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Resumo 
 

A retinopatia diabética (RD) é uma complicação neurovascular da diabetes que 

afecta 126.6 milhões de pessoas em todo o mundo (o que equivale a 34.6% da 

população diabética mundial) e que constitui uma das principais causas de 

cegueira em adultos com idade inferior a 65 anos, nos países industrializados. 

De acordo com as características do fundo ocular, a RD pode ser classificada em 

não-proliferativa e proliferativa. A RD não-proliferativa corresponde à fase inicial 

da doença e é identificada pela presença de microaneurismas, hemorragias e 

exsudados intraretinianos. A RD proliferativa, por sua vez, caracteriza-se pela 

presença de uma rede neovascular patológica que se desenvolve na superfície 

retiniana em direcção ao humor vítreo, e reflecte a fase avançada da doença. 

Estes neovasos podem dar origem a descolamentos de retina, através da 

formação de membranas fibrovasculares na superfície retiniana e vítreo que 

exercem tracção sobre a neuro-retina e conduzem à sua separação do epitélio 

pigmentar que lhe está subjacente, e hemorragias vítreas. Estes fenómenos em 

conjunto com o edema macular diabético (que se pode desenvolver durante as 

fases iniciais ou tardias de RD), constituem as principais causas de perda de 

visão na população com RD. 

Apesar da elevada prevalência mundial de RD, as estratégias preventivas e 

terapêuticas actualmente existentes são bastante limitadas. Presentemente, não 

existem biomarcadores específicos e validados capazes de prever a evolução da 

doença e as duas estratégias terapêuticas mais frequentemente utilizadas - 

fotocoagulação laser e injecções intraoculares de agentes anti-angiogénicos - são 

incapazes de evitar a sua progressão de modo eficaz e permanente em todos os 

doentes. Além disto, estas terapias são implementadas em fases já avançadas de 

RD e, devido ao seu modo de actuação “não-selectivo” e destrutivo, podem 

potencialmente induzir uma panóplia de efeitos adversos a nível retiniano (laser e 

agentes anti-angiogénicos) e até sistémico (agentes anti-angiogénicos). 

Uma das causas que justifica a falta de progresso no que respeita ao 

desenvolvimento de novas estratégias terapêuticas para a RD é a ausência de um 

modelo animal roedor  diabético capaz de reproduzir fielmente as características 

patológicas típicas das fases tardias da doença, nomeadamente a 

neovascularização pré-retiniana. 
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Nesta dissertação irei introduzir os seguintes conceitos que proporcionam uma 

visão integradora da RD e que poderão vir a ser úteis para o desenvolvimento de 

terapêuticas  futuras mais eficazes e capazes de actuar mais precoce e 

selectivamente: 

 

(1) A RD tem sido classicamente encarada como uma doença vascular e as linhas 

de orientação clínica actualmente vigentes ainda se baseiam neste pressuposto. 

Contudo, existe um acumular de evidência científica e clínica que demonstra que 

o compromisso da função neuronal retiniana (revelado por alterações 

electrofisiológicas, tais como: alterações de potenciais oscilatórios e redução da 

vasodilatação em resposta à estimulação “Flicker”) ocorre mais precocemente do 

que as alterações vasculares do fundo ocular. Uma vez que (1) o funcionamento 

adequado da retina requer comunicações intercelulares estáveis entre neurónios, 

vasos e células da glia na unidade neurovascular, e que (2) a RD se caracteriza 

por compromisso neuronal e vascular, é provável que a desestabilização das 

interacções neurovasculares retinianas contribua activamente  para  o  

desenvolvimento  e  progressão da doença.  

(2) Na investigação da patofisiologia da RD, a utilização de análises 

metabolómicas e de estudos focados no metabolismo energético retiniano tem 

sido surpreendentemente escassa. Um exemplo paradigmático desta situação é 

reflectido pelo facto do perfil metabolómico da RD permanecer desconhecido. 

A diabetes tem origem num defeito metabólico que compromete profundamente a 

produção energética a nível celular. Por outro lado, a neuro-retina é um dos 

tecidos metabolicamente mais exigentes do organismo. Esta combinação é 

potencialmente catastrófica no que toca à função retiniana, pelo que identificar 

perturbações metabólicas na retina diabética poderá providenciar uma nova 

perspectiva em relação à RD. 

(3) Apesar de se saber que a comunicação entre fotorreceptores, interneurónios, 

células da glia e vasos retinianos é mediada por metabolitos cuja produção se 

encontra comprometida em condições patológicas, os mecanismos precisos 

subjacentes a estas interacções neurovasculares permanecem desconhecidos. 

Aprofundar o conhecimento a este nível é crucial, pois as unidades 

neurovasculares retinianas são responsáveis pela regulação do fluxo sanguíneo 
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para as redes neuronais,  assegurando assim o seu dinamismo e funcionamento 

adequados. 

 

Além dos pontos previamente mencionados, também observações clínicas 

estiveram na génese do plano de investigação apresentado nesta dissertação; 

uma das observações mais relevantes consiste na existência de um sub-grupo de 

doentes diabéticos de longa duração que se encontra aparentemente protegido 

contra o desenvolvimento de estados avançados de RD (e que por vezes não 

desenvolve RD de todo) mesmo quando o controlo metabólico é desadequado. 

Porém, os mecanismos subjacentes a esta protecção permanecem 

desconhecidos. Estudar estes doentes proporciona uma excelente oportunidade 

para identificar factores protectores endógenos e também para alcançar uma 

melhor compreensão dos mecanismos envolvidos no desenvolvimento e 

progressão da RD. 

Para adquirir conhecimentos mais aprofundados acerca (1) da existência de 

perturbações metabólicas locais e do seu impacto no desenvolvimento e 

progressão da RD, e (2) dos mecanismos que comprometem a comunicação 

neurovascular na retina diabética, a utilização de análises metabolómicas 

altamente sensíveis baseadas em espectrometria  de  massa  constitui  a  

estratégia experimental  ideal. Neste trabalho esta tecnologia foi utilizada para 

analisar amostras clínicas de humor vítreo e de soro sanguíneo provenientes de 

pacientes diabéticos com diferentes graus de RD e de controlos não-diabéticos 

com o objectivo de: (1) obter uma visão global do perfil metabolómico 

característico das fases avançadas de RD; e de (2) identificar  factores  

circulantes  potencialmente  protectores. 

Na RD proliferativa (RDP) foi identificada uma grave desregulação nos níveis de 

amino-ácidos no humor vítreo, em especial daqueles envolvidos no metabolismo 

da arginina-prolina. Estes resultados sugeriram uma metabolização preferencial 

da arginina pela via da arginase em detrimento da via alternativa, a da sintase do 

óxido nítrico. Estudos subsequentes num modelo de ratinho não-diabético  

(“oxygen-induced-retinopathy mouse”, OIR) que desenvolve características de 

retinopatia isquémica revelaram um perfil metabolómico idêntico ao observado no 

vítreo de doentes com RDP. Análises posteriores utilizando isótopos estáveis de 

azoto (15N) com o objectivo de estudar mais detalhadamente o metabolismo da 
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arginina no olho do ratinho OIR confirmaram a hipótese previamente sugerida ao 

demonstrar uma hiperactividade da enzima arginase com produção preferencial 

de prolina. Desregulação a este nível pode potencialmente comprometer a 

comunicação neurovascular retiniana, pois o óxido nítrico (produto da via 

enzimática alternativa cuja actividade se encontra diminuída nestas condições)  é 

um importante modulador das interacções celulares na unidade neurovascular. 

O trabalho apresentado nesta dissertação identificou também novas funções para 

os interneurónios e fotorreceptores retinianos, ao revelar que estes 

desempenham um papel activo no desenvolvimento e manutenção dos vasos que 

os nutrem, sendo capazes de regular directamente o fluxo sanguíneo que 

recebem. Deste modo, estudar mais detalhadamente a disfunção dos 

(inter)neurónios retinianos nesta capacidade vaso-reguladora poderá proporcionar 

pistas adicionais para melhor compreender os mecanismos envolvidos na 

disrupção da comunicação neurovascular retiniana. 

As análises metabolómicas efectuadas no soro de pacientes diabéticos com ou 

sem RDP revelaram que os doentes “protegidos” (i.e., diabéticos de longa 

duração sem RDP) tinham níveis significativamente mais elevados de inosina, um 

metabolito gerado durante o metabolismo das purinas. Para averiguar o seu 

potencial terapêutico na retinopatia isquémica, este metabolito foi injectado 

directamente no olho do ratinho OIR. A administração de inosina aumentou 

significativamente a revascularização das áreas retinianas isquémicas, reduzindo 

consequentemente o desenvolvimento de neovascularização patológica. 

Simultaneamente a estes efeitos fenotípicos benéficos, as injecções de inosina 

induziram também efeitos metabólicos vantajosos através dos seguintes 

mecanismos: (1) redução da produção de prolina, o que sugere um antagonismo 

da via metabólica da arginase que se encontra hiperactiva em condições de 

retinopatia isquémica; e (2) adaptação do metabolismo basal mitocondrial 

(oxidativo) às adversas condições metabólicas locais através da redução selectiva 

de consumo de oxigénio nas áreas retinianas isquémicas; este efeito pode 

potencialmente aumentar a tolerância dos neurónios retinianos ao ambiente 

hipóxico, graças à redução da discrepância entre oferta e utilização de recursos 

metabólicos nestas regiões retinianas vulneráveis.  

Finalmente, as injecções intravítreas de inosina foram também responsáveis por 

moderar favoravelmente a resposta inflamatória na retina isquémica e este 



	 XXXV

fenómeno poderá ser consequência de uma melhoria global do estado 

metabólico. 

Em resumo, o trabalho apresentado nesta dissertação recorreu a análises 

metabolómicas para responder a duas intrigantes questões relativas à RD:  

 

(1)  Qual é o perfil metabólico ocular característico da RDP?  

(2) Quais são os potenciais factores circulantes endógenos responsáveis pela 

“protecção” de um subgrupo de doentes diabéticos de longa duração que não 

desenvolve RDP?  

 

As respostas a estas questões, descritas em maior detalhe ao longo dos próximos 

capítulos, poderão vir a contribuir para o desenvolvimento de futuras terapias, 

mais selectivas, mais eficazes e de actuação mais precoce do que as actualmente 

existentes e poderão, potencialmente, revolucionar o tratamento da RD e 

melhorar a qualidade de vida dos doentes diabéticos. 

 

Palavras-chave: Diabetes, Retinopatia isquémica; Neovascularização pré-

retiniana; Metabolismo retiniano; Terapêuticas selectivas 
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Abstract 

 

Diabetic retinopathy (DR) is a neurovascular complication of diabetes mellitus and 

a leading cause of blindness in adults below the age of 65, in industrialized 

nations. Currently there are 126.6 million people with DR worldwide (34.6% of the 

total diabetic population) and it is estimated that this number will increase to 191.0 

million by 2030. Generally, DR is divided into two stages: non-proliferative diabetic 

retinopathy (NPDR), an earlier phase characterized by appearance of 

microaneurysms, dot and blot hemorrhages, capillary occlusions and nerve fiber 

layer infarcts and; and proliferative diabetic retinopathy (PDR), the late-stage 

disease, which is diagnosed when pathological neovascular changes are identified 

on the retinal surface and/or vitreous.  Diabetic macular edema (DME) can 

develop at any stage and reflects a pathological increase in retinal vascular 

permeability.  

Despite its high prevalence, current availability of preventive and therapeutic 

strategies is far from ideal. In fact, there are no reliable biomarkers to predict risk 

of developing DR and no effective, targeted and early-acting therapies to 

sustainably and safely prevent disease progression into its vision threatening 

stages: PDR and DME. The two main therapeutic options currently available for 

DR are laser photocoagulation and intravitreal injections of anti-vascular 

endothelial growth factor (VEGF) agents; these constitute “non-selective” and 

destructive (especially for laser therapy) approaches that are not only unable to 

effectively and sustainably arrest retinal disease progression in every case, but 

can also potentially induce a myriad of undesired off-target effects at the retinal 

level and even systemically, in the case of VEGF antagonists. Moreover, they act 

late in the disease course. 

The lack of reliable rodent models - there is no diabetic mouse model that 

spontaneously recapitulates the late stages of DR - has greatly hindered research 

progress and development of novel and effective drugs for PDR, further 

contributing to the present therapeutic scenario. 

 

In this dissertation I will introduce and present my experimental work in the context 

of the following concepts, which can potentially lead to development of targeted, 

earlier acting, less destructive and more effective future therapies for DR:  
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(1) DR has long been regarded as a vascular disease and present-day DR 

management guidelines are still based on this assumption. However, a growing 

body of evidence shows that retinal neuronal function becomes impaired before 

vascular changes can be detected; these findings along with those showing that 

adequate retinal functioning depends on stable intercellular interactions within 

neurovascular units, suggest that disrupting retinal neurovascular crosstalk may 

play a critical role in promoting disease development and progression.  

(2) Metabolomic studies have been surprisingly neglected in the investigation of 

DR’s pathophysiology, and this is clearly reflected by the fact that the metabolome 

of human DR remains unknown. Furthermore, the neuroretina is one of the most 

metabolically demanding tissues in the body per unit weight, and diabetes is 

triggered by a metabolic defect that profoundly impairs cellular energy production. 

These features constitute a potentially disastrous combination in regard to retinal 

functioning and suggest that studying retinal energy metabolism in DR is critical. 

(3) Metabolic cycles of photoreceptors, interneurons and glial cells are still under 

debate and, even though it is known that intercellular communications within the 

neurovascular unit (NVU) are mediated by metabolites whose production becomes 

dysregulated under pathological conditions, the precise mechanisms underlying 

retinal neurovascular coupling are not fully identified. Gaining further insight into 

these interactions is pivotal because retinal NVUs are responsible for regulating 

blood flow for functionally dynamic retinal neuronal networks and, thus, for their 

proper functioning. 

Besides the points stated above, additional clinical clues were considered to guide 

the research plan presented in this dissertation. One the strongest came from a 

subset of long-term diabetic patients who appear to be protected from developing 

late-stage DR, by an unknown mechanism.  Studying these patients provides an 

excellent opportunity to identify protective factors and to further understand the 

mechanisms involved in progression of DR.  

In order to better understand how metabolic dysregulation impacts development of 

DR, how neurovascular interactions become compromised in the diabetic retina, 

and to develop strategies to potentially restore homeostasis within the NVU, we 

decided to use metabolomic analyses. A highly sensitive metabolomics mass-

spectrometry based approach was used in ocular and serum samples to identify 

the most prominent metabolic perturbations, to acquire a global overview of the 
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metabolomic landscape in late-stage DR and to identify potentially protective 

circulating factors. 

At the ocular level, late-stage diabetic retinopathy was associated with severe 

dysregulation in amino acid levels; this was especially prominent in those 

generated during arginine metabolism, suggesting a preferential activity in the 

arginase pathway over the alternative Nitric Oxide Synthase (NOS) pathway; 

Studies in the Oxygen-Induced-Retinopathy (OIR) mouse, a non-diabetic model 

that develops features of ischemic retinopathy, revealed a very similar metabolic 

landscape and, in vivo global isotope analysis confirmed the presence of 

asymmetrical arginine metabolism by showing: (1) over-activity in the arginase 

pathway leading to enhanced proline production; and (2) reduced activity in the 

alternative NOS pathway, with potentially reduced NO production. Even though 

NO’s role in DR and other retinopathies is not clearly understood, NO is known to 

be an important modulator of cellular interactions within the NVU and its lower 

availability in specific locations and/or time-points in pathological conditions may 

significantly contribute to the disruption of retinal neurovascular crosstalk. 

The work presented in this dissertation has also described novel functions for 

interneurons (amacrine and horizontal cells) and photoreceptors within the NVU, 

by showing that these cells play an active role in regulating their primary 

vasculature and thus, their blood supply.   Furthermore, it has also shown that 

dysfunction of retinal neurons in this capacity can directly alter their own blood 

supply, therefore providing additional clues for disrupted retinal neurovascular 

crosstalk. 

Metabolomic analyses comparing serum samples from diabetic patients with or 

without PDR (long-term diabetic patients “protected” from late-stage DR versus 

those who were non-protected) revealed that “protected” patients had higher 

circulating levels of a purine metabolite, inosine. To assess its therapeutic 

potential in conditions of retinal ischemia, inosine was delivered to the eye of the 

OIR mouse where it enhanced effective revascularization of ischemic retinal 

areas, thus significantly reducing pathological neovascularization.  

These effects were associated with a favorable modulation of the local pro-

inflammatory response that could result from an improved overall retinal metabolic 

status. These beneficial effects on retinal metabolism induced by inosine injections 

were observed as: (1) a reduction in basal mitochondrial respiration in vaso-
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obliterated areas (i.e., ischemic areas), which can potentially increase retinal 

neuronal tolerance to hypoxia by reducing the metabolic mismatch created by 

scarce metabolic supply and high neuronal demand; and (2) a reduction in proline 

production, suggesting antagonism of the arginase pathway (which is hyperactive 

in oxygen-induced-retinopathy and potentially in human PDR).  

In summary, the work presented in this dissertation employed a metabolomic-

focused approach with a strong focus on neurovascular crosstalk to answer two 

intriguing questions regarding DR:  

(1) What is the characteristic ocular metabolic landscape of severe DR?  

(2) Is the “protection” against severe DR (observed in some long-term diabetic 

patients) associated with differences in circulating metabolic factors? 

The answers to these questions, presented below, could serve as the basis of 

future targeted, more effective and earlier acting therapeutics that would 

revolutionize DR patient management. 

Identification of the most prominently affected metabolic pathways in eyes with 

severe DR has identified specific pathways of amino acid metabolism as potential 

targets for development of new drugs for DR. We have also identified a circulating 

protective factor, inosine, in “protected” patients and further investigated its ability 

to (1) prevent development of retinal ischemia and pathological 

neovascularization;  (2) adjust retinal metabolism to the limited energy supplies in 

ischemic areas; and  (3) counteract development of prominent metabolic 

dysregulation by potentially inhibiting the pathology-promoting arginase pathway. 

We believe that inosine can potentially become an effective, early-acting 

therapeutic agent to prevent progression of DR. 

In addition, these metabolites could potentially be used as reliable biomarkers for 

monitoring response to therapy and for predicting risk of developing or progressing 

DR. Finally, the work presented in this dissertation supports the concept that early 

intervention for treating DR will restore balance and stabilize cellular interactions 

within the NVU, thereby reversing the chronic stressors (e.g., extreme conditions 

of metabolic insufficiency in retinal ischemic areas) that ultimately drive 

development and progression of retinal pathology. 

 

Keywords: Diabetes; Ischemic retinopathy; Pre-retinal neovascularization; Retinal 

metabolism; Targeted therapies. 
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Chapter I: Introduction 
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Diabetes affects 382 million people worldwide and approximately 35% of diabetic 

patients develop diabetic retinopathy (DR), a retinal disease that constitutes a 

leading cause of blindness in adults below the age of 65 in industrialized 

nations[1]. 

Currently, there are no reliable biomarkers to assess risk of disease progression 

and the existing therapeutic strategies (laser photocoagulation and anti—vascular 

endothelial growth factor agents) act late and can induce potentially significant 

side effects, both at the retinal and systemic levels[2-4]. 

Even though neuronal dysfunction, identified by electrophysiological (ERG) 

testing, constitutes one of its earliest features, DR is still largely regarded as a 

disease of vascular origin. Clinical diagnosis and monitoring of disease 

progression continue to rely upon appearance and development of retinal vascular 

changes, which occur only later in the disease process[5]. This focus on the 

vasculature, which is commonly observed both in DR research and in the clinic, is 

highly limiting as it provides a restricted view of the disease effects on the retina 

and of its pathophysiology. 

In order to avoid progression of diabetic retinopathy into its devastating late-stages 

and improve diabetic patient care, discovery of new biomarkers and therapeutic 

targets is imperative[6]. Achieving this goal requires adoption of a new, integrative 

perspective that takes into account the interdependence amongst the different 

retinal cell populations and focuses on the disruptive effects of diabetes on retinal 

neurovascular metabolic crosstalk.  

To better understand the potential positive impact of this paradigm shift on 

development of new management strategies for DR, some essential 

ophthalmological, vascular and metabolic concepts will be discussed here in 

Chapter I, in the following sections: 

 

 Anatomy of the eye 

 Physiologic vascular development 

 Retinal pathological neovascularization 

 Diabetic retinopathy: state of the art 

 The neurovascular unit (NVU) 

 The role of metabolic factors in retinal disease 
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A. Anatomy of the Eye 

 

 

Figure 1 - Simplified representation of the human eye [7] 

 

A.1. General Organization 

 

The human eye is a highly complex structure composed of three different layers 

that enclose its fluid contents. The external layer is formed by the sclera, a 

meshwork of irregularly organized type I and III collagen fibers that provides shape 

and protection to the eye ball, and the cornea, an avascular and transparent 

structure consisting of highly ordered collagen fibers; the intermediate layer 

comprises the iris (its sphincter and dilator muscles control the diameter of the 

pupil), the ciliary body (that controls accommodation and produces aqueous 

humor), and the choroid (a layer of blood vessels that nourishes part of the eye); 

and the internal layer formed by the retina, which includes a light-sensitive portion 

(occupying 75% of its total area) responsible for phototransduction, and a small 

light-insensitive region (25%). 
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A.1.a. Anterior and Posterior Segment 

 

From a clinical standpoint it is common to divide the eye into two principal 

anatomical segments, anterior and posterior, which are separated by an imaginary 

line just behind the lens (Figure 1). The anterior segment is formed by the cornea, 

iris, ciliary body and the anterior part of the sclera whereas the posterior segment 

extends from the lens to the back of the eye, including the vitreous body, the 

retina-choroid complex and the optic disc. 

For the purpose of this work, we will be focusing on the posterior segment and 

more specifically on the retina and retinal pigment epithelium (RPE)-choroid 

complex. 

A.1.b. The Fundoscopic Examination 

 

The retina is the only readily visible portion of the central nervous system and the 

ocular fundus is the only location where vasculature can be directly visualized, 

providing a direct window on the patient’s overall vascular status. 

 

Figure 2 - Structures identified on fundoscopic examination[7] 

 

When performing a fundoscopic examination, several retinal structures can be 

identified and assessed (Figure 2), namely: 
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‐ The retinal vasculature 

 The retinal artery and the retinal vein can be easily identified as part 

of the four retinal vascular arcades (superior temporal, inferior 

temporal, superior nasal and inferior nasal) that radiate from the 

optic nerve 

‐ Optic disc  

 The optic disc (or optic papilla) is the region through which retinal 

ganglion cell (RGC) axons bundle together to leave the retina and 

form the optic nerve 

 A cup to disc ratio of 0.3 (cup occupying 1/3 of the diameter of the 

entire disc) is considered normal. When this ratio increases, 

however, it suggests a loss of neuroretinal tissue. 

 

‐ Macula and fovea 

 The macula is a yellow-pigmented area located to the temporal side 

of the optic disc that includes the fovea, an avascular zone formed 

exclusively by cone photoreceptors concentrated at their maximal 

density and arranged at their most efficient packing density 

(hexagonal mosaic) for maximal visual efficiency. Maintenance of 

this highly ordered array of foveal cones is critical to ensure the 

highest resolution and best color vision. 

  

A.1.c. Components of the Retina-Choroid complex 

 

The retina-choroid complex includes three main structures: the neuroretina, the 

retinal pigment epithelium (RPE) and the choroid. 

A.1.c.i.  Neuroretina 

 

The noblest part of the eye is the retina, a highly specialized direct extension of 

the brain. The retina is a thin (0.5 mm) layer that covers the back of the eye and is 

composed by neurons, interneurons, glial cells and vasculature organized in a 

highly ordered fashion.[8] The retina has a discrete laminar structure, easily 
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identified on hematoxylin and eosin stainings (Figure 3), formed by the ganglion 

cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL), the 

outer plexiform layer (OPL), the outer nuclear layer (ONL) and the outer segments 

of photoreceptors (OS)[8]. 

 

 

Figure 3 - Histological section of the human retina showing its different layers (the nuclei 
of the retinal cells are arranged in nuclear layers - ONL and INL – while their axons form 
the plexiform layers – IPL and OPL). Schematic representation of the gross anatomy of 
the eye[8] 

 

Retinal neurons and phototransduction 

 

The light-sensing photoreceptors (rods and cones) reside in the outermost layers 

of the neural retina, OPL and ONL, and form specialized apical extensions - the 

outer segments - that are crucial for visual processing because they contain the 

light sensitive photopigments and the phototransduction machinery (Figure 4). 

Rods are highly sensitive photoreceptors (PRs) under scotopic conditions (i.e. in 

low light) whereas cones perform their functions under photopic conditions (i.e. in 

bright light), being responsible for our visual acuity and color vision. 

The neural signals generated by photoreceptors in response to light are 

transferred to another neuronal cell type, the bipolar cell, present in the INL. 
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Amacrine and horizontal cells then act as inhibitory interneurons and modulate the 

neural signal within the INL. Finally visual information is transmitted to the 

dendrites of retinal ganglion cells (RGC) that send the information to the visual 

centers of the brain through their axons, which form the optic nerve[8]. 

In summary, the phototransduction process is initiated when light photons are 

captured by cone and rod photoreceptors in the outer retina, transformed into 

electric signals and passed on to bipolar cells. These transmit the electrical 

impulses to the retinal ganglion cells, which in turn send the integrated signal to 

the visual cortex. This process is modulated within the INL by amacrine and 

horizontal cells, which function as lateral inhibitory neurons. 

 

Visual cycle (Figure 4) 

 

In contrast to what would be expected, photoreceptor cells are more metabolically 

active under scotopic conditions. These cells depolarize in the absence of stimuli 

(e.g. light) and hyperpolarize in presence of light. Under scotopic conditions, 

cGMP levels are high and open cGMP-gated sodium channels, which create a 

steady inward current (the dark current) that maintains PR cells in a depolarized 

state and, hence, continually active[9]. 

Both in cones and in rods the absorption of light energy by their photopigments 

(formed by opsin and 11-cis retinal and present in the outer segments) initiates the 

same neural response, hyperpolarization. Photopigments must be continually 

recycled in order for visual activity to occur[10].  

Rhodopsin is composed by the apoprotein, opsin, covalently linked to the 

chromophore 11-cis-retinal, by a protonated Schiff base[11]. Rhodopsin is the only 

photosensitive pigment present in rods. In cones, however, there are three 

different varieties of opsins covalently bound to 11-cis retinal; these opsins are 

distinguishable by their amino acid sequences, which modulate the absorption 

spectra of their associated chromophore (11-cis-retinal), thus determining the light 

absorption peaks in the blue, green and red portions of the visible light spectrum. 

All three opsins coexist in every cone but the predominance of one type of opsin 

defines the cone type[10]. Most humans have trichromatic vision due to presence 
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of three types of cones, the S cones (for short wavelength – 420 nm), the M-cones 

(for medium wavelength – 530 nm) and the L-cones (for long wavelength – 560 

nm). However, some humans do not develop the three functional cone types, 

becoming colorblind; alternatively they can develop four or more, becoming 

tetrachromatic[12].   

Opsins and rhodopsin are G-protein coupled receptors. 

The visual cycle has been thoroughly described in rod PRs (the classical visual 

cycle) where it is initiated by light photons that activate these cells and induce 

photoisomerization of 11-cis retinal into all-trans retinal. This biochemical reaction 

changes the conformation of rhodopsin, closes cGMP-gated channels and causes 

subsequent hyperpolarization of the PR cell. In order for the visual cycle to 

continue, 11-cis retinal must be regenerated and this occurs through a step-wise 

process divided between rods and RPE cells. All-trans retinal is reduced to all-

trans retinol in rods and then shuttled back to the RPE where it is reconverted to 

11-cis retinal via two enzymatic reactions[9,13]. 

Cones are less dependent upon the RPE and have a different recycling pathway 

that relies mainly on Mueller glia[14]. Additionally, cones also express many of the 

enzymes required for chromophore reconversion and are actually able to 

regenerate 11-cis retinal from 11-cis retinol.   

In cones, the all-trans retinol generated during visual activity is transported to 

Mueller cells, isomerized to 11-cis retinol and then transported back to the inner 

segments of cone PRs where it is oxidized to its active form (11-cis retinal)[14]. 
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Figure 4 - Simplified version of the rod photoreceptor visual cycle[15] (RHO = rhodopsin; 
RHO* = activated rhodopsin; IRBP = interphotoreceptor retinoid-binding protein) 

 

Macroglial cells 

 

The macroglial cells of the retina, Mueller cells and astrocytes, play an important 

supportive role and are crucial for maintaining retinal homeostasis. 

Mueller cells, the main macroglial cell of the retina, are the only cell type to span 

the entire thickness of the tissue (Figure 5A&B) and provide structural and 

functional support to the neuronal population.  

Mueller cells contain intermediate filaments (composed by glial fibrillary acidic 

protein (GFAP)) that following trauma to the retina (e.g. retinal detachment; 

abnormal Intraretinal vascular growth) become massively upregulated throughout 

the cell. GFAP is therefore used as a marker for Mueller cell activation (Figure 

5B). The ‘zonula aherens’ between Mueller cells and PRs forms the outer limiting 

membrane (OLM) of the retina, whereas Mueller cell endfeet (that project towards 

the retinal surface) and the basement membrane at the inner retinal surface form 

the inner limiting membrane (ILM). 
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Figure 5 – Retinal architecture. (A) Schematic representation of the cellular organization 
in the retina, including its individual cell types.[8]; (B) Retinal cross-section from the 
VLDLR -/- mouse showing Mueller glial cells specifically activated around the abnormal 
intraretinal vessels, spanning the entire retina [16] (RPE - retinal pigment epithelium; OS 
– outer segments; OLM – outer limiting membrane; ONL – outer nuclear layer; OPL – 
outer plexiform layer; INL – inner retinal layer; IPL – inner plexiform layer; GCL – ganglion 
cell layer; NFL – nerve fiber layer) 

 

Astrocytes are the other glial cell type present in the retina but, rather than 

originating locally from the retinal neuro-epithelium, they enter the developing 

retina from the brain simultaneously with the developing optic nerve. Their cell 

processes, which contain high amounts of intermediate filaments such as GFAP, 

cover the superficial retinal blood vessels that run in and amongst the retinal 

ganglion cell bundles, thus reinforcing the selective metabolic exchange function 

of the inner blood retinal barrier.[7] 

Microglial cells 

 

Microglial cells are the resident macrophages of the retina and are responsible for 

maintaining tissue homeostasis. They play an important role during development, 

wound healing and in conditions of retinal degeneration and retinal auto-

immunity[17]. Their immunoregulatory function is also critical for maintenance of 

retinal health. Upon retinal insult microglial cells become rapidly activated, initiate 

production of cytokines and acquire motile properties; however, these cells are 

also able to limit subsequent inflammation avoiding further tissue damage[18]. 

B A 
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A.1.c.ii. Retinal pigment epithelium (RPE) and choroid 

 

The Retinal pigment epithelium (RPE) is a single layer of pigmented cells 

interposed between the light-sensitive photoreceptor outer segments and 

choriocapillaris (the choriocapillaris is the vascular plexus part of the choroid, 

which also consists of choroidal blood vessels and extracellular matrix; Figure 6). 

The RPE rests, on its basal surface, on Bruch’s membrane, a penta-laminar 

structure consisting of a central elastin core sandwiched between two collagen 

layers that provides mechanical separation and ensures selective transport of 

substances between the fenestrated choroidal vasculature and the highly ordered 

PR layer. On its apical side, the RPE contacts with the interphotoreceptor matrix 

that contains molecules responsible for retinoid exchange, disk phagocytosis and 

physical stabilization, providing an interface for communication with PR outer 

segments.   

The RPE cells perform multiple indispensible roles for maintenance of proper 

visual function, namely: regulation and transport of ions, water, growth factors and 

nutrients to the outer portions of the PRs (transepithelial transport) as well as 

trafficking of metabolic waste from the photoreceptors in the opposite direction, 

phagocytosis of PR outer segments, recycling of the visual pigments, maintenance 

of PR cell adhesion (essential for maintenance of high spatial resolution of PR 

cells), absorption of light (absorbance of light scatter through its melanin pigment, 

to improve optical image quality), maintenance of the ion composition of the 

subretinal space and secretion of cytokines, immune modulators and growth 

factors.[19,20] 

The RPE and the neuroretina constitute a functional unit that is already of 

importance during embryonic development, as both structures depend on each 

other for adequate tissue differentiation and maturation. A paradigmatic example 

of this interdependence is Leber congenital amaurosis, an ophthalmological 

condition in which PR degeneration results from mutations in genes expressed in 

the RPE[21].  

After full development of the RPE-choroid complex, this functional unit continues 

to be crucial as the RPE fulfills a multitude of tasks that are essential for proper 

photoreceptor functioning and consequent visual processing.[19] 
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Retinal and choroidal circulation 

 

Since the retina is the most metabolically active tissue in the body per unit weight, 

proper visual function is heavily dependent on its vasculature and highly 

vulnerable to even subtle changes in vascular supply[22].  

The mammalian retina receives blood supply from two different sources, the 

choroidal circulation and the retinal circulation. Choroidal vessels receive the 

majority of the systemic blood flow (65-85%) and are responsible for nourishing 

the outer retina (especially the photoreceptors)[23]. On a full thickness cross-

section of the eye, both large choroidal vessels and the choriocapillaris can be 

identified (Figure 6). 

 

 

Figure 6 - Schematic representation of the RPE-choroid complex[24] 

 

The retinal vasculature receives 20-30% of the systemic blood flow and is 

responsible for providing metabolic supply to the inner retinal layers.[7] It is 

composed of three vascular plexuses, superficial, intermediate and deep, which 

are easily identified on retinal cross-sectional views (Figure 7). 

In order for the retina to regulate its environment in response to varying metabolic 

demands and to maintain its immunoprivileged condition, the retinal vasculature 

possesses barrier properties similar to those seen in the brain. 

A blood retinal barrier (BRB) surrounds retinal vascular plexuses and is induced by 

Mueller glia and astrocytes during development. It is composed of two parts, the 



	 56

inner retinal barrier (iBRB), which relies on tight junctions between retinal capillary 

endothelial cells; and the outer retinal barrier (oBRB), formed by tight junctions 

between the retinal pigment epithelium cells. [25] 

 

    

Figure 7 - Retinal cross-section illustrating the three retinal vascular plexuses [26] 

 

Disruption of the iBRB characterizes DR and leads to development of diabetic 

macular edema (DME), which is currently the leading cause of vision loss in 

diabetic patients[27]. In addition, the pathological pre-retinal neovessels that 

constitute the hallmark feature of the devastating late-stage of diabetic retinopathy 

(proliferative diabetic retinopathy - PDR), are also leaky and further contribute to 

retinal edema. The exact mechanisms driving development of these vascular 

changes under diabetic conditions remain unclear. 

To gain further knowledge into this area, it is important to review the main 

processes and factors involved in systemic and retinal vascular development. 

 

B. Physiologic Vascular Development 

B.1. General Concepts 

Vascular development comprises three main processes: 

 

‐ Vasculogenesis 



	 57

‐ Angiogenesis   

‐ Arteriogenesis 

 

Vasculogenesis is the process through which new vessels are formed ‘de novo’ 

from assembly of mesoderm-derived endothelial precursors (angioblasts) into 

primitive vascular tubes. This process is generally responsible for vascularization 

of tissues of endodermal origin and occurs in the embryo[28]. 

After this primary network is laid out, new vessels are formed by sprouting from 

pre-existing ones. This process in called angiogenesis and primarily vascularizes 

tissues of ectodermal and mesodermal origin, such as the retina, the brain and the 

kidney[23]. Additionally, angiogenesis is the predominant process responsible for 

neovascularization in pathological settings such as proliferative diabetic 

retinopathy (PDR) and wound healing. 

Arteriogenesis, which is essential for creation of mature vessels, subsequently 

follows; once the vessel network is developed, pericytes and vascular smooth cells 

are recruited to ensheath the nascent endothelial cell tubules, thus providing blood 

vessels with stability and capacity to regulate their own perfusion (auto-regulation). 
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B.1.a. Angiogenic sprouting: Tip and Stalk Cell Phenotypes 

 

Although vessels are typically quiescent in adulthood, their endothelial cells (EC) 

retain high plasticity, which allows them to sense and respond to pro-angiogenic 

cues. This ability to maintain their sprouting capacity becomes interesting in 

pathological conditions, where it can either be advantageous (e.g. in limb 

ischemia) or deleterious (e.g. in the eye following ischemic pathology)[28]. 

When pro-angiogenic signals dominate the environment, ECs regain their 

migratory and invasive capacities and vascular sprouting occurs. During vascular 

branching there are two crucial EC types: tip cells, which direct the growth of new 

sprouts by probing the environment for guidance cues through their filopodia; and 

stalk cells, which proliferate to sustain sprout elongation. The terms tip and stalk 

EC do not designate stable cell fates but rather transient phenotypes determined 

during a dynamic process that is tightly regulated by vascular endothelial growth 

factor (VEGF) and Notch signaling pathways (Figure 8) [28,29].  

During the sprouting process, there is constant competition for the tip cell 

phenotype. VEGF exposure upregulates delta like ligand 4 (Dll4) in all EC and the 

ones that start expressing it earlier or at higher levels, are at a competitive 

advantage, consequently becoming tip cells. Simultaneously, these tip cells 

activate notch signaling in neighboring ECs to ensure that they will become stalk 

cells.[28] 

Tip cells guide elongation of the growing sprout by expanding or retracting their 

filopodia in accordance to environmental cues through ligand-receptor interactions.  

Some signaling pathways involved in tip cell attraction include VEGF – VEGF 

Receptor-2(Flk-1)/Neuropilin-1 (NP-1)[30] and Stromal derived factor 1 (SDF-1) – 

CXCR4[31]; while those pathways involved in tip cell repulsion include 

Semaphorin 3A – Plexin D1[32], Netrin - Netrin receptor UNC5B and Roundabout 

receptor 4 (ROBO4) – UNC5B[33,34]. 
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Figure 8 – Notch/Dll4 signaling regulates tip (green) and stalk (purple) cell fate[29] 

 

B.1.b. Vessel Stabilization and Maturation 

 

The process of vessel stabilization is initiated when two tip cells fuse with one 

another via a VE-cadherin mediated interaction between their respective filopodia. 

This branch anastomosis is supported by macrophages that accumulate locally 

and induce stalk cell stabilization. Additionally, stalk cells also lay the foundations 

for vessel perfusion by being responsible for lumen formation and by participating 

in subsequent vascular remodeling in response to flow[28].  

In perfused vessels, shear forces determine a change of shape in stalk cells and 

upregulate the Kruepper-like 2 (KFL2) transcription factor that promotes EC 

quiescence by downregulating VEGF signaling (downregulating VEGFR2/Flk-1) 

and upregulating thrombomodulin and endothelial Nitric Oxide Synthase (eNOS) 

expression[35]. The latter ones ensure formation of patent vessels (Nitric oxide, 

NO, is a vasodilator) with an antithrombogenic endothelium (thrombomodulin 

exerts an anti-thrombotic effect). In non-perfused vessels, endothelial stalk cells 

are not subject to shear forces, levels of KLF-2 are low and the cell undergoes 

apoptosis. This ensures that the vascular network is only formed by perfused 

vessels. 

Stalk	cell

Tip	cell
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Finally, vessel maturation takes place through: (1) recruitment of pericytes to the 

previously stabilized vessels (mediated by Platelet derived growth factor β (PDGF) 

and its receptor); (2) formation of N-cadherin junctions between adjacent ECs and 

(3) deposition of basement membrane. Mature vessels acquire a phalanx EC 

phenotype characterized by expression of oxygen sensors[36] (via Prolyl 

Hydroxylase Domain protein 2 – PHD2 - and Hypoxia inducible factor signaling –

HIFs) that allow them to regulate vessel perfusion according to oxygen delivery 

and metabolic demands. In addition, mature EC adopt survival strategies such as 

autocrine expression of VEGF, which activates the PI3Kinase/AKT survival 

pathway to ensure that vessel integrity is maintained. Other non-autocrine factors 

such as Fibroblast growth factor (FGF), Notch, Angiopoetin 1 (Ang1)/Tie2 

signaling and effects of blood flow/shear stress are also involved in sustaining EC 

survival in perfused vessels.[28] 

 

B.2. Retinal Vascular Development 

 

The vascular network supplying the adult retina undergoes major remodeling 

during development: 

 1. During the early developmental stages, the choroidal circulation ensures 

viability of the outer retina, while the inner retina is supplied exclusively by the 

hyaloid vasculature, an arterial network that extends all the way across the 

vitreous, from the optic nerve to the anterior segment of the eye.  

2. Around mid-gestation (in humans) or around birth (in mice), the hyaloid vessels 

regress and are replaced by an emerging retinal vascular network that emanates 

from the optic nerve.  

3. In the adult retina, the mature retinal vasculature is composed of three 

plexuses, superficial, intermediate and deep. Since avascularity of the outer retina 

is crucial to ensure adequate visual function, these vascular networks are 

restricted to the inner retina[23].  

Investigating formation and maturation of the retinal vascular network is not 

possible in humans, where it is fully developed at birth; however it can be easily 

studied in the mouse, where it occurs during the first three postnatal weeks. 
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Retinal vascular development occurs by sprouting angiogenesis in a step-wise 

fashion and relies on generation of radial and ‘in-depth’ VEGF-A gradients. 

Vascularization of the retinal surface occurs first and follows a radial centrifugal 

pattern. After this is completed, vascular growth shifts to a three-dimensional 

pattern and sprouting vessels dive vertically towards the OPL, where they form the 

deep plexus. Finally, a new VEGF gradient is established and nascent vessels 

turn back to the IPL to form the intermediate plexus. 

Full development of the three parallel and interconnected vascular networks is 

observed at approximately three weeks after birth (in the mouse), with complete 

development of the superficial plexus by postnatal day (P) 7; of the deep plexus by 

P14 and of the intermediate plexus by P21[37]. 

 

B.2.a. Astrocytes: Contribution to Retinal Vascular Development 

 

Astrocytes are believed to provide the template over which the superficial retinal 

vascular plexus develops. [38,39] Supporting this view are the following 

observations: 

a) Both in primate and in non-primate mammal retinas, astrocytes are restricted to 

vascularized areas. 

b)  Astrocytes can provide extracellular matrices for organized vascular growth. 

c) Astrocytes invade the retina prior to retinal vascular development. There is a 

complete astrocytic template covering the entire retina at the time of birth (in 

mice). 

d) Astrocytes may promote and guide retinal angiogenesis through hypoxia 

induced VEGF-expression as well as expression of selected adhesion molecules 

that can interact with ECs, such as R-cadherin 

e) Astrocytes have been shown to be important in maintaining vascular integrity 

and may prevent misdirected migration of the retinal vasculature into the 

vitreous[38].  

