfamily A2 

RNA ribonucleic acid 

Shh sonic hedgehog 

Sox 2 SRY-box 2 

Spry2 sprouty homolog 2 (Drosophila) 

T brachyury 

TE trophectoderm 

TTT trunk to tail transition 

Tbx6 t-box 

Tcf1 transcription factor 1, T cell specific 

Wif1 Wnt inhibitory factor 1 

Wnt wingless-type MMTV integration site family 

X-gal 5-bromo-4-chloro-indolyl-β-D-galactopyranoside 

 