The current mechanistic concept suggests that astrocytes act as guides for 

vascular development in the retina by experiencing hypoxia, which leads to 

creation of a centrifugal VEGF gradient that attracts tip and stalk endothelial cells 

from nascent vessels. Upon binding R-cadherin expressed on astrocytes, 
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endothelial cell filopodia become stabilized and lead further EC growth along the 

preexisting astrocytic template (Figure 9). As the vascular network expands over 

them, astrocytes acquire a more mature phenotype, proliferation ceases, GFAP is 

upregulated and VEGF is downregulated. Since astrocytes act as promoters of 

vascular growth, this creates a negative feedback loop that stabilizes numbers of 

astrocytes and vascular density in the retina.[38,40] 

 

 

Figure 9 - Retinal vascular development depends on interactions between: (1) EC and 
astrocytes (stabilized by R-cadherin); and (2) RGC and Astrocytes (via PDGF-α/PDGFR-α 
signaling)[40] 
 

 

Despite the important role played by the astrocytic template in physiological retinal 

vascular development, studies performed in transgenic mice that are not able to 

express VEGF in astrocytes revealed that astrocyte-derived VEGF is not 

indispensable for the process, suggesting that other cell types and/or growth 

factors can play a compensatory role.  

In contrast, hypoxia induced astrocyte derived VEGF is critical for development of 

pathological retinal neovascularization[41] and for stabilization of the developing 

retinal vasculature. Studies in Oxygen Induced Retinopathy (OIR) mice have 

shown that VEGF deletion in astrocytes leads to vascular collapse under 

hyperoxia conditions due to regression of smooth muscle coated radial arteries 

and veins.[42] 

Besides astrocytes, retinal neurons and myeloid cells have also been described to 

play a significant role in retinal vascular growth. 
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B.2.b. Retinal neurons: Contribution to Retinal Vascular Development 

 

Retinal neurons play a major role in retinal vascular development as they: 

a) Are the only source of retinal VEGF-A during embryogenesis  VEGF-A is 

critical to maintain the hyaloid vasculature and to guarantee nourishment of the 

inner retina at this early stage.[43,44]   

b) Express VEGFR2 (Flk-1)  Activation of this receptor by VEGF in the first 

postnatal week appears to be fundamental for maintaining neuroretinal cells in an 

undifferentiated state as retinal progenitor cells and post-mitotic progenitors [45]. 

Additionally, VEGFR2 expression in retinal neurons plays a paramount role in 

ensuring completion of the initial radial growth along the GCL, preventing 

premature vertical growth towards the neuroretinal, by regulating extracellular 

VEGF-A protein levels, through VEGFR2-mediated endocytosis.[43]  

c) Act as hypoxia sensors  Retinal ganglion cells (RGC) act as key sensors of 

hypoxic stress both in physiologic (during retinal vascular development) and 

pathological conditions (for example in ischemic retinopathies). When hypoxia 

inducible factor 1alpha (HIF-1α) is activated in RGC, VEGF-A is produced and 

contributes to formation of the gradient that guides nascent vessels. Retinal 

ganglion cells and their ER stress response have also been shown to significantly 

influence pathological neovascularization in a model of OIR[46] and, given their 

location and capacity to produce VEGF, they may play a compensatory role in 

driving and facilitating physiological retinal vascular development when the 

astrocytic hypoxic response is compromised.  

Furthermore, the invasion of the retina by astrocytes early during development is 

intimately associated with RGC via PDGF-α/PDGFR-α signaling. Astrocytes 

express PDGFR-α and travel on top of PDGF-α expressing RGC, when migrating 

from the optic nerve to the retinal periphery to finally form the retinal astrocytic 

template (Figure 9).[47] 

B.2.c. Macrophages and Microglia: Contribution to Retinal Vascular 

Development 

 

The (1) intimate association between macrophages and the vasculature along with 

(2) the correlation between reduced microglial cell numbers and retinal vascular 
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scarcity (associated with hyperoxic conditions) suggest that these cells can 

modulate vascular development, remodeling and maturation in the retina under 

both physiologic and pathological conditions[39]. Ablation of macrophages 

(through cell-specific expression of diphtheria toxin or by injection of clodronate 

liposomes[44,48]) inhibits regression of the hyaloid vasculature and genetic 

deletion of angiopoietin-2 or elements in the Wnt signaling pathway (Norrin, FZD4 

and LPR5) in macrophages disrupts formation of the deep retinal plexus. 

The deep vascular plexus is known to develop independently of retinal astrocytes 

but little is known about the specific cellular and molecular mechanisms governing 

its formation.  

The phenotypes induced by loss of Wnt signaling in macrophages and loss of 

VEGFR2 signaling in neurons (previously described in the text), suggest that 

neurons and myeloid cells can cooperate to regulate formation of the deep 

vascular retinal plexus[43]. 

Although much has been reported on the different cellular and molecular 

mechanisms involved in retinal vascular development, formation of the 

intermediate plexus remains elusive and the work present here in Chapter IV A 

will provide further knowledge on this matter[49].  

 

B.3. The  pivotal  role  of  VEGF  in  Vascular  Development  and  Pathological 

Neovascularization 

 

Several pro-angiogenic factors (e.g. PDGFα and β and its receptors; 

angiopoietins, FGF, TGF-β and its receptors) have been shown to contribute to 

vascular development and pathological neovascularization, however Vascular 

Endothelial Growth Factor (VEGF) has gained the most attention and is currently 

considered the most critical one. 

B.3.a. VEGF superfamily 

 

VEGFs are fundamental regulators of vascular development during 

vasculogenesis and angiogenesis. In mammals the VEGF family includes five 

members: VEGF-A, B, C, D and PIGF (placental growth factor), which bind in a 
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partially overlapping pattern to VEGF receptors [VEGFR-1(Flt-1), VEGFR-2(Flk-1) 

and VEGFR-3(Flt-4)] and co-receptors (heparan sulphate proteoglycans and 

neuropilins)[50].  

VEGF-A, the most extensively studied family member, acts as a specific EC 

mitogen, induces vascular permeability with very high potency (10.000 times more 

potent than histamine) and is chemotactic for macrophages. Alternative splicing of 

the VEGF-A gene generates its different isoforms[50]. 

 

B.3.b. VEGF-A isoforms 

 

Alternative splicing of the VEGF-A gene gives rise to different isoforms with 

diverse biological activities. In humans five isoforms of VEGF-A have been 

identified: VEGF 121, VEGF 145, VEGF 165, VEGF 189 and VEGF 206. In mice, 

however, only three isoforms have been reported: VEGF 120, VEGF 164 and 

VEGF 188. These are one amino acid residue shorter than their corresponding 

human ones.[23]  

The different isoforms are expressed in a tissue-specific fashion during 

embryogenesis and in the adult organism. Their different amino acid lengths 

define distinct heparin-binding properties, which in turn determine their level of 

interaction with the cell surface and with extracellular matrices. VEGF 120 is not 

able to bind heparin and is freely soluble; VEGF 164 moderately binds heparin and 

can be found both in its soluble form or bound to the extracellular matrix; VEGF 

188 strongly binds heparin and practically does not exist in the soluble form, being 

sequestered on the cell surface and extracellular matrix. 

In addition, the isoforms also differ (1) in their biological potency, with VEGF 164 

inducing a 100-fold higher proliferative response in EC than VEGF-120, and (2) in 

their capacity to bind Neuropilin-1 (NP-1, a co-receptor), with VEGF-164 being the 

only isoform able to do so. 

This functional diversity is evident in studies with transgenic mice that only 

produce specific isoforms. Transgenic mice that only produce VEGF 120, a more 

freely diffusible form, show a flattened VEGF gradient and delayed retinal vascular 

growth. Although these mice live to term, they die within the first two weeks of 

postnatal life due to severe vascular defects[51]. 
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Similarly, VEGF 188 mice show abnormal vascular remodeling in the lungs and in 

the retina, with defective development of the primary plexus and persistent hyaloid 

vasculature. Furthermore the formation of retinal arteries is compromised whereas 

retinal veins develop normally[52]. 

Mice expressing only VEGF164, however, display a normal retinal vessel network, 

which shows that this isoform is sufficient to guarantee adequate retinal vascular 

development[52].    

These findings demonstrate that VEGF–A isoforms do not perform 

interchangeable functions and rather play functionally distinct roles during vascular 

development (with only VEGF-164 being sufficient on its own). 

 

B.3.c. VEGF Receptors (VEGFRs) 

 

VEGFRs are receptor tyrosine kinases (RTK) that when activated lead to receptor 

auto-phosphorylation, which induces recruitment of interacting proteins and 

activation of several downstream signaling pathways. VEGFR activation can 

induce cellular processes, such as cell migration, survival and proliferation that are 

shared with many other growth factors but can also promote unique responses, 

such as formation of a 3D vascular structure and control of vascular 

permeability.[50]  

Negative regulation of VEGFRs is important to limit exaggerated responses on 

target cells and can be achieved by two mechanisms: rapid dephosphorylation of 

the receptors by tyrosine-specific phosphatases or rapid degradation in the 

proteasome. 

VEGF-A can bind and activate VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1)[50]. It can 

also bind neuropilin-1, a transmembrane glycoprotein that acts as a co-receptor for 

VEGF in angiogenesis but lacks VEGF catalytic function[30]. 

VEGFR-2 is expressed on EC during physiological vascular development and 

pathological neovascularization, where it mediates VEGF-A’s proliferative effects. 

However, in normal adult retinas populated by quiescent vessels, it is mainly found 

in non-vascular cells, such as neurons, where it titrates VEGF-A levels in the outer 

retina, ensuring maintenance of its avascularity[43]. 
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VEGFR-1 is expressed in EC, pericytes and mononuclear cells throughout 

development and in the adult retina. It positively regulates monocyte and 

macrophage migration and negatively regulates VEGFR2-mediated EC 

proliferation through its soluble variant (sVEGFR-1). VEGFR-1, therefore, appears 

to be an important vascular regulator during embryogenesis by acting as a 

‘physiologic trap’ for VEGF-A, restricting its access to VEGFR-2. [50] 
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B.3.d. Hypoxia-driven VEGF expression 

 

Retinal neurons and glial cells can sense oxygen levels in the retina and produce 

VEGF under hypoxic conditions, in an attempt to restore adequate nutrient and 

oxygen delivery to cells in order to avoid metabolic insufficiency.  

Interestingly, the molecular mechanisms underlying physiologic retinal 

vascularization and pathological retinal neovascularization are largely 

indistinguishable, except for their magnitude, and hypoxia-induced production of 

VEGF acts as the main driver in both cases [23,53].  

Hypoxia-inducible transcription factors (HIFs: HIF-1 and HIF 2) are pivotal for the 

process and aim at adjusting oxygen supply and demand by regulating gene 

networks involved in survival, metabolism and angiogenesis[28]. HIF activity is 

regulated by the Von Hippel Lindau tumor suppressor gene product (pVHL) via 

activation of oxygen-sensing prolyl-hydrolase domain proteins (PHDs 1-3).  

In normoxia (ambient oxygen conditions), PHD proteins hydroxylate HIFs and 

target them to proteasomal degradation. In contrast, in hypoxia, PHD proteins are 

inactive, HIFs escape degradation and bind to hypoxia responsive elements (HRE) 

on target genes, such as VEGF-A, promoting their transcription and subsequent 

actions. 

Experimental studies and clinical evidence from Von Hippel Lindau patients have 

demonstrated that HIF-1α plays a crucial role in retinal neovascular diseases and 

in physiological vascularization. Using mouse models, it has been shown that an 

increase in HIF-1α expression correlates with VEGF-A expression during 

physiologic and pathologic retinal vascularization[54]. In addition, studies 

performed on transgenic mice where HIF-1α was silenced in different retinal cells 

types have confirmed HIF’s essential role in regulating VEGF expression in the 

retina[23]. 
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C. Retinal Pathological Neovascularization 

 

In the adult retina, under normal circumstances, quiescence of the retinal 

vasculature is the norm and this is critical for maintenance of a functional tissue 

architecture and adequate visual function.  However, a pathological stimulus, such 

as ischemia, is capable of inducing a potent and disorganized vaso-proliferative 

response that leaves visual function at risk. 

Pathological neovascularization in the posterior segment of the eye is classified 

into three types depending on the vascular bed from where it originates. The three 

types are: choroidal neovascularization (CNV), intra-retinal neovascularization and 

pre-retinal neovascularization. 

 

C.1. Types of Neovascularization affecting the Posterior segment 

 

C.1.a. Choroidal Neovascularization (CNV)  

 

Pathological outgrowth of new vessels from the choroid is characteristic of the 

exudative (neovascular) form of age-related macular degeneration (AMD). In these 

cases, choroidal vessels grow towards the retina, break Bruch’s membrane and 

enter the subretinal space, where accumulation of fluid or blood can lead to RPE 

or retinal detachment. 

Increased VEGF-A expression occurs in proliferative RPE and inflammatory cells. 

Even though VEGF-A overexpression is necessary for full development of CNV, 

as shown by studies where antibody mediated neutralization of VEGF reduced its 

formation and progression[55], it is not sufficient to ensure invasion of BM or the 

RPE[56], i.e. invasive CNV. However, sub-retinal injections of viral vectors 

expressing VEGF-A were able to reproduce invasive CNV[57,58], which suggests 

that damage to BM and the inflammatory response (here, iatrogenically induced by 

sub-retinal injection) are critical for development of the neovascular process. 



	 70

Therefore, development of invasive CNV requires both elevated expression of 

VEGF-A and rupture of Bruch’s membrane (BM), the latter being facilitated by 

aging-induced alterations in the BM’s structure. 

Basic FGF (bFGF) has also been implicated in CNV development, being detected 

in surgically excised CNV membranes. However studies in bFGF null mice have 

shown that it is not necessary for formation of experimental CNV[59] and a direct 

role for this growth factor in CNV progression has not been clearly established. 

Nevertheless other studies have shown that overexpression of bFGF by laser-

damaged PRs induces CNV if prior disruption of BM’s occurs[60], suggesting that 

its pro-angiogenic potential is dependent on cellular injury and release into the 

extracellular space. 

Non-exudative (dry) AMD, which is characterized by localized degeneration of 

RPE cells associated with atrophy of regional PRs and choriocapillaris (CC), may 

also progress onto the exudative form. As such, it constitutes an important ‘model’ 

for studying the initial events that lead to CNV, including potential disruptions in 

the neuronal-RPE-vascular crosstalk amenable for therapeutic targeting. 

During development and in adulthood the relationship between choroidal vessels 

and the RPE is crucial as RPE cells secrete VEGF-A that acts as a survival factor 

to maintain a viable and quiescent CC, which in turn ensures proper PR 

functioning.[61,62] 

With age, an increasing structural disorganization and thickening of BM occurs 

and renders it less permeable to RPE-derived VEGF-A. As such, VEGF-A does 

not diffuse normally into the CC, which undergoes atrophy, resulting in localized 

PR hypoxia and subsequent VEGF-A overexpression that leads to secondary 

neovascularization (CNV).  

 

C.1.b. Intraretinal Neovascularization 

 

Intraretinal neovascularization is characterized by abnormal vascular proliferation 

in the inner retina that, over time, expands into the subretinal space disrupting the 

normally avascular outer retina and visual function. This type of neovascularization 

is observed in macular telangiectasia (MacTel), an uncommon retinal disease; and 

in retinal angiomatous proliferation (RAP), a sub-type of AMD where CNV appears 
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to be preceded by intraretinal neovascularization. Both conditions are 

accompanied by glial cell abnormalities and PR dysfunction, which from studies in 

mouse models, appear to be secondary to neovascular changes[16]. 

Intraretinal NV that expands towards the subretinal space has been induced (1) by 

overexpressing VEGF-A in photoreceptors[63]; (2) by disrupting EC migration via 

R-cadherin[38] blockade; and (3) by deleting the gene for Very Low Density 

Lipoprotein receptor (VLDLR).[64]  

Although the driving mechanism of this type of neovascularization remains 

unclear, a necessary role for VEGF-A has been demonstrated in mice, by using an 

anti-VEGF agent that suppressed the vascular phenotype in VLDLR null 

rodents[16]. Despite this, anti-VEGF agents have not shown consistent effects in 

MacTel patients. 

 

C.1.c. Pre-retinal Neovascularization  

 

Rapid vessel proliferation arising from the superficial retinal plexus occurs during 

pathological conditions characterized by the presence of non-perfused and 

hypoxic retinal areas that induce a pronounced upregulation of VEGF-A. 

Proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP) are 

paradigmatic examples. 

Premature infants are born with an incompletely vascularized retina because 

physiologic retinal vascularization takes place in the final trimester of gestation. 

Since this process is guided by a VEGF gradient created under physiologic 

hypoxia conditions, placing the infant into high oxygen after birth suppresses 

VEGF expression, arresting retinal vascular growth and inducing regression of 

nascent vessels which are still highly dependent on VEGF for survival. This vaso-

obliteration (VO) phase creates avascular regions in the retina that become 

hypoxic when the infant is returned to ambient oxygen, leading to VEGF 

upregulation and disorganized neovascular growth on the retinal surface[65]. 

Studies performed in oxygen-induced-retinopathy (OIR) animal models (rodents, 

dogs and cats) have demonstrated that (1) cessation of (physiologic) hypoxia-

induced VEGF expression in neuroglial cells, in high oxygen conditions, drove the 

VO phase of ROP and that (2) VEGF is necessary for neovascular growth when 
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animals are returned to ambient oxygen[66]. Moreover, they have shown that 

vessel regression occurred via EC apoptosis due to lack of VEGF signaling, 

corroborating VEGF’s role as a survival factor. Taken together these findings 

reinforce the concept that VEGF signaling is necessary not only to direct the 

process of retinal neovascularization but also for retinal vascular maintenance.  

A similar scenario occurs in diabetic retinopathy (DR) where metabolic alterations 

induce chronic damage to the neurovascular unit and may lead to development of 

pre-retinal neovascularization, the hallmark of proliferative diabetic retinopathy 

(PDR). The inciting factors of diabetic vascular dysfunction are not yet entirely 

understood, however development of non-perfused retinal areas and VEGF 

overexpression are know to be pivotal in facilitating disorganized growth of leaky 

neovessels along the retinal surface and into the vitreous. The major role played 

by ischemia (and its associated metabolic insufficiency) in DR progression is 

further corroborated by the beneficial effects of laser photocoagulation, which 

prevents appearance (or induces regression) of neovessels by destroying the 

cellular sources of VEGF in ischemic retinal areas. 

Currently there are no rodent models that manifest the late stages of diabetic 

retinopathy. To circumvent this limitation the OIR mouse has been used in this 

context as a model of ischemic retinopathy that develops secondary 

neovascularization and has provided relevant insight into PDR. For example, it has 

been demonstrated by in situ hybridization that the hypoxia-driven-VEGF-

response is mainly and most strongly activated in RGC and INL neurons (possibly 

amacrine cells)[67], suggesting that therapeutic modulation of these cellular 

responses could become an effective therapeutic strategy to arrest DR 

progression.
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D. Diabetic retinopathy: State of the Art 

D.1. Epidemiology 

 

Diabetic retinopathy (DR) is the leading cause of blindness in working age adults 

(20 – 65 years) in developed countries and it is estimated to affect 35% of the total 

diabetic patient population (382 million)[68,69].  

Epidemiological studies have shown that after 20 years of diabetes, virtually all 

type 1 and over 60% of type 2 diabetic patients will develop some form of 

DR[70,71]. In addition, meta-analysis of large-scale studies have shown that 

approximately one third of these patients (who develop DR) will progress to its 

vision-threatening stages (proliferative diabetic retinopathy and diabetic macular 

edema), requiring treatment. 

With the expected rise in prevalence of diabetes worldwide, projected to reach 559 

million individuals by 2035, the global healthcare expenditure for treatment of 

diabetes and its complications is expected to exceed $490 (429€) billion (by 

2030)[27].  

D.2. Histopathology of Early DR 

 

Early diabetic retinopathy has been associated with the following histopathological 

findings: 

 

A) Pericyte loss, which is considered the earliest sign of DR and is only 

observable histologically. It is thought to occur due to hyperglycemia induced 

inhibition of PDGF-β signaling, which in normal conditions is responsible for 

recruiting pericytes to the vessel wall. 

 

B) Thickening of the basement membrane (of capillaries and arterioles), which has 

been attributed to increased production and reduced degradation of extracellular 

matrix components (ECM; collagen IV, laminin and fibronection). 
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C) Dilation of retinal capillaries (microaneurysms) results from the combined action 

of (1) EC dysfunction and loss of vascular auto-regulation; (2) pericyte dropout and 

(3) loss of vascular tight junctions. 

 

D) Acellular capillaries (‘ghost vessels’), which are found in post-mortem diabetic 

human retinas, usually surrounded by microaneurysms, and have been shown to 

correspond to previously documented areas of non-perfusion on angiography. 

These are thought to be the result from EC apoptosis after pericyte loss.[72] 

Understanding the precise mechanism that underlie disappearance of these 

capillaries will be pivotal in creating new therapeutic strategies focused on 

promoting effective revascularization of retinal ischemic areas 

D.3.  Pathophysiology[73] 

 

Sustained hyperglycemia is considered the most important risk factor for DR 

development[27,73], however the mechanism through which it induces 

pathological retinal changes remains elusive.  Despite its importance, the fact that 

ideal glycemic control is not sufficient to effectively arrest disease progression 

suggests that other unrecognized, yet important, factors also play a role in 

inducing development of DR[68]. 

So far, the most relevant molecular pathways that have been associated with 

hyperglycemia induced-retinal microangiopathy are: (1) induction of the polyol 

pathway; (2) activation of protein kinase C (PKC); (3) formation of advanced 

glycation end products (AGEs); (4) subclinical and chronic inflammation with 

overexpression of growth factors and inflammatory cytokines along with 

leukostasis; (5) activation of the renin-angiotensin system; and (6) increased 

oxidative stress. 

D.3.a. Induction of the Polyol Pathway 

 

In diabetes, retinal aldose reductase (AR) metabolizes excess glucose to sorbitol, 

using NADPH as a cofactor and sorbitol is subsequently converted to fructose. 

Detrimental effects to the retinal tissue result from (1) accumulation of sorbitol 

within the cell, which exerts osmotic damage; (2) reduction of NADPH, which 
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reduces glutathione synthesis, decreasing antioxidant power; and (3) 

accumulation of fructose which can be metabolized to strongly glycating agents, 

producing AGEs. 

D.3.b. Activation of PKC 

 

Hyperglycemia increases flux in the glycolysis pathway increasing diacylglycerol 

(DAG) formation. This in turn leads to overactivation of PKC, which contributes to 

increased vascular permeability, increased extracellular matrix (ECM) protein 

synthesis and remodeling, release of pro-angiogenic factors and activation and 

adhesion of leukocytes to the retinal vasculature.  

D.3.c. Formation of AGEs 

 

AGEs constitute a heterogenous group of molecules formed by non-enzymatic 

glycation of proteins, lipids and nucleic acids. 

AGEs exert their damaging effects by (1) forming adducts with proteins 

(extracellular or transmembrane proteins), which alter their structure and function; 

and by (2) activating a variety of cell-surface AGE binding receptors (e.g. RAGE, 

galectin-3 and CD36) and promoting prooxidant and proinflammatory effects. 

Epidemiological studies in diabetic patients have shown that serum levels of AGEs 

correlate with severity of DR and that one of these, N-carboxymethyl-lysine, is 

increased in retinal neurons and vessels of diabetic patients.[74]  
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D.3.d. Subclinical and Chronic Inflammation 

 

There is a wide body of literature associating diabetes with systemic and retinal 

inflammation. In the retina, diabetes induces microglial cell activation with 

increased production of inflammatory cytokines, reactive oxygen species (ROS), 

growth factors and metalloproteases (MMPs). Additionally, there is increased 

expression of adhesion molecules on the retinal vasculature (CD18, ICAM-1), 

which promote leukostasis and leukocyte migration into the retina. 

 

D.3.e. Activation of the Renin-Angiotensin System 

 

Diabetic patients who develop PDR present higher expression levels of renin, 

angiotensin converting enzyme I and II and angiotensin receptors. 

It has been suggested that the renin-angiotensin system contributes to PKC 

activation and VEGF overexpression. 

 

D.3.f. Increased Oxidative Stress 

 

Evidence for increased oxidative stress in diabetic retinas has been found in 

animal models and in human postmortem retinas from diabetic patients, with 

increased membrane lipid peroxidation and DNA oxidative damage. 

Animal studies with diabetic rodent models have shown that oxidative stress 

induces irreversible retinal pathological changes and contributes to development 

and progression of DR. Oxidative stress mediated retinal damage may explain the 

lack of beneficial effects observed when intensive metabolic therapy is instituted 

late in the course of diabetes[75]. 
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D.4. Clinical Classification 

 

Diabetic retinopathy has been regarded as a vascular disease for decades and 

this is clearly evident from its clinical classification, which is solely based on the 

observation of retinal vascular changes on the ocular fundus. These changes start 

with microaneurysms (small dilations in the retinal capillaries) and progress to 

exudative phenomena (leading to macular edema), ischemic alterations (‘cotton 

wool spots’, which are infarcts of the nerve fiber layer), formation of collaterals 

(intraretinal microvascular abnormalities - IRMA), dilation of venules (venous 

beading) and lastly, proliferative changes that affect both the vasculature and 

retinal fibroblasts. 

Based on the presence or absence of abnormal neovascular sites, DR is 

distinguished into an early non-proliferative phase (Non-proliferative diabetic 

retinopathy - NPDR) and a late proliferative phase (PDR). Diabetic macular edema 

(DME), one of the most feared and difficult to treat complications of DR, develops 

due to progressive blood retinal barrier (BRB) disruption and commonly starts 

during the NPDR stage. 

NPDR is further divided into three stages: mild, moderate and severe. 

Mild and moderate stages of NPDR are characterized by microaneurysms and 

intraretinal hemorrhages. Increasing BRB compromise leads to plasma leakage, 

retinal edema and formation of ‘hard exudates’ (lipid deposits within the retina that 

frequently accompany macular edema).  

Severe NPDR is diagnosed when there is at least one of the following signs:  

 

a) Intra-retinal hemorrhages in all four quadrants 

b) Venous beading in two quadrants 

c) Intraretinal microvascular abnormalities in one quadrant 

 

It is estimated that 50% of the patients with severe NPDR will progress to PDR 

within 1 year[76]. 

PDR is diagnosed when new vessels grow out of the retinal capillaries on the 

retinal surface and towards the vitreous.  
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These new vessels are fragile and often rupture, resulting in vitreous 

hemorrhages. Additionally, vascular growth over the vitreous interface is 

accompanied by activation and proliferation of fibroblasts and glial cells, which 

form epiretinal membranes that can contract and lead to tractional retinal 

detachments, one of the most dreaded complications of PDR. In severe cases, 

neovascularization can also be found in the anterior segment, on the surface of 

the iris (‘rubeosis iridis’), where it blocks aqueous humor drainage causing a 

severe type of glaucoma designated neovascular glaucoma.  

D.5. Clinical Features 

 

Patients with mild-to-moderate NPDR have impaired contrast sensitivity and visual 

field defects that may compromise daily activities such as driving, reading or 

managing their diabetes. A decline in visual acuity, however, occurs only when the 

central macula is affected in situations such as vitreous hemorrhage, edema 

(DME), ischemia, epiretinal membranes or retinal detachments.  

Even though vascular changes are given priority for purposes of clinical diagnosis, 

a growing body of evidence has demonstrated that DR impairs neuronal activity at 

much earlier stages. Studies in early diabetic patients with no signs of (vascular) 

DR have shown altered oscillatory potentials (OPs) on the electroretinogram 

(ERG), impaired vasodilation in response to flicker light stimulation, color vision 

defects (shared with patients with Parkinson’s disease) and impaired corneal 

reflexes[5,77-79]. Taken together these findings suggest that subtle ERG 

dysfunction along with mild impairment in contrast sensitivity, color vision or 

corneal reflexes may constitute important predictive signs of eminent vascular 

changes in the diabetic retina.  

Since diagnosis of DR relies exclusively on identification of vascular changes and 

compromises in visual acuity occur quite late in the disease process, it is 

paramount to change the existing clinical approach. Introducing a more integrative 

perspective that takes into consideration disruption of retinal functional units rather 

than simple vascular changes will help implement effective screening programs 

and monitoring strategies to achieve an earlier diagnosis and success in 

preventing disease progression. 
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D.6. Risk Factors 

 

Epidemiological studies have elucidated the effects of major and minor 

pathological conditions on incidence and progression of DR[27,70]. 

 

The major risk factors are: 

 

Duration of diabetes 

Chronic hyperglycemia 

Dyslipidemia 

Hypertension 

 

Additional risk factors are: 

 

High body-mass index (BMI) 

Low level of physical activity  

Insulin resistance 

Sleep apnea 

Nonalcoholic fatty liver disease 

Genetic factors (e.g. mutations in the erythropoietin gene promoter) 

 

Clinical trials such as the DCCT and the UKPDS have unequivocally demonstrated 

that intensive metabolic control reduces incidence (by 76% - DCCT) and 

progression (by 54% - DCCT) of DR, with HbA1C levels being the strongest 

predictive risk factor. Surprisingly the values for HbA1c, blood pressure (BP) and 

total serum cholesterol account for only 9 – 11% of the risk of retinopathy. The 

ACCORD study did not show an effect of intensive BP control on progression of 

DR (but confirmed benefit of intensive metabolic control). 

Moreover, intensive metabolic control appears to be especially beneficial if 

instituted early in diabetes development. During the late stages, it does not bring 

significant risk reduction and may even become detrimental by favoring more 

episodes of hypoglycemia. This creates difficulties regarding broad implementation 

of intensive metabolic control strategies, which along with concerns associated 
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with the non-physiologic route of insulin administration, justify the low percentage 

of diabetic patients who achieve ideal metabolic control over an extended period 

(only 17% of patients in the DCCT trial had HbA1c levels below 7% and, from 

2000 to 2006, only 7% of type 2 American diabetic patients concomitantly met all 

three targets - HbA1c, lipids and BP - according to data from the American 

diabetes association)[27,68]. 

These findings underscore the importance of regular and long-term 

ophthalmological follow-up for diabetic patients and show that further 

understanding of DR’s pathogenesis is crucial to reduce its incidence and improve 

patient care. 

 

D.7. Therapies and Preventive Strategies 

 

D.7.a. Metabolic Control 

 

Adequate control of classic metabolic parameters remains the centerpiece of DR 

management. Current recommendations suggest an glycated hemoglobin (HbA1c) 

target level of 6.5 - 7% as well and systolic blood pressure below 140/85 

mmHg[80]. In what concerns blood lipid management, low density lipoprotein 

(LDL) cholesterol target values must be determined on an individual basis but, 

more importantly, fenofibrate should be added to statin therapy, whenever 

possible[68]. This recommendation is based on results from the FIELD trial, where 

fenofibrate (a peroxisome proliferator-activated receptor alpha, PPAR-alpha, 

agonist) reduced the risk of progression to PDR by up to 40% in patients with 

NPDR[81]. 

D.7.b. Laser Photocoagulation 

 

The benefits achieved with laser photocoagulation are thought to be associated 

with destruction of ischemic retinal areas and subsequent reduction in production 

of pro-inflammatory and pro-angiogenic cytokines (e.g. VEGF) by dysfunctional 
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retinal cells. As a consequence, oxygen and nutrients become increasingly 

available for healthier retinal areas. 

Panretinal photocoagulation (PRP) is used in cases of non-center-involving 

diabetic macular edema and in PDR, to destroy the peripheral ischemic tissue in 

an attempt to spare the central retina and visual acuity. Despite its cruent nature, it 

still constitutes the gold standard of care in preventing DR progression. The 

Diabetic retinopathy study showed that PRP reduced the risk of severe visual loss 

by 50% over a 5-year period.[68] 

Its side effects, however, cannot be overlooked and include worsening of pre-

existing macular edema and impairment of peripheral retinal function and night 

vision[82]. 
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D.7.c. Anti-VEGF Therapies 

 

VEGF has been the most extensively studied growth factor in DR and it is 

responsible for some hallmark pathological features such as breakdown of the 

BRB; increased leukostasis and consequent EC dysfunction; and pathological 

neovascularization. 

 

Anti-VEGF agents exist in three forms[68]: 

 

‐ RNA aptamers  

 

o Pegaptanib (an oligonucleotide that binds VEGF-165 with high-

affinity) 

 

‐ Monoclonal antibodies against VEGF 

 

o Bevacizumab – a full length humanized monoclonal antibody that 

blocks all isoforms of VEGF-A. 

o Ranibizumab - a monoclonal antibody fragment (with enhanced 

affinity for VEGF-A) that also blocks all isoforms of VEGF-A. 

 

‐ Soluble VEGFR-like proteins 

 

o Aflibercept – is a soluble recombinant protein that contains 

extracellular protein sequences from VEGFR-1 and VEGFR2 fused 

to an immunoglobulin and behaves like a decoy receptor that blocks 

all isoforms of VEGF-A and neutralizes them. This format allows for 

prolonged biological activity and less frequent administrations (every 

two months rather than monthly). 

 

Currently, the only formal indication for intravitreal injections of anti-VEGF agents 

in DR is center-involving DME (three initial monthly injections potentially followed 

by further injections, depending on the patient’s response) but their efficacy is not 

guaranteed. If the condition persists and is no longer improving after two 
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consecutive injections following the initial 3 month-period, laser photocoagulation 

must be considered[68].    

In PDR, anti-VEGF therapy has been found to very effective in promoting rapid 

regression of retinal neovascularization, however these effects are transient and 

PRP remains necessary to allow for more permanent inhibition of neovascular 

growth[68]. 

A phase III prospective clinical trial is now comparing prompt PRP with intravitreal 

ranibizumab and deferred PRP in patients with PDR. 

Increasing concerns exist over anti-VEGF agents both at the ocular and at the 

systemic level. At the ocular level, in cases of PDR, anti-VEGF agents may 

enhance the fibrotic response and promote retinal tractional detachments while 

simultaneously inducing the beneficial regression of neovessels. In addition, as 

VEGF is a trophic factor for neurons and vessels, it has been suggested by animal 

and epidemiological studies that long-term administration of these therapeutic 

agents may be involved in promoting atrophy of the choriocapillaris and PR 

dysfunction[4,62,83-85]. 

At the systemic level, cardio-vascular events (such as congestive heart failure) 

and renal injury (especially proteinuria and thrombotic microangiopathy) have 

been reported following intravitreal anti-VEGF treatment.[2,86,87] 

 

D.7.d. Steroids 

 

Chronic inflammation plays a pathological role in diabetes both systemically and at 

the retinal level.  

Intravitreal steroids, such as triamcinolone, can be used for treating DME and 

exert their beneficial effect by neutralizing the pro-inflammatory effects of 

cytokines and chemokines.[68] 
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D.7.e. Surgical Treatment 

 

Despite the previously mentioned therapeutic strategies, which have greatly 

contributed to reduce the number of late-stage DR cases, a small number of 

patients suffering from DME and PDR still needs to undergo vitreo-retinal surgery. 

Surgical treatment is indicated for patients with DME and significant vitreo-macular 

traction and for patients with PDR with persistent non-clearing vitreous 

hemorrhage and/or traction retinal detachment[68]. 

 

D.7.f. Therapies targeting Intracellular Signaling Pathways  

 

The following therapies are currently under development: 

 

D.7.f.i. Protein Kinase C  (PKC) inhibitors 

 

Protein kinase C-β activation is part of the common downstream signaling 

pathway from VEGF and TNF-α, contributing to increased retinal vascular 

permeability. 

Ruboxistaurin is a selective inhibitor of PKC-β that is being evaluated in clinical 

trials with NPDR and DME patients, with encouraging results in terms of reducing 

vision loss.[88] 

 

D.7.f.ii. Kallikrein Inhibitors 

 

Intraocular activation of the kallikrein-kinin pathway has been shown to increase 

retinal vascular permeability in animal models and may aggravate DME in some 

diabetic patients[89]. 

A phase I clinical trial to assess safety and tolerability of KVD001 (intravitreal) is in 

progress in a diabetic patient population with DME[68]. 

 

D.7.f.iii. TNF-α and CCL2 (MCP-1) Blocking Agents 
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TNF-α’s detrimental role in DR has been shown by the beneficial effects (improved 

visual acuity and reduced retinal edema) induced by antagonizing it with infliximab 

in a double-blind, randomized, placebo-controlled study in patients with DME[90].  

Furthermore, animal studies have shown that treating diabetic rodent models with 

etanercept (a soluble receptor that neutralizes TNF-α) prevents early diabetic 

retinopathy by reducing vascular permeability, leukostasis and nuclear factor 

kappa B activation.[91] Animal studies have also implicated TNF-α in promotion of 

pre-retinal neovascularization[92]. 

CCL2 is one of the most significantly elevated chemokines in the serum and 

vitreous of DR patients[93]. It induces leukocyte recruitment and activation, 

exacerbating the inflammatory response, by acting on its receptor CCR2. An 

ongoing clinical trial is testing a CCR2/CCR5 antagonist in patients with DME[68]. 

Diabetic retinopathy is known to compromise function of multiple retinal cell types 

such as neurons, Mueller glia and EC; however, the mechanism through which 

individual cell dysfunction contributes to disease development and progression 

remains unclear. To truly understand cellular contributions, a ‘systems’ approach’ 

must be used. It is critical to understand (1) how do these cells interact with each 

other in normal conditions and (2) how do these interactions become disrupted by 

pathological triggers, such as diabetes.  

To gain further insight into DR we must, therefore, focus on the retinal 

neurovascular crosstalk within the neurovascular unit, rather than on phenotypes 

of individual retinal cells. 
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E. The Neurovascular unit (NVU) 

 

Neuronal and glial dysfunction contribute to the development of retinal 

pathological neovascularization – the Neurovascular Unit Approach 

 

Although the typical approach to retinal diseases associated with pathological 

neovascularization has been to focus on their vascular component, a growing 

body of evidence suggests otherwise, as neuronal and glial dysfunction emerge as 

critical contributors for development and progression of the abnormal vascular 

phenotype[6,29,40,94]  

Neurovascular units composed of extensive astrocyte networks connecting 

neuronal synapses with the cerebral vasculature, have been extensively 

characterized in the brain, where they are responsible for coupling neuronal 

activity and energy requirements with cerebral vascular flow[95]. A deeper 

understanding of the mechanisms underlying dysfunction within the NVU has been 

especially valuable in the context of neurodegenerative diseases, such as 

dementia, Parkinson’s and Alzheimer’s disease [96,97], where it has started to 

contribute for development of novel therapies.[98] 

 

E.1. Retinal NVUs  

 

Retinal NVUs have not been as widely explored as brain NVUs and detailed 

knowledge regarding its biological properties and functional interactions is limited.  

However, it is known that retinal NVUs are composed of neurons, macroglia, 

microglia and retinal vasculature and that all these components act in a 

coordinated fashion to maintain retinal homeostasis and to ensure that neuronal 

metabolic needs are met, so that retinal activity can proceed uneventfully[99]. This 

perfect coordination is achieved through neurovascular coupling, which refers to 

the ability of retinal vessels to adjust their blood flow in response to changes in 

local neural activity[100]. 
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E.1.a. Neurovascular units in the RGC layer 

 

There is substantial evidence demonstrating that neurovascular coupling occurs in 

the RGC layer (or at least in the inner retina) and one of the most paradigmatic 

examples is the response to flicker light stimulation. Human and animal studies 

have shown that (1) vascular flow to the retina and optic nerve increases in 

response to diffuse luminance flicker (light on, light off) thanks to RGC or pericyte-

induced vasodilation - ‘functional hyperemia response’); and that (2) there is a 

marked correlation between neuronal activity of RGC, increased metabolism and 

increased glucose delivery during flicker light stimulation[100-105].  

Communication between neuroglial and vascular cells can be mediated by two 

kinds of signaling molecules: those that act rapidly (e.g. metabolites) and those 

that exert a prolonged effect (e.g. growth factors). Some of these factors have 

been extensively studied and include the following: Nitric Oxide (NO); metabolites 

derived from arachidonic acid metabolism; glutamate; VEGF and neurotrophins 

(e.g. nerve growth factor and brain derived growth factor)[79,100,106]. 

Despite considerable lack of knowledge regarding the specific molecular 

mechanisms responsible for compromise retinal neurovascular crosstalk, there is 

evidence that disruptions at this level occur in retinal pathological settings and that 

these can play a critical role in promoting disease development and progression. 

 

E.1.b. Evidence of disrupted Neurovascular Crosstalk in ischemic 

retinopathies 

 

The early stages of ischemic retinopathies are characterized by microvascular 

degeneration that produces nonperfused retinal areas where neurons undergo 

severe hypoxia. Disruption of the functional neurovascular unit in the retina occurs 

during ischemic retinopathies (e.g diabetic retinopathy), in inadequately perfused 

areas [79,102,107]. 

The discrepancy between metabolic demand and supply then leads to a second 

phase featuring pathological neovascularization, which develops as a frustrated 

attempt to reinstate a positive energy balance. This second phase is marked by a 

robust pro-angiogenic response, which leads to abnormal neovascularization 
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towards the vitreous, paradoxically associated with a prominent failure in 

revascularization of hypoxic areas. 

The misguided neovascular growth has been associated with high concentrations 

of proangiogenic factors in the vitreous, which attract nascent vessels; however, 

high levels of proangiogenic factors are also produced by retinal cells and would 

be expected to retain the growing vessels on the retinal surface. Since this 

confinement to the retinal surface is not observed, this failure to revascularize 

hypoxic areas is probably an active process mediated by vasorepulsive factors 

produced in those regions. [40] 

A growing body of evidence suggests that severely hypoxic neurons dramatically 

change their properties and highly contribute to vascular changes in the course of 

ischemic retinopathies[94,108,109]. 

An illustrative example of compromised neurovascular crosstalk in retinopathy 

comes from Eric Newman and colleagues who have elegantly shown that in the 

mammalian retina, neurovascular coupling is mediated by glial cells via production 

of nitric oxide, and that this mechanism is compromised in diabetic retinas, where 

it reduces the ‘functional hyperemia response’[79,107,110]. 

The physiologic intimate relationships amongst neurons, vasculature and 

microglial cells their importance for retinal homeostasis, and their sustained 

cooperation in ischemic retinopathies suggest that pathological retinal phenotypes 

arise due to disruption of functional interactions within the neurovascular unit 

(NVU). 

A deeper understanding of the mechanisms through which the NVU reacts under 

stress, and especially of how metabolic dysregulation affects the retinal 

neurovascular crosstalk, will provide important leads for devising therapeutic 

strategies focused on improving the metabolic mismatch that characterizes 

ischemic retinopathies to promote effective reparative angiogenesis in hypoxic 

retinal areas. These strategies will optimize use of hypoxia-induced proangiogenic 

resources and will eliminate the state of metabolic insufficiency that drives disease 

progression. 

It remains unknown whether relevant neurovascular coupling also exists and 

functions in the same fashion at other retinal levels (intermediate and deep retinal 

plexuses and outer retina), however it is expected that this is the case (with 

potential differences in terms of signaling factors).  This suggests that retinal 



	 89

diseases, both of the inner and outer retina, may benefit from being approached 

using this integrative perspective focused on interactions within the NVU. 

These issues will be addressed in Chapter IV-A. 

 

F. The Role of Metabolic Factors in Retinal Disease 

 

Clinical therapies targeting retinal diseases associated with pathological 

neovascularization typically act late, and focus on blocking excessive activity of 

pro-angiogenic growth factors (especially VEGF) to abrogate abnormal vascular 

growth.  

New research findings show that in addition to growth factors, vascular 

metabolism also regulates angiogenesis and does so at a much earlier time-point 

during disease development[111,112]. Glycolysis is critical for ATP production in 

EC and modulation of its key regulatory enzyme, 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3) regulates EC sprouting. As ECs 

are activated to migrate, proliferate and acquire a tip cell phenotype, they are also 

required to double their glycolytic production of ATP (proliferating EC are 

hyperglycolytic). When PFKBP3 is pharmacologically inhibited in pathological 

conditions where EC sprouting is reactivated (e.g. neovascularization arising in 

ischemic retinopathies), there is a partial reduction in EC glycolysis and a 

reduction in pathological angiogenesis with minimal adverse consequences for the 

normal vasculature. Since mature quiescent EC are not hyperglycolytic, this 

strategy appears to be safer for preventing pathological neovascularization than 

the ones currently in use[111,112]. 

Similarly to what happens in EC, a tight link between metabolic state and 

functional phenotype is also observed in macrophages. In these cells, the 

preferentially used pathway for energy production defines the cell’s inflammatory 

phenotype; M1 macrophages (the more pro-inflammatory type, involved in the first 

line of defense against noxious agents) are highly dependent on glycolysis, which 

offers energetic advantages in hypoxic regions. M2 macrophages (involved in 

tissue repair and wound healing, with a less pro-inflammatory action), on the other 

hand, rely on oxidative metabolism[113].  
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It has been shown that intermediates generated during these metabolic processes 

have the ability to drive macrophages’ functional responses. For example, in M1 

macrophages, succinate stabilizes HIF-1α, which drives and sustains production 

of IL-1β, thereby promoting a pro-inflammatory environment.[114] 

In ischemic retinopathies, energy producing metabolic pathways are profoundly 

dysfunctional and the accumulated metabolic intermediates can act as signaling 

factors that influence disease progression. For example, in the OIR mouse hypoxic 

retina, the lack of oxygen compromises cellular respiration, which induces 

subsequent accumulation of succinate. This metabolite can bind and activate 

GPR91 (a G-protein coupled receptor mainly expressed on RGC), promoting 

production of VEGF and angiopoietins 1 and 2 and pathological retinal 

neovascularization. Interestingly, the induction of compensatory angiogenesis via 

the succinate/GPR91 pathway can occur before HIF stabilization, suggesting that 

it may act as a more sensitive indicator of retinal damage[115,116]. 

Another HIF independent pathway inducing VEGF production in the hypoxic retina 

involves PGC-1α (peroxisome proliferator-activated receptor Υ coactivator 1-α). It 

has been shown that PGC-1alpha is (1) strongly induced in the INL under OIR 

conditions and that (2) it is required for development of full pathological retinal 

neovascularization at P17 through enhancement of local VEGF production[117]. 

In addition, alterations in amino-acid metabolism as well as supplementation of 

arginine and glutamine have also been shown to affect development of neuro-glial 

dysfunction and of neovascularization in the OIR model[118].  

Identification of specific metabolic perturbations and of their detrimental effects on 

the retina suggests that restoring functionality in these pathways can potentially 

reinstate harmonious interactions within the NVU and become a promising, safer 

and more effective therapeutic strategy to prevent progression of ischemic 

retinopathies, such as DR. Moreover, diabetes is a metabolic disease and 

consistently dysregulated systemic metabolites can potentially become novel 

biomarkers for accurate risk prediction and disease monitoring. 

Development of metabolic diseases such as diabetes (especially type 2) depends 

upon a complex set of interactions between genetic and environmental factors 

and, as mentioned previously, it is not fully understood why some long-term 

diabetic patients are protected from developing severe DR. Metabolomics, a 

technology that allows for comprehensive metabolic analysis, is a powerful tool 
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that can provide relevant insight into this complexity; this technology measures the 

entire collection of small molecule metabolites present in biological samples, which 

constitute the metabolome, and are present in biological samples. Analysis of the 

metabolome output generates chemical phenotypes that are the net result of 

genomic, transcriptomic and proteomic interactions[119]. Metabolites are the final 

downstream products of all the chemical reactions occurring in the biological 

organism/tissue at a specific point in time, and are generated in metabolic 

pathways whose activity is modulated by interactions between genetic and 

environmental influences. Therefore, metabolomics provides a more global and 

integrated overview of biological status when compared to other “omics” 

approaches, such as genomics, transcriptomics and proteomics; moreover 

metabolomics is much more sensitive than the latter technologies and is able to 

identify both short and long-term physiological and pathological changes in 

biological samples; these represent major advantages for discovery of new 

biomarkers and for discerning pathophysiological mechanisms. 

The two major platforms for comprehensive investigation of metabolic profiles in 

biological samples are nuclear magnetic resonance (NMR) spectroscopy and 

mass spectrometry (MS).  

NMR is based on the magnetic properties of the atomic nucleus and identifies 

metabolites in biological samples by assessing behavior of their NMR active nuclei 

in a strong magnetic field; this provides information on their structural and 

chemical properties. Although NMR is widely used for metabolomics because of 

the non-destructive nature of the analysis, its minimal sample preparation 

requirements, and its robust and reproducible measurements, this method 

presents a relatively low sensitivity[120]. 

MS-metabolomics, on the other hand, is highly sensitive and, when both 

untargeted and targeted approaches are performed, it enables both the detection 

of a wide range of metabolites in biological samples (untargeted analysis) and 

confirmation of those metabolites’ identity (by using targeted analysis against an 

internal standard). Global (untargeted) MS-metabolomics provides a global 

overview of the metabolome in two different biological states and, based on 

univariate and multivariate statistical analysis, identifies the metabolites that 

qualitatively differ between them (i.e., is a qualitative approach); Targeted MS-

metabolomics, on the other hand, uses internal standards to precisely identify the 
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analytes being surveyed and accurately quantifies discrete clusters of related 

metabolites, thus providing their absolute concentrations (is a quantitative 

approach, in contrast with global metabolomics)[121,122].  

Since the work presented in this dissertation was undertaken to both identify 

potential new biomarkers and discern new pathophysiological mechanisms in DR, 

we decided to use liquid chromatography (LC)-MS-metabolomics. Sample 

preparation for this method is long and is performed according to the following 

sequence: (1) A high performance liquid chromatography (HPLC) system 

separates chemicals (in a biological sample) by conventional chromatography on a 

column (the metabolite binds the column by hydrophobic interactions and is 

posteriorly eluted off by an even more hydrophobic solvent); (2) The analytes enter 

the mass detector as they exit the chromatography column, and become ionized; 

(3) the ions are then separated according to their mass-to-charge (m/z) ratio using 

an analyzer with an electromagnetic field. This procedure provides mass 

measurements and generates individual peaks for each of the analytes in the 

sample; In order to identify the nature of these metabolites, their mass 

measurement are compared against online databases, such as METLIN[123] and, 

ideally, tandem mass spectrometry analyses (MS/MS; targeted analysis) using an 

internal standard are subsequently performed to definitely confirm their 

identities[120]. 

Although metabolomic analyses focusing on DR have been performed in the past, 

the metabolome of human DR remains unknown and this probably reflects the use 

of less sensitive technologies in these studies, which provided very limited 

metabolic information [124,125]. The work presented in this dissertation uses 

highly sensitive MS-metabolomics technology to provide a truly comprehensive 

metabolic overview of DR (including validation of the metabolite’s identity via 

MS/MS targeted analyses) that could potentially improve diabetic patient care and 

provide new directions for DR research.  

The exciting potential of large-scale metabolomic analyses will be explored in 

Chapter IV-B and IV-C. 
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Chapter II: Aims 
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The main objective of this work is to provide novel and relevant insights into 

diabetic retinopathy that can pave the way towards development of targeted and 

more effective therapies to prevent progression of DR into its devastating late 

stages. 

 

To achieve this goal, the work presented in this dissertation will focus on: 

 

A) Acquiring further knowledge on functionality of retinal NVUs in physiologic and 

pathologic conditions, so that development of DR (and of PDR-like features) can 

be perceived from a more integrated perspective.  

 

B) Gaining a better understanding of the role played by metabolic factors in 

progression of DR, by performing global mass-spectrometry-based metabolomic 

anlyses to:  

 

(1) Generate a global metabolomic profile of PDR, in order to identify the 

most dysregulated metabolic pathways in the eye during late-stage disease;  

 

(2) Identify circulating metabolites with potentially protective properties 

against progression of DR. and to exploit their beneficial properties in 

preventing development of PDR-like features in the OIR mouse model. 
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Chapter III: Material and 

Methods 
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A. Study Approval 

 

The Institutional Review Boards of The Scripps Research Institute (TSRI), Scripps 

clinic and Tokyo Medical University approved all studies involving human samples 

that are included in this dissertation. Patient data and samples (vitreous and 

aqueous humor, and blood) were handled in accordance with the tenets of the 

Declaration of Helsinki.  

All patients provided written informed consent for surgery and for collection of 

clinical data and biological samples. Patient data collection forms accompanying 

blood drawing for metabolic studies are presented in the Appendix. 

 

B. Clinical Samples 

 

Blood serum, vitreous and aqueous humor samples were used in this work. 

 

a) Blood serum samples* (Total: 22 samples) from: 

‐ Long-term diabetic patients (for at least 15 years); included patients with no 

clinical signs of diabetic retinopathy (DR) and patients with early clinical 

signs (mild NPDR); n=12 

‐ Diabetic patients (with any disease duration) with clinically diagnosed 

proliferative diabetic retinopathy; n=10 

 

                                            

	



	 100

b) Vitreous samples* (Total: 171 samples) 

 

‐ Diabetic patients with PDR; n=17  

‐ Non-diabetic controls undergoing surgery for removal of epiretinal 

membranes or repair of macular holes; n=40  

‐ Patients with macular holes; n=18 

‐ Patients with retinal detachment; n=51 

‐ Patients with branch vein occlusion; n=7 

‐ Patients with diabetic macular edema; n=14 

‐ Patients with proliferative diabetic retinopathy; n=24 

 

c) Aqueous humor samples (Total: 248 samples) 

 

‐ Patients with macular holes; n=11 

‐ Patients with retinal detachment; n=52,  

‐ Patients with branch vein occlusion; n=24  

‐ Patients with diabetic macular edema; n=16 

‐ Patients with proliferative diabetic retinopathy; n=11 

‐ Patients with glaucoma (Primary open angle glaucoma and normal tension 

glaucoma); n=28 

‐ Patients with central vein occlusion; n=8 

‐ Patients with AMD; n=24 

‐ Patients with polypoidal choroidal vasculopathy; n=10 

‐ Patients with retinitis pigmentosa; n=18 

‐ Controls: Patients undergoing cataract surgery, or vitreoretinal surgery for 

epiretinal membrane peeling; n= 46   

d) Paraffin-embedded sections from human eyes (healthy and with age related 

macular degeneration) obtained from the National Disease Research Interchange 

(NDRI) tissue bank 
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C. Collection and Processing of Clinical Samples 

 

C.1. Blood Samples  

 

Blood samples were collected by peripheral venipuncture into SST vacutainer 

tubes (5ml, BD biosciences # 367986) and incubated in the vertical position for 30 

minutes at room temperature (RT). After incubation, the samples were centrifuged 

at 1200g for 10 minutes at RT and 3 aliquots of 300 ul (of serum) were collected 

into 1.5 ml Eppendorf tubes. The tubes were labeled with the patient study number 

and stored at -80o C. 

C.2. Vitreous Samples  

 

Vitreous samples were collected during standard pars plana vitrectomy conducted 

using a 25-gauge 3-port system, under local anesthesia, performed using a high-

speed vitreous cutter (2500 cycle/minute). Phacoemulsification and aspiration 

were performed simultaneously in patients with cataracts, with an acrylic foldable 

intraocular lens (IOL) placed in the capsular bag.  

Undiluted vitreous samples (0.1 to 0.5 ml) were aspirated from the mid-

vitreous under standardized conditions, at the beginning of the surgery, transferred 

to sterile plastic tubes (previously labeled with the patient’s study number) and 

frozen immediately (within 15 seconds) in liquid nitrogen until analysis.  

 

Patient selection criteria for the PDR vitreous MS-metabolomics study 

 

Exclusion criteria 

 

Chronic systemic inflammatory diseases  

Idiopathic ophthalmic inflammatory disorders 

History of retinal vein occlusion 

Diagnosis of age related macular degeneration 
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Inclusion criteria 

 

Cases 

Diabetic patients with active PDR (“perfused, multi-branching iridic or pre-

retinal capillaries”[126]) or inactive PDR (“evidence of fully regressed active 

proliferation or only non-perfused, gliotic vessels or fibrosis”[126]) 

 

Controls 

Non-diabetic patients undergoing epiretinal membrane or macular hole 

surgery 

C.3. Aqueous Humor Samples 

 

Aqueous humor samples (0.1 to 0.2 ml) were aspirated from the corneal limbus 

with a 27-gauge needle attached to a sterile tuberculin syringe, transferred to 

sterile tubes and frozen immediately in -80 °C until analysis. 

 

D. Animal models 

 

All the experiments involving animals were performed in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals and approved by the Scripps 

Research Institute Animal Care Committee. 

 

Mouse lines used in Chapter IV-A (Table 1) 

 

“Knock-out” first conditional alleles (tm1a) for Pam (Pamtm1a(EUCOMM)Wtsi) were 

obtained from EuMMCR (3 clones A11, D12, and F09).[127] The ‘knockout-first’ 

allele (tm1a) contains an IRES:lacZ trapping cassette and a floxed promoter-

driven neo cassette inserted into the intron of a gene, disrupting gene function.  

Crossing with FLP deleter mice (B6N.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/J; from 

The Jackson Labs) converts the ‘knockout-first’ allele to a conditional allele (tm1c), 

restoring gene activity. Crossing with Crx-Cre (from Dr. Takahisa Furukawa, 
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Osaka University)[128] deletes the promoter-driven selection cassette and floxed 

exon of the tm1a allele to generate a lacZ-tagged allele (tm1b) or deletes the 

floxed exon of the tm1c allele to generate a frameshift mutation (tm1d), triggering 

nonsense mediated decay of the deleted transcript.  Quality control and expansion 

of the lines was performed at the Embryonic Stem Cell Core at the University of 

California at San Diego (UCSD), and blastocyst injections were performed at the 

Mouse Genetics Core at TSRI.  CrxRIP/+ mice were generated as described 

previously.[129]  

RCS rats were obtained from Dr. Matthew LaVail, University of California at San 

Francisco (UCSF).   

RD1 (CBA/J), RD10 (B6.CXB1-Pde6brd10/J), RDS (Prph2Rd2), VLDLR-/- 

(B6;129S7-Vldlrtm1Her/J), Nrl-/- (B6;129-Nrltm1Asw/J),  and ROSAmT/mG 

(Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J) mice are all available through the 

Jackson Labs.   

 

In Vivo Electroporation 

 

After anesthetizing P0 pups on ice, DNA solutions containing open reading frame 

(ORF) clones for murine Pam or DsRed (both utilize the same 

backbone/enhancer; Origene)[130] were injected into the subretinal space and 

electric pulses (5 pulses of 50 ms with 950 ms intervals; current 0.08-0.15A) were 

administered immediately after, through tweezer type electrodes placed on the 

pup’s head, to ensure DNA transfection from the subretinal space to the retina. 

After the procedure, the pups were warmed up using an electric blanket until they 

recovered from anesthesia and returned to their mother. 

 

Transgenic mice expressing Cre recombinase under ptf1a (ptf1a-Cre mice) [131] 

were mated with VHLfl/fl [132], Hif-1αfl/fl [133], or Hif-2αfl/fl [134], VEGFfl/fl [135], 

Pde6brd10/rd10 rd10, and Rosa26iDTR/+ (C57BL/6-Gt(ROSA)26Sortm1(HBEGF)Awai/J) 

[136] mice (Jackson Laboratories). Ptf1a-Cre mice were crossed with floxed 

VEGF, VHL, Hif-1α, or Hif-2α alleles for conditional deletion experiments. 

Littermate controls were used in all cases.  To monitor Cre recombination in ptf1a-

Cre mice, we mated them with two different reporters: (1) ROSA26tm14(CAG-

tdTomato)(Ai14 [137]), for ptf1a-specific nuclear expression; and (2) ROSA 
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mTomato/mGFP transgenic reporter mice [138], for Ptf1a-specific membrane 

expression. We screened mice in our colony for retinal degeneration slow (rds), 

rd1 and rd8 mutations. Genotyping was performed by Transnetyx, Inc. 

 

In Vivo Genetic Ablation Studies.  

 

For in vivo genetic ablation studies, ptf1a-Cre mice were crossed with R26iDTR/+ 

mice (C57BL/6 Gt(ROSA)26Sortm1(HBEGFAwai/J) [136], yielding double 

transgenic ptf1a-Cre; R16iDTR/+ (iDTR-positive) mice that selectively expressed 

iDTR (inducible diphetria toxin receptor) in amacrine and horizontal cells. The 

iDTR is only expressed after Cre-mediated excision of a transcriptional STOP 

casette. To achieve the phase-restricted depletion of amacrine and horizontal 

cells, ptf1a-Cre; R16iDTR/+ and control littermates (ptf1a-Cre; R16+/+ and R16iDTR/+) 

were injected intraperitoneally for three consecutive days with 25 ng/g DT (Sigma-

Aldrich).  

 

 Mice used in Chapter IV-B and IV-C 

 

Oxygen induced retinopathy (OIR) mouse model 

OIR was induced in C57BL/6 mice according to the protocol by Smith et al [139]. 

Seven day-old (P7) C57BL/6 mice were placed in 75% oxygen for five days and 

returned to ambient oxygen up to another five day-period (Figure 10). Whole eyes 

were collected immediately after death at twelve (P12), fourteen (P14) and 

seventeen (P17) days after birth, frozen directly in liquid nitrogen and stored at -

80o C until analysis. 

All experiments performed in OIR mice were repeated at least 3 times with a 

minimum n = 4 mice per experimental group. 

Age matched C57/Bl6 mice raised in ambient oxygen (normoxia) were used as 

non-controls in the work presented in Chapters IV-C and D. 
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Figure 10 – Experimental protocol for induction of OIR in C57/Bl6 mice 

 

Table 1 – Transgenic mouse lines used  

Blood glucose and HbA1c measurements in mice 

 

Blood was collected from the mouse tail vein and measurements of glucose and 

hemoglobin A1C (HbA1C) were performed using the FreeStyle blood glucose 

monitoring system (Abbott) and the A1cNow rapid immune-assay (Bayer), 

respectively. 

Transgenic Mouse Line Publications 

Kawaguchi et al, 2002 

Haase et al, 2001 

Ryan et al, 2000 

Gruber et al, 2007 

Gerber et al, 1999 

Buch et al, 2005 

Le et al, 2008 

Chen Y et al, 2009 

Farrar et al, 1991 

Chang et al, 2002 

Chang et al, 2002 

Nishida et al, 2003 

Kautzmann et al, 2011 

Roger et al, 2014 

Gaier et al, 2014 

ptf1a-Cre 

VHLfloxed/floxed 

Hif-1αfloxed/floxed 

Hif-2αfloxed/floxed 

VEGFfloxed/floxed 

Rosa26iDTR/+ 

VMD2-Cre 

VLDLR-/- 

RDS 

RD10 

RD1 

Crx Cre 

Nrl-/- mice 

CrxRIP/+ 

Pama/+ mice 

Reporter mice

ROSA26tm14 (CAG-tdTomato) Madisen et al, 2010 To monitor Cre recombination in 

ptf1a-Cre and VMD-2 Cre lines ROSA mTomato/mGFP Muzumdar et al, 2007 
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E. Preparation of Sterile Solutions for Intraocular Injection 

 

NOTE: The solvent most commonly used was sterile Dulbecco’s Phosphate Buffered 

saline with calcium and magnesium (DPBS 1X, catalog# 21-030-CV), hereafter referred to 

as ‘PBS’ 

 

Natural abundance (regular) Inosine (Sigma-Aldrich, Catalog # I4125-25G) 

Molecular Weight (MW): 268.23 g/mol 

 

‐ 10 mM:  0.67g of inosine were added to 250 ml of PBS (Used for intravitreal 

injections by making a 1:1000 dilution, to achieve a 10 uM concentration) 

 

‐ 1 M: 2.68 g of inosine were added to 10 ml of PBS (Used for isotope 

labeling mass spectrometry based experiments by diluting 1:2 in sterile 

PBS, to achieve a 500 mM concentration) 

 
15N-labeled Inosine (Cambridge Isotope laboratories; catalog # NLM-4264-PK; 

0.01g) 

MW: 272.20 g/mol 

 

‐ 1 M: 36.7 ul of PBS were added to the vial, which contains 0.01 g (Used for 

isotope labeling mass spectrometry based experiments by diluting 1:2 in 

sterile PBS, to achieve a 500 mM concentration) 

 

Natural abundance (regular) Arginine (Sigma-Aldrich, Catalog # A1270000) 

MW: 174.20 g/mol 

 

‐ 500 mM: 4.35g were added to 50 ml of sterile PBS (Used for isotope 

labeling mass spectrometry based experiments) 

 
15N-labeled Arginine (Cambridge Isotope laboratories; catalog # NLM-396-PK; 

0.01g) 

MW: 214.64 g/mol 
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‐ 1 M: 466 ul were added to the vial, which contains 0.1 g (Used for isotope 

labeling mass spectrometry based experiments by diluting 1:2, to achieve a 

500 mM concentration) 

 

F. Intravitreal and Subretinal Injections 

 

Technique 

 

Intravitreal injections 

Pups were anesthetized by hypothermia and then placed under the dissecting 

microscope, where the skin over the eyelid was cut to expose the eye. Intravitreal 

injections were then performed using a 5 ul Hamilton syringe with a beveled 33 

Gauge needle that entered the eye at the margin of the cornea and sclera 

(limbus), directly into the vitreous. The volume injected was 0.5 ul.[140] 

 

Subretinal injections 

After anesthetizing the mice, a sharp 30 G sharp disposable pre-sterilized needle 

was introduced right below the limbus, at an angle, to create an entry port. 

Subsequently, a pre-loaded syringe (mounted on a micromanipulator) with a blunt 

needle was gently inserted through the hole, crossing the vitreous until reaching 

the retina; at this point, gentle force was applied on the syringe to puncture the 

retina and deliver its loaded contents into the subretinal space[141]. The volume 

injected was 0.5 ul in mice and 1 ul in rats. 

 

Substances delivered by intraocular injection 

 

Chapter IV-A 

 

ShH10-GFP virus (specifically transduces Mueller glial cells and astrocytes) 

ShH10-GFP virus were generated in Dr Flannery’s laboratory (University of 

California at Berkeley) as previously reported[142] and mouse angiogenin (isoform 



	 108

1) was inserted into the ShH10 viral vector.  The same CMV enhancer was used in 

both vectors. Genotyping was performed by Transnetyx, Inc. 

 

Recombinant carrier-free human Angiogenin and PAM  

These recombinant proteins were obtained from R&D Biosystems and eluted in 

sterile PBS prior to injection. 

 

Erucamide loaded silicon microparticles - produced in Dr Sailor’s laboratory at 

UCSD, according to the following protocol: 

Preparation of Porous Silicon Microparticles: Porous silicon (pSi) films were 

prepared by anodic electrochemical etch of highly doped, p-type silicon wafers 

polished on the (100) face (boron-doped, 1.0 mΩ-cm resistivity; obtained from 

Siltronix Inc., Archamps, France).  A Teflon etch cell was used that exposed 8 

cm2 of the Si wafer to 3:1 (v:v) 48% aqueous HF:ethanol electrolyte (obtained from 

Fisher-Scientific).  Samples were etched at a constant current density of 50 

mA/cm2 for 300 sec.  The resulting pSi films were removed from the crystalline 

silicon substrate by application of a current pulse of 30 mA/cm2 for 250 s in a 

solution of 1:20 (v:v) 48% aqueous HF:ethanol electrolyte. The freestanding pSi 

films were immersed in ethanol within a glass vial and fractured into microparticles 

by ultrasonication for 10 min and then washed 3 times with ethanol by 

centrifugation. 

Erucamide Loading into Porous Silicon Microparticles.  A 100 mg/mL solution of 

the pSi particles in ethanol and a 10 mg/mL solution of erucamide in ethanol 

were prepared and mixed together in a 1:1 (v:v) ratio.  The resulting solution was 

incubated at 37°C for 10 min. Water was then added drop wise to the 

particle/erucamide solution until diluted 10x.  The resulting erucamide-loaded 

particles were washed with 10% ethanol in water by centrifugation.  

Thermogravimetric analysis (TGA) in a STA 6000 apparatus (Perkin Elmer) by 

constant heating from room temperature up to 900°C at 10°/min under a 20 

mL/min oxygen flow was used to determine the amount of erucamide loaded in the 

pSi particles (30 ug drug/mg of particle). 

 

Chapter IV-B and IV-C 
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Time-points used for injections 

Intravitreal injections were performed in OIR mice at P7 and P12.  

Solutions injected 

Inosine (0.5 ul of a 10 uM or 500 uM solutions, made in sterile PBS) 

Arginine (0.5 ul of a 10 uM or 500 uM solutions, made in sterile PBS) 

Sterile PBS (Vehicle) 

U-15N-Inosine (0.5 ul of a 500 uM solution, made in sterile PBS) 

U-15N-arginine (0.5 ul of a solution of  a 500 uM solution, made in sterile PBS) 

 

G. Sectioning and Staining 

G.1. Preparing cryosections 

Method (1) 

After sacrificing the animals (by isofluorane inhalation), the eyes were enucleated 

and the cornea carefully perforated with a sharp needle. The eyes were then fixed 

for 1 hour in 4% paraformaldehyde (PFA), on ice, and transferred to a 30% 

sucrose solution overnight at 4o C, in 1.5 ml tubes. The morning after, the eyes 

were placed in previously labeled molds filled with OCT (Tissue Tek) and 

immediately frozen on dry ice. 

Method (2) 

In some of the experiments, in order to reduce background, frozen sections were 

prepared by immersing the freshly collected eyeballs in OCT and directly freezing 

them on liquid nitrogen or at -80o C. After sectioning, these slides were fixed in 4% 

PFA for 10 minutes and then rinsed 3 times with PBS before initiating the staining 

process.  

 

After obtaining frozen blocks, the eyes were cut into 12 um sections on a Leica 

CM 1850 cryostat and placed on glass sides (Poly-L-Lysine glass slides from 

Polysciences, Inc. catalog # 22247) 

G.2. Staining Cryosections 

General information 



	 110

All the staining procedures were undertaken inside small humid chambers in order 

to prevent precocious drying  

A volume of 250 ul was used per slide. 

To prepare fluorescent stainings of paraffin-embedded sections (NDRI human 

sections), these were firstly rehydrated by sequential immersion in (1) xylene (2 

times; each time for 10 minutes); (2) in 100% ethanol (2 times, for 10 minutes 

each); (3) in 95% ethanol (for 5 minutes); (4) in 70% ethanol (for 5 minutes) and 

finally (5) in 50% ethanol (for 5 minutes); after this, they were rinsed with deionized 

water, rehydrated with wash buffer for 10 minutes and finally stained according to 

the protocol described below. 

Blocking solutions for staining were prepared using donkey or goat serum by 

combining reagents as indicated in Table 2.  
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Table 2 – Reagents used for preparation of blocking solutions  

 

 

 

 

 

 

 

Staining procedure 

Sections were rehydrated with PBS for 5 minutes, then blocked for 1 hour in 10% 

Donkey serum (DS) or 2% Goat Serum (GS) solution and incubated with primary 

antibodies (Table 3) for 2 hours at room temperature or overnight at 4o C. After 

this, sections were rinsed with PBS 3 times (3 min each), incubated with Alexa 

fluor conjugated secondary antibodies (purchased from life technologies; 

conjugated to fluorophores 488, 594, 567 or 647) for 30 minutes (at a 1:1000 

dilution in PBS), rinsed with PBS and finally incubated with DAPI (1:1000 dilution 

in PBS for 5 minutes). After a final rinse in PBS, the sections were mounted on a 

glass slide, with a drop of slowfade mounting medium (Life Technologies). 

G.3. Preparing vibratome sections 

Eyes were enucleated and fixed for 20 min at room temperature  (RT) in 4% PFA. 

Retinas were dissected and further fixed overnight in 4% PFA, at +4ºC. The 

following morning, the retinas were embedded in 5% agarose and left at room 

temperature until the agarose solution became solid. Agarose blocks were then 

sectioned using a Leica VT1000 vibratome to produce 100 micron thick sections. 

G.4. Staining vibratome sections 

The sections were incubated in blocking solution for 1 hour at RT and then in 

primary antibody (Table 3) solution overnight, at +4ºC. The following morning they 

were washed in PBS for 4h at room temperature (PBS being changed every hour), 

incubated with secondary antibodies overnight at +4ºC, in the dark and washed in 

PBS for 4h. After this, sections were incubated with DAPI (1:1000) for 15 min at 

RT, washed in PBS for 15 minutes and mounted as previously described.

Blocking solutions 

Bovine serum albumin (BSA) 5% (weight/volume) 

Donkey serum or goat serum 10% 

Triton 100X 0.01% 

PBS Remaining volume 
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H. Retinal and RPE‐choroid Flatmounting and 

Immunohistochemistry 

H.1. Retinal and Choroid‐RPE dissections 

 

Retinal flatmounts 

Under the dissecting microscope, the cornea, lens and vitreous were sequentially 

removed and the sclera/RPE-choroid/retina complex isolated. Four slits, 

positioned approximately 90o from each other, were cut in the retina/RPE-

choroid/sclera complex and the RPE-sclera complex was detached from retina by 

gently pulling the former and the latter apart with a forceps. After isolating the 

retina, and before starting the staining procedure, thick remnants of vitreous (still 

attached to its surface) were removed by gentle cutting with a surgical scissors. 

RPE-choroid flatmounts 

For choroidal flatmounts, a similar procedure was followed but the RPE-choroid 

complex was carefully detached from the scleral tissue, after isolating the retina. 

Immunohistochemistry  

The dissected retinas or RPE-choroids complexes were fixed for 1 hour in 4% PFA 

on ice and then blocked for 1 hour at RT. Afterwards, samples were incubated with 

primary antibody (Table 3) overnight at +4o C. The next morning they were 

washed in PBS for 2 hours (changed every hour) and then incubated in the dark 

with the corresponding secondary antibody (Alexa-fluor conjugated antibodies 

obtained from Life technologies; 1:200 dilution in PBS) for 2 hours, at room 

temperature. After this, samples were washed in PBS for 2 hours at room 

temperature and then mounted as previously described.[140] 
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Table 3 - Primary antibodies used  

 

  

Antibody Company Catalog # Host/origin Dilution 

Isolectin GS-IB4 

Alexa Fluor 594/488 

conjugate 

Life technologies 

 
I21411 Griffonia simplicifolia 1:200 

Iba-1 Wako  chemicals 019-19741 Rabbit 1:200 

CD11b AbD Serotec MCA711G Rat 1:500 

CD31 BD Pharmingen 550274 Rat 1:200 

GFAP Dako IR524/IS524 Rabbit 1:200 

Angiogenin abcam AB95389 Rabbit 1:200 

PAM 
Santa Cruz 

Biotechnologies 
sc-17393 Goat 1:50 

Cone Opsin Millipore AB5407 Rabbit 1:200 

Cone arrestin Millipore AB15282 Rabbit  

Rhodopsin Abcam AB5417 Mouse 1:100 

Collagen IV Millipore AB756P Rabbit 1:200 

ZO-1 (FITC 

conjugated) 
Life technologies 339194 Mouse 1:200 

Vitronectin 
Santa Cruz 

Biotechnologies 
sc-15332 Rabbit 1:100 

PAX2 LSBio LS-C9505 Rabbit 1:200 

GFP Abcam AB6556 Rabbit 1:100 

Calretinin Swant 7697 Mouse 1:200 

Calbindin D-28K Millipore AB1778 Rabbit 1:2000 

MAP2 Novus biologicals NB300-213 Chicken 1:200 

Glutamine 

synthetase (GS) 
ThermoScientific PA1-46165 Rabbit 1:200 

Glycine transporter 

1 
Millipore AB1770 Goat 1:200 

Glutamate 

decarboxylase 65 

&67 

Millipore AB1511 Rabbit 1:200 

Neurofilament 
Developmental Studies 

Hybridoma Bank 
2H3 Mouse 1:500 

Synaptophysin Synaptic systems 101011 Mouse 1:200 

Syntaxin (STX1) Sigma-Aldrich S0664 Mouse 1:200 

Chx10 Exalpha X1179P Sheep 1:200 

Recoverin Millipore AB5585 Rabbit 1:200 
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I. Imaging on a Confocal Fluorescence Microscope 

 

Imaging was performed on a Zeiss confocal Laser Scanning Microscope (LSM 700 

or 710, Zeiss), equipped with 4 objective lenses (5x, 10x, 20x and 40x) and 4 

lasers (spanning wavelengths from 405 to 639 nm) using the acquisition software 

‘ZEN imaging’ (Zeiss) and Imaris (Bitplane). All images were obtained with 

sequential acquisition of the fluorescent channels (usually 488, 567 or 594 and 

647 nm) to avoid fluorescence bleed-through. 

Image processing was performed using Photoshop CS6 (Adobe), image J and 

ZEN 2010. 

I.1. Quantification of Vascular Density (Retinal Vascular Plexuses) 

 

Three-dimensional reconstructions were generated using ZEN 2010 and Imaris 

software (Bitplane). To assess the density of the vascular plexus, eight 200X 

magnification images (four center and four peripheral; 320 × 320 μm fields of view 

(FOV) per retina) were chosen from each scanned image, and the numbers 

obtained from each of the eight fields were averaged. Tip cells were scored as 

GS-lectin positive cells with blind-ended endothelial protrusions that had 

associated filopodial bursts in areas at the angiogenic front by analyzing high 

magnification (400x) micrographs. To quantify numbers of filopodia per tip cell, 

randomly selected high magnification (400X) micrographs images were analyzed. 

To construct triple-colored images, images were overlaid using Adobe Photoshop 

CS6. 

I.2. Quantification of Retinal Degeneration in RD10 mice 

 

Manual segmentation using the Adobe Photoshop CS6 ruler instrument was used 

to accurately measure retinal layers.  Quantification of degeneration in RD10 mice 

(injected at P14 and analyzed at P18, P25, and P32) was performed as follows: 

Eyes were cut in 14µm sections and immunolabeled with recoverin antibodies and 

DAPI.  Retinal thickness values were measured in nine distinct locations from 
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micrographs in central and peripheral regions in erucamide and empty 

microparticle injected eyes (n=4).  Averages were calculated and plotted using 

Excel.  The experiment was repeated four times.  Two-tail students t-tests were 

used for statistical analyses.   

I.3. Quantification of the OIR Phenotype 

 

Quantification of the OIR phenotype on retinal flatmounts was conducted on 

Adobe Photoshop CS6 (PS CS6) and the corresponding statistical analysis was 

performed on Microsoft excel, using a previously described protocol[143]  

Tiled images of OIR retinal flatmounts stained with the vascular marker GS-lectin 

were taken under the fluorescent microscope and further processed and analyzed 

on PS CS6 by following 3 steps: (1) image setup; (2) quantification of tufts; (3) 

quantification of vaso-obliteration. 

Image setup. Resolution was set to 300 ppi and dimensions to 1536x1536 pixels 

in all images, to achieve a final image size of 5.12 inches2 

Image mode was changed to RGB color; foreground color was set to red (R255, 

G0, B0) and background color to yellow (R255, G255, B0). 

Brightness and contrast were adjusted to enhance differences between vessels 

and background; and neovascular tufts and normal vessels. 

Neovascular tufts quantification. After setting tolerance to 60, tufts were selected 

in a continuous fashion using the magic wand tool. After selection of all tufts, the 

area was filled in foreground color (red) manually using the magic wand tool to 

obtain the corresponding pixel count (revealed under ‘histogram’).  

Quantification of vaso-obliterated (VO) areas. Before starting this step, all tuft 

areas were deselected. After setting “Feather” to 0, all VO areas were selected 

with the lasso tool in a continuous fashion, after which they were filled in 

background color (yellow). The total area of VO was selected using the magic 

wand tool and the corresponding pixel count (revealed on histogram) was 

annotated. 

Statistical analysis. After inputting the total area of tufts and VO (in pixels) for each 

individual retina into Excel, a conversion factor (*10.8; based on tile scan 
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parameters and image resolution) was applied to produce absolute values in 

square micrometers for each corresponding area. 

Mean values regarding area of tufts and area of VO were calculated for each 

experimental group and plotted on a bar chart. Statistical significant differences 

between groups were evaluated using Student’s t-test (paired, two-tailed) and 

statistical significance was considered when P-value < 0.05. 

I.4. Microglial cell/Macrophage Quantification on Retinal Cryosections 

 

Retinal cryosections were stained with Iba-1 and DAPI (as previously described) to 

visualize microglial cells, macrophages and retinal nuclear layers. Quantification 

was based on to the protocol reported by McVicar et al[144] 

For each of the analyzed eyes, eight consecutive sections representing the central 

and midperipheral (nasal and temporal) retina were selected and the number of 

Iba-1 positive cells (total and per retinal layer: ONL, OPL, INL, IPL, GCL) was 

quantified (n=4, per experimental group).  

Statistical analysis. Mean cell counts (total and partial, for each retinal layer) were 

calculated for each experimental group and compared; Student’s t-test was used 

to assess statistical significance. 

J. Electron Microscopy Analysis 

 

Tissue preparation: Eye cups formed by the retina and choroid were fixed in 4% 

PFA and 1.5% glutaraldehyde in 0.1 M cacodylate buffer overnight at 4o C and 

followed by a rinse in 0.1 M Na cacodylate for 1 hour. Afterwards, the eyecups 

were postfixed in 1% osmium tetroxide in 0.1 cacodylate buffer for 2 hours 

followed by washes for 1 hour and dehydration with graded ethanol solutions. 

Samples were incubated overnight in a 1:2 mix of propylene oxide and 

Epon/Araldite (Sigma-Aldrich) and embedded in 100% resin. Finally, the blocks 

were sectioned and used for transmission electron microscopy analysis. 

For scanning electron microscopy, lightly fixed retinas (buffered 

paraformaldehyde) were fixed overnight in 2.5% gluteraldehyde in 0.1M Na 

cacodylate buffer pH 7.4. Cross sections were prepared with a #11 scalpel blade, 
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then washed with buffer, postfixed in 1% osmium tetroxide, washed in 0.1M 

cacodylate buffer, washed with distilled water and then dehydrated in series of 

graded ethanol. The tissues were then treated with hexamethyldisilazane (HMDS) 

(Electron Microscopy Sciences, Hatfield PA) as a substitute for critical point drying 

and dried and mounted onto SEM stubs with carbon tape and then sputter coated 

with 4nm of Iridium (EMS model 150T S) for examination on a Hitachi S-4800 

SEM (Hitachi High Technologies America Inc., Pleasanton CA).  A scanning 

electron microscope (FEI XL30 SEM) was also used to obtain images of the pSi 

particles (Figure 1D).  The average particle size (36 ± 14 um) and nominal pore 

diameter (21 ± 7 nm) were determined from scanning electron microscope (FEI 

XL30 SEM) images. 

K. Enzyme‐linked immunosorbent assay (ELISA) 

Sample preparation 

a) Retinas were dissected on ice, pooled and introduced in 1.5 ml Eppendorf tubes 

previously loaded with RIPA buffer (sigma Aldrich, catalog # R0278-50ML) and 

protease inhibitor cocktail (1:100 dilution; Thermo Pierce technologies, catalog # 

87785), on ice; 

b) Retinas in solution were homogenized, underwent 2 freeze-thaw cycles and 

were then centrifuged at +4o C at 16000g, for 10 min 

c) Supernatants were collected and immediately assayed undiluted or stored at - 

80o C  

ELISA DuoSet kits(R&D systems) 

Reagents: 

Coating buffer: 0.05M NaHCO3/Na2CO3  

Wash buffer: PBS with 0.05% tween  

Blocking/Working buffer: 1% BSA eluted in PBS (50 ml should be made per 

plate) 

Substrate solution: 1ml of TMB (Thermo-pierce; 3,3’,5,5’- tetramethylbenzidine) 

was eluted in DMSO and this was later eluted in 9 ml of citrate buffer (30% sigma 

Aldrich). Two 2 ul of H2O2 were added at the end. 

Stop solution: 1M H2SO4  

Capture antibody  
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Detection antibody  

Streptavidin-HRP (Horseradish peroxidase) 

Standards (7 vials; different concentration values depending on the protein being 

tested) 

 

Assay procedure 

Step 1: The plate was coated with capture antibody (100 ul), eluted in coating 

buffer the night before the experiment, and incubated overnight at room 

temperature. 

Step 2: The plate was washed, blocked for 1 hour at room temperature on a 

platform shaker, washed again, and incubated for another 2 hours on a platform 

shaker, at room temperature with standards, samples and working buffer (blank 

measurements).  

After the third wash, the plate was incubated with detection antibody (100 ul/well) 

for 1 hour at room temperature, washed again and further incubated with 

streptavidin-Horseradish peroxidase (HRP; 100ul) for 30 minutes, at RT. 

After the fourth wash, the plate was incubated with substrate solution (100ul) for 

10 to 15 minutes after which stop solution was added. After this, optical densities 

(OD) were immediately read on a plate reader at 450 nm and at 540 nm (using the 

Gen5 software, BioTek). 

 

Analysis of the data generated with Gen 5 software was performed on Microsoft 

Excel and on Graphpad prism software according to the following steps: 

1) Obtaining corrected OD values for each well: The optical density (OD) readings 

made at 540 nm were subtracted from those made at 450 nm. The average OD 

values for blank wells (negative controls) were then subtracted from the values 

obtained previously. 

2) The OD values (y) obtained for each standard concentration were average and 

paired with their respective concentration (x). The OD values for the samples were 

similarly averaged for each duplicate. All the data concerning standards and 

samples was introduced into Graphpad prism 

3) A standard curve was generated on Graphpad prism by reducing the data using 

a 4-parameter logistic (4-PL) curve-fit, and the concentrations for each sample 
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were calculated and compared between experimental groups using two-tailed 

Student’s t test. 

L. Real Time Polymerase Chain Reaction (qRT‐PCR) 

 

In order to perform q-PCR, three steps were undertaken for all the assayed 

samples 

 

Step 1: RNA extraction (using the miRNAeasy Mini Kit – Qiagen; catalog # 

217004) 

 

Dissected and isolated retinas or RPE-choroid samples were added to sterile 

plastic tubes containing 700 ul of Qiazol lysis reagent, on ice, and the tissues were 

disrupted and homogeneized using tissuruptor (Qiagen; Catalog# 9001271). The 

homogenate was then incubated for 5 minutes at room temperature, vigorously 

mixed with 140 ul of chloroform (shaking the tube for 15 seconds), incubated for 3 

minutes at room temperature and centrifuged for 15 min at 12000 g at +4ºC. The 

upper aqueous phase was then transferred to a new collection tube, carefully 

avoiding any transfer of interphase, and 525 ul of 100% ethanol were added and 

thoroughly mixed by pipetting. 

700 ul of the sample, including precipitate, were then transferred into a RNAeasy 

mini column (placed on top of a 2 ml collection) tube and centrifuged at 9000g for 

15 s at room temperature with the flow through being discarded. This procedure 

was repeated for the remainder of the sample. 

Afterwards, 700 ul of RWT buffer were added to the RNAeasy Mini column and the 

tubes were centrifuged at 9000 g for 15 seconds, at room temperature, discarding 

the flow through. 

500 ul of RPE buffer were then added to to RNAeasy Mini column and centrifuged 

first for 15 seconds and then for 2 minutes at 9000 g, at room temperature. 

Finally the RNAeasy mini column was transferred to a new 1.5 ml collection tube 

and 30 to 50 ul of RNAse free water were added before centrifuging for 1 minute 

at 9000 g to elute. RNA content was measured using the Nanodrop 

Spectrophotometer ND-1000 and accompanying software (ND 1000 v 3.3.0) by 
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placing 1 ul of sample on the device. An RNA yield of 30 ug per sample was 

considered the minimum acceptable amount and all samples fulfilling this 

requirement were processed immediately or stored at -80ºC until the second step. 

 

Step 2: Conversion of RNA to cDNA (QuantiTect reverse Transcription Kit, 

Qiagen; Catalog # 205310) 

 

The RNA samples, quantiscript reverse transcriptase, gDNA wipeout buffer, 

quantiscript RT buffer, RT primer mix and RNAse free water were thawed on ice. 

These solutions were then vortexed, briefly spun down and kept on ice for the 

remainder of the procedure. 

The gDNA elimination reaction was set up by mixing 2 ul of gDNA wipeout buffer 

with the previously calculated amounts of template RNA (aiming at 0.5 ug of RNA 

per tube) and RNAse free water to make up a total volume of 14 ul. Samples were 

incubated for 2 min at 42 ºC (using the the Biorad C1000 thermal cycler) and then 

placed on ice. For the reverse transcription reaction, mastermix was prepared on 

ice (mixing 1 ul of Reverse transcriptase (RT) mix, 4 ul of RT buffer and 1 ul of RT 

primer mix per reaction) and added to the 14 ul of template RNA for a total volume 

of 20 ul per tube. Tubes were then incubated for 15 minutes at 42ºC (for the actual 

reverse transcription) followed by 3 minutes at 95ºC (to inactivate the reverse 

transcriptase) on the Biorad C1000 thermal cycler and, after this, placed 

immediately on ice and stored at – 20ºC (the assumed concentration of cDNA per 

tube is 25 ng/ul, the equivalent to 0.5 ug of RNA in 20 ul) 
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Step 3: Relative quantification of gene expression  

 

cDNA samples were thawed on ice and individual reactions were set up on 96 well 

plates for PCR (Taqman) by mixing 10 ul of Taqman universal mastermix (no 

AmpErase UNG), 1 ul of the Taqman gene expression assay (probe; Table 4), 8 ul 

of RNAse free water and 1 ul of cDNA (total volume of 20 ul per reaction). PCR 

Reactions were run in triplicate using β-actin or 18S as endogenous controls. 

Prepared PCR plates were then sealed, briefly spun down and assayed in the 

7900HT Real-Time PCR system (Taqman) using the standard protocol† included 

in the SDS 2.4 software.  Expression levels of VEGF isoforms 120; 164 and 188 

(Table 5) were analyzed using a QuantiTect SYBR Green PCR Kit (Qiagen) and 

the CFX96 Touch Real-Time PCR Detection System (BIO-RAD). 

The results generated by SDS 2.4 were then analyzed on Excel to assess 

compare differences in gene expression between experimental conditions. 

Corrected average values of gene expression were calculated and compared 

between experimental groups. Statistical significance was determined by two-

tailed Student’s t-tests, with p-values < 0.05 considered statistically significant.  

  

                                            
† The standard protocol includes two stages: (1) Hold: – 95o C for 10 minutes; 2) 
Cycle: – 95o C for 15 seconds and 60o C for 1 hour. 
	



	 122

Table 4 – Probes used for RT-PCR 

 

Taqman PCR probes/Array Company Catalog # 

MCP-1 Life technologies Mm00441242_m1 

TNF-alpha Life technologies Mm00443258_m1 

VEGF-A Life technologies Mm01281449_m1 

VEGF-164 Qiagen 

Refer to next table, please VEGF-120 Qiagen 

VEGF-188 Qiagen 

iNOS Life technologies Mm00440502_m1 

Arginase-1 Life technologies Mm00475988_m1 

Arginase 2 Life technologies Mm00477592_m1 

       Pam Life technologies Mm01293044_m1 

RT2 Profiler for Mouse 

Angiogenesis 
Qiagen PAMM-024 

RT2 Profiler for Mouse hypoxia 

signaling pathway 
Qiagen PAMM-032 
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Table 5 - VEGF isoform primer sequences  (described by Zhang et al[145]) 

 

 

M. In Situ Hybridization (ISH) 

 

Kit used: ViewRNA ISH Tissue 2-Plex Assay (Affymetrix Inc.); probe: VEGF 

(catalog # SB-13465) 

This technique involves two steps: 

1) Sample preparation and target probe set hybridization 

2) Signal amplification and detection 

VEGF isoforms primer sequences 

Vegf 120

Sense 5′-CCC ACG ACA GAA GGA GAG CAG AAG T-3′ 

Antisense 5′-TTG GCT TGT CAC ATT TTT CTG GCT T-3′ 

Vegfa164

Sense 5′-CCC ACG ACA GAA GGA GAG CAG AAG T-3′ 

Antisense 5′-CAA GGC TCA CAG TGA TTT TCT TGG C-3′ 

Vegfa188

Sense 5′-CCC ACG ACA GAA GGA GAG CAG AAG T-3′ 

Antisense 5′-AAC AAG GCT CAC AGT GAA CGC T-3′ 
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Sample preparation and target probe set hybridization 

Mice eyes were harvested and immediately transferred to 4% RNAse free PFA 

and fixed for 8 hours, at +4o C. 

After fixation, eyes were transferred into a 30% sucrose solution (also prepared 

with RNAse free water) and left overnight at +4o C. The following morning, eyes 

were embedded in OCT and frozen. Twelve-micron sections were cut (as 

previously described) onto superfrost plus microscope slides, being carefully 

placed within the margins (drawn on the slides), as recommended by the 

manufacturer. Slides were then fixed overnight on a rack placed into a staining 

dish filled with chilled 10% NBF (made by mixing 178 ml of 1x PBS and 22 ml of 

37% formaldehyde, on ice);  

Buffers, reagents and equipment were set up in the following fashion: 

The hybridization system was set to 40oC and humidified 

The following solutions were prepared: 2 L of 1X PBS, using 10x PBS; 200 ml of 

50% ethanol; 200 ml of 70% ethanol and 4 L of wash buffer (adding 3 L of RNAse 

free water, 36 ml of wash comp 1, 10 ml of wash comp 2 and RNAse free water for 

the remaining volume); 200 ml of storage buffer (adding 60 ml of wash comp 2 and 

140 ml of RNAse free water) 

The probe set was thawed and then placed on ice 

10 ml of 1x PBS and Probe set diluent were prewarmed to 40o C 

 

The following morning, slides were washed twice in PBS for 1 minute with frequent 

agitation and the tissue was sequentially dehydrated by introducing the rack of 

slides into 50%, 70% and 100% ethanol for 10 min each, at RT, without agitation. 

After this, the excess 100% ethanol was drained on paper towels and the rack was 

transferred to a 60o C dry incubator for 60 minutes (“baking” the slides). 

After baking the slides, a barrier was drawn around the tissue sections with a 

hydrophobic barrier pen and allowed to dry for 20-30 min. 

After preparing the working protease solution, 400 ul were added onto the tissue 

section on each slide and these were incubated in the hybridization system at 40o 

C. After this, slides were washed twice on a rack (in 1XPBS for 1 min with 
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agitation) and fixed for 5 minutes in 10% NBF at RT, under a fume hood. Another 

two washes were performed with frequent agitation (as previously described). 

After preparing the working probe set solution, 400 ul of were added to each slide 

and the slides were incubated at 40o C for 2 h in the hybridization system. 

After hybridization with the probe sets, slides were washed three times with 

vigorous agitation and stored in a covered staining dish, at RT in 200 ml of storage 

buffer. 

 

Signal amplification and detection 

 

The following day, sections were washed twice in fresh wash buffer at RT for 2 

min with vigorous agitation, and incubated with the following seven solutions, in 

the hybridization system: 

 1) Preamplifier Mix QT, for 25 min at 40o C 

2) Amplifier Mix QT for 15 minutes at 40o C  

3) Label probe-6 AP solution for 15 minutes, at 40o C 

4) Fast blue substrate for 30 minutes, in the dark, at RT 

5) AP stop QT for 30 minutes, in the dark, at RT 

6) Working label probe-AP solution, for 15 minutes, at 40o C 

7) AP enhancer solution, for 5 minutes, at RT and, after decanting it, with fast red 

substrate for 30 min, at 40o C 

In between these hybridization steps, slides were washed again three times in 

fresh wash buffer for 2 minutes each, at RT, with vigorous and constant agitation. 

After the last hybridization step, slides were counterstained with Gill’s hematoxylin 

(200 ml) for 5-10 seconds at RT, washed 3 times with RNAse free water, 

incubated with 0.01% ammonium hydroxide for 10 seconds, washed again as 

before in RNAse free water and stained with DAPI for 1 minute. After a final rinse 

with RNAse free water, the slides were let air dry in the dark for approximately 20 

minutes and then mounted using DAKO ultramount mounting medium. 

Images of the ISH sections were finally taken using the Confocal Laser Scanning 

Microscope (LSM 700, Zeiss). 
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N.  TUNEL Staining 

 

Before starting the Terminal deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL) assay (Roche Diagnostics, catalog # 11684795910), a 0.1% TritonX 100 

in a 0.1% Sodium Citrate permeabilization solution was prepared (495 ml of PBS + 

2.5 ml of Triton + 2.5 g of sodium citrate). 

Frozen sections (previously fixed for 1 hour in PFA 4%) were washed in PBS for 

30 minutes, incubated with permeabilization solution for 2 minutes on ice (about 

100 uL per slide) and rinsed twice with PBS afterwards. After this, slides were 

incubated with 50 uL of the TUNEL mixture (prepared by mixing the label solution 

with the enzyme solution immediately before use) for 60 min at 37ºC in a 

humidified chamber in light protected conditions. Two slides were incubated with 

DNAse I recombinant  (3U/ml in 50mM Tris-HCl 1mg/ml BSA) for 10 minutes at 

room temperature and then incubated with TUNEL mixture in the same way as the 

experimental slides (positive control); and 2 slides were incubated with label 

solution only for 60 min at 37ºC in the dark (negative controls). 

After the 60 minute incubation period, all sections were brought back to room 

temperature, rinsed with PBS (3 times) and mounted with DAPI mounting medium 

(Vectashield).  

The slides were then directly analyzed under the Confocal Laser Scanning 

Microscope (LSM 700, Zeiss) and imaged in the blue and green channels. 

(Excitation length 450 - 500 nm and detection range 515 – 565 nm). 

Quantification of TUNEL positive cells in the retina (using a previously 

described protocol[146]) 

From each of the eyes analyzed, five random sections were selected. The 

midperipheral nasal and temporal retinas were imaged and the number of TUNEL 

positive cells in the ONL was quantified and related to the correspondent 

measured retinal area, with Image J. The number of TUNEL positive cells per 

square millimeter is shown (Chapter IV-A). 
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O. Chick Chorioallantoic Membrane Assays 

 

For the work presented in Chapter IV-A, a previously described protocol for In vivo 

Chick Chorioallantoic Membrane (CAM) assays was used [147] 

Fertilized eggs containing chick embryos  were preincubated for 8 days at 37.5o C 

in conditions of 85% humidity. After creating a hole over the air sac and 

subsequently identifying the vascular zone, a 1x1 cm window was opened in the 

shell to expose the CAM. 

Sterilized filter paper disks were impregnated with: VEGF, basic FGF, Erucamide 

(loaded into 100µm microparticles, was mixed with collagen and sandwiched 

between two grids) or vehicle (PBS) and applied to the CAM surface. 

The window was sealed with clear tape and the eggs were incubated for another 

48 hours. After this period, embryos were perfused with DiI to label the vasculature 

and the onplants were imaged using a confocal microscope.  The percentage of 

vascularization was calculated (by assessing and comparing the number of 

vascular branching points) and plotted. 

P. Experiments assessing Retinal Oxidative Metabolism  

 

For assessing retinal oxidative metabolism we used a Seahorse® Flux analyzer 

 

P.1. Retinal Oxygen Consumption Rate (OCR) Determination 

 

Whole retinas were isolated from OIR P14 mice 48 h after inosine or PBS control 

injection. Whole retinas were dissected, placed in assay media (DMEM, D5030 

Sigma, supplemented with 12 mM glucose (Sigma), 2 mM pyruvate (Gibco), 10 

mM HEPES (Gibco) and 2 mM glutamine (Gibco), pH 7.4). Biopsy punches (1 

mm) were collected from the “central” region adjacent to the optic nerve, or from 

the “peripheral” region near the retinal edge. Oxygen consumption rates were 

determined using a Seahorse XFe96 Flux Analyzer (Seahorse Biosciences, 

Massachusetts USA). The highest and lowest OCR measurements from the final 4 
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- 6 readings from the basal and drug treatments were removed and the remaining 

OCR readings were averaged. All central punches or peripheral punches from 

each retina were averaged to yield n = 1 per mouse retina. Basal oxygen 

consumption rates (OCR) were calculated by taking the initial OCR and 

subtracting the non-mitochondrial OCR (“RAA rate”; determined in the presence of 

2 mM Rotenone (Sigma) and 2 mM Antimycin A (Sigma). Maximal OCR was 

calculated by subtracting the non-mitochondrial OCR from the OCR in the 

presence of 0.75 uM FCCP (Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone, Sigma). The percentage of mitochondrial 

uncoupling was determined by using the OCR in the presence of 2 mM oligomycin 

(Sigma) minus the non-mitochondrial (RAA rate) divided by the basal OCR times 

100%. Percentage coupling was 100% minus the percentage uncoupled OCR.  

Basal OCR = initial rate – RAA rate 

Maximal OCR = FCCP rate – RAA rate 

Percentage coupling = [(Basal OCR – (oligomycin rate – RAA rate)/basal 

OCR]*100% 

Q. Ocular In vivo Imaging 

 

For the following procedures, mice were anesthetized by intraperitoneal injection 

of 15 mg/kg ketamine and 7 mg/kg xylazine, and their pupils dilated with 

phenylephrine hydrochloride (Ophthalmic solution 2.5% Bausch & Lomb, NDC 

24208-740-06) immediately before imaging. 

Q.1. Micron III 

 

Fundus images were taken using the Micron III system (Phoenix Research 

Laboratories) by covering the cornea with “artificial tears” gel, placing the mouse 

on a moving platform and approaching the micron camera until it came in contact 

with the eye. To obtain pictures of different retinal areas, the platform was rotated 

and swiveled until the area of interest could be identified and focused. 
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Q.2. Spectral Domain‐Optical Coherence Tomography (SD‐OCT) 

 

Morphological evaluation of retinal layers in vivo was performed with  Bioptigen 

(an SD-OCT, Envisu instrument) by placing the mouse on a platform similar to the 

one described previously. Averaged SD-OCT scans were then exported to 

Photoshop CS6 (Adobe Systems Inc.) to perform quantitative analyses.  Using the 

PS CS6 built-in ruler, manual segmentation was performed to accurately measure 

retinal layer thickness (ganglion cell layer (GCL)/IPL, INL). Differences in retinal 

layer thickness between experimental groups and controls were plotted in ± 15mm 

increments (up to ± 60mm), from the optic nerve head.  

To perform indocyanine green (IG) angiography, IG was injected intraperitoneally 

(50 ug/g of body weight) at the time of anesthesia (15 mg/kg of ketamine and 

7mg/kg of xylazine) and sequential retinal fundus pictures were recorded using the 

Spectralis Heidelberg Retinal Angiograph (Heidelberg Engineering). 

 

Q.3. Evaluation of Visual Acuity 

 

Visual acuity was assessed in mice based on their optokinetic responses with the 

OptoMotry system (Cerebral Mechanics Inc.). This device, which consists of an 

elevated platform (where the animal stands) surrounded by a virtual rotating 

cylinder with a striped pattern (vertical black and white stripes), measures 

visuomotor behavior in light conditions by assessing the number of smooth 

pursuits of the head elicited by the rotating stimulus. The mouse’s visual acuity is 

calculated in accordance to the number of effective pursuit movements of the head 

(i.e., a tracking movement concordant with the velocity and direction of the 

stimulus) produced by the rotating stimulus, which are detected by the software. 

Q.4. Ganzfeld Electroretinography (ERG)  

 

Mice were dark-adapted overnight before the experiments, and anesthetized 

under a dim red light by intraperitoneal injection of 15mg/kg ketamine and 7 mg/kg 

xylazine the morning after. Silver needle electrodes served as a reference 
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(forehead) and ground (tail). Full-field ERGs were recorded from the corneal 

surface of each eye after pupil dilation (with 2.5% phenylephrine and 1% 

tropicamide) with active contact lens electrodes (Mayo, Inazawa, Japan). A 

computerized system with an electronically controlled Ganzfeld dome was used 

(Espion E2 with Colordome; Diagnosys). In dark-adapted conditions (scotopic), 

rod and mixed cone/rod responses to a series of white flashes of increasing 

intensities (1 × 10-5 to 50 cd·s/m2) were recorded. In light-adapted conditions 

(photopic), with a 30 cd/m2 background, cone responses to 1-Hz (0.63 to 20 

cd·s/m2) and 30-Hz (3.98, 10, and 20 cd·s/m2) flicker stimuli were recorded. All 

ERG responses were filtered at 0.3-500 Hz, and signal averaging was applied. 

 

R. Mass spectrometry‐based Experiments 

 

R.1. Sample Extraction for Mass Spectrometry‐based Metabolomics 

 

Acetone (400 �l) was added to 1.5 ml glass high recovery vials (Agilent 

Technologies, Santa Clara, CA, USA) containing 100 �l of human vitreous or 

blood and these were vortexed for 30 s. The samples were then placed in liquid 

nitrogen for 1 min, thawed for 5 min and sonicated for 15 min. This cycle was 

repeated 2 more times before the samples were stored overnight at -20oC. After 

storage, the samples were centrifuged for 15 min at 13,000 rpm at 4oC in 1.5 ml 

microcentrifuge tubes. The supernatant was transferred to 1.5 ml glass vials and 

stored at -20oC until later use. The pellet was resuspended in 400 �l 

methanol/water (80:20 v/v), vortexed for 30 s, sonicated for 15 min and the 

supernatant pooled with the supernatants previously collected. The samples were 

stored at -20oC for 1 h, centrifuged for 15 min at 13,000 rpm, 4oC, and the 

supernatants dried in a speedvac. All samples were resuspended in 100 �l 

acetonitrile:methanol: isopropanol (40:40:10), sonicated for 20 min, centrifuged for 

15 min at 13,000 rpm, 4oC, and transferred to autosampler vials for storage at -

80oC until use.  
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For the analysis of the mouse model, whole eyes were taken (two per sample) and 

homogenized in 400 �l methanol/water (80:20 v/v) with 1 mm glass beads 

(Biospec, Bartlesville, OK, USA) in 1.5 ml glass vials. A minilys homogenizer 

(Bertin Technologies, Montigny le bretonneux, France) was used for 30 s at 3000 

rpm. The samples were sonicated for 15 min and stored overnight at -20oC. The 

samples were centrifuged at 13,000 rpm for 15 min at 4oC. The supernatant was 

transferred to 1.5 ml glass vials and stored at -20oC until later use. The pellet was 

resuspended in 600 �l acetone and homogenized again for 10s, and stored at -

20oC overnight. The samples were centrifuged at 13,000 rpm for 15 min at 4oC 

and the supernatant pooled with previously retained supernatant. The samples 

were dried down in a speedvac and resuspended in 80 �l acetonitrile/water (50/50 

v/v), sonicated for 5 min, centrifuged for 15 min at 13,000 rpm, 4oC, and 

transferred to autosampler vials for storage at -80oC until use. To note, two 

different resuspension solvent mixtures were used for the different eye tissues to 

allow for optimal recovery of both hydrophobic and hydrophilic metabolites.  

 

R.2. Global Metabolomic Analysis 

 

Analyses were performed using a high performance liquid chromatography 

(HPLC) system (1200 series, Agilent Technologies) coupled to a 6538 UHD 

quadrupole time-of-flight (Q-TOF) mass spectrometer (Agilent Technologies). 

Samples were injected (8 �l) onto either a Zorbax C18, 5 µm, 150 mm × 0.5 mm 

I.D. column (Agilent Technologies) for reversed phase liquid chromatography 

(RPLC) analysis, or a Luna Aminopropyl, 3 µm, 150 mm × 1.0 mm I.D. column 

(Phenomenex) for hydrophilic interaction liquid chromatography (HILIC) analysis. 

The standard mobile phase for RPLC was A = 0.1% formic acid in water and B = 

0.1% formic acid in acetonitrile in electrospray ionization (ESI) positive mode. For 

HILIC the mobile phase was A = 20 mM ammonium acetate and 20 mM 

ammonium hydroxide in 95% water and B = 95% acetonitrile in ESI negative 

mode. The linear gradient elution from 100 % B (0–5 min) to 100 % A (50–55min) 

was applied in HILIC at a flow rate of 50 µL/min and from 100 % A (0–5 min) to 
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100% B (50–55min) in RPLC at a flow rate of 20 µL/min. A 10 min post-run was 

applied for HILIC, to insure column re-equilibration and maintain reproducibility. 

ESI source conditions were set as followings: gas temperature 325 °C, drying gas 

5 L/min, nebulizer 15 psi, fragmentor 120 V, skimmer 65 V, and capillary voltage 

4000 V or −4000V in ESI positive or ESI negative modes, respectively. The 

instrument was set to acquire over the m/z range 60–1000, with the MS acquisition 

rate of 2.4 spectra/s. For the MS/MS of selected precursors the default isolation 

width was set as medium (4 Da), with a MS acquisition rate at 2.63 spectra/s and 

MS/MS acquisition at 2.63 spectra/s. The collision energy was fixed at 20 eV. 

LC/MS data were processed using XCMS Online [148]. Unpaired parametric tests 

were carried out. Features were listed in a feature list table and as an interactive 

cloud plot, containing their integrated intensities (extracted ion chromatographic 

peak areas) observed fold changes across the two sample groups, and p-values 

for each sample [149]. The default XCMS parameter set for HPLC-UHD-QTOFMS 

was used with tolerance for database search set to 30 ppm. Integration of METLIN 

to XCMS Online allowed for putative identification of metabolites. Identifications 

were then made by comparing retention times and tandem MS fragmentation 

patterns to the sample and a standard compound (purchased from Sigma Aldrich, 

St Louis, MO). Tandem MS experiments were carried out with the collision 

energy set to 20 eV and caused the fragmentation of the metabolites into a 

number of fragments specific for the metabolite. This fragmentation pattern 

combined with the retention time comparison to a standard allows for accurate 

identification. The full datasets are available as public shares on XCMS Online.  

Metabolite identified as dysregulated through global metabolomics are considered 

for targeted studies if they meet the following criteria: fold change over or = to 2; p 

value below 0.01 and minimum abundance (MS intensity) of 10.000. 

 

R.3. Targeted Metabolomic Analysis 

 

Samples (8 �L) were injected onto a Luna Aminopropyl column or Zorbax C18 

using the same LC conditions as described for the global analysis. Selected 

reaction monitoring triple quadrupole mass spectrometry (Agilent 6410 QqQ-MS) 
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were used with quantifier and qualifier transitions for each metabolite as seen in 

Table 6. ESI source conditions were set as followings: gas temperature 325 °C, 

drying gas 5 L/min, nebulizer 15 psi, fragmentor 120 V, skimmer 65 V, and 

capillary voltage 4000 V or −4000V in ESI positive or ESI negative modes, 

respectively. The instrument was set to acquire over the m/z range 60–1000, with 

the MS acquisition rate of 1.67 spectra/s. For the MS/MS of selected precursors 

the default isolation width was set as medium (4 Da), with a MS acquisition rate at 

1.67 spectra/s and MS/MS acquisition at 1.67 spectra/s. The collision energy was 

fixed at 20 eV. 
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Table 6 - List of metabolites targeted by multiple reaction monitoring 

 

Standard 

Compound 

ESI 

Mode 

Precurs

or Ion 

Quantifi

er Ion 

Fragmentor 

Voltage (V) 

Collision 

Energy (V) 

Qualifi

er Ion 

Fragmentor 

Voltage (V) 

Collision 

Energy (V) 

Oleoylcarnit

ine 

Positi

ve 

426.4 85 137 27 57 137 63 

Myristoylca

rnitine 

Positi

ve 

372.3 85 137 27 57 137 47 

Decanoylca

rnitine 

Positi

ve 

316.2 85 14 19 57 14 47 

Octanoylcar

nitine 

Positi

ve 

288.2 85 17 19 57 17 39 

Hexanoylca

rnitine 

Positi

ve 

260.2 85 137 43 60 137 15 

Propionylca

rnitine 

Positi

ve 

218.1 85 131 15 158.9 131 7 

Acetylcarnit

ine 

Positi

ve 

204.1 85 131 15 43 131 47 

Acetyl-CoA Positi

ve 

810 303 135 28    

Adenosine Positi

ve 

268.1 136 131 15 118.9 131 47 

Citrulline Positi

ve 

176.1 158.9 98 7 70 98 23 

Methionine Positi

ve 

150 104 77 7 56.1 77 31 

Lysine Positi

ve 

147 130.1 77 7 84.1 77 15 

Proline Positi

ve 

116 70.1 86 15 43.1 86 43 

ATP Negat

ive 

506 158.9 156 30 79 156 75 

PRPP Negat

ive 

388.9 291 95 6 176.9 95 14 

IMP Negat

ive 

347 135.1 109 26 92.1 109 54 

AMP Negat

ive 

346 134 127 34 79 127 70 

Inosine Negat

ive 

267 135 129 17 108 129 37 

Ribose-5-

phosphate 

Negat

ive 

229 139 89 6 97 89 6 

Pantothenat

e 

Negat

ive 

218 146.1 61 10 88 61 8 

Citrate Negat

ive 

191 111 77 6 87 77 14 

Arginine Negat

ive 

173.1 156.1 61 4 131.1 61 10 

Cis- Negat 173 129 76 4 85 76 8 



	

	 135

ESI; Electrospray Ionization  

R.4. Global Isotope Metabolomic Analysis 

 
15N-labeled arginine (500 mM, L-arginine: HCL 15N4, 98%) (Cambridge Isotopes 

Laboratories) in PBS and natural abundance arginine (500 mM, L-arginine >98%, 

A5006; Sigma Aldrich, St. Louis, MO) in PBS were injected in P17 eyes from the 

OIR model (n=5 per experimental group) or from age matched C57/bl6 mice 

raised in normoxia (NOX; n=3 per experimental group). Whole eyes were collected 

10 min later for analysis. For controls, OIR (n=5) and NOX P17 (n=3) mice were 

injected with PBS only. The eye samples were prepared for global metabolic 

analysis as stated above. The data was processed using X13CMS as previously 

described [150]. Parameters were as follows: isotopeMassDiff=0.99703, 

RTwindow=30, ppm=25, massOfLabeledAtom=14.003, noiseCutoff=8000, 

alpha=0.05. Isotopomers were identified using the isoMETLIN database [123].  

Aconitate ive 

Aminoadipa

te 

Negat

ive 

160.1 142 70 8 116 70 10 

Allantoin Negat

ive 

157 114 70 9 97 70 9 

Xanthine Negat

ive 

151 108 114 13 42.1 114 

 

25 

Glutamate Negat

ive 

146 128.1 80 6 102 80 2 

Glutamine Negat

ive 

145.1 127.1 83 6 109.1 83 10 

�-

ketoglutarat

e 

Negat

ive 

145 101 40 5 57 40 5 

Hypoxanthi

ne 

Negat

ive 

135 92 111 13 65 111 29 

Malate Negat

ive 

133 115 50 10 71 50 10 

Oxaloacetat

e 

Negat

ive 

131 87 55 7    

Succinate Negat

ive 

117 73 62 9    

Fumarate Negat

ive 

115 71 60 5    

Lactate Negat

ive 

89 43.2 55 12    

Pyruvate Negat

ive 

87 43 55 3    
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The same approach was followed for analysis of OIR and NOX mice eyes 

intravitreally injected with 15N-labelled inosine (500 mM, Inosine 15N4, 95%+; 

Cambridge Isotope Laboratories), natural abundance inosine (500 mM; Sigma) 

and PBS but injections were performed at P12. 

 

S. Statistical Analysis 

Chapter IV-A. 

 

Photoreceptors generate erucamide for maintenance of the retinal 

vasculature: LC−MS data from the retina extract were processed using the 

bioinformatics analysis software XCMS Online (https://xcmsonline.scripps.edu/). 

XCMS Online is an updated, web-based version of XCMS having the function of 

peak (feature) picking, alignment and retention time correction, differential 

profiling, and statistical analysis. XCMS Online allows users to predefine 

parameter settings for optimal feature detection.  Results are viewed online in an 

interactive, customizable table showing statistics, chromatograms, with putative 

METLIN identities. All results and images are available for download. MS/MS 

spectra were manually processed by extracting ion chromatograms Qualitative 

Analysis of MassHunter Workstation (Agilent Technologies), pNLC and BPC 

extraction were performed using the MassHunter.  Modified Thompson Tau tests 

were used to identify outliers.  Students paired two-tailed t-tests were used to 

compare averages and calculate significance between experimental conditions.  

Data were plotted as boxplots using Excel, the boxes label the upper and lower 

25% quartiles, the white line marks the median, and the capped lines mark 

maximum and minimum values in the samples.  Scatter plots were prepared in 

Excel (Microsoft).   

Neurovascular crosstalk between interneurons and capillaries is required for 

vision: Comparison between the average variables of the two different 2 

experimental groups was performed using two-tailed Student’s t-test. P-values 

<0.05 were considered statistically significant. 

Chapter IV-B and IV-C 
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Statistical analysis of the metabolomic data was performed by XCMS (employing a 

two-sample Welch’s t-test with unequal variances). 

In vivo global isotope metabolomics implicates the arginase pathway in 

ischemic retinopathy: Mann Whitney test was used to compare non-diabetic 

control to PDR samples. Two-tailed unpaired or paired (depending on the 

experimental design) Student’s t-tests were used to compare mean values 

between the two experimental groups (OIR mice and controls raised in normoxia) 

using Excel and Graphpad Prism. P-values <0.05 were considered statistically 

significant.  

Inosine adjusts retinal metabolism in hypoxic conditions and protects 

against development of late-stage diabetic retinopathy: Pearson correlations 

were calculated to assess the relationships between the different clinical variables. 

Two-tailed Student’s t-tests (paired or unpaired, depending on the experimental 

design) were used to analyze the OIR mouse data (inosine versus vehicle 

injections) and p-values <0.05 were considered statistically significant. 
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Chapter IV: Results
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A. Retinal neurovascular crosstalk: A novel Role for Retinal 

Neurons 

 

Rationale for conducting these studies 

 

 Neurovascular units (NVUs) have been extensively studied and well 

characterized in the brain and their dysfunction has been implicated in 

pathological conditions such as Alzheimer’s and Parkinson’s 

disease[96,151].  

 In the retina, however, knowledge regarding NVU functioning is scarce and, 

so far, the only reported NVUs are in the RGC layer[152]. This is surprising 

because the retina is one of the most metabolically demanding tissues due 

to its high neuronal activity (especially that of photoreceptors) and NVUs 

play a crucial role in regulating blood flow for functionally dynamic retinal 

neuronal networks. 

 Based on the anatomical localization of amacrine and horizontal cells in the 

retina, with their axons and dendrites running parallel to the primary retinal 

vasculature, it is possible that additional NVUs exist at this level 

 It is surprising that PRs are the most numerous and energy demanding 

cells in the retina and yet they appear to rely solely on the RPE to maintain 

their primary blood supply, the choriocapillaris.  

 Attenuation of the vasculature is a common feature of many severe retinal 

neurodegenerative diseases and there is proof-of-concept evidence to 

suggest that stabilization of the vasculature can slow retinal 

degeneration[153]. This beneficial effect can potentially be a result of 

efficient repair of diseased NVUs, by stabilizing retinal neurovascular 

crosstalk.  

 Gaining further knowledge on formation and functionality of retinal NVUs in 

physiological conditions, and on what induces their dysfunction in contexts 

of retinal disease may inform future therapies designed to halt 

neurodegeneration and prevent development of pathological 

neovascularization. 
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My contribution 

 

My clinical background in ophthalmology along with my special interest in DR 

allowed me to work in tandem with Dr Westenskow and Dr Usui (the lead authors 

of these projects) to provide insights that helped correlate their findings in mice 

with those seen in human DR and similar retinopathies, and their potential for 

development of novel therapeutics. 

Additionally, I performed immunohistochemistry, PCR and in vivo micron imaging 

for these projects along with experiments to explore the consequences of 

intravitreal angiogenin injections on development of retinal pathology (due to 

space constraints and a choice to focus on the choroid in the manuscript, this data 

was not included but is presented in appendix A); I also analyzed, interpreted and 

discussed results with the lead authors of these projects and critically read and 

reviewed the manuscripts. 

Furthermore, I contributed and was a co-author in posters and presentations 

regarding the findings described in this chapter for the annual meetings of  ‘The 

Association for Vision Research and Ophthalmology”.  

 

I gained increasing interest in retinal NVUs by working on these projects under the 

guidance of their brilliant lead researchers, Dr Peter Westenskow and Dr 

Yoshihiko Usui, Through them I learned basic concepts regarding composition and 

functionality of retinal NVUs, and explored their role in animal models of retinal 

neurodegeneration and pathological neovascularization. This knowledge was 

paramount for developing my own projects, as it broadened my perspective on DR 

and reshaped my own concept of the disease. There is strong evidence to suggest 

that DR results from disrupted cellular interactions within the NVU potentially 

generated by a state of metabolic insufficiency in the diabetic retina.  
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A.1. Photoreceptors generate Erucamide for maintenance of the retinal 

vasculature 

 

Background and significance 

 

The activities of neurons are dynamic and energetically expensive, thus requiring 

flexible and effective blood supplies.  Neurons, glia, endothelial cells, and other 

cell-types are known to function within neurovascular units to regulate local blood 

flow.  Unraveling of neurovascular units in the central nervous system is 

associated with a host of diseases including stroke, Parkinson’s disease, 

Alzheimer’s disease, amyotrophic lateral sclerosis, cerebral palsy, migraines, and 

mood disorders[151,154].  Therapeutic strategies to reestablish neurovascular 

units through delivery of proangiogenic factors (VEGF) are being actively 

explored[151,155]. 

The retina is one of the most metabolically demanding tissues in the human body, 

and vascular attenuation is characteristic of multiple retinal degenerations.  The 

most energetically expensive cells in the retina are photoreceptors, however 

vascular repair strategies for photoreceptor maintenance in the face of metabolic 

stress have not been actively explored.  Retinal vasculo- and neurodegenerative 

diseases, such as diabetic retinopathy (DR) and age related macular degeneration 

(AMD) are generally treated after the diseases have advanced to late stages, and 

treatments are either destructive (laser photocoagulation) or involve targeting 

vascular endothelial growth factor (VEGF) or its receptors to prevent or slow 

neovascularization.   

 

Vascular deficits and neurodegeneration are associated with vision loss.  Recent 

studies suggest that attenuation of the retinal vasculature is a shared feature of 

the most commonly occurring retinal diseases and that the severity of the vascular 

impairments are correlated with the degree of vision loss[156-166].  Diminished 

metabolic supply induces hypoxia in the other cellular components of the 

neurovascular units; this can promote pathological angiogenesis and progression 

of retinal diseases to their most severe forms (neovascular AMD and proliferative 
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DR)[163,164]. Therefore, vasculotrophic approaches to normalize retinal 

neurovascular units may be a very useful therapeutic approach for treating a host 

of retinal degenerations. 

 

In order to effectively exploit vasculotrophic-based therapies, we need a better 

understanding of how neurovascular units are constructed and maintained, and 

what metabolic derangements can lead to their disruptions.  Metabolism in the 

retina is unique based on the following properties: (1) the retina is populated 

predominately by some of the most metabolically demanding cells in the human 

body, the photoreceptors; (2) there is very little evidence that photoreceptors 

function in neurovascular units, but rather that they rely strictly on neighboring 

retinal pigment epithelium (RPE) cells for metabolic sensing and VEGF-mediated 

vascular maintenance[167,168]; and (3) even the resting state of the retina is 

extremely energetically demanding.  

To meet these unique needs the vascular networks in the retina are architecturally 

optimized in species-specific manners.  In humans and mice, the retina is 

nourished through a 10:1 ratio of extra- and intraretinal blood flow[169].  The 

extraretinal choriocapillaris is an impressive fenestrated vascular bed with 

perfusion rates that are as high as anywhere in the body[170].  RPE cells form a 

barrier between the choriocapillaris and photoreceptors in the outer nuclear layer 

of the retina.  Highly efficient neuronal circuits connect primary photoreceptors with 

several classes of interneurons in the inner nuclear layer[171]. Three 

interconnected intraretinal vascular plexus layers support these circuits. 

Based on the extreme metabolic demands of photoreceptors,[172] and the 

exquisite sensitivity of the choriocapillaris to changes in RPE-mediated vascular 

support,[167,168] it is surprising that photoreceptors have not adapted to directly 

regulate local blood flow like other highly metabolically demanding neurons in the 

retina and central nervous system.[40,154,173,174]   

 

The focus of this study is to identify novel factors that could correct metabolic 

disorders of neurovascular units and thereby promote neurotrophism in the retina.  

If we possessed a deeper understanding of the metabolic “fingerprint” of retinal 

degeneration, we might be able to develop rational and effective therapies to 

prevent the metabolic derangements that promote photoreceptor atrophy. 



	

	 145

To accomplish this we employed high-resolution global mass spectrometry-based 

metabolomics to catalog the metabolites dysregulated during retinal degeneration. 

Dysregulated features were identified using our data processing technology 

(XCMS)[175] combined with an expansive database that we developed 

(METLIN).[176] One family of endogenous signaling molecules, the fatty acid 

amides,[177-179] emerged as one of the most severely dysregulated class of 

metabolites in degenerating retinas.   

 

Results 

 

Ocular Erucamide levels are lower in rodent models of retinal degeneration 

and enhancing them induces neuroprotective effects  

 

Work conducted over the last twenty years has provided compelling evidence that 

fatty acid amides serve as a new class of endogenous signaling molecules[178].  

Signaling fatty acid amides may be grouped into two classes, the fatty acid 

ethanolamides, of which anandamide (C22:4, n-6; C24H41NO2) is the prototypical 

member, and the fatty acid primary amides. The endogenous fatty acid primary 

amides[180] emerged as candidate signaling molecules with the discovery that 

oleamide (18:1, n-9; C18H35NO), which exerts a fundamental role in regulating 

sleep[177,179].  

Data from our metabolomic analyses revealed that erucamide (22:1, n-9; 

C22H43NO), a fatty acid amide whose functions are not completely 

understood,[181-183] was one of the most abundant metabolites in wild-type rat 

eyes, and dramatically attenuated in a rat model of photoreceptor atrophy (Figure 

11A&B). Erucamide availability also correlated with the degree of retinal 

degeneration in several other rodent models of photoreceptor loss (Figure 11C 

and Figure 12C; also see Table 7), suggesting it might be important for 

photoreceptor maintenance.  

To determine if replacing lost erucamide can slow or prevent retinal degeneration, 

we injected 250ng (referred to throughout as a “neurotrophic dose”) in the 

subretinal space of dystrophic mice (RD10) at postnatal day 14 (P14; stage 

concurrent with the onset of retinal degeneration). The delivery of erucamide in the 

eye is not trivial due to its hydrophobic properties. To circumvent aqueous lipid 
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insolubility issues and to potentially prolong its delivery, we used inert silicon-

based microparticles with nanoscale mesopores (nominal pore size, 20nm) as 

delivery agents.[184] A significant increase in the number of surviving rows of 

photoreceptors was observed at P32 (based on recoverin labeling of 

cryosectioned eyes) in an eye subretinally injected with erucamide-loaded 

microparticles compared with the contralateral uninjected control eye (12.4+2.1 vs 

1.8+0.7 (p<0.001); Figure 11D). Furthermore, erucamide abrogated the most 

significant photoreceptor atrophy of RD10 mice, which occurs between P18 and 

P25 stages (Figure 11E; erucamide vs. vehicle p=9.57e-7, erucamide vs. 

uninjected p=3.57e-7).    
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Figure 11 - Erucamide is neurotrophic.(A&B) Erucamide is highly dysregulated in one-
year-old RCS eyes (n=10; p=0.002). (C). Erucamide levels are attenuated in multiple 
types of retinal degeneration (See SI Table 1 for a description of the transgenic lines). 
Vldlr-/- 76.0% ± 0.1 (p=0.06), RDS 58.1% ± 0.1 (p=0.01), RD10 28.4% ± 0.1 (p=0.0003), 
RD1 25.5% ± 0.02 (p=0.0001). For all n=6. (D) Retinas from a P32 RD10 mouse (injected 
at P14). Photoreceptors were immunolabeled green (recoverin). Effects of erucamide 
injections quantified in (E) (n=5; experiment repeated three times). Erucamide P18 vs 
erucamide P25, p=0.76; erucamide P25 vs. vehicle P25, p=9.57 x 10-7; erucamide P25 vs 
uninjected P25, p=3.57 x 10-7. Error bars=max and min values in B & C, SEM in E. 
*<0.05, **<0.01, ***<0.001 
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Figure 12 – Erucamide is abundant and dysregulated during retinal degeneration. (A) 
Chemical structure. (B) Erucamide and other metabolites detected using mass 
spectrometry (black peak is erucamide). (C) Erucamide availability decreases during 
retinal degeneration in RD1 mice (n=6; P2 vs P14 p=0.03). Error bars=max and min 
values. (D) Scanning electron micrograph of microparticles (high magnification image in 
inset). Scale bars =100μm and 100nm (inset). *<0.05 

 

Table 7 – Rodent models used in this study 
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PAM is synthesized in cone outer segments and its dysregulation closely 

correlates with loss of Erucamide  

 

The enzyme responsible for the amidation step that converts N-erucyl-glycine to 

erucamide is unknown, but a strong candidate is peptidylglycine alpha-amidating 

monoxygenase (PAM).[191] Here, we show that enhanced levels of Erucamide, 

and other fatty acid amides, were generated in eyes injected with recombinant 

PAM (Figure 13A&B).  PAM is expressed in developing and adult photoreceptor 

outer segments (Figure 13C-G and Figure 14A) of multiple species including 

human (Figure 13H), mouse (Figure 13I), rat (Figure 13J), and zebrafish (Figure 

13K), suggesting that its function in the sensory retina may be evolutionarily 

conserved.  PAM expression is also perturbed in mice with photoreceptor outer 

segment defects.  In cone-dominant Nrl-/- mice with short and sparse outer 

segments,[185,186] PAM is detected along the RPE/photoreceptor border and in 

rosettes in the degenerating outer nuclear layer (Figure 13L).  In CrxRIP/+ mice that 

Transgenic rodent lines used in this study (alphabetic order) 

Line 
Photoreceptor 

Phenotype 
Vascular phenotype References 

Crx-Cre; Pam fl/fl 

 

Cone dysfunction Attenuation This study 

Crx RIP/+ Immature cone like PRs Attenuation This study and [129] 

Nrl -/- 

Cone-only retina; (sparse 

& short outer segments). 

Incomplete degeneration 

Excessive permeability, 

attenuation in late stages 

[185] 

[186] 

Pam -/- 
Not examined; embryonic 

lethal 

Severe vascular defects 

and edema 
[187] 

RCS 
Slow progressive 

degeneration 
Attenuation [162] 

RD10 & RD1 Rapid degeneration Attenuation [153,188,189] 

RDS 

No rod outer segments, 

unusual cone outer 

segments 

Attenuation This study and [190] 

Vldlr -/- 
Mild and variable cone 

loss 

Pronounced vascular 

defects 
[16] 
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lack outer segments[129], PAM is detected in a solid stripe in the short inner 

segments of photoreceptors (Figure 13M).  

Similar to erucamide, PAM expression is also downregulated during retinal 

degeneration.  In healthy human subjects PAM is robustly expressed in 

photoreceptor outer segments (Figure 13N-O; black arrows).  In the retina from a 

93-year-old patient with atrophic AMD, PAM expression is barely detectable in the 

atrophic area (Figure 13P and Figure 14B&C; asterisk).  Using a rat model, we 

demonstrate that the loss of PAM during retinal degeneration is progressive.  We 

detected seemingly normal levels of PAM in three-week-old RCS rats prior to 

retinal degeneration (Figure 13Q), but by seven weeks levels gradually drop and 

continue to fall over time (Figure 13R-T). The expression of PAM in the outer 

segments of multiple species, and dysregulation during retinal degeneration 

suggests it may be important for photoreceptor function and/or homeostasis.   
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Figure 13 - PAM generates erucamide and is expressed in photoreceptors.(A&B). 
Potentiated erucamide levels in PAM-injected adult mouse retinas (n=10). Eicosenamide, 
p=1.8 x 10-8; erucamide, p=1.0 x 10-15; C22.2, p=1.2 x 10-8; Oleamide, p=0.02. (C) 
Whole retinal image of adult murine retina immunolabeled with PAM. (D-G). PAM is 
upregulated in immature murine outer segments of photoreceptor cells during postnatal 
development. (H-K). PAM co-localization with red/green opsin in multiple species (all 
adults). (L&M). PAM in mice with photoreceptor defects. (N) High magnification image of 
PAM in adult human photoreceptor outer segments (DAB stained/DIC overlay). PAM 
dysregulation in an AMD patient; O=unaffected periphery, P=AMD lesion. Black 
arrows=PAM, red arrows=RPE cells (see also SI Fig 2A&B). (Q-T) Progressive loss of 
PAM in RCS rats. Scale bars=100μm in A,D- G,H,I,M-P, 50μm in D-F, 25μm in G, 10μm 
in J. *<0.05, **<0.01 
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Figure 14 – PAM is expressed in rod outer segments and is dysregulated in human 
disease. (A) Adult murine retina co-stained with rhodopsin and PAM. (B&C). Toluidine 
blue stained section from an AMD patient eye. Asterisk marks the affected region. (C) 
Enlargement of the affected area. Scale bars=100μm. 
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PAM activity is essential for retinal vascular maintenance and cone 

photoreceptor health 

 

To further explore the importance of PAM for retinal function, we generated a 

floxed Pam mouse line and crossed it with Crx-Cre for genetic ablation studies 

(Figure 16A-C).  We measured visual acuity and observed significant deficits in 

two-month-old mutants compared with littermate controls (Figure 15A).  We also 

used electroretinography to compare light responsiveness in the two mouse lines, 

and observed significant deficits in cone-driven pathways in two-month-old 

mutants (Figure 15B; Figure 17A&B).  We also examined the integrity of the 

retinal vasculature using histology (Figure 15C-F), and observed severe 

attenuation in the choriocapillaris.  Vascular attenuation was also observed in 

Pam+/-, CrxRIP/+, and RDS mice (Figure 17D-I), collectively demonstrating that 

PAM is critical for regulating angiogenesis in the retina, and its dysregulation 

induces severe functional defects. 
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Figure 15 - Conditional loss of Pam in photoreceptor precursors induces photoreceptor 
and choriocapillaris defects. (A) Visual acuity measurements (n=6, p=0.04; error 
bars=max and min values; *<0.05). (B) Electroretinograms of rod (scotopic) and cone 
(photopic flash and flicker) light responses (n=6-10; quantification in Fig. 17). (C&D). 
Toluidine Blue stained retinas in plastic sections (Scale bars=50μm in C, 25μm in (D). 
(E&F) Electron micrographs with measurements of choriocapillaris thickness. 

 

 

Figure 16 – PAM is deleted in photoreceptors using Crx-Cre. (A) Crx-Cre;ROSAmT/mG 
retina. ROSAmT/mG is a dual-color Cre reporter; cell membranes are red prior to Cre 
recombinase exposure, green fluorescence is activated in cells after Cre recombination. 
(B&C) IHC for PAM in Crx-Cre;Pamfl/fl and Pamfl/fl retinas. Scale bars=100μm. 
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Figure 17 – Functional and vascular defects in Pam deficient mice. (A&B) Quantification 
of electroretinography experiments in two-month-old Crx-Cre;Pamfl/fl mutants. (C) 
Angiography of superficial plexus reveals no gross defects in two- month-old Pam 
mutants. (D&E) Attenuation of the retinal vasculature in CrxRIP/+ mice (Pam is reduced 
89.8%+0.3 according to RNAseq data). (F&G) Intraretinal vascular attenuation in six-
month-old Pam+/- mutants. (superficial plexus=blue, intermediate plexus=green, deep 
plexus=red). (H&I) Choriocapillaris attenuation in wild-type and RDS mice. *<0.05, 
**<0.01. 

 

PAM produces Erucamide and induces ocular neovascularization 

 

Enhancing PAM activity also elicits vascular effects.  Either transgenic 

overexpression of Pam in wild-type mice using in vivo electroporation or subretinal 

injections of recombinant PAM result in rapid neovascularization (Figure 18A-C).  

Since PAM can generate erucamide, we compared the effects of overexpressing 

PAM to those of injecting erucamide. Similar to PAM, subretinal injections of 2.5µg 
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of erucamide (referred to throughout as a “neovascular dose”) induce choroidal 

neovascularization three days post injection as evidenced by hemorrhages in 

fundus images (Figure 18D; long arrows), fibrosis (Figure 18D; arrowhead), 

indocyanine green pooling in angiograms (Figure 18E), deficits in the RPE/choroid 

layers using optical coherence tomography (OCT; Figure 18F) and histology 

Figure 18G-I).  Erucamide also induces hyperangiogenesis of the intraretinal 

vasculature (Figure 19).  

 

 

Figure 18 - Both PAM and erucamide potentiation induce profound neovascularization. 
(A&B) Pam or control constructs were electroporated in vivo (performed at P0, analyzed 
by immunolabeled blood vessels with Collagen IV at P24; n=10). (C) Vasculature after 
recombinant human PAM subretinal injections. (D-I) Effects of subretinal erucamide 
injections (three days post injection): (D) fundus images, (E) angiography (F) OCT (G), 
GS Lectin labeled RPE/choroid flat mounts (H, and high mag in I), immunohistochemistry. 
Scale bars=100μm. 
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Figure 19 – Neovascularization from the intraretinal vasculature is observed 3 days post 
erucamide injection. (A) Retinal flat-mounts labeled with GS Lectin (white dots are 
angiomas) (B) High magnification of the GS Lectin-positive angiomas. (C) 
Microaneurysms, characteristic of proliferative diabetic retinopathy, in the superficial 
plexus of erucamide-injected animals. 

 

High doses of erucamide exert potent proangiogenic effects in vitro and in 

vivo 

 

Finally, we demonstrated that erucamide’s angiogenic potential is higher than 

other pro-angiogenic factors, bFGF and VEGF, using chick chorioallantoic 

membrane (CAM) assays (Figure 20A).  Erucamide also significantly increased 

neovascularization in oxygen-induced retinopathy mice (Figure 20B).  To identify 

putative mediators of this potent angiogenic response, we performed gene 

profiling from retinas of mice injected with neovascular doses of erucamide.  Of the 

84 angiogenesis-related genes analyzed, only the gene, angiogenin, was 

upregulated (Figure 20C). In the retina, erucamide injections induced angiogenin 

upregulation in the processes of Mueller glia and astrocytes (Figure 20D&E). To 

evaluate the effects of angiogenin levels potentiation, subretinal injections of an 

angiogenin-overexpressing AAV virus that specifically transduces Mueller Glia and 

astrocytes[192], or subretinal injections of recombinant human protein were 

performed. Both techniques induced profound choroidal neovascularization three 

days post injection (Figure 20F-I).  
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Figure 20 - Erucamide is potently pro-angiogenic and activates Angiogenin in Muller glia. 
(A) CAM assays with 5.0μg/μl erucamide (vehicle vs erucamide p=0.006; bFGF vs PBS 
p=0.0001; VEGF vs PBS p=0.00006; n=19-25) (B). Erucamide increases the area of 
neovascularization in OIR mice (1.9 fold; n=23; representative plot shown from three 
experiments). (C) PCR array for angiogenesis-related genes (erucamide vs vehicle 
injected retinas; p=0.07). (D&E) Immunolabeling for angiogenin in erucamide injected 
adult eyes. (F) ShH10-GFP viruses transduce Muller glia in P24 mice. (G) ShH10-
angiogenin induces choroidal neovascularization in adult mice. ZO- 1 marks borders of 
RPE cells. (H&I) 1μg recombinant human angiogenin also induces choroidal 
neovascularization in adult mice. (H) OCT (I). RPE/choroid flat mount. (J&K) Multi-plex 
ELISAs from cytokine-profiling in human vitreous (J) and aqueous humor samples (K) 
Abbreviations: PDR=proliferative diabetic retinopathy, BVO=branch vein occlusion, 
DME=diabetic macular edema, MH=macular hole, RD=retinal detachment, CVO=central 
vein occlusion, PCV=polypoidal choroidal vasculopathy. Controls =cataracts or epiretinal 
membranes. See methods for more details. Error bars=max and min values. Scale 
bars=50μm *<0.05, **<0.01, ***<0.001 
Erucamide’s vasculo and neurotrophic effects may be mediated by 

Angiogenin 
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Angiogenin upregulation was detected in multiple mouse lines with retinal 

degeneration (Figure 21). Angiogenin was also significantly upregulated in the 

vitreous of human subjects with diabetic macular edema (DME), branch vein 

occlusions (BVO), and proliferative diabetic retinopathy (PDR; Figure 20J), and in 

human aqueous humor samples from patients with multiple retinal diseases of 

varying etiology, including AMD, glaucoma, polypoidal choroidal vasculopathy, 

central vein occlusion, DME, BVO, Retinitis Pigmentosa, and PDR (Figure 20K).  

Angiogenin exerts neurotrophic influences in both ALS and Parkinson’s 

disease[193-196] and has been detected in human glial cells and in the 

choriocapillaris[193,195,197,198]. Since erucamide levels drop during retinal 

degeneration, photoreceptor-derived erucamide may be just one of several factors 

that can mediate angiogenin-based stress responses that counteract vascular or 

neuronal stress. 

 

 

Figure 21 - Angiogenin expression in wild-type and diseased retinas. A. In wild 
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type adult mouse eyes, angiogenin is weakly expressed by cells in the inner 
nuclear layer. B-F. During retinal degeneration, angiogenin is strongly upregulated 
in processes of Mueller glia and astrocytes. Upregulation of angiogenin is also 
seen in nuclei of cells in the INL 

 

Discussion 

 

Our data suggest that photoreceptors, Mueller glia, and the choriocapillaris act as 

a unique neurovascular unit that spans the entire retina.  Neuro-vasculo-glial 

crosstalk is critical in the central nervous system but specific factors that regulate 

this activity are not widely known.  At the center of this unit is erucamide, a 

potently proangiogenic factor that is one of the most abundant metabolites in wild 

type eyes, and one of the most dysregulated during retinal degeneration.   The 

expression of the enzyme that generates erucamide, PAM, in photoreceptors from 

multiple animal species suggests that its function there is evolutionarily conserved.  

Experimental reintroduction of erucamide significantly slows photoreceptor 

atrophy, and our data suggest that this may occur because PAM and erucamide 

exert potent vasculotrophic effects on the intraretinal vasculature and the 

choriocapillaris.  In support of this concept, choriocapillaris thickness is reduced by 

as much as 50% in human subjects with atrophic AMD and Retinitis Pigmentosa in 

areas immediately adjacent to regions of photoreceptor loss[156-160].  

Furthermore, conditional loss of Pam results in severe choriocapillaris attenuation 

and photoreceptor dysfunction in mice. 

Finally, the action of erucamide is mediated, at least in part, through the 

vasculotrophic protein angiogenin that is detected in human choriocapillaris,[197] 

in murine Mueller glia, and in the vitreous of human subjects with various vascular 

and neurodegenerative disorders. Erucamide may function similarly in multiple 

organ systems since PAM is broadly expressed in the trans-Golgi network and in 

secretory granules of neural and endocrine tissues[199,200].  

Collectively, these findings reveal a novel function of photoreceptors, generating 

erucamide to maintain the integrity of the choriocapillaris.  The ability of neurons to 

function in neurovascular units to fine-tune local blood flow is becoming widely 

appreciated, and neurovascular coupling defects are characteristic of Parkinson’s 

disease, Alzheimer’s disease, amyotrophic lateral sclerosis, mood disorders, 
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cerebral palsy, and migraines.[151,154] Therapeutic strategies to repair diseased 

neurovascular units in the central nervous system to prevent disease progression 

may represent general and effective approaches, and are being actively 

explored[151,155]. Retinal diseases with vascular and neurodegenerative 

components such as DR and AMD are generally treated after the diseases have 

advanced to late stages, and treatments are either destructive (laser coagulation) 

or employ drugs targeting VEGF to prevent or slow neovascularization. Intervening 

early to prevent vascular attenuation and hypoxia by repairing diseased 

vasculature may be an effective alternative strategy for treating multiple retinal 

degenerations.  

 These collected observations provide valuable insight into neurovascular unit 

physiology, and may inform future therapeutic approaches for treating retinal 

diseases as well as other neurodegenerative diseases. 

A.2. Neurovascular Crosstalk between Interneurons and Capillaries is 

required for Vision 

 

Background and significance 

 

Neurovascular units consist of varying combinations of neurons, glia, pericytes, 

and extracellular matrix that interact, and are intimately associated with, 

endothelial cells to regulate local blood supply. The importance of the 

neurovascular unit for maintaining local functionality and homeostasis in the CNS 

has recently received increased attention, since defects in neurovascular units are 

associated with a variety of CNS diseases, including stroke, Alzheimer’s disease, 

Parkinson’s disease, amyotrophic lateral sclerosis, cerebral palsy, migraines, and 

mood disorders[151,154]. Therefore, learning how neurovascular units are 

established and maintained may be crucial for understanding the basis of a host of 

neurodegenerative diseases and developing novel therapeutic strategies for 

treating them.  

The retina is an excellent model system for studying neurovascular interactions in 

the CNS since formation of the retinal vasculature and neurons occurs in well 

characterized, consistent, and reproducible temporal and spatial patterns.  In 
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addition, retinal neurovascular units can be directly visualized and assessed 

functionally using highly sensitive imaging modalities.[39,40] Neuronal and 

vascular networks in the sensory retina are organized in a highly stratified and 

functional architecture, although the full extent of their integration is not completely 

understood. Phototransduction, the process of generating electrical signals from 

captured photons, occurs in rod and cone photoreceptor cells in the outer retina. 

Bipolar cells in the inner nuclear layer (INL) transmit the visual signals from the 

photoreceptors to the retinal ganglion cells, which send the integrated signal to the 

visual cortex. The INL also contains laterally interconnecting amacrine and 

horizontal cells that localize at opposite margins of the INL and form homotypic 

and heterotypic connections within the outer and inner plexiform layers (OPL and 

IPL), respectively. Horizontal cells provide inhibitory feedback for cone-driven 

pathways, and amacrine cells have diverse physiologies and exhibit multifaceted 

connectivity throughout the IPL that allows them to pre-process and integrate 

visual signals and interpose temporal cues. In this study we demonstrate a novel 

function for these retinal interneurons: promoting photoreceptor homeostasis 

through maintenance of the vasculature.  

The vascular networks in the retina are architecturally optimized, albeit in a 

species-specific manner, to sustain the extreme metabolic demands of retinal 

neurons, in particular, the photoreceptors. In primates and mice, the intraretinal 

vasculature consists of three interconnected parallel vascular plexus layers that 

run through the plexiform layers of the retina. In mice, the retinal vasculature forms 

as endothelial cells migrate from the optic nerve onto the retinal surface at birth 

and progress radially to form the superficial (or inner) plexus [39]. Around 

postnatal day 7 (P7), sprouting vessels descend and advance into the OPL where 

they establish the deep plexus. At P11-12 stages, sprouting vessels from the deep 

plexus ascend into the IPL and ramify to form the intermediate plexus. The 

proangiogenic stimuli that direct formation of the intermediate and deep (or outer) 

plexus layers are not completely understood, and are likely distinct[49]. It has been 

suggested that oxygen and nutrient insufficiencies, induced as retinal neurons are 

born and mature, activate hypoxic responses via von Hippel-Lindau 

(VHL)/Hypoxia-inducible factor (HIF) signaling pathways that drive the expression 

of pro-angiogenic factors including VEGF and EPO[201,202]. This concept is 

supported by two key pieces of evidence: (1) the conditional deletion of Hif-1α - 
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which is detectable at high levels in the developing retina, in virtually all cells of the 

murine peripheral retina - prevents formation of the intermediate plexus 

[49,53,201]; and (2) while VEGF is transiently expressed throughout the INL, 

intraocular injections of high doses of VEGF antagonists partially inhibit formation 

of the intraretinal vasculature[203,204]. While there is a clear role for VHL/HIF and 

VEGF in regulating intermediate plexus development, the cells in the INL that are 

responsible for regulating these factors have not been identified. 

We observed extensive interactions between horizontal cells and capillaries of the 

deep plexus, and between amacrine cells with the intermediate vascular plexus in 

wild-type adult mice. Thus, both cell-types are ideally localized to serve as 

metabolic and oxygen sensors in the retina, to activate angiogenesis during 

development through VHL/HIF/VEGF signaling, and to provide structural and 

trophic support to the vasculature, and perhaps even to prevent pathological 

neurovascular remodeling. These functions may be critical, since destabilized 

vascular networks in the retina are associated with dramatic visual defects[161] 

There is growing evidence that blood vessels and proangiogenic mitogens 

contribute to the pathogenesis of multiple neurological diseases[54,151]. 

Therefore, it is important to understand the mechanisms of neurovascular cross 

talk and vascular maintenance in the retina.  

In this study we utilized conditional gene deletion and cell ablation approaches to 

demonstrate in vivo that amacrine and horizontal cells can regulate local blood 

supply and thereby promote photoreceptor homeostasis. We demonstrate that the 

key source of VEGF-A in the INL to regulate intermediate plexus development 

likely comes from the amacrine cells, and gain- or loss-of function of VEGF in 

amacrine cells induces pronounced defects in visual function and rod- and cone-

driven signaling. These observations may have broad applicability for 

neurovascular-unit physiology in the CNS and may also inform future therapies 

that target the neurovascular unit to treat not only blindness, but also a host of 

debilitating neurodegenerative and neurological diseases. 

 

Results 

 

Amacrine and horizontal cells form neurovascular units with capillaries in 

the intraretinal plexuses 
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The retinal neuronal and vascular networks are depicted in Figure 22A; Figure 

23. P23 retinas were probed with specific markers for amacrine and horizontal 

cells (calbindin) and for endothelial cells (CD31) to identify putative neurovascular 

units. Immunohistochemistry analyses revealed that amacrine cell and horizontal 

cell dendrites appear to interact with CD31-positive intraretinal capillaries in the 

intermediate and deep plexuses in the IPL and OPL (Figure 22B). 

To confirm the immunofluorescence findings, and since calbindin labels only a 

small percentage of amacrine cells, we utilized Cre/loxP transgenic-based 

approaches - with pancreas-specific transcription factor 1a-Cre (Ptf1a-Cre) mice - 

to genetically label amacrine and horizontal cells in the retina, and not bipolar cells 

or Müller glia (Ptf1a-Cre R26tdTomato/+ and Ptf1a-Cre R26GFP/+) (Figure 22C; 

Figure 24A-E) [138,205]. We combined genetic labeling and immunofluorescence 

techniques to confirm that Cre-recombination occurs in amacrine cells by probing 

P23 Ptf1a-Cre R26tdTomato/+ retinas with amacrine cell–specific antibodies 

(Figure 24B–D). Then we performed immunohistochemistry on P23 ptf1a-

Cre;R26tdTomato/+ retinas with antibodies that recognize the intermediate form of 

neurofilament (NF-M), a marker for ganglion, amacrine, and horizontal cell axons 

[206], or Microtubule-associated protein 2 (MAP-2), a marker for neuronal 

dendrites. Using this approach, we were able to more clearly visualize the extent 

of colocalization of the amacrine and horizontal cell arbors, and the vasculature in 

the IPL (Figure 22D-F and H; Figure 24D–F) and in the OPL (Figure 22D, G, and 

I; Figure 24D and F). Based on the findings that amacrine and horizontal cells 

interact extensively with the intraretinal capillaries, we hypothesized that amacrine 

and horizontal cells form neurovascular units in the 2 plexiform layers. 
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Figure 22 - Amacrine and horizontal cells form neurovascular units with the intraretinal 
capillaries. (A) Pseudo-colored cross-section of an adult murine retina. (B) 
Immunohistochemistry was used to identify putative neurovascular units between 
amacrine cells (arrows) or horizontal cells (arrowheads) with the vasculature using anti-
calbindin (green), and anti-CD31 (red), and DAPI (blue) in wild-type retinal cryosections at 
P23. (C) Cre recombination reporters labels amacrine and horizontal cell nuclei in P23 
ptf1a-Cre;R26tdTomato/+ mice (tomato signal was psuedo-colored green). (D-I) Amacrine (D-
F) and horizontal cell (D and G) neurites (NF-M labeled; green), associate with the 
intraretinal vasculature (GS-Lectin; cyan) as seen in thick cut (100µm) sections 
(Amacrine/horizontal nuclei=red) (E) Adjacent optical slices from the region of interest 
boxed in (D); arrows in mark co-localization.  (F and G) Flat-mounted P23 ptf1a-
Cre;R26tdTomato/+ retinas co-labeled with anti-neurofilament and GS-lectin (endothelial cell 
marker). (H and I) Amacrine cell neurites are decorated with GFP in ptf1a-Cre;R26GFP 
mice, and can be observed in close proximity to GS-Lectin positive endothelial cells.  
Immunofluorescence for MAP2 in whole-mount retinas at P23 also reveals colocalization 
of amacrine and horizontal cell neurites with the intraretinal vasculature. Scale bars: 50 
μm (A, B, C, D, E, H, and I); 20 μm (F and G). GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 
layer. 
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Figure 23 - Schematic diagram illustrating development of the vascular networks in the 
murine retina. The retinal vasculature forms as endothelial cells migrate from the optic 
nerve onto the retinal surface at birth and progress radially to form the superficial (or 
inner) plexus. Around postnatal day 7 (P7), sprouting vessels descend and advance into 
the OPL where they establish the deep plexus. At P11-12 stages, sprouting vessels from 
the deep plexus ascend into the IPL and ramify to form the intermediate plexus. GCL, 
ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer 
plexiform layer; ONL, outer nuclear layer. 
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Figure 24 - Putative neurovascular units in the INL. (A) Whole retinal sections from mice 
harboring two Cre-recombination reporters and ptf1a-Cre. (B) IHC for bipolar (Chx10; top 
panel) and Mueller glia (glutamine synthetase (GS); bottom panel) is shown to highlight 
that their locations in the INL are distinct from amacrine cells. (C) Cre-mediated 
recombination occurs in amacrine cells in the inner margin of the INL and colocalizes with 
a pan-amacrine cell marker, Syntaxin 1 (Stx1), a GABAergic amacrine cell marker (GAD), 
and glycinergic amacrine cell marker (Glyt1) in cryosectioned retinas. (D) The percentage 
of Cre-positive amacrine cells that colocalized with amacrine cell subtypes was 
determined by counting cells in cryosectioned retinas (≥250 cells were counted for each 
cell type). (E) Colocalization of Cre-mediated recombination (td-Tomato) with calbindin 
positive horizontal cells at P23. (F and G) IHC on thick cut sections on ptf1a- 
Cre;R26GFP/+ mice with NF-M (F) and CD31 (G). (H) Immunofluorescence for anti- MAP-
2 and anti-CD31 in cryosections from P23 ptf1a-Cre; R26tdTomato/+ retinas. Scale bar: 
50 μm (A-G); 20 μm (H). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner 
nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer. 
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Amacrine and horizontal cell-derived VEGF is essential for neurovascular 

unit formation in the IPL 

We first confirmed that the proangiogenic cytokine Vegfa is highly and broadly 

expressed in the INL at P12 when the intraretinal vasculature is developing 

(Figure 25A). To determine the contribution of amacrine and horizontal cell-

derived VEGF, we first combined floxed Vegfa [135] and ptf1a-Cre alleles in 

transgenic mice and analyzed the vascular phenotype. While the deletion of Vegfa 

from amacrine and horizontal cells substantially reduced Vegfa transcript levels in 

the INL (Figure 25A), no noticeable effect was observed in the developing 

superficial (Figure 26A) or deep plexus layers in P23 staged mice (Figure 

25B&C). However, the conditional deletion of Vegfa results in severe attenuation 

of the intermediate plexus (Figure 25B; bottom row; green). In order to better 

understand the mechanism of vascular attenuation in the Vegfa mutants, we 

quantified endothelial cell sprouting events during key timepoints of intraretinal 

angiogenesis. The defect is not due to vertical vascular sprouting defects from the 

superficial plexus or deep plexus or incomplete vascularization of the deep plexus 

(Figure 26C-F; Figure 26B&C). There were, however, significant differences in 

the number of branching events, tip cells, and filopodia on the tip cells of the 

sprouting vessels once they change direction and begin expanding within the 

intermediate plexiform layer (Figure 25G-J). Therefore, Vegfa inhibition in 

amacrine and horizontal cells inhibits endothelial cell sprouting in the IPL and 

prevents normal vascularization (Figure 25K).  
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Figure 25 - Vegfa deletion in amacrine and horizontal cells severely impairs intraretinal 
vasculature development. (A) in situ hybridization was performed on P12 VEGFf/f or ptf1a-
Cre; VEGFf/f cryosectioned retinas with a Vegfa probe (counterstained with DAPI). (B) The 
intermediate plexus (green) is severely attenuated in P23 ptf1a-Cre; VEGFf/f compared 
with controls. (C) Schematic of deep plexus development in a P10 staged mouse. (D) The 
number of branching events in the superficial and deep plexuses of P10 VEGFf/f or ptf1a-
Cre; VEGFf/f retinas were counted and plotted (n = 4). (E) Schematic of vertical sprouting 
events from the deep plexus in P12 retinas. (F) There are no differences in the numbers 
of ascending vertical sprouts of ptf1a-Cre; VEGFf/f in flat-mounted retinas compared with 
controls (VEGFf/f) (n = 4). (G) Schematic of intermediate plexus development at P15. (H-J) 
GS-lectin positive laterally expanding sprouts are fewer in number in P15 ptf1a-Cre; 
VEGFf/f mice due to a reduced number of tip cells (I; arrows) and filopodia (J; arrowheads) 
(n = 4-5). (K) Quantification of the number of branching points in the intermediate plexus 
were counted, quantified, and plotted at P12, 15, 23, and 60 (n = 4-6). *P<0.05, **P<0.01, 
***P<0.001; 2-tailed Student’s t tests. Error bars indicate mean ± SD. Scale bars: 50 μm 
(A, B, and H); 40 μm (I and J). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, 
inner nuclear layer; ONL, outer nuclear layer. 
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Figure 26 - The retinal vasculature of the superficial and deep plexuses are unaffected by 
Vegfa deletion in amacrine and horizontal cells. (A) Normal vascularization (bidirectional 
arrows) is observed in GS-lectin-positive P6 ptf1a-Cre; VEGFf/f retinas and controls 
(VEGFf/f (no Cre), ptf1a-Cre; VEGFf/ +). (B-D) Whole-mount staining in VEGFf/f or ptf1a-
Cre; VEGFf/f retinas at P12 (B) or P15 (C and D), reveals no differences in the number of 
vertical sprouts descending through the IPL from the superficial plexus or ascending 
through the INL from the deep plexus (n = 4). Scale bar: 1 mm (A; upper panels); 100 μm 
(A; lower panels); 50 μm (B and C). (E) qPCR analysis showed that soluble VEGF120 and 
VEGF164 were the most abundant Vegf isoforms expressed in ptf1a-Cre; VEGFf/f mice at 
P15 (n = 4). SP; superficial plexus, IM; intermediate plexus, DP; deep plexus. 
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Vegfa gain-of-function in amacrine and horizontal cells induces massive 

neovascularization in the INL and IPL 

We also performed gain-of-function assays for VEGF in amacrine and horizontal 

cells by crossing ptf1a-Cre mice with floxed Vhl mice to induce pseudo-hypoxia. 

Sprouting blood vessels in the Vhl mutants became diverted from their normal 

paths and stopped in the INL rather than continuing to the OPL. As a result, an 

abnormally dense and multi-stratified capillary network formed in the intermediate 

plexiform layer at the expense of the superficial and, in particular the deep plexus 

layer (Figure 27A-E). Abnormal vessels persisted as long as 20 months, although 

some vascular pruning occurred and the number of branching points decreased 

with age. The mechanism leading to this neovascular phenotype can most likely 

be explained by an upregulation of non-diffusible VEGF from pseudo-hypoxic 

amacrine and horizontal cells. Quantitative real-time polymerase chain reaction 

(PCR) experiments in Vhl mutants revealed an upregulation of all three VEGF 

isoforms, with the greatest change seen in the non-diffusible isoform (VEGF188) 

that strongly binds the extracellular matrix (Figure 27F). However, in P15 ptf1a-

Cre; VEGFf/f mice soluble VEGF120 is the dominant and most abundant isoform, 

followed by VEGF164 (P=0.021646 for VEGF120, P=0.04667 for VEGF164, 

P=0.059891 for VEGF188; Figure 26E). This could indicate that membrane-bound 

rather than soluble VEGF is more important for intermediate plexus development 

(or that neighboring neurons upregulate soluble VEGF to compensate for the 

genetic depletion). Collectively, these results indicate that VHL is required for 

regulating HIFs and the expression of specific VEGF isoforms at proper levels for 

retinal vascular patterning and maintenance.  



	

	 172

 

Figure 27 - VHL deletion in amacrine and horizontal cells induces formation of a dense 
and convoluted intermediate plexus at the expense of the deep plexus. (A&B) Schematic 
of angiogenesis in VHLf/f (control) or ptf1a-Cre; VHLf/f retinas at P13. Note dramatic 
alterations in the intermediate plexus (green) and deep plexus (red) at P13 (A) and P23 
(B) in flat-mounted retinas. (C) 100µm sections from P23 ptf1a-Cre; VHLf/f mice were 
stained with GS-Lectin to highlight the extent of the neovascularization in the VHL 
mutants. (D) The number of branching events in P13 VHLf/f or ptf1a-Cre; VHLf/f retinas 
was plotted (n = 4). (E) 3D reconstruction of three retinal plexuses in P23 ptf1a-Cre; VHLf/f 
retina (superficial: blue; intermediate: green; and deep plexus: red) highlighted the 
abnormally dense intermediate plexus. (F) qPCR analyses revealed that non-diffusible 
VEGF188 was the most abundant isoform expressed in ptf1a-Cre; VHLf/f mice at P15 (n = 
4). *P<0.05, **P<0.01. ***P<0.001; 2-tailed Student’s t tests. Error bars indicate mean ± 
SD. Scale bars: 50 μm (A-C). GCL, ganglion cell layer; IPL, inner plexiform layer; INL, 
inner nuclear layer; ONL, outer nuclear layer. 
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HIF-1α/VEGF signaling is required in the IPL for development of functional 

neurovascular units 

Since others have shown that the conditional deletion of Hif-1α in all retinal cells 

prevents formation of the intermediate plexus[49], we set out to determine if the 

deletion of Hif-1α exclusively in amacrine and horizontal cells was sufficient to 

phenocopy the effect. Indeed, the deletion of Hif-1α in amacrine and horizontal 

cells (ptf1a-Cre; VHLf/+; Hif-1αf/f) phenocopies the intermediate plexus defects 

seen in both Hif-1α or Vegfa mutants at P12 (Figure 28A&B) and P23 (Figure 

29A&B; H). Conversely, mice lacking both copies of HIF-2α (ptf1a-Cre; VHLf/+; Hif-

2αf/f) appear normal (Figure 29C; I; Figure 28C). Vhl is haplosufficient but, when 

both copies are deleted, Hif-1α and Hif-2α become dominantly stabilized and 

Vegfa is overexpressed. The deletion of Hif-1α and both Vhl alleles (ptf1a-

Cre;VHLf/f;Hif-1αf/f), but not Hif-2α and Vhl (ptf1a-Cre; VHLf/f; Hif-2αf/f), prevented 

the formation of the unusually dense capillary bed seen in Vhl mutants (Figure 

29D-G, and J-L; Figure 28D-G).  These genetic perturbations all result in spatial 

changes in Vegfa expression (Figure 28H-J), and collectively suggest that 

carefully regulated VHL/HIF-1α signaling is imperative for development of 

neurovascular units in the intermediate plexus. 

To determine whether the neovascularization in the intermediate plexus is 

regulated by HIF-mediated VEGF activation, we generated ptf1a-

Cre;VHLf/f;VEGFf/f mice. Interestingly, despite observing a clear reduction in Vegfa 

expression using in situ hybridization, no obvious differences were observed in the 

vascular density of the intermediate plexus at P12 and P23 in ptf1a-

Cre;VHLf/f;VEGFf/f and control littermates (VHLf/f;VEGFf/f) (Figure 29G, L; Figure 

28G, K). Gene-profiling experiments in ptf1a-Cre;VHLf/f;VEGFf/f and VHLf/f;VEGFf/f 

mice revealed that other proangiogenic factors are upregulated in the mutants 

(Figure 29M; 28L). These data suggest that other angiogenic factors can 

contribute to patterning of the intermediate plexus.  
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Figure 28 - Early angiogenesis events (P12) are regulated by VHL/HIF-1α/VEGF 
signaling. (A-F) Combinatorial conditional knock-out strategies were employed to show 
that the loss of HIF-1α (B) but not HIF-2α (C) in amacrine and horizontal cells interferes 
with intermediate plexus development in haplosufficient Vhl +/- mutants compared with 
controls (A). (D-F) Homozygous deletion of Vhl and Hif-1α (E) prevents the 
neovascularization observed in Vhl mutants, but deletion of HIF-2α elicits no effect (F) 
compared with controls (D). (G) Homozygous deletion of Vhl and Vegfa also rescues the 
Vhl phenotype. (H) In situ hybridization for Vegfa in Vhl mutants and controls. (I) In situ 
hybridization for Vegfa in double Vhl/ Hif-1α mutants and controls. (J) In situ hybridization 
for Vegfa in double Vhl/ Hif-2α mutants and controls. (K) In situ hybridization for 
Vegfa in double Vhl/ Vegfa mutants and controls. (L) Relative mRNA expression 
values from qPCR gene-profiling analysis of 84 hypoxia signaling related genes in 
ptf1a-Cre; VHLf/f; VEGFf/f retinas at P12 compared with controls (harboring floxed 
alleles but no Cre); upregulated genes are plotted (n = 4). *P<0.05, **P<0.01. 
***P<0.001; Scale bars: 50 μm (A-K). 
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Figure 29 - VHL/HIF-1α/VEGF signaling regulates angiogenesis in the intermediate 
plexus. (A-F) Combinatorial conditional knock-out strategies were employed to show that 
the loss of HIF-1α (B; quantified in H) but not HIF-2α (C; quantified in I) in amacrine and 
horizontal cells interferes with intermediate plexus development in haplosufficient P23 
Vhl+/- mutants compared with controls (A). (D-F) Homozygous deletion of P23 Vhl and Hif-
1α (E) prevents the neovascularization observed in Vhl mutants (D; quantified in J), but 
deletion of Hif-2α elicits no effect (F; quantified in K) compared with controls (D). (G) 
Homozygous deletion of Vhl and Vegfa also rescues the Vhl neovascular phenotype. (All 
assays were performed in P23 staged mice; n = 4-6). (M) Relative mRNA expression 
values from qPCR gene-profiling analysis of 84 angiogenesis-related genes in ptf1a-Cre; 
VHLf/f; VEGFf/f retinas at P12 compared with controls (harboring floxed alleles but no Cre); 
upregulated genes (P<0.05 or > 1.5 fold-change) are plotted (n = 4).**P<0.01. ***P<0.001; 
2-tailed Student’s t tests. Error bars indicate mean ± SD. Scale bars: 50 μm (A-G). 

Genetic ablation of amacrine and horizontal cells phenocopies the effects of 

Vegfa deletion 

To confirm that amacrine and horizontal cells can regulate development of the 



	

	 176

intraretinal vasculature, we performed genetic techniques designed to selectively 

ablate both cell types. This was accomplished by crossing ptf1a-Cre mice with a 

mouse strain in which the human diphtheria toxin receptor (iDTR) is knocked into 

the ROSA26 locus (R26iDTR) (Figure 30A). Using this technique, inducible and 

selective genetic ablation of 82.4% of amacrine cells (89.3±17.8/0.1mm2 in 

controls vs. 15.7±4.9/0.1mm2 in mutants) and 87.9% of horizontal cells 

(4.5±1.1/0.1mm2 in controls vs. 0.5±0.5/0.1mm2 in mutants) and a prominent 

decrease in synaptic density in the IPL occurs 10 days after diphtheria toxin (DT) 

administration (Figure 31A-E). The reduction in the number of amacrine cells 

induced profound attenuation of the intermediate plexus, but not of the superficial 

or deep plexuses compared with controls Figure 31F&G). The same phenomenon 

was observed when amacrine or horizontal cells were ablated starting at P6, 

before formation of the deep plexus Figure 30B-G). We also induced ablation in 

adult mice and examined the vasculature 3 months after DT administration. In 

adult mice we observed a significant decrease in vascular density in the 

intermediate plexus, but not in the superficial or deep plexuses indicating a role for 

vascular maintenance, not just development Figure 31H&I). We also recorded 

light responsiveness (a- and b-waves) in DT-treated ptf1a-Cre; R26iDTR/+ and 

ptf1a-Cre; R26+/+ mice. Functional analyses using full-field electroretinography 

(ERG) revealed a significant reduction in the b waves (negative ERG) of ptf1a-Cre; 

R26iDTR/+ mice (Figure 30H) collectively indicating that amacrine cells are required 

for both development and maintenance of the intermediate plexus, and for 

propagation of the rod- and cone-driven pathways in adult stages. 
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Figure 30 - The genetic ablation of amacrine and horizontal cells in mice results in 
attenuation of the intermediate plexus and negatively affects visual function. (A) 
Schematic of the experimental design for the genetic depletion of amacrine and horizontal 
cells in ptf1a-Cre; R26iDTR/+ mice. (B) DT was injected daily from P6-8. (C and D) 
Thinning of the GCL/IPL and INL is observed in vivo using SD-OCT (C), and quantified 
(D) in P23 ptf1a-Cre; R26+/+ and ptf1a-Cre; R26iDTR/+ mice (n = 6). (E) IHC from P23 
DT- treated ptf1a-Cre; R26iDTR/+:tdTomato/+ and ptf1a-Cre; R26+/+: tdTomato/+ mice 
after DT treatment at P6-8 reveal a loss of the majority of amacrine and horizontal cells. 
(F) DT injections from P6-8 in P23 ptf1a-Cre; R26+/+ and ptf1a-Cre; R26iDTR/+ staged 
mice induced attenuation of the intermediate plexus. (G) in situ hybridization was 
performed on P12 ptf1a-Cre; R26+/+ or ptf1a-Cre; R26iDTR/+ retinas with a Vegfa probe 
and counterstained with DAPI. (H) Full-field ERGs performed on ptf1a-Cre; R26iDTR/+ 
mice 3 months after DT treatment at P30-32 revealed reduced b waves and gross defects 
in cone-driven pathways (n = 5-6). *P<0.05. **P<0.01. ***P<0.001; 2- tailed Student’s t 
tests. Error bars indicate mean ± SD. Scale bar: 50 μm (F, G); 40 μm (E). GCL, ganglion 
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer. 
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Figure 31 - Genetic ablation of amacrine and horizontal cells phenocopies the defects in 
the intermediate plexus observed in HIF-1α and VEGFa mutants. (A) DT was injected 
daily at the time-points indicated. (B-E) The reduced number of cells post-ablation was 
examined by comparing cryosectioned retinas from P23 ptf1a-Cre; R26iDTR/+:tdTomato/+ and 
P23 ptf1a-Cre; R26+/+: tdTomato/+ mice after injecting DT (B), and by measuring the thickness 
of the GCL/IPL and INL (C; yellow brackets) from images captured in vivo using SD-OCT 
(D&E) (n = 4-6). (F&G) An attenuated intermediate plexus is observed (F; green) and 
quantified (G) in P23 ptf1a-Cre; R26iDTR/+ mice (n = 6). (H and I) An attenuated 
intermediate plexus is also seen when amacrine and horizontal cells are ablated well after 
intermediate plexus development (H; quantified in I), suggesting that amacrine cells are 
required for development and maintenance of the intermediate plexus (n = 4). **P<0.01. 
***P<0.001; 2-tailed Student’s t tests. Error bars indicate mean ± SD. Scale bar: 50 μm 
(B,F&H). DT, diphtheria toxin; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, 
inner nuclear layer; ONL, outer nuclear layer. 

Intermediate plexus abnormalities are associated with loss of visual acuity  

To determine the importance of neurovascular units in the IPL for visual function, 
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ERGs were performed on the Vegfa or Vhl mutants to measure the integrity of the 

photoreceptors (negative a-wave) and of the second- and third-order neurons 

(positive b-wave) in either dark adapted (scotopic) or light adapted (photopic) 

animals. Significant reductions of both scotopic (rod-driven) and photopic (cone-

driven) responses (Figure 37A), and prominently reduced optokinetic reflexes 

were observed in ptf1a-Cre; VEGFf/f mice (Figure 32).  

 

                                 

 

Figure 32 - Visual acuity in ptf1a-Cre; VEGF knockout mice is significantly impaired. 
Optokinetic reflexes were measured in VEGFf/f or ptf1a-Cre; VEGFf/f mice and significant 
defects were observed in 3 month old mice (n = 10). 
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Significant reductions in scotopic (rod-driven) responses were also detected in 

ptf1a-Cre; VHLf/f mice (Figure 37B). Importantly, neither manipulation induced 

neurovascular uncoupling in the INL (Figure 33). 

 

 

 

Figure 33 - Neurovascular units with the amacrine and horizontal cells and intraretinal 
capillaries in ptf1a-Cre; VEGF knockout and ptf1a-Cre; VHL knockout mice. Fluorescent 
immunostaining for anti neurofilament (NF) or anti-MAP2 with CD31 in retinal cryosections 
from P23 ptf1a-Cre; VHLf/f mice or ptf1a-Cre; VEGFf/f mice. The nuclei of cells were 
counterstained with DAPI (blue). Scale bar: 50 μm. GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 
layer. 

 

TUNEL assays, basic ultrastructural examinations, blood tests, weight 

measurements, and immunohistochemistry in longitudinally monitored mutant 

mice show no obvious evidence of increased cell death, neuronal 

development/synaptic densities, or changes to the diabetic status of the mutants 

(since ptf1a-Cre is active in the pancreas (Figures 34; 35 and 36). Collectively, 

these results suggest that either attenuated or potentiated amacrine and horizontal 

cell-derived VEGF expression disrupts vision.  
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Figure 34 - No evidence of heightened neurodegeneration or abnormal synaptogenesis 
was observed in ptf1a-Cre; VEGFf/f mice. (A) TUNEL staining of P12 ptf1a- Cre; VEGFf/f 
retinas and controls. Scale bars: 500 μm (A; upper right); 50 μm (A; lower right). (B) 
Quantification from (A) at P12 or P23 (n = 4). (C) The expression pattern of synaptophysin 
is unremarkable in P15 ptf1a-Cre; VEGFf/f ;R26tdTomato/+ retinas. (D) Transmission 
electron micrograph showing normal synaptic ultrastructure (arrows) and synaptic vesicles 
in P23 ptf1a- Cre; VEGFf/f retinas. Scale bars: 1 μm. GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer; OPL, outer plexiform 
layer.
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Figure 35 - No differences in the topographies of interneurons and Mueller glia are 
observed in ptf1a-Cre VEGF knockout and ptf1a-Cre; VHL knockout mice. (A- L) 
Cryosections from 23-day-old ptf1a-Cre; VEGFf/f and ptf1a-Cre; VHLf/f mice and controls 
were stained for calretinin (A-C), calbindin (D-F), chx10 (G-I), and glycogen synthase (GS) 
(J-L). The nuclei of cells were counterstained with DAPI (blue). Scale bar: 50 μm in A-L 
GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer 
nuclear layer 
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Figure 36 - Normal weight, blood glucose, and HbA1c levels in VEGF and VHL mutant 
mice. (A, B) Body weights in both groups were comparable. (n = 9-10). (C, D) Blood 
glucose was measured at P12 and P23 of ptf1a-Cre; VEGFf/f mice and ptf1a-Cre; VHLf/f 
mice. (n = 10 each). (E) HbA1C levels in 4 month-old ptf1a- Cre; VEGFf/f and 6 month-old 
ptf1a-Cre; VHLf/f mice. (n = 8 each). 

 

Finally, Ptf1a-Cre; VEGFf/f mice were crossed with a retinal degeneration 10 (rd10) 

mouse line (Pde6brd10/rd10), which is a widely used model of photoreceptor atrophy. 

To quantify the degree of photoreceptor degeneration in rd10 mice with attenuated 

intermediate plexuses, we measured the thickness of the outer nuclear layer 

(ONL) in histological sections and performed terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) staining. At the earliest time point of retinal 

degeneration, P21, the number of TUNEL positive cells was significantly increased 

(Figure 37C&D) and ONL thickness was significantly thinner at six positions in the 

retina of ptf1a-Cre; VEGFf/f; Pde6brd10/rd10 mice compared with controls (VEGFf/f; 

Pde6brd10/rd10 and ptf1a-Cre; VEGFf/f; Pde6brd10/+ mice) (Figure 37E), indicating 

that degeneration is accelerated in mice with impaired intermediate plexuses. 

These findings highlight a critical and novel role for amacrine cells, promoting 

photoreceptor homeostasis and function through vascular maintenance of the 

intermediate plexus. 
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Figure 37 - Intermediate plexus abnormalities are associated with visual dysfunction. (A) 
Full-field ERGs in two-month-old ptf1a-Cre; VEGFf/f mice reveal significant defects in both 
rod- and cone-driven pathways (n = 8-10). (B) Full-field ERGs performed on two-month-
old ptf1a-Cre; VHLf/f mice reveal that the rod-driven pathways are significantly impaired (n 
= 6). (C-E) Photoreceptor atrophy is accelerated in a mouse model of spontaneous retinal 
degeneration (rd10 mice) with impaired intermediate plexuses, based on TUNEL staining 
in the ONL (C; green, quantified in D), and reduced ONL thickness values (E) in P21 
ptf1a-Cre; VEGFf/f; Pde6brd10/rd10 mice and controls (VEGFf/f; Pde6brd10/rd10; n = 6 each). 
*P<0.05, **P<0.01, ***P<0.001; 2-tailed Student’s t tests. Error bars indicate mean ± SD. 
Scale bar: 50 μm. INL, inner nuclear layer; ONL, outer nuclear layer. 
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Discussion 

 

There is mounting evidence that retinal neurons, including ganglion cells and 

photoreceptors, act as oxygen and nutrient sensors that can drive and regulate 

angiogenesis; ganglion cells can even act as rheostats to fine tune VEGF 

availability [39,40,173]. However, the roles of other neurons to facilitate growth 

and maintenance of the deep retinal vascular layers are incompletely understood. 

Oxygen consumption increases at distinct time points during development as 

neurons are born and mature. This results in localized zones of hypoxia in the 

developing retina. In P15 staged rats (just prior to eye opening), the intermediate 

vascular plexiform layer is underdeveloped and oxygen consumption is very low in 

the inner retina [207]. During these stages of mouse development, HIF-1α levels 

are very high in the retina [53,201] and VEGF is broadly, albeit transiently, 

detectable throughout the INL [208].  Earlier reports suggested that Mueller glia 

were the primary source of VEGF in the inner retina [208], however conditional 

deletion of Vegfa in Mueller glia cells did not affect the vasculature [209].  In this 

study we used genetic ablation strategies to show that amacrine cell-derived 

VEGF (perhaps more specifically VEGF188) is essential for regulating intermediate 

plexus development (although other factors including adrenomedullin, angiogenin, 

or EPO may also contribute).  This conclusion is based on the observation that 

interactions between amacrine cells and the capillaries are extensive, and that 

Vegfa loss- and gain-of-function assays using ptf1a-Cre result in attenuation or 

neovascularization of the intermediate plexus (at the expense of the deep plexus).  

The onset of hypoxia and intermediate plexus formation in the INL correlates well 

temporally with the timing of synaptogenesis and the maturation of amacrine cells.  

At P10-P12 stages in mice (a few days prior to eye opening) when the 

intermediate plexus forms, all of the key events of synaptogenesis have been 

initiated. Amacrine cells are properly sublaminated, but are still actively remodeling 

their lateral connections to form mature circuits. This occurs as the amacrine cells 

disassemble their immature cholinergic networks and generate mature ionotropic 

glutamate-based synapses. As the density and size of the IPL increases and the 

metabolic demands change, HIF-1α/VEGF signaling in amacrine cells drives 

angiogenesis from the deep plexus. Perturbations to VEGF signaling through 

ptf1a-Cre-induced Vhl deletion results in a highly convoluted and unusually dense 
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intermediate plexus since the sprouting vessels from the deep plexus are attracted 

to a temporally inappropriate, ectopically localized, VEGF gradient. 

We report here a novel function for amacrine cells, generating VEGF for vascular 

maintenance, photoreceptor homeostasis, and visual function. Amacrine and 

horizontal cells were previously thought to be required only for pre-processing and 

integrating visual stimuli. Our findings demonstrate that dysregulated Vegfa 

expression in amacrine and horizontal cells causes retinal microvascular deficits 

that diminish retinal blood flow, reduce oxygen nutrient availability, and ultimately 

induce loss of visual acuity. Additionally, we have observed that photoreceptor 

atrophy occurred earlier and faster in two animal models of human retinal 

degeneration, one of which was presented in this paper, after deleting Vegfa in 

amacrine cells.  Finally, it has been reported that in an animal model of diabetic 

retinopathy, VEGF inhibition markedly increased amacrine cell apoptosis [210]. 

These findings not only demonstrate the importance of amacrine cells, but also 

add to a growing body of evidence that chronic VEGF antagonism in the eye, the 

preferred therapeutic strategy for treating neovascular age-related macular 

degeneration, could elicit concerning off-target effects leading to visual dysfunction 

[4,62,168].  

This work also shows that the attenuation of the intermediate and deep vascular 

plexuses negatively affects retinal physiology. This concept is supported by recent 

evidence suggesting that neuronal dysfunction and neurodegeneration are tightly 

correlated with microvascular dysfunction. Microvascular dysfunction and 

breakdown of the blood-retinal barrier in the retina are characteristic of retinal 

neurodegenerative disorders such as retinitis pigmentosa and diabetic retinopathy 

[161,211-213]. IPL thinning and retinal amacrine neuronal dysfunction are 

observed in diabetic patients [213,214]. Attenuation of the intraretinal vasculature 

is also highly correlated with progression of vision loss in retinitis pigmentosa 

[161], and our data strongly suggests that amacrine cell loss or dysfunction and 

ensuing intermediate plexus attenuation can accelerate photoreceptor atrophy in a 

murine model of the disease. Furthermore, pre-clinical experiments in rodent 

models of retinal degeneration have provided proof-of-concept evidence that 

stabilization of the intraretinal vasculature can retard photoreceptor atrophy [153]. 

Finally, in humans, efforts to rebuild or repair defective neurovascular units are 
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being actively explored to prevent or slow neurodegeneration [151]; studies like 

this one may inform those therapeutic strategies.  

In summary, we have described a role for retinal lateral interneurons, providing 

critical neurotrophic support through vascular maintenance of the intermediate 

plexus. Learning how to therapeutically control VHL/HIF-1α/VEGF signaling in 

amacrine cells may represent a therapeutic intervention for treating degenerative 

conditions that lead to vision loss. 

 

Main conclusions 

 

Aspects reported in this chapter that shed new light onto DR research 

 

 Although it has been widely suggested that PRs play a critical role in promoting 

DR progression[100,215-217], DR research has been focusing mainly on the 

inner retina, where structural changes can be more clearly identified. 

 Diabetes is known to compromise amacrine cell function[218,219] - which is 

expressed by ERG deficits - before vascular changes become evident in the 

diabetic retina. These new findings suggest that diabetes-induced amacrine cell 

dysfunction may be contributing to microvascular degeneration with consequent 

neurodegeneration and a compensatory neuronal response (in an attempt to 

restore neuronal nourishment) that favors development of pathological 

neovascularization.  

 Therefore, pathological retinal features in DR may not result from amacrine-cell 

dysfunction per se but rather from a disruption in neurovascular crosstalk 

between these neurons and the vasculature, as neurons seem to play an active 

role in maintaining the latter in a healthy state. 

 This works identifies NVUs in locations where they had never been described 

before, namely in the IPL and OPL. These NVUs are composed by amacrine 

cells, horizontal cells and their respective retinal vascular plexus layer 

(intermediate and deep). Additionally, it reveals a critical role for amacrine cells 

and their HIF-1α/VEGF-A response in (1) retinal vascular development; and (2) 

vascular maintenance of the intermediate plexus (in the adult retina), which is 

essential for ensuring adequate visual function.  
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 This chapter also identifies a new angiogenic pathway in the retina, and 

describes NVUs in the outer retina along with an active role for PRs in retinal 

neurovascular crosstalk; it shows that cone photoreceptors are able to produce 

factors to maintain retinal vasculature in a healthy state, therefore ensuring their 

own nourishment and adequate functionality of the outer retina 

(neuroprotection). 

 

 Implications for DR management:  

 

o These findings suggest that therapies for DR must be implemented early in 

the disease process to stabilize crosstalk within the NVU, for example, 

by enhancing photoreceptor or amacrine cell production of endogenous, 

protective factors that maintain a healthy vasculature, which in turn ensures 

adequate nourishment of retinal neurons. Acting early to reinforce 

endogenous processes and to restore harmonious interactions within the 

NVU (rather than late using destructive and indiscriminate therapeutic 

procedures) could determine better retinal and visual outcomes in patients 

with DR. 

o The strongest dysregulation in angiogenin levels was observed in PDR and 

DME patients. For now the meaning of these alterations remains unclear, 

however further work assessing if enhancement of angiogenin levels early 

in the disease process, or their blockade at late stages could improve the 

characteristic pathological changes seen in human DR would be of interest.	
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B. The Metabolic Landscape of Proliferative Diabetic Retinopathy 

  

Rationale for conducting this study 

 

 PDR, the late stage of DR, is a leading cause of blindness in adults below 

the age of 65 in industrialized countries 

 Current therapies for DR are not ideal because they are unable to prevent 

progression into PDR in a sustainable fashion in every diabetic patient, and 

also because they present concerning adverse effects: 

 

 A) Laser photocoagulation is effective in preventing development of 

PDR but only in approximately 50% of cases; it is, however, a 

destructive procedure that kills peripheral retinal cells in order to 

maintain those responsible for central vision. 

 B) Intravitreal injections of anti-VEGF agents produce remarkable 

neovascular regression in eyes affected with PDR but these effects 

are only temporary, thus requiring repeated injections to maintain 

such results; furthermore, these agents may enhance local 

neurodegeneration, as VEGF is also a neurotrophic factor, and 

induce adverse cardiovascular and renal events. 

 

 There are no specific biomarkers to accurately monitor risk of developing 

PDR (the only currently validated biomarker to predict risk of developing 

diabetic complications is HbA1c; however, adequate glycemic control is not 

clearly correlated with protection, as described in the next chapters).  

 For all of the above, identification of novel druggable targets and 

biomarkers is crucial to effectively prevent disease progression into late, 

irreversible stages 

 Since metabolites have been shown to mediate retinal neurovascular 

crosstalk, disrupted interactions within the NVU are expected to be 

expressed as local metabolic dysregulation. 
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 Attaining a global overview of metabolic dysregulation in PDR will provide 

important cues regarding the most affected biochemical pathways, 

revealing potential therapeutic targets and metabolic biomarkers 

 

 L.P.P. designed the research plan, prepared the animals, performed 

intraocular injections (assisted by EA) and eyeball extractions, analyzed the 

clinical data and organized both the scientific and clinical data for the 

manuscript; the LC/MS experiments and MS data analysis were performed 

in collaboration with Prof. Siuzdak’s laboratory at TSRI, by C.H.J, L.T and 

H.P.B.  
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B.1. In vivo global Isotope Metabolomic Analysis implicates the Arginine‐

to‐Proline Pathway in Ischemic Retinopathy 

 

Background and significance 

 

Diabetic retinopathy (DR) is the leading cause of vision loss in adults aged 20 to 

65 years [27] and meta-analyses of large-scale studies have shown that this 

diabetic complication is quite common, as approximately one third of the diabetic 

population will develop DR to some extent, and approximately one third of those 

(or 10% of the whole diabetic population) will progress to its vision-threatening 

stages - PDR and diabetic macular edema (DME)[1,69]. Prevention strategies 

focusing on early screening and optimization of metabolic control have been 

implemented, and have moderately improved the outlook for patients in many 

countries. Nevertheless they have proved to be insufficient on their own to fully, 

and efficiently, arrest DR progression towards late stage disease[68]. Proliferative 

diabetic retinopathy (PDR), the most advanced stage of DR, is especially 

concerning. It is commonly associated with diabetic macular edema (DME), the 

main cause of vision impairment in diabetic patients[27]), and can lead to vitreous 

hemorrhage and tractional retinal detachment, which constitute important causes 

of blindness in diabetic patients [220]. In addition, the current therapeutic 

strategies (laser photocoagulation and anti-VEGF intraocular injections) are 

untargeted, act late, and are not able to curtail disease progression in a 

sustainable and effective manner for every patient. Moreover, concerns regarding 

safety issues with anti-VEGF agents have been raised at the ocular (choroidal 

vasculature and photoreceptors) and systemic levels (renal and cardiovascular 

effects) [2,83,221]. 

Incomplete understanding of the pathophysiology of DR is exacerbated by the 

absence of an in vivo diabetic rodent model that fully recapitulates the disease. As 

rodent models of diabetes do not spontaneously develop pre-retinal 

neovascularization, the oxygen-induced-retinopathy (OIR) mouse model is 

frequently used in studies of neovascular retinal disease such as PDR [54,222]. 

The OIR model resembles retinopathy of prematurity (ROP) by developing regions 
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of vascular obliteration and pathological neovascularization after a five-day 

exposure to a hyperoxic environment, which arrests physiologic retinal vascular 

development. These retinal findings resemble those seen in human PDR. 

Metabolites are the biological products of genomic and proteomic perturbations, 

and also result from environmental (e.g., diet, disease) and microbial influences. 

Metabolomic analysis is the unbiased survey of all metabolites within a sample, 

and can thus reveal biologically relevant changes within a system. Previous 

metabolomic studies performed in pre-diabetic and type 2 diabetic patients 

revealed that amino-acid and lipid concentration changes can be used as 

biomarkers for identifying patients at risk, and also for monitoring disease 

progression and therapeutic efficacy [223]. Indeed, unraveling major metabolic 

changes in the vitreous of PDR patients has the potential to reveal novel targets 

for the development of more effective therapeutic strategies to treat patients with 

diabetic eye disease. Our global (untargeted) and highly sensitive targeted mass 

spectrometry (MS)-based metabolomic workflows allow for a comprehensive 

coverage of the metabolome [224]. Furthermore, novel technologies such as 

stable isotope global metabolomics enable the incorporation of a labeled 

metabolite to be tracked in an unbiased manner through metabolic pathways 

[225]. Although reproducibility is a concern in metabolomics, especially when 

translation into the clinic is being considered, the high number of clinical and 

mouse samples available in our study has allowed for multiple opportunities for 

validation, enhancing the robustness and reliability of the data.  

In this study, a global and highly sensitive mass-spectrometry (MS)-based 

approach was used to generate and validate a metabolomic profile of (1) human 

vitreous samples from two separate patient sample sets (controls and patients with 

PDR); and (2) eyes from a rodent model of ischemic retinopathy that shares 

characteristics with PDR (the OIR model). Furthermore, isotopic global 

metabolomic analysis carried out here for the first time in vivo, in the eye, revealed 

a role for the arginine-to-proline pathway in OIR.  Simultaneously, we reiterated 

the validity of the OIR mouse model for therapeutic studies regarding PDR by 

demonstrating shared metabolic dysregulation with the human disease, despite 

differences in the pathological trigger. An overview of our metabolomic workflow 

can be seen in Figure 38. These novel metabolic findings will pave the way 
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towards identification of new disease biomarkers, discovery of new druggable 

targets and development of more effective therapeutic algorithms. 

 

 

Figure 38 - Metabolomic workflow.  Samples initially undergo untargeted quadrupole 
time-of-flight mass spectrometry (QTOF-MS) metabolomics by hydrophilic interaction and 
reversed-phase liquid chromatography (HILIC and RPLC) to obtain a comprehensive 
coverage of the metabolome. Metabolites are identified using the statistical software 
XCMS Online and the METLIN database. Tandem MS is carried out to verify the 
metabolite identification. The metabolites of interest are further validated through multiple 
reaction monitoring by triple quadrupole (QqQ)-MS with authentic standards, and absolute 
concentrations obtained. Isotopes of metabolites correlated to pathogenesis are 
introduced into the model system and their transformation observed by global 
metabolomics. The role of these metabolites in metabolic pathways can thus be 
elucidated. 
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Results 

 

Global metabolomics revealed a clear distinction between PDR and control 

vitreous human samples  

  

Global metabolomic analysis by RPLC-MS  (Reverse-Phase Liquid 

Chromatography) and HILIC-MS (Hydrophilic Interaction Liquid Chromatography) 

provided a comprehensive coverage of the non-polar and polar metabolome, 

respectively. The analyses performed on the first set of human vitreous samples 

revealed clear dysregulation (meaning differential regulation) between vitreous 

samples from non-diabetic controls (n=10) and patients with PDR (n=7). The 

general metabolic dysregulation between the two patient groups can be seen on 

Figure 39 and Figure 40.  

RPLC-MS analysis revealed 106 features that were significantly dysregulated 

(p<0.01, fold change >2) from a total of 3117 aligned features (Figure 41A). Of 

these features, a number were adducts and fragment ions. A q-value threshold of 

<0.05 was used to remove any p-values (up to a 95 % confidence) that could have 

been false positives. The metabolites that were positively identified by tandem MS 

with comparison to authentic standards included the following metabolites, which 

were upregulated in PDR samples: octanoylcarnitine (fold change 5.4, p=0.005, 

q=0.01) and propionylcarnitine (fold change 2.1, p=0.007, q=0.02). Other 

carnitines mined for in the feature tables that had higher p-values than 0.01 were 

similarly dysregulated hexanoylcarnitine (fold change 5.2, p=0.012, q=0.01), 

acetylcarnitine (fold change 1.5, p=0.012, q=0.02), palmitoylcarnitine (fold change 

3.8, p=0.038, q=0.04) and elaidic/vaccenylcarnitine (fold change 4.9, p=0.035, 

q=0.04). HILIC-MS analysis revealed 61 dysregulated features from a total of 1910 

total aligned features (Figure 41B). The features that were positively identified and 

upregulated in the PDR samples included allantoin (fold change 4.0, p=0.006, 

q=0.03), glutamate (fold change 3.2, p=0.0002, q=0.008), lysine (fold change 1.7, 

p=0.004, q=0.03), and arginine (fold change 2.1, p=0.005, q=0.03). A second 

sample set of non-diabetic controls (n=16) and PDR (n=10) samples was 

obtained, which allowed us to observe the specificity of the metabolites. The 

RPLC-MS metabolomic analysis did not show dysregulation to the acylcarnitines 

and only revealed 30 dysregulated features, from a total of 6834 aligned features, 
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this low number of dysregulated features (0.4%) shows that with a p-value 

threshold of 0.01 these are most likely random. Humans have high interindividual 

variation, and carnitine metabolism in particular, is dependent on diet and other 

factors; and perturbations in carnitine metabolism have low specificity as they are 

identified in a wide spectrum of diseases; therefore it was not surprising to see 

these results in the 2nd set of patient samples. However the HILIC-MS analysis 

showed 129 dysregulated features from a total of 7827 aligned features and again 

revealed an upregulation to allantoin (fold change 1.9, p=0.001, q=0.007), 

glutamate (fold change 2.8, p=0.0001, q=0.02), lysine (fold change 2.1, p=0.001, 

q=0.02), and arginine (fold change 1.6, p=0.002, q=0.04) in patient PDR samples. 

In this 2nd set of samples HILIC-MS also showed a number of metabolites 

downregulated in the PDR samples, N-acetylaspartate (fold change 2.3, p=0.0006, 

q=0.02), iditol (fold change 2.0, p=0.002, q=0.03), glycerate (fold change 1.8, 

p=0.002, q=0.04) and N-acetylglutamate (fold change 1.8, p=0.0004, q=0.02). 

These metabolites were confirmed through tandem MS to standards. In addition, 

these downregulated metabolites were mined for in the feature table from the first 

set of samples but they were not dysregulated.   

Having two sets of human samples from non-diabetic controls and patients with 

PDR has been invaluable to show the specificity of these biomarkers to this 

disease. Some metabolites were perturbed in both, while some were specific to 

just one set.  
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Figure 39 – Global liquid chromatography quadrupole time-of-flight mass spectrometry 
(LC-QTOFMS) metabolomics. Cloud plots generated by XCMS Online representing all 
dysregulated features between control and PDR samples (two-tailed Mann-Whitney test; p 
value < 0.01; fold change > 1.5). Green dots represent upregulated metabolites and red 
dots represent downregulated metabolites in PDR samples.  

 



	

199	

 

 

Figure 40 - Principal component analysis (PCA) reveals a clear demarcation between 
vitreous samples from PDR patients (blue) and non-diabetic controls (red); (A) First set of 
human vitreous samples; (B) Second set of human vitreous samples. 

 

 

A

B
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Figure 41 - Global liquid chromatography quadrupole time-of-flight mass spectrometry 
(LC-QTOFMS) metabolomics. Cloud plots generated by XCMS Online showing 
dysregulated features between control (n=27) and PDR (n= 17) samples (two-tailed 
Mann-Whitney test) for (A) RPLC-MS analysis and (B) HILIC-MS analysis. Total ion 
chromatograms (TICs) for each sample can be seen on the plot; features whose intensity 
are increased in PDR vitreous are shown on the upper part of the plot as blue circles and 
features whose intensity decreases are shown on the bottom part of the plot as green 
circles. Larger and brighter circles (features) correspond to larger fold changes and lower 
p-values respectively. 

 

Untargeted metabolomics by QTOF-MS can reveal thousands of features, many 

novel to the disease, however specificity can be more challenging with human 

sample analysis due to interindividual variation providing lower p-values. In 

addition, QTOF-MS analysis is not as quantitative as targeted triple quadrupole 

(QqQ)-MS analysis due to coeluting ions and detector saturation, and when fold 
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changes are subtle (in the range of 1-2.5) it is difficult to assess specificity. Thus, 

we next sought to validate our findings using targeted analysis to quantify the 

concentrations of these metabolites. As well as targeting the metabolites 

dysregulated in both sample sets, we expanded the targeted analysis to include 

metabolites from related metabolic pathways, to determine the biological 

relevance of our findings. These pathways included those related to acylcarnitine 

and amino acid metabolism (aconitate, fumarate, succinate, glutamine, 

pantothenate, proline, citrate), nitrogen disposal (citrulline, ornithine) and purine 

metabolism-related oxidative stress (AMP, ATP, adenosine, inosine, IMP, 

hypoxanthine, xanthine). Targeted analysis was thus carried out using authentic 

standards to obtain accurate fold changes of the metabolites in the extracted 

samples. It was confirmed that arginine and allantoin, metabolites seen in both 

sets of samples were upregulated in PDR, however lysine and glutamate were not 

changed. Many of the metabolites targeted were below the limit of detection in the 

samples, but an upregulation in octanoylcarnitine could also be confirmed in both 

sample sets, and further dysregulation was seen in proline, citrulline, methionine 

and ornithine along with decanoylcarnitine, which were all significantly upregulated 

in the samples from PDR patients Figure 42A. The most prominent metabolic 

perturbations, however, pertained to arginine-to-proline metabolism and suggested 

a preferential activity in pathways leading to proline production (namely the 

arginase pathway). A summary of the targeted analysis for both sets of human 

samples can be seen in Table 8. 
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Figure 42- Significant metabolic perturbations identified in human PDR vitreous samples. 
(A) A summary of the metabolic perturbations identified during global and targeted 
metabolomic analyses on vitreous human samples from diabetic patients with PDR and 
non-diabetic controls; These analyses confirmed upreregulation of arginine, allantoin, 
proline, citrulline, ornithine, methionine, octanoylcarnitine and decanoylcarnitine in PDR 
samples (for fold changes and p-values please see table 8); (B) The arginine-to-proline 
pathway shows the highest number of metabolic perturbations in this disease. Fold 
changes of each metabolite in PDR samples are shown compared to control * = p≤0.05, ** 
= p≤0.01, *** = p≤0.001,****= p≤0.0001; error bars represent standard deviation 

B!
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Table 8 – Dysregulated metabolites confirmed by targeted MS analysis in two sets of 
vitreous samples from PDR patients, and in OIR mouse eyes at P17.  

 

+ Statistically significant dysregulation in human PDR  
* Statistically significant dysregulation in the OIR mouse 
 

  

Human PDR OIR P17 mouse

First set Second set OIR 

Metabolite Fold change p-value Fold change p-value Fold change p-value

+Methionine 1.7 0.0387 3.0 0.0002 1.1 0.6436 

+Allantoin 2.5 0.0003 1.7 0.0081 1.4 0.2349 

+Decanoylcarnitine 1.7 0.0028 1.4 0.0054 Below limit of detection 

+*Arginine 1.8 0.0387 1.9 0.0081 2.2 0.0109 

+*Proline 3.3 0.0003 5.7 <0.0001 5.0 0.0002 

+*Citrulline 1.5 0.0201 1.5 0.0211 2.0 0.0003 

+*Ornithine 1.1 0.0346 1.2 <0.0001 1.3 0.0084 

+*Octanoylcarnitine 2.2 0.0200 1.7 0.0005 3.0 0.0004 

*Lysine 1.3 0.0573 1.1 0.2383 1.5 0.0024 

*Succinate 1.4 0.6180 1.3 0.8580 -1.6 0.0226 

*Pantothenate Below limit of detection 1.7 0.0175 

*AMP Below limit of detection -1.4 0.0477 

*Hypoxanthine 1.4 0.0573 1.4 0.2542 -3.4 <0.0001 

*Xanthine Below limit of detection -1.9 0.0017 

*Inosine Below limit of detection -2.8 <0.0001 

*+Propionylcarnitine 5.4 0.005 
Below limit of 

detection 
86.4 0.0480 

*Acetylcarnitine Below limit of detection 2.0 <0.0001 
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Clinical characteristics of the patients with PDR 

 

In order to provide clinical context to the metabolic perturbations observed in PDR, 

the 17 diabetic study subjects (1:8=M:F ratio) underwent comprehensive clinical 

evaluation (medical and ophthalmological history, and laboratory work-up). This 

information is present in Table 9 and Table 10. 

All study subjects were type 2 diabetics for an average of 26 years and their 

average HbA1c values were 7.52%. Their best-corrected visual acuity (BCVA) 

ranged from hand motion (HM) to 0.6 (20/33); intraocular pressure (IOP) ranged 

from 7 mmHg to 24 mmHg. Fifty-three percent (53%) of the patients had 

developed PDR despite laser photocoagulation, which had been complete in 89% 

of the cases. Regarding diabetes-related systemic complications (reported on the 

patients’ clinical files), 41% did not have any complications other than DR, 12% 

had isolated diabetic nephropathy, 18% had isolated diabetic neuropathy and 29% 

had both nephropathy and neuropathy. 
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Table 9 – General clinical features of the patients with PDR 

 

 

DM = diabetes mellitus; DM duration: y = years; HbA1c = glycated hemoglobin (optimal value 
< 6.5 -7%); Ins = insulin; OAD = oral antidiabetics (1 = insulin; 2 = oral anti-diabetics); BP = 
blood pressure (mmHg; optimal BP for diabetics <130/80 mmHg); Cr serum (mg/dl) = serum 
creatinine (reference values: 0.5 – 1.5 (males); 0.6 – 1.2 (females)); eGFR = estimated 
glomerular filtration rate in ml/min/1.73m2 (CKD-EPI equation 2009; stage 1: >90 with 
evidence of kidney damage; stage 2: 60-90; stage 3: 30-60; stage 4: 15-30; stage 5: <15); 
LDL = serum low density lipoprotein levels (mg/dl; optimal for diabetics <70 mg/dl); BMI = 
body mass index (kg/m2): underweight< 18.5; normal 18.5 – 24.99; overweight >25; obese > 
30; N/A = not available. 

Age/gender DM DM duration HbA1c Ins vs OAD BP Cr serum eGFR LDL BMI

54 F 2 10 y 10.3 1,2 113/72 1.19 52 136 17.7 

67 F 2 15 y 9.2 1,2 152/70 0.78 79 N/A 21.5 

51 M 2 2 y 10.9 1,2 126/90 0.77 105 N/A 31 

69 M 2 24 y 6.9 1,2 148/80 0.97 79 104 22 

42 F 2 8 y 6.8 1,2 110/64 0.58 114 N/A 26.1 

42 F 2 8 y 6.8 1,2 127/75 0.58 114 N/A 26.1 

61 M 2 6Y 6.2 2 180/80 1.48 50 N/A 23 

75 M 2 2 y 7.6 2 114/58 0.69 93 N/A 23.6 

62 M 2 24 y 6.7 1 148/93 0.82 95 181 30.8 

61 M 2 20 y 6.6 2 143/83 0.71 101 N/A 25.9 

40 M 2 20 y 5.3 1 140/81 1.82 45 101 29.9 

65 F 2 9 y 7.5 2 186/86 2.65 18 165 27.9 

48 M 2 15 y 9.1 1 105/61 1.1 79 N/A 24.9 

35 M 2 10 y 8.5 1 157/107 0.83 114 139 21.2 

65 F 2 10 y 6.8 2 152/55 0.56 98 N/A 24.9 

68 M 2 24 y 5.7 1 171/76 2.82 22 101 23 

58 M 2 15 y 6.9 2 105/61 0.71 103 81 24.9 
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Table 10 – Ophthalmological characteristics of the patients with PDR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BCVA – best corrected visual acuity (Range: light perception < HM (hand motion) < 
counting fingers < clinical optotypes on a chart); PC – photocoagulation (complete, 
parcial, 0 = none); IOP - intraocular pressure (reference values: 10 – 20 mmHg); Anti-
VEGF = Prior Anti-VEGF treatment (1 = yes; 2 = no); IO CS = previous administration of 
intraocular steroids (1 = yes; 2 = no); DN - diabetic nephropathy; DNP - diabetic 
neuropathy.  
 

Age/gender BCVA PC 
IOP 

mmHg

Anti-

VEGF 

IO 

CS

Other DM 

complications 

54 F HM Complete 10 2 2 DNP, DN 

67 F 0.02 Complete 13 2 2 DN 

51 M HM Complete 15 2 2 DN 

69 M 0.03 Complete 20 2 2 DNP, DN 

42 F 0.04 0 24 2 2 0 

42 F 0.03 0 18 2 2 0 

61 M HM Complete 16 2 2 DN 

75 M 0.5 0 14 2 2 0 

62 M 0.2 0 14 2 2 DNP 

61 M 0.6 Complete 11 2 2 0 

40 M 0.03 Complete 10.7 2 2 DNP, DN 

65 F 0.07 0 16 2 2 0 

48 M 0.4 0 15 2 2 DNP 

35 M HM 0 15 2 2 DNP, DN 

65 F 0.08 Partial 11 2 2 0 

68 M 0.04 0 10 2 2 DNP, DN 

58 M HM Complete 7 2 2 0 



	

208	

The OIR mouse mimics human PDR metabolic dysregulation   

 

Since the OIR mouse model spontaneously develops several pathological retinal 

features that are also observed in PDR, (e.g., retinal ischemia, pre-retinal 

neovascularization and profound neurodegeneration), global and targeted 

metabolomic analyses were performed on ocular samples from these mice to 

identify and validate their metabolic profile at the time of maximal pre-retinal 

neovascularization (17 days of age, P17). We compared whole eyes extracted 

from OIR mice and from ge-matched controls raised in ambient oxygen and found 

that metabolites involved in the arginine pathway/urea cycle (arginine, proline, 

citrulline and ornithine) and in beta-oxidation (octanoylcarnitine) were similarly 

dysregulated to what had been observed in clinical samples from PDR patients 

(Table 8). 

In the OIR mouse model methionine and allantoin were not dysregulated, but 

lysine, pantothenate and succinate were increased, when compared to controls. 

Furthermore, a downregulation in several metabolites involved in purine 

metabolism pathways was also identified in the OIR model, with dysregulated 

levels of adenosine monophosphate (AMP), inosine, hypoxanthine and xanthine.  

To further understand how these metabolic alterations develop over the hypoxic 

period (from P12 until P17) in the OIR mouse, global metabolomic analyses were 

carried out on ocular samples collected at P12, P14 and P17. They were 

compared to those of age-matched controls raised in ambient oxygen (normoxia - 

NOX).  
Pantothenate was increased with fold changes of 1.6 (p=0.0154, q=0.3746, at 

P12) and 2.0 (p=0.009, q=0.1909, at P14). Proline, arginine and lysine were 

increased from P14 onwards with fold changes of 3.1 (p=0.0000009, q=0.0006), 

2.3 (p=0.0164, q=0.2356), and 2.7 (p=0.0017, q=0.1175), respectively, while at 

P17 they were increased 3.1 (p=0.0049, q=0.1537), 3.1 (p=0.009, q=0.1596) and 

2.1 (p=0.0398, q=0.1764) respectively (the q-values are out of the ideal threshold 

of 0.05, however the p-values are very low and indicate a trend for these 

metabolites). 
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Arginine metabolism and ammonia detoxification are similarly dysregulated 

in human PDR and in the OIR mouse.  

 

Pathway enrichment analysis was performed for the metabolites dysregulated in 

the OIR mouse and human PDR samples using the MetaboAnalyst program [226]. 

The analysis revealed that arginine metabolism and ammonia detoxification (urea 

cycle) were two of the most perturbed pathways in both species for the conditions 

under study, being dysregulated to a similar magnitude (Figure 43). This adds to a 

growing body of evidence suggesting that Mueller glial cell metabolism is 

particularly compromised in diabetic retinopathy and that this disrupts 

neurovascular crosstalk within the retina, thus promoting disease progression 

[227,228]. 

Fatty acid oxidation was also disturbed both in the OIR mouse and in human PDR 

as a result of dysregulated acylcarnitines; however, the fatty acid oxidation 

pathway was not sufficiently enriched in the pathway enrichment analyst for 

human PDR due to an incomplete reference metabolite dataset for this pathway. 

In the OIR mouse eye, there was an additional compromise in purine metabolism 

revealed by a significant downregulation of AMP, inosine, hypoxanthine and 

xanthine. 
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Figure 43 - Metabolite Set Enrichment Analysis. Arginine metabolism and urea cycle 
(ammonia disposal) pathways are the most significantly affected both in (A) Human PDR 
(4 dysregulated features out of 26 (4/26), False discovery rate (FDR) p value = 0.00353; 
and 3/20, FDR = 0.0249, respectively) and in the (B) OIR P17 mouse (4/26, FDR=0.0184; 
and 4/20, FDR = 0.0126). 

 

Arginine is metabolized to proline and argininosuccinate in the OIR mouse 

eye.  

 

Ornithine, proline and citrulline, which are dysregulated in the OIR mouse eye at 

P17, can be generated from arginine via the arginase or the nitric oxide synthase 

(NOS) pathway. Overexpression and excessive activity of the arginase pathway in 

the diabetic rodent retina has been implicated in vascular endothelial cell 

dysfunction, via reduced activity in the NOS pathway[229]. This is concomitant 

with increased peroxynitrite formation, increased formation of polyamines and 

proline, which induce cellular proliferation and fibrosis[229]. Arginase overactivity 

has also been described in the OIR model, where it contributes to hyperoxia-
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induced retinal neurodegeneration, via upregulation of polyamine synthesis, and 

retinal microvascular dropout via increased oxidative stress [230,231]. 

To gain further insight into arginine metabolism in the OIR eye and better 

understand the observed metabolic dysregulation, global isotope metabolomic 

studies were performed in vivo, in the OIR mouse model. This is the first time this 

type of study has been performed in vivo in the eye. U-15N-arginine, natural-

abundance arginine and vehicle (PBS) were injected intravitreally, and the 

metabolites analyzed by global MS analyses ten minutes post-injection. Both 

pairwise and multigroup analyses were used to compare vehicle, U-15N-arginine 

and natural-abundance arginine OIR P17 extracts by X13CMS [225]. It was seen 

that U-15N-arginine (m/z 179.1055 [M+H]+) was converted into U-15N-

argininosuccinate (m/z 293.1044 [M-H]-), U-15N-ornithine (m/z 133.0772 [M-H]-), 

and U-15N-proline (m/z 117.0682 [M+H]+), suggesting predominant activity in the 

arginase-to-proline pathway. Tandem MS can be seen for natural abundance and 

U-15-metabolite for proline and argininosuccinate on Figure 44 Mass isotopomer 

distributions (MIDs) can be seen for these metabolites on Figure 45. We also saw 

production of another potential isotopomer of argininosuccinate with m/z 294.1214 

[M+H]+. This isotopomer was not seen in negative mode. At present the 

identification of this metabolite is not known as the abundance was below the limit 

of detection for tandem MS. Polyamine synthesis was not dysregulated following 

arginine injections, suggesting that in OIR conditions, at P17, proline plays a more 

relevant role for generation of the retinal pathological phenotype Figure 45. 

Beyond promoting production of the extracellular matrix component collagen, 

proline can also be metabolized by proline oxidase to generate: (1) ATP, which 

can help sustain endothelial cell proliferation; (2) or reactive oxygen species that 

may contribute to further retinal damage [232]. Citrulline, another key metabolite in 

arginine metabolism could not be identified following U-15N-arginine injection. This 

could be due to very low abundance or fast conversion through this intermediate. 

Given that U-15N-argininosuccinate was identified it is possible that it was 

produced directly from arginine [233]; for argininosuccinate to be formed from 

citrulline, only two of its nitrogen atoms would be 15N-labeled, and two would be 

natural abundance 14N atoms having come from aspartate and carbamoyl 

phosphate. 
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In order to determine whether the metabolism of arginine was different in control 

mice housed in normoxia (NOX) conditions, we similarly injected U-15N-arginine, 

natural-abundance arginine and vehicle (PBS) intravitreally, and analyzed the 

metabolites by global mass spectrometry analyses ten minutes post-injection. We 

observed the appearance of U-15N-arginine, U-15N argininosuccinate, U-15N-

ornithine and U-15N-proline, and Figure 45 shows the MIDs for these isotopomers. 

It is clear that in the OIR model U-15N-arginine has a larger conversion to U-15N-

proline 9.8 %, compared to 1.0 % in the NOX model Table 11. This shows that 

arginine is metabolized to proline to a larger extent in the OIR mouse compared to 

the control NOX mice. In the NOX model there is a larger conversion to U-15N-

ornithine (37.8 % compared to 6.1 % in the OIR model). Due to limitations in 

experimental design (the experiments performed provide a snapshot at 10 minutes 

post injections and do not allow for a longitudinal evaluation of metabolic 

conversions), the fate of newly produced U-15N-ornithine could not be further 

identified; however, future studies using flux analysis and follow-up of a larger 

number of mice over the span of a year will provide further information on 

metabolic conversions and dosage optimization.  

 

Table 11 – Percentage of U-15N-metabolite produced from U-15N-arginine 

 

 

 NOX OIR 

 

U-15N-Arginine 
58.8% 78.65% 

 

U-15N-Proline 
1.03% 9.8% 

 

U-15N-Ornithine 
37.8% 6.1% 

 

U-15N-Argininosuccinate 
2.3% 5.4% 
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Figure 44 - Global stable isotope analyses with U-15N-arginine. (A) Tandem MS of 
natural abundance and U-15N-argininosuccinate and (B) natural abundance and U-15N 
proline. 
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Figure 45 - Argininosuccinate, ornithine and proline are increased 10 minutes after 
intravitreal injection of U-15N-arginine. Metabolites in gray were not detected. Mass 
isotopomer distributions (MID) corrected for natural stable-isotope abundance in oxygen 
induced retinopathy (OIR) and normoxia (NOX) mice. 
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Discussion 

 

A better understanding of the pathophysiological processes occurring in PDR is 

necessary for improving patient care and for developing new and effective 

therapeutic strategies. Diabetes is a metabolic disease, an attribute that is highly 

amenable to MS-based metabolomic analysis. Here we were able to identify 

metabolic dysregulation in the vitreous humor of patients with PDR, which was 

further validated in a second set of patient samples. Furthermore we were able to 

observe similar metabolic perturbations in the eye of the OIR mouse model, which 

allowed us to then use novel global isotope metabolomics and pathway mapping 

tools to investigate the metabolic pathway changes that occurred.  

One of the most prominently dysregulated pathways in PDR was arginine-to-

proline metabolism, which has been widely studied in other diabetic tissues as well 

as in diabetic rodent models that recapitulate the early stages of DR 

[229,231,234]. Arginine and metabolites from the urea cycle also predominated in 

the eye extracts from the OIR mouse model. Two different pathways in the retina 

can metabolize arginine: the arginase pathway that produces ornithine and urea, 

and the NOS pathway, which generates citrulline and NO. Current knowledge 

suggests that the pathological features observed in diabetic rodent model retinas 

are caused by overactivity of the arginase II enzyme. This causes a shortage of 

arginine for the NOS pathway, resulting in lower availability of NO, endothelial cell 

dysfunction, and, consequently, impaired vasodilation[234]. It also causes NOS 

uncoupling with subsequently increased production of oxygen and nitrogen 

reactive species that contribute to further retinal damage[234]. Studies in the OIR 

model have also reiterated the detrimental effect of arginase II in the retina 

showing that transgenic models with a global genetic deletion of this enzyme are 

partially protected against development of hyperoxia-induced vascular obliteration 

and, thus, present reduced levels of preretinal neovascularization[235]. This 

beneficial effect has been attributed to normalization of NOS activity with 

consequent reduced production of reactive oxygen and nitrogen species, and 

higher NO availability.[235] 

In vitreous samples from PDR patients, simultaneous upregulation of metabolites 

involved in both the arginase and the NOS pathway was observed (arginine, 

ornithine, proline and citrulline) but proline dysregulation was clearly the most 
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pronounced feature. This suggests that investigating the causes and mechanisms 

that lead to over-activity in the arginine-to-proline pathway in the diabetic eye may 

provide important clues for better understanding the pathophysiology of DR. 

A similar metabolomic landscape was identified in the eye of the OIR mouse 

model at P17, further suggesting preferential activity in the arginine-to-proline 

pathway. The aim of our global isotope metabolomic analysis was thus to 

determine which pathways predominate (and to what extent) for arginine 

metabolism in the OIR mouse model, which could lead to a hypothesis regarding 

human PDR. The analysis revealed that proline, argininosuccinate and ornithine 

were formed after U-15N-arginine injection, further validating the hypothesis that 

the arginase-to-proline pathway predominates over the NOS pathway.  

Methionine metabolism was also compromised in PDR, which is in accordance 

with previous studies revealing high plasma levels of methionine in streptozotocin 

dosed rats [236] which inversely correlated with plasma insulin levels. Moreover, 

methionine plasma levels increased with exogenous insulin administration and 

progressively decreased after cessation of therapy, revealing its potential as a 

therapeutic biomarker.  The concomitant upregulation of various amino acids in 

the vitreous of human PDR patients suggests a compromise in the metabolic 

capacity of the retina, pointing to a potential metabolic overload in Mueller cells, 

and raises concerns about potential amino acid toxicity and indiscriminate use of 

amino acid supplements by diabetic patients.   Since the retina does not express 

all the enzymes involved in the urea cycle, it relies on Mueller glia for amino acid 

metabolism and ammonia disposal [237]. These cells play a very important 

supportive role in the retina and their proper functioning is crucial for maintenance 

of local neuronal and vascular health.  It has been shown that local accumulation 

of ammonia in the retina, in hepatic retinopathy, results in ammonia-induced 

Mueller cell swelling [237,238], which leads to neuronal defects. Studies assessing 

extreme retinal remodeling in the context of retinal degeneration induced by light 

damage have also shown that arginine metabolism is profoundly affected and that 

it is temporally associated with evident phenotypic changes in Mueller glia [239]. 

Furthermore, the retina is a highly metabolically active tissue that strongly relies 

upon its local energy stores of creatine and phosphocreatine for adequate 

functioning [228]. Creatine is produced by Mueller glia from methionine and 

arginine [240]. Dysfunctional Mueller glia may therefore deplete essential energy 
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stores in the retina further contributing to development of neurodegeneration and 

pathological vascular changes. A study focusing on supplementation of S-

adenosyl-methionine in the context of reduced retinal creatine stores has 

suggested that this procedure can exert neuroprotective effects [241]. These 

findings and the results presented here therefore suggest that a severe 

impairment in metabolic activity of Mueller glia can strongly contribute to the 

profound retinal neurodegeneration and neovascularization seen in patients with 

PDR. 

A defect in lipid metabolism, more precisely in mitochondrial fatty acid oxidation, 

was also identified in the first set of PDR samples, being expressed as a 

significant upregulation of octanoyl carnitine, propionylcarnitine and decanoyl 

carnitine. These acylcarnitines have been shown to be increased in the serum of 

pre-diabetic patients and are considered a marker for insulin resistance and a risk 

factor for disease progression [242]. Further studies assessing the association 

between serum, urine and vitreous levels of acylcarnitines may reveal important 

and consistent correlations among the different types of biological samples, which 

can lay the foundations for discovery of novel biomarkers for risk stratification and 

therapeutic efficacy monitoring in DR patients. However further validation and 

assessment of acylcarnitines as robust biomarkers is warranted, as they have 

been observed in many metabolomic studies in very diverse pathologies, such as 

cancer, Alzheimer’s disease and obesity-associated inflammation [243-245].  

Previous clinical studies have shown that purine metabolism is affected in patients 

with diabetic retinopathy [246] and that progressive serum uric acid levels 

associate with DR of increasing severity [247]. In humans, allantoin is the primary 

and stable oxidation product of uric acid and is therefore considered a sensitive 

biomarker for oxidative stress [248], which has been widely implicated in the 

pathophysiology of DR [249]. Our study corroborates the current notion that 

oxidative stress plays an important role in PDR and suggests that the association 

between increasing serum uric acid levels and increasing severity of DR reported 

in the literature may be related to production of allantoin in the eye.  

 

Although the presence of metabolic dysfunction has been widely explored in other 

tissues in diabetic conditions, little is known about what happens in the eye in 

PDR. In this study we have generated a global metabolomic profile for PDR from 
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patient vitreous samples and revealed novel metabolic perturbations, 

characterized by prominent impairments in amino acid and acylcarnitine 

metabolism. In addition, these results were validated in a second set of patient 

samples. Analogous analyses in the OIR mouse showed that this model shares 

not only retinal pathological features with human PDR but also important 

disturbances in metabolic pathways, further investigated by novel in vivo global 

isotope metabolomics. The pronounced increase in proline in both PDR patients 

and the OIR model, and the predominance of the arginase-to-proline pathway in 

the OIR mouse eye suggest a severe impairment in retinal metabolic activity, and 

especially that of Mueller glia. Finally, the ability of the OIR mouse to recapitulate 

the PDR metabolic phenotype shows its value and promise as an appropriate 

model. This model can be used for the discovery of novel druggable targets and 

the development of alternative therapeutic strategies that, when successful, can 

be implemented in the clinic to greatly improve patient care. These findings 

provide new directions for research in PDR and will pave the way towards 

implementation of additional disease monitoring strategies to include metabolic 

biomarkers of disease progression and of therapeutic response.  
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Main conclusions 

 

 Metabolic dysregulation in PDR mainly affects amino acid metabolism and 

ammonia detoxification pathways followed by purine metabolism related 

oxidative stress and acylcarnitine metabolism 

 Arginine-to-proline metabolism is the most dysregulated metabolic pathway 

in human PDR and this feature is shared with the OIR mouse, a model that 

recapitulates retinal pathological features resembling those of human PDR  

 An over-activity of the arginase pathway in the eye leads to (1) increased 

production of proline and (2) potentially reduced activity in the NOS 

pathway, with consequent reductions in NO availability (simplified 

representation Figure 46). Even though NO’s role in ischemic retinopathies 

is controversial, this metabolite is important for maintenance of adequate 

endothelial function and vasodilation, and acts as a modulator of retinal 

neurovascular crosstalk[100]; therefore, lower availability of NO at critical 

time-points and/or sites along with increased proline levels may significantly 

compromise interactions within the NVU, generating ‘danger signals’ that 

activate detrimental responses in retinal cells.  

 The profound perturbations in arginine metabolism and ammonia 

detoxification pathways observed both in PDR and in OIR suggest that 

Mueller cell dysfunction, potentially induced by metabolic overload, can play 

a role in development of retinal pathological features. 

 In OIR eyes, levels of inosine, hypoxanthine and xanthine are lower than in 

controls, suggesting that lower production or increased metabolism of these 

purine metabolites may promote development and progression of ischemic 

retinopathy in this model. 
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Figure 46 – Simplified representation of arginine metabolism focusing on its two main 
pathways: Nitric oxide synthase (NOS), which produces NO and citrulline; and Arginase, 
which generates urea and ornithine that is later converted to proline. 
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C. Protective Metabolic Factors in Diabetic Retinopathy 

 

Rationale for conducting this work 

 

 There are no specific and reliable biomarkers to assess risk of development 

or progression of DR or to monitor response to therapy  

 Prevention strategies, based on metabolic control, are unable to 

consistently and efficiently avoid disease development and progression 

 Available therapeutic strategies are “non-selective” (even though anti-VEGF 

agents are a specifically targeted therapy, VEGF also has beneficial 

neurotrophic functions in the retina; therefore non-selective VEGF 

inhibitions induces detrimental consequences), act late and are only able to 

prevent further vision loss, i.e., they cannot reverse or improve what has 

been lost during earlier DR stages  

 Developing targeted therapies that can act at earlier DR stages to reverse 

the initial pathological changes (before these can elicit detrimental and 

uncontrollable retinal pathological responses) is, therefore, the ideal 

strategy to prevent progression and DR-induced vision loss. 

 Even though there are no available strategies to effectively arrest DR at its 

early stages or to prevent its development, there is a subset of diabetic 

patients who are endogenously protected from developing severe DR 

complications, despite long-term disease (diabetes for at least 15 years) 

 Identifying specific metabolic responses in this subset of protected patients 

can potentially provide new and meaningful information for discovery of 

novel drugs and biomarkers 

 

 All experiments presented in this chapter were performed by L.P.P.; The 

experimental results illustrated in Figs. 51, 58 and 59; and 61, 62 and 63 

were obtained in collaboration with YU, MG and CHJ, respectively. 
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C.1. Inosine slows retinal metabolism in hypoxic conditions and prevents 

development of the most severe features of diabetic retinopathy 

 

Background and significance 

 

Diabetic retinopathy (DR) is the leading cause of blindness in industrialized 

nations in adults under the age of 65 and recent epidemiological studies estimate 

that it will affect 191 million people worldwide by the year 2030.[69] 

DR is classified as non-proliferative (NPDR) or proliferative DR (PDR) depending 

on the severity of vascular changes, and PDR, the late-stage disease, is frequently 

associated with severe vision loss due to retinal edema, vitreous hemorrhage and 

retinal tractional detachment[250] 

Retinal vascular changes have classically been given the most relevance in DR 

and remain the mainstay of diagnostic classification and treatment orientation; 

however, neurodegenerative changes, reflected by abnormal electroretinographic 

oscillatory potentials[5] and reduced flicker-light induced vasodilation 

responses[251], occur much earlier in diabetic patient retinas, and have even been 

reported in the pre-diabetic state[252].[253]. Since retinal neurovascular units 

(NVUs) regulate local blood supply to ensure that the metabolic needs of retinal 

neurons are met, the events previously described in diabetic retinas suggest that 

compromises in the retinal neurovascular crosstalk may be contributing and 

eventually driving DR progression[254]. This concept is supported by studies 

showing that an impaired light-evoked retinal vasodilation response is associated 

with abnormal nitric oxide (NO) signaling between Mueller cells and the retinal 

vasculature; and that the vasodilatory response is significantly improved by 

inhibiting inducible nitric oxide synthase (iNOS)[110,227].  

Currently, there are no reliable strategies to effectively prevent DR in every case, 

and no validated specific biomarkers to predict risk of progression. Maintaining 

adequate glycemic, lipid and blood pressure control has been advocated as the 

best strategy to prevent and arrest DR progression, however studies have shown 

that up to 20% of long-term diabetic patients (with diabetes over 30 years) still 
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develop late-stage disease - proliferative diabetic retinopathy (PDR) – despite 

ideal metabolic control. [27,68] 

Existing therapeutic strategies for management of DR (e.g., laser 

photocoagulation and anti-vascular endothelial growth factor (VEGF) agents) act 

late and are ineffective at arresting disease progression in a sustainable fashion in 

every patient. Moreover, anti-VEGF agents may further exacerbate disease at the 

retinal, and systemic (renal and cardiovascular) levels[27,221,255-257].  

Laser photocoagulation, the preferred therapeutic approach in DR, reduces risk of 

severe vision loss by 50%[250,258], by eliminating peripheral hypoxic retinal 

neurons and thereby reducing retinal metabolic demand. This suggests that 

metabolic supply and demand mismatches are involved in pathogenesis of DR.  

Developing non-destructive approaches to prevent damage to or stabilize 

interactions within the NVU in the retina may represent a more efficient therapy.  

Unfortunately, retinal metabolism and neurovascular interactions in the retina are 

understudied, especially in the context of diabetic retinopathy.  A deeper 

understanding of these topics may explain why up to 50% of patients with type 1 

diabetes and about 10% of those of type 2 are expected to develop PDR after 15 

years of diabetes, and why there is a small subset of patients who appear to be 

protected from developing severe diabetic complications (or from developing them 

at all[259]) despite long-term disease[259]. In fact, duration of diabetes is the 

single most important risk factor for development of DR[27] and it is expected that 

the latter will develop, to some extent, in nearly all type 1 and in over 60% of type 

2 diabetic patients after 20 years of disease[70,71]. The previously mentioned 

“protected” diabetic patients provide an opportunity to identify protective factors 

and to further understand DR pathophysiology. 

Furthermore, diabetes is characterized by profound metabolic dysfunction, which 

severely compromises cellular energy production; and, the retina is one of the 

most metabolically demanding tissues in the body due to its constant 

photoreceptor activity[260,261]. This dangerous association suggests that 

individual differences in metabolic activity within the diabetic patient population 

may be associated with protection against development and progression of DR. 

Global and highly sensitive mass-spectrometry (MS) metabolomic approaches are 

currently available and constitute the ideal tool to study potential metabolic 

differences between subjects[262,263]. These techniques generate 
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comprehensive and reliable metabolic profiles that are able to clearly differentiate 

groups of patients otherwise indistinguishable from one another.[264,265] 

Additionally, they can provide metabolic cues that can help achieve a deeper 

understanding of disease pathophysiology and pave the way towards discovery of 

novel disease biomarkers and therapeutic targets. 

 

In this study, we hypothesized that protection against development of severe DR 

in long-term-diabetic patients could be related to individual metabolic 

idiosyncrasies. To test this hypothesis, we performed global metabolomic analysis 

on blood serum to compare the metabolomic landscape of two groups of patients 

on opposite ends of the disease spectrum: long-term diabetics without PDR 

(“protected” group) and diabetic patients with PDR regardless of disease duration 

(“unprotected group). 

We selected a candidate purine metabolite, inosine, based on its reported 

neuroprotective and immunomodulatory properties[266] and further tested its 

effects on (1) retinal aerobic metabolism using the novel Seahorse technology, 

and (2) retinal phenotype in the oxygen-induced retinopathy mouse (OIR), a 

rodent model that develops areas of retinal ischemia and pre-retinal 

neovascularization resembling those observed in human PDR. Inosine intravitreal 

injections prevented pathological pre-retinal neovascularization by slowing basal 

aerobic retinal metabolism in vaso-obliterated areas and enhancing their 

revascularization. Inosine can thus become an advantageous alternative to laser 

photocoagulation therapy because it similarly reduces retinal metabolic demand to 

better match supply and to effectively arrest disease progression, but in a non-

destructive fashion 
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Results 

 

Glycemic control and disease duration cannot accurately predict risk of DR 

progression 

 

Although glycemic control is the cornerstore of diabetes care and considered one 

of the most critical approaches to prevent development of diabetic 

complications[80], it is becoming increasingly clear that maintaining classic 

metabolic parameters under control alone is insufficient to prevent development of 

diabetic complications and, in some cases, may even be dispensable.[68,267] In 

addition, duration of diabetes is considered one of the strongest predictors for 

development and progression of DR[268]. 

In order to assess the role of demographic and clinical parameters in protection 

against PDR in our study population, we compared the “protected” group (n=12; 

patients who did not develop PDR despite long-term diabetes), to the non-

protected group (n=10; patients who developed PDR regardless of diabetes 

duration. The detailed clinical characteristics are described in Table 12. 

Both groups showed similar characteristics: (1) type of diabetes: 50% type 1 and 

50% type 2; (2) gender distribution: M/F=1/3 in “protected” patients and M/F=1/3.3 

in non-protected patients; Figure 47A and (3) profile of comorbidities (Figure 

47B); Patient age, however, was higher in the “protected” group (66.08±3.7 versus 

51.50±3.4; p=0.01; Figure 47C). Furthermore, there were no significant 

differences between groups regarding duration of diabetes (34±5.4 versus 26±4.4; 

p>0.05; Figure 47D) or common metabolic parameters such as, serum levels of 

glycated hemoglobin (HbA1c; 7.3±0.45 versus 7.46±0.27; p>0.05; Figure 47E) or 

body mass index (BMI; 27.7±1.8 versus 27.52±1.0; p>0.05; Figure 47F).  

The clinical characteristics of our study cohort reinforce the notion that (1) 

adequate glycemic and/or BMI control alone is insufficient to prevent PDR (Figure 

47E-F), and is not an absolute requirement for protection  (some “protected” 

patients showed unfavorable metabolic characteristics (Table 12); and that (2) 

longer diabetes duration does not necessarily correlate with higher likelihood of 

progression to late-stage disease. 
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Table 12 - Clinical characteristics of the study cohort  

  

DR 

stag

e 

Age

Gend

er 

Ethnicit

y 

Typ

e of 

DM

Durati

on of 

DM 

(years) 

HbA1c 

(%/mmol/m

ol) 

Comorbidit

ies 

BMI

(kg/m
2) 

Oral 

AD 

Insuli

n 

Inosine 

levels 

(Abundan

ce) 

Mild 

NPD

R 

77 F Caucasi

an 

2 19 6.9 (52) HTN; HL 25.2 From 

diagno

sis 

Last 

4 yrs 

70800.870 

Mild 

NPD

R 

47 M Caucasi

an 

1 37 7.1 (54) HTN; HL 23.1 0 37 

yrs 

7987.723 

No 

DR 

62 M Caucasi

an 

1 45 9.1 (76) HTN; HL; 

DN 

24 0 45 

yrs 

12764.910 

No 

DR 

39 M Caucasi

an 

1 27 5.9 (41) 0 23 0 27 

yrs 

45000.380 

Mild 

NPD

R 

73 M Caucasi

an 

2 30 7.5 (58) HTN; HL; 

CVD 

37.7 From 

diagno

sis 

Last 

3 yrs 

11713.880 

Mild 

NPD

R 

61 M Caucasi

an 

1 42 6.2 (44) HTN 20.4 0 42 

yrs 

14997.350 

Mild 

NPD

R 

80 F Caucasi

an 

2 20 5.9 (41) HTN; HL 27 20 yrs 0 82825.980 

Mild 

NPD

R 

75 M Caucasi

an 

2 18 6.8 (51) HTN; HL 30.3 From 

diagno

sis 

Last 

10 

yrs 

10107.800 

Mild 

NPD

R 

76 M Caucasi

an 

1 66 6.6 (49) HTN; HL 28.3 0 66 

yrs 

24714.480 

No 

DR 

78 F Caucasi

an 

1 70 6.8 (51) HTN; HL 23.4 0 70 

yrs 

11803.950 

Mild 

NPD

R 

63 M Caucasi

an 

2 16 7.4 (57) 0 27.9 From 

diagno

sis 

Last 

9 yrs 

9589.691 

Mild 

NPD

R 

62 F Hispanic 2 18 11.5 (102) 0 41.6 N/A Last 

8 yrs 

77710.520 

PDR 50 F Caucasi

an 

2 3 6.9 (52) HTN; HL 27.9 3 yrs 0 11671.230 

PDR 67 M Hispanic 2 21 7.1 (54) HTN; HL; 33.2 21 yrs 0 5000.644 
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DN 

PDR 36 F Caucasi

an 

1 18 7.2 (55) HTN 24.8 0 18 

yrs 

15264.540 

PDR 41 M Caucasi

an 

1 33 7.3 (56) HL 28.3 0 33 

yrs 

10716.950 

PDR 57 M Asian 2 22 N/A HTN; HL 29 N/A Last 

20 

yrs 

7191.215 

PDR 59 F Caucasi

an 

1 45 9.3 (78) HTN; HL; 

CVD 

22.3 0 45 

yrs 

11188.700 

PDR 41 M Hispanic 2 25 7.3 (56) HTN; HL 26.6 25 yrs Last 

12 

yrs 

4786.110 

PDR 62 M Hispanic 2 14 8.1 (65) HTN; HL 26.7 N/A Last yr 8227.129 

PDR 42 M Caucasi

an 

1 29 7.4 (57) HTN; HL 31.2 0 29 

yrs 

6615.780 

PDR 60 M Caucasi

an 

1 50 6.5 (48) 0 25.1 0 50 

yrs 

6477.118 
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Table 12 (legend)  
 
Mild NPDR = mild non-proliferative diabetic retinopathy; PDR = Proliferative 
diabetic retinopathy; # patient number as seen in the graph on Fig. 1 C; F = 
female; M = male; HbA1c = glycated hemoglobin; AD = antidiabetics; HTN = 
hypertension; HL = hyperlipidemia; CVD = cardiovascular disease; DN = diabetic 
nephropathy; BMI = Body Mass Index (categories: underweight < 18.5; Normal 
weight 18.5 – 24.9; Overweight 25 – 29.9; Obesity 30 or greater); Yrs = years; N/A 
= information not available. 
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Figure 47 - Characteristics of the study population. (A) Type of diabetes, gender 
distribution and (B) comorbidities are similar between protected and non-protected 
diabetic patients; (C) Protected patients are significantly older than non-protected patients 
(66.08 ± 3.741 versus 51.50 ± 3.436; p=0.0105); (D) Duration of diabetes is not 
significantly different between groups (34±5.4 versus 26±4.4; p>0.05); (E) HbA1c levels 
are not significantly different between groups (7.3±0.45 versus 7.46±0.27; p>0.05); (F) 
BMI is not significantly different between groups (27.7±1.8 versus 27.52±1.0; p>0.05). *p 
< 0.05; **p< 0.01; values shown represent Mean+SEM. 
Increased serum inosine levels may distinguish “protected” from non-

protected diabetic patients 
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In order to identify circulating metabolites potentially associated with protection 

against development of PDR, highly sensitive, untargeted, MS-based metabolomic 

analyses were performed on blood serum samples from “protected” and non-

protected diabetic patients.  

Inosine, a purine nucleoside, was one of the most significantly dysregulated 

metabolites between groups, demarcating “protected” from non-protected patients 

(Figure 48A). It was significantly increased in the “protected group” (3.63 fold; 

p=0.02; Figure 48B), suggesting a potentially beneficial role in preventing 

progression of DR. 

Serum inosine levels did not correlate with (1) metabolic parameters, such as 

HbA1c (Figure 48C) or BMI Figure 48D); (2) patients’ age (Figure 48E); or (3) 

duration of diabetes (Figure 48F).  

Diabetic patients commonly have higher serum levels of uric acid and are at 

increased risk of developing episodes of gout[247,269], which can be prevented 

by using allopurinol. 

Allopurinol inhibits xanthine oxidase, an enzyme involved in purine catabolism that 

catalyzes two successive reactions, hypoxanthine to xanthine and xanthine to uric 

acid (the relevant metabolic pathways are presented in the appendix). Inhibition of 

xanthine oxidase leads to accumulation of hypoxanthine, which in turn can be 

converted back to inosine by a freely reversible reaction catalyzed by purine 

nucleoside phosphorylase (PNP). 

In order to assess if higher inosine serum levels in long-term diabetic patients 

could be a consequence of allopurinol usage, serum levels of allopurinol, 

oxypurinol (allopurinol’s active metabolite), hypoxanthine and uric acid were 

compared between the two groups.   

Due to technical limitations (mass-to-charge ratio - m/z - within the same range), it 

was not possible to distinguish between allopurinol and hypoxanthine; and 

oxypurinol and xanthine. However, there were no significant differences in serum 

levels for any of the metabolites under study (Table 13), suggesting that in our 

patient cohort protection against PDR and higher inosine levels were not 

associated with allopurinol usage; Moreover, protection against PDR was not 

associated with higher uric acid levels, as has been suggested in studies 

addressing inosine’s beneficial effect in multiple sclerosis[270]  
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Figure 48 - Inosine serum levels differentiate protected from non-protected patients. 
(A&B) Metabolomic analyses showed significantly augmented inosine levels in protected 
diabetic patients (3.6 Fold; p = 0.02); Inosine serum levels do not correlate with (C) 
HbA1c, (D) BMI levels, (E) age or (F) duration of diabetes. The straight line constitutes the 
best-fit line obtained by linear correlation analysis; *p < 0.05; **p< 0.01; values shown 
represent Mean+SEM 
Table 13 – Untargeted mass spectrometry-based metabolomics showing putative 
identification of metabolites that are not significantly changed between “protected” and 
unprotected patients. 
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m/z = mass to charge ratio 
ppm = part per million 

 

 

Inosine promotes intraretinal revascularization of ischemic areas and 

reduces pathological neovascularization in the OIR mouse  

 

Since there is no diabetic rodent model that spontaneously develops features of 

PDR, the OIR mouse, a non-diabetic model, is frequently used in this context[222]. 

The OIR mouse develops PDR-like features, such as areas of retinal ischemia 

(due to vaso-obliteration) and pathological pre-retinal neovascularization after 

exposure to a 5-day hyperoxic environment.  

Given the correlation between higher serum inosine and protection against PDR in 

long-term diabetic patients, we performed inosine and vehicle (PBS) intravitreal 

injections in the OIR mouse and assessed the effects on development of PDR-like 

retinal features. 

Inosine administered both at postnatal day seven (P7) and at P12 significantly 

prevented development of the typical retinal pathological features at P17 OIR by 

significantly accelerating revascularization of vaso-obliterated areas, thus 

dramatically reducing pathological neovascularization (Figure 49A-B). 

Inosine’s beneficial effects observed with P7 injections could not be attributed to 

reductions in the ischemic area at P12 (Figure 49C). This suggests that inosine 

Putative Metabolite

Identification* 

m/z Mass error (ppm)  Fold change p-value 

Allopurinol/ 

Hypoxanthine 
137.0468 [M+H]+ 7 ppm  1.19 0.3 

Allopurinol/ 

Hypoxanthine 
137.0317 [M-H]- 3 ppm  2.34 0.2 

Oxypurinol/ 

Xanthine 
151.0232 [M-H]- 19 ppm  1.26 0.5 

Uric acid 169.0364 [M+H]+ 4 ppm  1.02 0.8 

Uric acid 167.0258 [M-H]- 28 ppm  1.07 0.6 
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does not prevent development of vascular obliteration during hyperoxia but rather 

exerts its beneficial action during the hypoxic period (from P12 onwards). 

In order to assess inosine’s safety profile and to rule out potential detrimental 

effects on physiologic retinal vascular development, we also injected inosine and 

vehicle at P12 in control mice, raised in ambient oxygen, and analyzed their 

retinas at P17. There were no significant differences in terms of vascular density 

or vascular structure between inosine and vehicle injected eyes (Figure 50), 

showing that inosine does not interfere with normal vascular development. 

Furthermore, we also excluded potential toxic effects on neuroretinal function by 

performing ERG studies, which showed comparable retinal neuronal activity in 

inosine and vehicle injected eyes (Figure 51). 
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Figure 49 - Inosine promotes revascularization of ischemic retinal areas and reduces 
development of pathological neovascularization. (A) Inosine injections at P12 significantly 
reduced vaso-obliteration (depicted in yellow; p=0.0001) and pathological 
neovascularization at P17 (in red; p=0.0002), when compared to vehicle controls; (B) The 
same beneficial effect (at P17) was observed when inosine is injected at P7 (p=0.0001 for 
vaso-obliteration and p=0.001 for neovascularization); (C) Inosine injections at P7 did not 
prevent development of vaso-obliteration during hyperoxia (p>0.05). Two-tailed Student t-
tests; *p<0.05; **p<0.01; ***p<0.001; NS = p>0.05; values shown represent mean+SEM; 
n=8; Scale bars 500 μm. 

 

 

 

Figure 50 – Inosine injections at P12 do not affect physiologic retinal vascular 
development in C57/Bl6 P17 pups raised in normoxia. (A&B) Retinal flatmounts from 
vehicle and inosine injected eyes stained with GS-isolectin to highlight the vasculature; 
(C&D) Higher magnification images showing comparable retinal vascular density and 
structure. Scale bars: 500 μm (A&B) and 50 μm (C&D). 
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Figure 51 - Intravitreal inosine injections do not compromise retinal functioning in wild-
type C56/bl6 adult mice raised in normoxia. Electroretinograms obtained under (A) 
scotopic (low light) and (B) photopic (bright light) conditions show similar neuroretinal 
functionality in inosine and vehicle injected eyes (5 days post injection), thus excluding a 
potential negative impact on retinal neurons. ERG = electroretinogram. Two-tailed 
Student’s t test; Data represents mean + SEM. 
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Inosine moderates the inflammatory response in P17 OIR retinas  

 

Production of chemokine ligand 2 (CCL2 or MCP-1), tumor necrosis factor alpha 

(TNF-α) and VEGF-A is significantly upregulated in the retina under OIR 

conditions and these factors play a crucial role in promoting development of the 

retinal pathological phenotype[6,92,271-273]. Additionally, these also foster 

progression of diabetic retinopathy[68,93] and are upregulated in the vitreous of 

PDR patients. 

Inosine’s role as an immunomodulatory agent has been demonstrated in various 

animal models of disease, ranging from sepsis to experimental autoimmune 

encephalomyelitis [266,274]. To assess if inosine was acting through a similar 

mechanism  in the OIR model, gene expression analysis for CCL2, VEGF-A (and 

its isoforms) and TNF-α were performed on retinal lysates. Twenty-four hours after 

intravitreal injection, only VEGF-A expression levels were significantly 

downregulated in retinas from inosine injected eyes when compared to controls 

(Figure 52A); However at the time point of maximal neovascularization (P17) all 

three factors were found to be moderately and significantly downregulated by 

inosine injections (Figure 53A).  

In mice, three functionally distinct VEGF-A isoforms (VEGF-A 120, 164 and 188) 

can be identified based on their solubility and heparin-binding affinities.  It has 

been suggested that different VEGF isoforms can regulate formation and 

maintenance of specific retinal vascular plexuses in the mouse retina (Chapter IV-

B). Knowing that VEGF-A gene expression is downregulated by inosine injections, 

we next sought to identify if specific isoforms were preferentially affected and to 

what extent. At P13, only VEGF164 expression levels were significantly 

downregulated by inosine injections  (Figure 52B). However at P17, all VEGF-A 

isoforms were downregulated to a comparable extent, suggesting that inosine 

does not preferentially regulate expression of any of them at later time-points 

(Figure 53B).  
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Figure 52 – Effects of inosine injections on gene expression levels of pro-inflammatory 
and pro-angiogenic factors in OIR P13 retinas. (A) Inosine injections at P12 significantly 
reduce gene expression levels of VEGF-A at 24 hours post-injections, without a significant 
effect on expression levels of CCL2 or TNF alpha. (B) Only VEGF 164 expression is 
significantly downregulated by inosine injections at 24 hours after injection. (Two tailed 
Student’s t-test; *p<0.05; n=8; values shown represent mean+SEM). 

 

 

Figure 53 – Effects of inosine injections on gene expression levels of pro-inflammatory 
and proangiogenic factors Inosine in OIR P17 retinas. (A) Inosine injections (P12) 
significantly reduce gene expression levels of CCL2, TNF-alpha and VEGF-A at P17, in 
retinal lysates; (B) All VEGF isoforms (120, 164 and 188) are downregulated to a similar 
extent in retinal lysates collected from inosine injected OIR eyes when compared to 
vehicle injected controls. (Two tailed Student’s t-test; *p<0.05; **p<0.01; n=8; values 
shown represent mean+SEM).  
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Microglial cells, the resident macrophages of the retina, are the first cells to sense 

retinal damage, upon which they become activated (maximally at 24h), initiating 

production of cytokines and acquiring motile properties[18,275]. Concomitantly, 

circulating macrophages are also attracted and invade the retina, further 

contributing to the local pro-inflammatory response. There is a growing body of 

evidence suggesting that the beneficial or detrimental effects determined by 

microglial cells and macrophages on CNS pathology (e.g. neurodegenerative 

diseases) may be dependent on the time of activation and migration (early in the 

disease process versus late)[276,277]. 

DR is characterized by chronic inflammation and one of the anti-inflammatory 

drugs that is showing encouraging results in clinical trials[68] is an anti-CCL2 

agent, which blocks recruitment of macrophages to the eye. 

To evaluate inosine’s effect on retinal microglial cells and macrophages in vivo, 

the number and location of Iba1+ cells (a marker for both cell types) on retinal 

cross-sections was analyzed 24h post-inosine or vehicle injections. Although the 

total number of Iba1+ cells was unchanged between treated and untreated mice, 

there were significant differences in cell distribution across the retinal layers. 

Retinas from inosine injected eyes showed higher numbers of Iba1+ cells in the 

superficial RGC (Figure 54), which is one of the earliest and most profoundly 

affected by hypoxia in OIR conditions. This could suggest that inosine may be 

prompting MGC migration to the most severely damaged superficial retinal layers 

to ensure early removal of debris, thus preventing an exponential pro-inflammatory 

response and the ensuing retinal damage. A similar phenomenon has been 

described in the developing retina in mice and zebrafish, where microglial cells 

phagocytize pyknotic cells produced during neural remodeling, to maintain a 

‘clean’ area that is critical for adequate retinal growth and neurogenesis[278,279].   

 



	

241	

 

 

Figure 54 - Inosine promotes early accumulation of macrophages/microglial cells (Iba1+) 
in the hypoxic RGC layer, in OIR retinas. Average number of Iba-1+ cells in OIR retinas. 
(Two-tailed Student’s t-test; *p<0.05; n=8 per experimental group; values shown represent 
mean+SEM). RGC = retinal ganglion cell; OIR = oxygen-induced retinopathy. 

 

To further characterize the microglia/macrophage population in inosine and vehicle 

treated OIR retinas, gene expression levels of macrophage polarization markers, 

iNOS (inducible nitric oxide synthase; a marker for M1 polarization) and Arginine-1 

(Arg-1; a marker for M2 polarization), were assessed in retinal lysates at 24 h 

(P13) and 5 days post injection (P17). At P13 (24 hours post injection) no 

significant changes in iNOS or arginase-1 were found between experimental 

groups (Figure 55A). However, at P17, iNOS was found to be significantly 

downregulated in inosine injected retinas while Arg-1 remained unchanged 

between inosine and vehicle treated retinas (Figure 55B). This finding further 

supports the possibility that early removal of debris in the most damaged retinal 

regions (promoted by inosine) may prevent accumulation of material that can favor 

preferential M1 polarization at later stages (as the pro-inflammatory phenotype M1 

is characterized by high iNOS expression levels). Moreover, enhanced iNOS 

activity and subsequent excessive NO production (by this specific isoform) have 

been shown to disturb the crosstalk between Mueller cell and the retinal 

vasculature in early diabetic retinopathy and contribute to reduced flicker-light 

induced vasodilation.[110]. Collectively these data further suggest that inosine 

may prevent retinopathy progression by improving cellular interactions within the 
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NVU, and one of the involved mechanisms may be through preventing M1 

polarization and thereby reducing iNOS activity locally to normalize NO signaling.  

 

 

 

Figure 55 - Gene expression levels of macrophage polarization markers in retinas from 
inosine and vehicle injected OIR eyes. (A) Differences in macrophage polarization 
markers are not evident between inosine and vehicle injected eyes at P13 (24 h after 
injection); (B) Expression levels of M1 macrophage marker iNOS are significantly reduced 
in retinal lysates from inosine injected eyes while M2 markers are not changed between 
retinas from treated and untreated OIR eyes. (Two tailed Student’s t-test; n=8; values 
represent mean + SEM; * p<0.05; NS = no statistical significance). 
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Inosine reduces basal mitochondrial metabolism in OIR retinas 

 

To better understand the metabolic effects that inosine induces in OIR retinas, 

concepts regarding retinal metabolism; cellular respiration and oxidative 

phosphorylation; and seahorse® flux analyzers will be briefly reviewed. 

 

A) Retinal metabolism:  

 

The retina is the most metabolically active tissue in the body per unit weight mainly 

due to intense photoreceptor (PR) activity both in photopic (light) and scotopic 

conditions (dark)[22,40,280].  Retinal energy requirements are higher in the dark 

than in the light and most of its energy supplies are produced via oxidative 

metabolism (mitochondrial respiration). Even though Mueller cells rely primary on 

glycolysis for energy production (by converting glucose to lactate), overall retinal 

metabolism mainly reflects that of retinal neurons[22]. In the rabbit retina (under 

basal conditions), only 16% of the energy supply is generated through glycolysis, 

while 84% (in scotopic) or 61% (in photopic conditions) of ATP is produced via 

mitochondrial respiration, which is evaluated via oxygen consumption rates – 

OCR[22].  

Most of the energy generated in the retina is used for active transport of ions (and 

especially for ion exchanges carried out by Na+K+ATPase, which uses 50% in the 

dark and 15% in light, of the total ATP pool) that ensure repolarization of plasma 

membranes for subsequent neuronal reactivation[22].   

Given its (1) high metabolic activity, (2) almost exclusive dependence on glucose 

oxidation and (3) very little reserve (spare) capacity (it utilizes near maximal 

respiratory capacity even under basal conditions), the retina is particularly 

vulnerable to even subtle alterations in metabolic supply (e.g., O2 or nutrient 

deprivation) and changes in retinal energy metabolism (translated into changes in 

O2 consumption rates) constitute one of the earliest and most sensitive indicators 

of impending retinal cell dysfunction[281,282]. This concept is corroborated by 

studies in diabetic cats showing that pO2 levels are reduced even in areas with no 

evidence of capillary dropout[281].  

In conditions of metabolic scarcity, metabolism shifts from oxidative to glycolytic in 

an attempt to generate enough energy to maintain adequate retinal functioning. 
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However, this only sustains retinal activity for a short period of time because 

retinal metabolic requirements remain incredibly high while the ATP yield of 

glycolysis is low. [283,284]. 

 

B) Cellular respiration and oxidative phosphorylation 

 

Aerobic cellular respiration is the process by which biological substrates are 

oxidized to CO2 and water in a step-wise fashion, which includes glycolysis, the 

Krebs cycle and the electron transport chain (ETC), to produce large amounts of 

ATP. The ETC is a series of consecutive redox reactions carried out by a number 

of protein complexes located on the inner mitochondrial membrane (IMM). The 

ETC receives electrons from donors such as NADH and FADH2 that are generated 

during glycolysis and the Krebs cycle and transfers them successively along the 

ETC protein complexes in the presence of an inorganic electron acceptor 

(oxygen); finally, these electrons are incorporated into H2O. The energy generated 

by electron flow down the electron transport chain is used to pump protons across 

the IMM, creating an electrochemical potential across the membrane that drives 

ATP production via ATP synthase (oxidative phosphorylation). More specifically, 

when protons move from the inter-membrane space back into the matrix according 

to their electrochemical gradient, they do it mainly through ATP synthase (complex 

V), which couples this proton motive force to phosphorylation of ADP into ATP 

(Figure 56). However, the IMM is not completely impermeable to protons and 

proton leak can occur, in which case the energy produced is not in the form of ATP 

but in the form of heat. 

Oxidative phosphorylation is tightly coupled to the ETC, so if the electron flow 

decreases, so does oxidative phosphorylation and vice-versa. When ATP 

synthase is inhibited, by lack of substrate or by a drug, the proton gradient is not 

dissipated and consequently this proton motive force exceeds the potential energy 

of moving electrons through the ETC, which is therefore blocked until the H+ 

gradient dissipates again. 
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Figure 56 - Electron transport chain (ETC): Complexes I to V transfer electrons 
successively to produce a proton motive force across the inner mitochondrial membrane 
(IMM). [285] 

 

Retinal oxygen consumption mainly reflects local mitochondrial respiratory activity, 

which produces ATP via oxidative phosphorylation (and a smaller portion of 

energy in the form of heat, when protons leak across the inner mitochondrial 

membrane). This is the preferred process for energy production (especially in cells 

such as retinal neurons that are extremely metabolically active) as it generates a 

high net amount of ATP (29 - 30 in contrast to 2 ATP molecules, during glycolysis).  

 

C) Bioenergetic analyses and the Seahorse Flux analyzer 

 

Mitochondrial respiration in cells and tissues can be evaluated by measuring 

oxygen depletion in the media surrounding them. With the introduction of 

Seahorse XF Flux Analyzers this can now be done in a higher throughput manner 

using multi-well plates. The Seahorse Flux Analyzers create a transient micro-

chamber in each well allowing the measurement of oxygen consumption rates 

(OCR) by assessing rates of oxygen depletion in the extracellular media that 

surrounds the tissue/cells under study (in our case, retinal punches)[286]. This 

technology also allows for assessment of different indices of mitochondrial function 

by sequentially administering a defined set of drugs that block mitochondrial 

respiration at different levels. These drugs are: 
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1) Oligomycin: this drug blocks ATP synthase and therefore the ETC and oxygen 

consumption by complex IV (i.e., oxidative phosphorylation). Any respiration 

occurring in the presence of oligomycin is a result of a proton leak in the IMM. This 

allows for differentiation between OCR associated with ATP production (coupled 

respiration) and OCR associated with proton leak (uncoupled respiration). 

 

2) FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone): This drug is 

an ionophore that permeabilizes the IMM to protons and therefore dissipates the 

proton gradient, uncoupling the normally dependent relationship between the ETC 

and ATP synthesis. Without the resistance of the proton gradient, the ETC 

(terminating in O2 consumption) proceeds at maximal speed although ATP is not 

generated (heat is produced instead). The lack of ATP further enhances activity in 

the ETC in a desperate attempt to increase energy production within the cell. This 

enhanced activity in the ETC allows for determination of the maximal respiratory 

capacity of cells and tissues, which reflects the overall fitness of the mitochondria 

(determined by a combination of factors including their number and ETC density), 

in contrast to the basal respiration that reflects a cell’s current energy demands. 

 

3) Rotenone and Antimycin A (RAA): These drugs inhibit the electron flow down 

the electron transport chain by blocking complexes I and III, respectively. 

 

With this set of drugs (1-3), which are administered sequentially during the 

experiment, the following parameters can be assessed (Figure 57): 

 

a. Basal level of oxygen consumption – measured before addition of oligomycin, 

which is indicative of a cell’s current energy demand  

 

b. Amount of oxygen consumption linked to ATP production (i.e., OCR related to 

oxidative phosphorylation – coupled respiration) – corresponds to the oligomycin-

sensitive OCR (the drop seen in OCR after oligomycin addition) 

 

c. Level of non-ATP-linked oxygen consumption that results in heat production 

(i.e., OCR related to proton leak – uncoupled respiration) – corresponds to the 

oligomycin-insensitive OCR 
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d. Maximal respiratory capacity (i.e., the maximal capacity that tissue/cells have to 

consume oxygen, which occurs when the ETC and ATP synthesis become 

uncoupled)– corresponds to the OCR measured after FCCP injection 

 

e. Spare capacity (obtained by: maximal capacity – basal rate), which indicates the 

flexibility that the cell or tissue has to increase ATP production in order to meet 

increasing metabolic demands.  

 

f. Non-mitochondrial oxygen consumption – corresponds to the OCR measured 

after rotenone and antimycin A (RAA) administration. Since these drugs inhibit the 

ETC, no oxygen is further consumed by mitochondrial cytochrome c oxidase. This 

non-mitochondrial OCR potentially reflects activity of cytosolic oxidase systems 

 

 

 

Figure 57– Representative graph depicting the different mitochondrial indexes that can be 
evaluated with the Seahorse Flux Analyzer using Oligomycin, FCCP, Antimycin A and 
Rotenone (www.seahorsebio.com) 

 

In non-perfused retinal areas, the striking discrepancy between energy supply and 

demand causes a state of profound metabolic insufficiency that drives progression 

of ischemic retinopathies. In order to assess if inosine was affecting retinal 
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metabolism in OIR conditions, we compared oxygen consumption rates (OCR) in 

central (vaso-obliterated) and peripheral (vascularized) retinal regions from inosine 

and vehicle (PBS) OIR injected eyes (Figure 58 and 59). 

  

In central (vaso-obliterated) regions of inosine treated retinas (Figures 58 and 

59): 

 

a) Basal OCR was significantly reduced (by 15%) when compared to controls 

b) Maximal respiratory capacity was identical to that of controls   

c) There was a trend towards an increase in spare capacity when compared to 

controls 

d) The % of ATP-coupled and the % of uncoupled mitochondrial respiration were 

not changed when compared to controls. 

 

 

 

Figure 58 – Inosine reduces basal metabolism in central vaso-obliterated areas of OIR 
retinas without affecting their maximal respiratory capacity [in comparison to retinas from 
vehicle (PBS) injected eyes]. RAA = rotenone and antimycin A. 

 

In peripheral (vascularized) regions, there were no significant differences in 

terms of retinal mitochondrial metabolism between inosine and vehicle injected 

eyes (Figure 59). 
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The fact that inosine only reduces OCR in vaso-obliterated but not in vascularized 

peripheral retinal regions suggests that it can act selectively in response to local 

conditions. Woollard and colleagues have described a similar situation in the 

myocardium after experimental acute coronary artery occlusion where inosine 

exhibited selective inotropic action (positive or negative) depending on specific 

tissue locations (hypoxic versus non-hypoxic) [287].  

 

The reduced basal OCR in central, vaso-obliterated regions indicates that the 

energetic demand of these ischemic areas is reduced when inosine is provided. 

Given that inosine treatments did not affect maximal respiratory capacity or the 

percentage of uncoupled mitochondrial respiration, it suggests that neither the 

retinas’ metabolic capacity nor their coupling efficiency were altered (i.e. 

mitochondrial fitness is not affected) by treatment, and that inosine is functioning 

primarily through altering the current energetic needs (metabolic demand) of the 

tissue. This functional yet energetically conservative retinal hypometabolic state 

can facilitate the revascularization process in ischemic areas, thus preventing 

pathological neovascularization.   
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Figure 59 - Inosine slows basal mitochondrial respiration in the central vaso-obliterated 
areas of retinas from OIR mice. (A) Scheme depicting experimental time course. (B) 
Normalized oxygen consumption rates (OCR) from retinas punches in absence (basal) or 
presence of 0.75 uM FCCP (maximal). Data are mean plus SEM (n = 18 mice), p-value 
calculated with unpaired student's t-test. (C) Spare respiratory oxygen capacity (maximal 
OCR - basal OCR). Data are mean plus SEM (n = 3 experiments), p-value calculated with 
paired student's test. (D) Percent mitochondrial coupled respiration calculated from OCR 
in the presence of oligomycin (2 uM) and basal. Data are the mean plus SEM (n = 18 
mice). 
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Inosine is rapidly converted to inosine-5’-monophosphate (IMP) and uric 

acid in OIR mice eyes 

 

Metabolomic analyses revealed that eyes from OIR mice show lower levels of 

inosine, hypoxanthine and xanthine (as mentioned in Chapter IV-B) when 

compared to age matched controls raised in normoxia (NOX) suggesting that 

lower purine levels in the eye may contribute to development of retinal pathology, 

under ischemic conditions.[288] 

To better characterize inosine metabolism in the OIR mouse eye, we performed in 

vivo global isotope metabolomic analyses using 15N-labeled inosine intravitreal 

injections (and vehicle injections for controls; Figure 60). Shortly after injection (at 

10 minutes), 15N-inosine was converted to 15N-hypoxanthine (387.8 fold 

upregulation in comparison to vehicle injected eyes; p>0.05), which was in turn 

metabolized to 15N-IMP (422.91 fold upregulation; p=0.01) and 15N-uric acid (31.36 

fold upregulation; p=0.003) in the OIR mouse eye (Figure 61A&B). General 

pathways of purine metabolism, including that of inosine, can be seen in presented 

in the Appendix. 

Performing the same analysis in NOX eyes (non diseases eyes) revealed that 15N-

inosine was also preferentially converted to 15N-IMP (313 fold upregulation; p = 

0.007) with milder upregulation of 15N-hypoxanthine (74.1 fold; p =0.04) and 15N-

uric acid (74 fold; p=0.0002; Figure 61A&C). 

Comparing metabolism of 15N-inosine in OIR and in NOX eyes suggests that the 

latter are more efficient at metabolizing inosine as they show significantly higher 

levels of uric acid (2.18 fold; p=0.006) along with a tendency towards increased 

production of IMP (2.24 fold, p=0.07) at 10 minutes post-injection (Figure 62).  

IMP has been shown to play a beneficial role in energy metabolism by being 

converted to GMP and ATP[289]; and uric acid can potentially exert potent anti-

oxidant effects in disease states[290]. These data on inosine’s effect on 

metabolism suggest that increasing inosine ocular levels during hypoxia may 

contribute to retinal protection by inducing a more balanced metabolic profile in 

hypoxic retinal cells, through (1) reduction of basal O2 consumption in vaso-

obliterated areas (Figure 59), thus generating an energetically conservative 

hypometabolic state that does not compromise retinal function (Figure 51); and 

through (2) provision of high-energy phosphates and antioxidant power to retinal 
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cells. Similar phenomena have been suggested for inosine’s protection in the 

ischemic myocardium[287,291-293]. 

 

 
 

Figure 60- Global isotope experiments with 15N-inosine: experimental design 
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Figure 61 - Global isotope metabolomics with U-15NInosine (simplified diagram). (A) Ten 
minutes after intravitreal injection, U-15N-inosine was metabolized to U-15N labeled-
hypoxanthine, U-15N labeled-IMP and 15N labeled-uric acid (27.3 fold upregulation over 
vehicle injected controls; p=0.0009); (B) In OIR eyes, levels of 15N metabolites were 
upregulated as follows: Hypoxanthine (387.8 fold; p>0.05); Uric acid (31.36 fold; p=0.002); 
IMP (422.91 fold; p=0.01); (C) In NOX eyes, levels of 15N metabolites were upregulated as 
follows: Hypoxanthine (74.1 fold; p=0.04); Uric acid (74 fold; p=0.0002); IMP (313 fold; 
p=0.007). Data analysis: Two-tailed unpaired Students’ t-test; Values shown represent 
mean+SEM; *p<0.05; **p<0.01; ***p<0.001. 
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Figure 62 - Metabolism of 15N-inosine to 15N-uric acid is significantly higher in NOX eyes 
(2.18 fold upregulation; p =0.006) when compared to OIR eyes; 15N-Hypoxanthine and 
15N-IMP are not significantly changed between the two conditions. Data analysis: Two-
tailed unpaired Students’ t-test’; Values shown represent mean+SEM; **p<0.01; NS =non 
statistically significant. 

 

Due to the rapid metabolism of the 15N-metabolites in the eye, additional 

experiments using flux analysis (to follow metabolic conversions over time), larger 

numbers of mice and longer follow-up will be the perfect future approach. These 

experiments will be important for optimization of the intravitreal dosage, and will 

ultimately provide comprehensive information on inosine metabolism in the eye. 

 

Inosine down-regulates proline production in the OIR mouse eye 

 

Over-activity in the retinal arginase pathway (of which proline is a downstream 

product) has been shown to strongly contribute to development of pathological 

neovascularization in the OIR mouse, and to retinal inflammation in an LPS-

induced uveitis model[235,294]. In Chapter IV-B we reported that (1) a prominent 

dysregulation in arginine metabolism exists in the OIR mouse due to preferential 

activity in the arginase pathway; that (2) proline is one of the earliest metabolites 

to become dysregulated in the OIR mouse eye when compared to NOX control 

eyes; and that (3) similar perturbations in arginine metabolism exist in the vitreous 

of diabetic patients with PDR[288]. These results along with those reported in the 

literature suggest that arginase over-activity is an important contributor to retinal 
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arginase metabolism: ornithine, urea and proline) were performed at P17. Proline 

was significantly downregulated in treated eyes (-1.74 fold; p = 0.041), suggesting 

that inosine may be reducing activity in the retinal arginase pathway, similarly to 

what has been reported in other tissues (Figure 63A&B). Due to their low 

concentrations in the OIR mouse eye, it was not possible to accurately compare 

ornithine and urea levels between vehicle and inosine injected eyes. 

 

 

 

Figure 63– Inosine affects arginine-proline metabolism: (A) Working model for inosine in 
OIR retinas: Inosine inhibits the arginase pathway to reduce proline production (B) Global 
metabolomics showed that intravitreal injections of unlabeled (regular) inosine significantly 
reduce proline levels in OIR P17 retinas (1.74 fold downregulation; p=0.041). (Two tailed, 
unpaired Student’s t-test; *p<0.05; values shown represent mean+SEM; *p<0.05). 

 

To assess if reduced proline production could be associated with decreased retinal 

arginase levels, we performed gene expression analyses for arginase 1 (see 
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between experimental groups for neither of the retinal arginase isoforms. This 
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potentially by a mechanism of competitive antagonism, as reported in other 
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playing an active role in development of the pathological phenotype; It has been 

shown that L-proline can act as a as a potential endogenous excitotoxin in cultured 

rat dorsal horn neurons by stimulating Ca2+ entry after activation of excitatory 

amino acid receptors[297]. This suggests that a dysregulation in proline may be 

further contributing to disrupt the neurovascular crosstalk in the NVU, thus 

promoting retinopathy progression; inosine, by reducing proline dysregulation, may 

be stabilizing intercellular communication and preventing disease progression.   

 

 

 

Figure 64 – Arginase 2 expression in OIR retinas from inosine and vehicle injected eyes. 
No statistically significant differences in gene expression levels were found between 
experimental groups at 24 h post-injection (A), at 48h post injection (B) or at 5 days post 
injection (C). (Two tailed Student’s t-test; n=4 per experimental condition; values 
represent mean + SEM; * p<0.05; NS = no statistical significance). 
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in purine metabolic pathways  (and especially in those upregulated under ischemic 

conditions, such as AMP deaminase[299]) may potentially act as protective factors 

for DR progression; and that (2) modulation of purine metabolism towards inosine 

production may be a therapeutic strategy to consider in DR management. 

Additionally, circulating levels of inosine could potentially be used as a biomarker 

for assessment of risk of DR progression. Further studies with larger cohorts will 

be necessary to assess inosine’s relevance as a reliable serum biomarker. 

Inosine has been shown to exert neuroprotective[266,300], anti-depressant[301] 

and immunomodulatory effects[274] in several animal disease models. In humans, 

inosine’s neuroprotective effects are currently being explored in clinical trials for 

multiple sclerosis and Parkinson’s disease.[302,303] 

To assess its effect on progression of ischemic retinopathy, inosine was injected 

intravitreally to the OIR mouse, a non-diabetic model that shares metabolic 

perturbations at the ocular level[288] (Chapter IV-B) and develops retinal 

pathological features resembling those observed in human PDR[304]. Inosine 

injections provided significant benefit to the OIR mouse retina by effectively 

accelerating revascularization of vaso-obliterated areas and secondarily reducing 

development of pathological neovascularization. Since inosine was unable to 

significantly prevent development of vaso-obliteration when injected before 

administration of 75% oxygen, the observed beneficial effects did not occur during 

the hyperoxic period but rather during hypoxia, which led us to choose the P12 

time-point (right after they are removed from the hyperbaric chamber) for further 

therapeutic injections. 

The inosine-induced improvement in the OIR retinal phenotype was associated 

with an effect on basal metabolism that was observed only in central, vaso-

obliterated areas. This effect consisted on a 15% drop in basal mitochondrial 

metabolism with no associated compromise of maximal respiratory capacity or 

retinal neuronal function. The metabolic mismatch present in retinal ischemic 

areas disrupts retinal neurovascular crosstalk in the NVU, thus driving and 

sustaining progression of retinopathy. Taken together, these results suggest that 

inosine may be slowing basal mitochondrial metabolism in vaso-obliterated areas, 

where metabolic supply is scarce, to reduce metabolic demand and thereby 

increase retinal cell tolerance to hypoxia. In the literature, it has been shown that 

induction of a similar energetically conservative hypometabolic state allows for (1) 
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survival of mammals during periods of hibernation and (2) preservation of organs 

from non-hibernating mammals (e.g. human hearts for transplantation are 

transported in cold conditions with no blood supply for many hours) during 

considerable periods of ischemia[305]. Induction of hypometabolic states has also 

been implicated in life-span extension in C.elegans (and potentially in mammals as 

well), under conditions of caloric restriction[306,307]. 

Previous in vitro studies have shown that loss of mitochondrial spare (reserve) 

capacity, due to experimentally induced reduction of the maximal respiratory rate, 

causes cone photoreceptor cell degeneration, thus suggesting that preservation of 

maximal mitochondrial respiratory function is critical for retinal neuronal 

health[282]. Inosine did not reduce maximal respiratory capacity or coupling 

efficiency, which suggests that the observed reduction in basal metabolism is not 

due to hypofunctional mitochondria (i.e., lower ‘mitochondrial fitness’) or neuronal 

cell death (ERG responses in inosine and vehicle eyes were comparable) but 

rather constitutes an adaptive response to conditions of nutrient scarcity that can 

potentially be reversed when metabolic supply and energy conditions improve.  

Designing future studies to gain further insight into the mechanism through which 

inosine slows basal mitochondrial metabolism in the retina may provide critical 

knowledge for development of new targeted therapies for retinal ischemic 

diseases. 

Furthermore, induction of hypometabolic states has been shown to effectively 

prevent exacerbated inflammatory responses in cases of critical illness and has 

been proposed as a potential therapy for myocardial ischemia in adults.[308,309] 

Other mechanisms have also been suggested for inosine’s protection of the 

ischemic myocardium; Inosine has been shown to be able to reduce infarct size 

and to significantly increase regional myocardial performance in ischemic areas 

after experimental coronary artery occlusion (in the pig heart, in situ) by exerting 

selective inotropism without any associated increases in metabolic demand 

[287,310]. This selective beneficial action favoring ischemic areas has been 

attributed to inosine’s ability (1) to act as a potent coronary vasodilator (specifically 

increasing blood flow to the most hypoxic regions); and (2) to increase anaerobic 

ATP production by providing glycolytic substrates such as ribose-1-Phosphate, 

and precursors for purine nucleotide re-synthesis, such as hypoxanthine. [287].  
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Impaired endothelium-dependent vasodilation is a prominent and generalized 

feature of diabetes, and therapeutically targeting the vascular endothelium to re-

establish normal vascular reactivity and achieve systemic metabolic benefits is a 

promising therapeutic strategy [311,312]. In DR and other ischemic retinopathies, 

disrupted neurovascular crosstalk contributes to impaired retinal vascular auto-

regulation early on in the disease process. As a consequence, there is reduced 

compensatory vasodilation to hypoxia and other noxious stimuli, and development 

of metabolic mismatches[313]. Vasodilation and the consequent improvement in 

metabolic state can, therefore and by definition, prevent development of 

pathological neovascularization. Moreover, induction of vasodilation with sildenafil 

(in the early stages of hypoxia) has been shown to effectively prevent 

development of pathological neovascularization in the OIR model (by reducing 

HIF1alpha activation)[314].  

Adenosine improves retinal arteriolar vasodilation to hypoxia through activation of 

A2A receptors, which are prominently expressed at the edge of the developing 

vasculature in OIR animals. Since inosine can also activate A2A receptors, 

therapeutically enhancing its levels in the eye may improve hypoxia-induced- 

vasodilation in the developing vessels at the interface of vascularized and vaso-

obliterated regions in OIR retinas. This could increase metabolic supply to hypoxic 

areas and prevent development of exacerbated pro-inflammatory and pro-

angiogenic responses, which would further slow basal mitochondrial metabolism in 

vaso-obliterated areas. The data showed here supports this hypothesis because 

inosine injections also induced a moderate reduction in expression levels of 

VEGF-A (and isoforms), TNF-α and CCL2 (MCP-1), which are known to be critical 

cytokines for development of retinal pathological neovascularization in the OIR 

model. 

An additional mechanism through which inosine may be improving metabolic 

supply/demand ratios in the retina is related to its ability to favor a shift from 

oxidative to anaerobic metabolism, which is less ATP consuming[22]. Previous in 

vitro work has shown that inosine (and other purines) can act as alternative energy 

sources in conditions of metabolic deprivation[315-318] by providing ribose 

moieties (glycolytic substrates) and precursors for the purine salvage pathway, 

that are ultimately used for ATP production. Future studies focusing on accurately 

assessing glycolytic activity using flux analysis will be valuable to fully understand 
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inosine’s potential in retinal ischemic diseases and potentially in other conditions 

characterized by metabolic insufficiency.  

 

Results obtained during our in vivo global isotope metabolomic studies have also 

shown that 15N-inosine is rapidly metabolized to 15N-IMP and 15N-uric acid in the 

OIR mouse eye, and both metabolites may further contribute to inosine’s beneficial 

net effect. IMP has been shown to exert anti-inflammatory effects in remote lung 

injury, following hindlimb ischemia[319,320] and it may potentially enhance cell 

energy production by being converted to GMP and ATP[289]. Regarding uric acid, 

it can be protective by providing strong local anti-oxidant defense.  

Alternatively, or as a complement to acting as an alternative energy source, 

inosine may also be protective by acting as a non-competitive inhibitor of retinal 

arginase[295,296], an enzyme that has been shown by our group and others to be 

overactive in the retina under OIR conditions[234] and in diabetic rodent models 

with early retinal features of DR[229].  Arginase 2 has been shown to be required 

for: (1) development of ischemic retinopathy changes in the OIR model[235]; (2) 

development of early DR retinal changes[229] in rodent models; and (3) 

development of LPS-induced retinal inflammation[294]. These findings may also 

have implications for human DR since in Chapter IV-B it is shown that, in human 

PDR, the most profound metabolic dysregulation in the vitreous occurs in the 

arginine-to-proline pathway, which suggests preferential activation of arginase.  

Taken together, our results and those reported in the literature suggest that 

inosine may beneficially affect metabolism at three different levels, all of which 

may contribute to the inosine-mediated retinal protection seen in the OIR mouse 

retina and potentially in human DR. These three levels are:  

(1) Serving as an alternative metabolic fuel for energy production;  

(2) Improving the metabolic state of retinal vaso-obliterated areas by slowing 

basal mitochondrial metabolism (reducing demand), thus improving the 

crosstalk within the NVU and preventing exacerbated and deleterious pro-

inflammatory and pro-angiogenic responses; 

(3) Reducing proline production in the retina, potentially by inhibiting arginase by 

competitive antagonism.[295,296] 
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In this study, we show that inosine (1) is upregulated in diabetic patients who 

develop minimal, if any, changes of DR and that (2) it significantly prevents 

development of pathological pre-retinal neovascularization (resembling that seen 

in PDR) in the OIR mouse. A metabolic mechanism may be promoting these 

beneficial effects and ensuring more efficient energy management in ischemic 

retinal cells, by slowing basal aerobic metabolism, and thus reducing the metabolic 

mismatch that destabilizes cellular interactions in the NVU. This global 

improvement in retinal cell metabolism and NVU crosstalk may prevent 

development of exaggerated retinal pro-inflammatory responses, thereby breaking 

the vicious cycle that sustains progression of ischemic retinopathies. These events 

may explain the retinal protection seen in OIR retinas after inosine injections and 

in ”protected” long-term diabetic patients with high serum inosine levels. 

Judging from the significant benefits observed in the OIR mouse and from its 

protective effects in human patients with multiple sclerosis, inosine could prevent 

some of the early disruptive events in NVU pathophysiology that drive progression 

of DR, and therefore potentially become a promising therapeutic to arrest DR 

progression at its early stages. 

The currently preferred therapeutic approach in DR, laser photocoagulation, is 

destructive and prevents disease progression by reducing metabolic demand 

through ablation of peripheral retinal neurons; in this work we show that inosine 

can similarly and effectively prevent progression of ischemic retinopathy by 

selectively reducing retinal metabolic demand in a non-destructive fashion,  

As such, inosine (alone or in combination) could become a more effective, early 

acting and safer therapeutic strategy for DR than the ones currently used in the 

clinic, which act late and present concerning off-target effects. 

 

 
Main conclusions 

 

 Differentially regulated serum inosine levels may distinguish protected long-

term diabetic patients from those who develop late-stage disease (PDR) 

 Inosine may become a biomarker to assess risk of progression of DR  

 Inosine also holds promise as a therapeutic agent for the early stages of 

DR, as studies in the OIR mouse show that it significantly prevents 
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development of retinal PDR-like retinal features by slowing basal 

metabolism (without inducing neuronal cell death), thereby reducing 

metabolic demand in a non-destructive fashion. These effects are expected 

to stabilize cellular interactions within the NVU, thus preventing progression 

of DR. Moreover, inosine also downregulates proline levels in the eye, 

which become significantly upregulated under pathological conditions (in 

human PDR and in OIR). 

 Inosine also exhibits immunomodulatory properties in the retina that may 

result from the improved metabolic state in the ischemic retina and its 

associated beneficial effects on retinal neurovascular crosstalk (a stabilized 

neurovascular crosstalk can potentially prevent development of excessive 

pro-inflammatory responses and therefore progression of retinal disease). 
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D. Inadequate Metabolic Control and Development of DR: A Case 

Study 

 

Rationale for conducting this study 

 

 It has been suggested that patients with Wolfram syndrome (WS), a rare 

neurodegenerative disorder characterized by simultaneous presence of 

optic atrophy and diabetes mellitus, are relatively protected from developing 

diabetic retinopathy[321] 

 The main mechanisms suggested for this protection are the following: (1) 

better glycemic control (when compared to age-matched type 1 diabetic 

patients); and (2) lower retinal metabolic demand, as a consequence of 

profound RGC death due to optic nerve atrophy (although PRs have the 

highest metabolic rate in the retina, RGC also significantly contribute to the 

overall metabolic demand of this tissue). 

 Here, we report a case of Wolfram syndrome in a 16-year-old male patient 

who presented with progressive optic atrophy and a severe form of diabetes 

since diagnosis at the age of 6, with challenging glycemic control despite 

intensive therapy; although metabolic control was inadequate, the patient 

did not develop any diabetic complications during the 10-years of follow-up.  

 To further investigate potential causes for this metabolic idiosyncrasy, we 

performed genetic analyses that revealed a novel combination of 

homozygous mutations as the cause of the syndrome in this family. The 

identified genotype included a novel mutation in the Wolfram syndrome type 

1 gene (WFS1) along with a previously described one, which had initially 

been associated with low frequency sensorineural hearing loss (LFSNHL). 

 

 The work presented in this chapter was performed by LPP  
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D.1. A challenging form of non‐autoimmune insulin‐dependent diabetes in 

a Wolfram syndrome patient with a novel sequence variant 

 

Background and significance 

 

Wolfram syndrome (WS) is a rare multisystem neurodegenerative disorder of 

autosomal recessive origin that minimally requires the presence of two diagnostic 

criteria, insulin-dependent diabetes mellitus (of non autoimmune origin) and 

progressive optic nerve atrophy [322]. WS is also referred to as DIDMOAD, an 

acronym for its most common clinical presentation that includes: diabetes insipidus 

(DI), diabetes mellitus (DM), optic atrophy (OA) and deafness (D)[323]. 

Even through diabetes mellitus and optic atrophy are the earliest and most 

common manifestations of WS, neurological and genito-urinary tract 

complications, which usually develop at later disease stages, are especially 

concerning, as they constitute the leading causes of morbidity and mortality in the 

patient population.[323,324]. WS is classified into type 1 or type 2, according to 

the genetic mutation that determines the pathological phenotype.  

WS type 1 is caused by mutations in the WFS1 (Wolfram syndrome type 1) gene 

and is responsible for approximately 90% of the WS cases worldwide; Incidence is 

variable depending on geographic location, with reported estimates of 1/700.000 in 

the UK and 1/100.000 in South America [325]. Even though mutations of exon 8 of 

the WFS1 gene (NM_006005; chromosome 4p16.1) cause the majority of WS type 

1 cases, this syndrome is characterized by significant genetic heterogeneity, which 

contributes to a non-linear genotype-phenotype correlation [326,327]. 

The WFS1 gene encodes wolframin, a transmembrane protein localized to the 

endoplasmic reticulum (ER) that is involved in membrane trafficking, secretion, 

processing and regulation of ER calcium homeostasis, therefore being critical for 

preventing ER stress signaling[328] Wolframin is ubiquitously expressed but its 

highest levels are found in pancreatic beta cells, cardiomyocytes and specific 

neurons[329]. It has been shown that deletion of the WFS1 gene in rodents leads 

to progressive pancreatic beta cell loss due to increased ER stress, along with 

impaired insulin secretion and higher incidence of diabetes[330-332]. In humans, 
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various genetic studies have also shown a strong association between WFS1 

gene variants and increased risk of type 2 diabetes[333-335]. The existence of 

WFS1 variants with different severities, with inactivating or non-inactivating 

properties, and the way in which these interact to induce and modulate phenotypic 

expression of progressive pathological features remains unclear. 

In this study we identify a novel WFS1 missense sequence variant in a WS patient 

and describe its associated progressive clinical picture (over a 10-year follow-up 

period) in a 16-yr old patient who developed an especially challenging form of 

insulin-dependent diabetes at the age of 6. 

 

Case report 

 

A 6-year-old male patient with a history of mild learning disabilities was referred to 

our hospital for polyuria and polydipsia and diagnosed with insulin dependent 

diabetes, which rapidly proved to be particularly challenging in terms of metabolic 

control with fasting blood glucose levels ranging from 203 to 431 g/dl, despite 

intensive therapy with different therapeutic regimens (Table 14).  

Further investigation of the disease excluded autoimmune causes (both Islet Cell 

Cytoplasmic Autoantibodies, ICCA, and Glutamic Acid Decarboxylase 

Autoantibodies, GADA, were negative) and revealed the following HLA haplotype: 

HLA-A*02, *24; HLA-B*07, * 08; HLA-C*04, * 07; DRB1*03, * 13; DQB1*02, * 06.  

His learning disabilities and general pediatric exam suggested a potential visual 

impairment, which prompted an evaluation by ophthalmology. At age 6, the patient 

presented with best-corrected visual acuity (BCVA) of 6/20 (3/10), bilateral optic 

nerve head palor (Figure 65A) and no other retinal abnormalities. The presence of 

bilateral optic atrophy associated with non-auto immune diabetes suggested a 

clinical diagnosis of Wolfram Syndrome (WS). 
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Figure 65 - Retinographies at age 10 (A) and 16 (B), showing severe optic atrophy with 
no retinal changes suggestive of diabetic retinopathy. RE = right eye; LE = left eye 

 

At age 8, nocturnal enuresis became frequent and ultrasonography suggested 

neurogenic bladder. A deteriorated performance at school was also noted due to 

problems in speaking (immature speech and difficulties in articulation and 

phonological processes), reading and interpreting, leading to his failing to pass to 

the next school year. His intelligence quotient (IQ) was evaluated twice with the 

Wechsler Intelligence Scale for Children (WISC-III) and determined to be 64 at 

age 8 and 59 at age 11 (an IQ between 50 and 69 is considered “borderline 

mental functioning” in this testing conditions). The patient currently attends the 9th 

grade (at age 16). 

At age 16, the patient had incomplete pubertal development with testicular atrophy 

associated with increased FSH levels, normal LH and normal total testosterone 

levels (Table 14). His height and weight were 1.65 m (5.41 ft; percentile P 10-25) 

and 64.5 kg (142.2 lbs; P 50-75), respectively. Regarding his metabolic status, 

abdominal lipodystrophy was evident and glycemic control remained highly 

A

RE LE

B

RE LE
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inadequate (HbA1c 8.8 - 9%) under treatment with a 1.5 U/kg daily dose of insulin. 

His insulin sensitivity factor was 20g/dl and his insulin/carbohydrates ratio was 5G. 

Blood pressure was 119/63 mmHg. 
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Table 14 - Evolution of analytical parameters in our patient 

 

 

 

 

 
 

Age 16 

 

Age 14 

 

Age 13 

 

Age 6 

 

Reference 

values 

Fasting blood 

glucose (mg/dl) 
183 272 198 352 70-105 

Urea (mg/dl) 25 42 32 51 16.7-45.4 

Creatinine 

(mg/dl) 
0.8 0.9 0.7 0.5 0.7-1.3 

Uric acid (mg/dl) 4.4 5.6 5.2 N/A 3.5-7.2 

Total 

cholesterol 

(mg/dl) 

130 142 133 N/A < 200 

HDL (mg/dl) 36 47 45 N/A > 60 

LDL (mg/dl) 85 82 72 N/A < 100 

Triglycerides 

(mg/dl) 
44 63 79 N/A < 150 

TSH (uUI/ml) 2.54 2.33 2.09 4.52 0.35 -5.50 

Free T4 (ng/dl) 1.12 1.24 1.07 1.36 0.89-1.76 

Cortisol (ug/dl) 19.8 15.7 14.1 19.1 3.7 – 19.4 

Insulin (uU/ml) 19.5 N/A N/A N/A 2.6-24.9 

C peptide 

(ng/ml) 
0.3 N/A N/A N/A 1.1 – 4.4 

LH (mUI/ml) 6.20 7.92 3.88 N/A 1.14 – 8.75 

FSH (mUI/ml) 22.24 31.95 16.09 N/A 1.37 – 8.75 

Estradiol 

(pg/ml) 
19 N/A N/A N/A 0 

Total 

testosterone 

(ng/dL) 

402 410 377 N/A 166-811 

Glucose (urine) 

mg/dl 
1000 N/A N/A N/A 0 

Glomerular 

filtration rate 

(MDRD-4) 

ml/min 

137.06 N/A N/A N/A > 60 
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During the 10 years of follow-up, the patient underwent periodic multidisciplinary 

assessments; inadequate metabolic control was observed throughout these 

evaluations with HbA1c ranging from 8.6 to 9% despite multiple attempts with 

different therapeutic combinations and nutritional strategies.  

Ophthalmological assessments revealed a progressive deterioration in BCVA 

[from 6/20 (3/10), at age 6, to 6/125 (1/20), at age 16] associated with continued 

atrophy of the optic disc (Figure 65B) and significant functional impairment in 

visual field (Goldmann) and electrophysiological testing. Visual evoked potentials 

(VEP), an electrophysiological test that measures conductance of electrical 

impulse from the optic nerve to the brain, were significantly impaired showing 

increased latency and decreased amplitude of the P100 wave, especially in the left 

eye. However, no associated changes were noted in the full field ERG. These 

findings are suggestive of a significant and isolated defect at the level of the optic 

nerve.  

The patient also underwent two audiometry exams at age 10 and 12 that were 

normal for all hearing frequencies (Figure 66). He did not develop any symptoms 

suggestive of diabetes insipidus or diabetic vascular complications, such as 

diabetic retinopathy, nephropathy or neuropathy. His thyroid function and cortisol 

values were within the normal range of values (Table 14)  

 

 

Figure 66 – Audiograms of the patients at age (A) 10 and (B) 12. 

 

Genetic analyses identified two sequence variants in homozygosity in the WFS1 

gene of our patient, who is the second child of a self-reportedly couple. The 

A 

B 
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presence of non-consanguinity, however, could not be accurately determined 

because the father and the family members from the older generation refused to 

undergo genetic testing.  

The sequence variants identified were the following: 

 

(1)  A novel missense variant c1066T>C (pSer356Pro), in exon 8; 

(2) A previously described variant c482G>A (pArg161Gln), in exon 5, initially 

associated with low frequency sensorineural hearing loss (LFSNHL)[336] and later 

described in the 1000 Genomes Project[337] and interpreted as benign by Shearer 

et al[338]. 

 

His mother and his 19-year-old sister were heterozygous for the same sequence 

variants in the WFS1 gene, while the 11-year-old brother did not present any 

variations (Figure 67).  

These findings highly suggest that (1) both sequence variants must be located on 

the same chromosome (haplotype) and that (2) the presence of the two 

haplotypes in homozygosity is the cause for Wolfram syndrome in this family. 

 

 

Figure 67 - Segregation of the WFS1 gene variants (c1066T>C and c482G>A) in the 
nuclear family of the patient. 

Unaffected male, no 
WFS1 gene variants 

?

?
Unaffected male; 
refused gene c tes ng 

Unaffected female, 
heterozygous for the 
two WFS1 gene 
sequence variants  

Wolfram Syndrome 
pa ent (homozygous 
for the two WFS1 gene 
sequence variants) 
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Discussion 

 

Wolfram syndrome, also known as DIADMOAD, is a rare autosomal recessive 

neurodegenerative disease that typically includes clinical features of insulin-

dependent diabetes, diabetes insipidus, optic nerve atrophy and deafness that 

progress during the patient’s lifetime[323]. The minimum diagnostic criteria are the 

presence of diabetes mellitus and optic nerve atrophy, which usually develop 

during the first decade[339]. 

The patient in this study came to our attention clinically due to a diagnosis of 

insulin dependent diabetes at the age of 6, which was later found to be non-

autoimmune. This finding is quite unusual as 70-80 % of the type 1 Diabetes 

cases are initially positive for ICCA and GADA antibodies [340]. The diabetes in 

the patient was very challenging to manage and despite multiple therapeutic 

strategies, HbA1c levels were always above the desired values. He also presented 

prominent learning disabilities that were partly due to his visual impairment. 

The presence of insulin dependent diabetes with peculiar features, such as non-

autoimmune diabetes and difficult metabolic control, associated with visual 

impairment, or very significant learning disabilities, which may be masking a 

profound visual disorder, should prompt the clinician to consider Wolfram 

syndrome as a possible diagnosis. These patients need to be evaluated and 

managed by a multidisciplinary team to maximize their quality of life. Support and 

knowledge about the condition must be provided to their families, including 

information about prognosis; the mortality rate is very high with 60% of the patients 

dying by the age of 35[341]. 

After establishing a clinical diagnosis of WS from the simultaneous presence of 

non-autoimmune diabetes mellitus and optic nerve atrophy, genetic testing was 

offered to our patient and his family. Two sequence variants were identified in 

homozygosity in the WFS1 gene  (exons 5 and 8): 

The novel variation c1066T>C (pSer356Pro) is a missense variant predicted to be: 

pathogenic by MutationTaster and PolyPhen-2; and likely benign by PROVEAN 

and SIFT. Mutations in the vicinity codons (350 and 361) have been described in 

association with Wolfram syndrome. Since this is a highly conserved residue, 

except in drosophila, and family segregation is compatible, we interpret this variant 

as likely pathogenic. 
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The other sequence variant (c482G>A) has initially been reported to confer a 50% 

risk of developing autosomal dominant non-syndromic low-frequency hearing loss 

and has later been described in association with Wolfram syndrome[336,338]. 

Interestingly, our patient did not present any evidence of hearing impairment over 

the ten years of follow-up (Table 15). 

 

Table 15 - Clinical features present in our patient in comparison to those commonly 
reported 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To facilitate the diagnosis of WS within the type 1 diabetic population, Ehrlich and 

Fishman suggested in 1986 that certain HLA haplotypes could be of interest, (HLA 

DR2 had a higher prevalence in WS patients)[341]. Pinelli challenged this notion in 

1987, claiming that the higher prevalence of specific HLA subtypes in the WS 

patient population was more likely a reflection of the genetic heterogeneity of the 

population from which those cases had arisen[342]. 

The work by Marshall et al showed that diabetes mellitus and optic nerve atrophy 

were the most common (94%) and earliest features to develop in young patients 

 

Clinical features 
Typical WFS1 

cases 

 

WFS1 our case 

 

Diabetes mellitus 

 

X 

 

X 

 

Optic atrophy 

 

X 

 

X 

 

Sensorineural Hearing 

Loss 

 

X 
 

 

Diabetes insipidus 

 

X 
 

 

Neurological disorders 

 

X 

 

X 

 

Genito-urinary tract 

problems 

 

X 
 

 

Hypogonadism 

 

X 

 

X 
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with WS[323].Neurogenic bladder and dilations in the renal outflow tract are 

common in WS patients in their third decade of life. Our patient developed 

symptoms of enuresis due to a neurogenic bladder quite early, at the age of 8. 

Marshall et al reported that enuresis, nocturia and post-void residual bladder 

volume were present in 22%, 17% and 45%, respectively, of their young WS 

patient cohort[323]. 

Earlier studies have suggested that metabolic control is more easily attained in 

WS patients when compared to regular type 1 diabetic populations.[343] This was 

not observed in our patient where glycemic control proved to be incredibly 

challenging despite multiple attempts of therapeutic plan optimization and 

confirmed compliance with treatment.  

A genetic variant in the WFS1 human gene has been shown to determine impaired 

glucagon-like peptide-1-induced insulin secretion[344]; it is possible that the novel 

WFS1 sequence variant identified in our patient plays a particularly disruptive role 

in beta cell functioning, contributing to profound impairment in insulin production, 

secretion or sensitivity. 

Surprisingly, despite 10 years of highly inadequate metabolic control (HbA1c 

ranging from 8 to 9%) there was no evidence of diabetic retinopathy (DR) or other 

complications in our patient. Most clinical studies suggest that WS patients are 

relatively protected from developing diabetic microvascular complications when 

compared to regular type 1 diabetics, however the cause for this protection 

remains elusive.[345,346] Diabetes severely reduces metabolic supply to the 

retina, thereby generating a metabolic mismatch that drives development and 

progression of diabetic retinopathy (DR)[40]. It is possible that the protection 

against DR reported in WS patients is associated with premature retinal ganglion 

cell (RGC) death due to the optic atrophy that develops early on (RGC form the 

optic nerve) with consequent reduction in retinal metabolic demand. This 

potentially reduces the metabolic mismatch and leads to a better overall retinal 

energy status, thus eliminating the pathogenic stimulus that drives development 

and progression of DR. 

Signs of hypogonadism are common in patients with WS and are usually attributed 

to hypothalamic or pituitary dysfunction[323].  The testicular atrophy and hormonal 

profile (high FSH with normal LH and testosterone) observed in our patient are 

consistent with a Sertoli-cell-only syndrome, also known as germinal cell 
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aphasia[347].  These findings are consistent with animal studies reporting that 

WFS1 deficient male mice show impaired fertility with significantly reduced number 

of spermatogonia and Sertoli cells.[348] As wolframin is involved in calcium 

homeostasis and in preventing ER stress, Haghighi A et al suggested that 

mutations in the WFS1 gene can disrupt ion homeostasis, affecting Sertoli cell 

development, sperm maturation and function, and ultimately reducing fertility.[349] 

 

Conclusion 

 

In the present study we report a 16 year-old patient with Wolfram syndrome with a 

therapeutically challenging form of non-autoimmune diabetes associated with a 

novel sequence variant in the WFS1 gene. 

Over the 10-year follow-up period by a multidisciplinary hospital team, our patient 

developed: (1) insulin-dependent diabetes that was difficult to control 

metabolically; (2) a profound visual deficit due to progressive optic nerve atrophy; 

(3) enuresis associated with neurogenic bladder; and (4) hypogonadism. 

Interestingly, and in contrast to what would have been expected from his 

genotype, he did not develop hearing loss or diabetes insipidus. These findings 

reinforce the concept that genotype-phenotype correlations are not clear in 

WS[327] and suggest that functional studies assessing interactions of different 

sequence variants and/or mutations in the WFS1 gene may hold the key to a more 

precise understanding of the pathophysiology of this devastating syndrome.
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Chapter V: Discussion, 

Conclusions and Future 

Directions 
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Discussion 

 

Despite the high prevalence of DR worldwide and the devastating visual 

consequences of its late-stages, reliable biomarkers and early-acting, effective 

and sustainable therapeutic strategies to arrest disease progression remain to be 

developed. 

As described in Chapter I, most research on DR focuses on studying how 

diabetes damages individual retinal structures (e.g., vessels; neurons; Mueller 

glia) and disregards the context they live in. This over-simplistic perspective 

dangerously neglects the diabetes-induced compromise of the global retinal 

metabolic landscape and the disrupted interactions between the different retinal 

cell types. In addition, this perspective has contributed to the lack of new 

knowledge required for development of novel targeted, effective and earlier acting 

therapies for DR. 

The studies performed in this dissertation are intended to advance and improve 

diabetic eye care, by providing a new perspective on DR that focuses on the NVU 

and on metabolic interactions that mediate retinal neurovascular crosstalk.  

In order to gain better knowledge regarding distribution and functionality of NVUs 

in normal and diseased retinas, studies in different animal models of retinal 

disease were undertaken (Chapter IV-A), and highly sensitive metabolomic 

analyses were performed on ocular tissue and blood samples of well-

characterized diabetic patients to (1) generate a global picture of the characteristic 

metabolic landscape of DR and (2) identify distinguishing metabolic perturbations 

in diabetic patients that may have potential clinical interest (Chapters IV-B and IV-

C). 

 

Chapter IV-A conclusively demonstrates that NVUs are not restricted to the RGC 

layer by showing, for the first time, that amacrine cells and PRs function in NVUs 

in the IPL and outer retina. Additionally, it shows that these neurons actively 

participate in neurovascular crosstalk and are able to regulate their own metabolic 

supply (and ensure its adequacy), by producing vasculotrophic factors (e.g., VEGF 

and erucamide, respectively) that maintain healthy retinal and choroidal vascular 

beds during adulthood. 
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PRs have long been suggested to markedly contribute to progression of DR due to 

their high metabolic needs that further aggravate the energetic state of hypoxia-

damaged neurons in regions of retinal ischemia[100,215,217]; however PR 

dysfunction has long been considered a secondary consequence of primary 

vascular changes induced by diabetes. 

Similarly, loss of amacrine cells and amacrine cell dysfunction have been reported 

in the diabetic retina, both in patients and in animal models that develop early DR 

changes, and this has also been considered a passive result of primary vascular 

changes[218].  

Data presented in Chapter IV-A challenge the notion that neuronal dysfunction is 

simply a consequence of vascular changes by showing that dysregulated 

production of vasculotrophic factors by amacrine cells and PRs (induced by 

disruptions in neurovascular crosstalk secondary to pathological conditions) leads 

to abnormal vascular phenotypes in the surrounding retina. This strongly suggests 

that neuronal dysfunction, along with the subsequently induced disruption of 

neurovascular crosstalk, can initiate and drive development of retinal vascular 

changes under pathological conditions (such as DR) that compromise delivery of 

energy supplies and retinal cell metabolism. 

This work also shows that stabilizing retinal neurovascular crosstalk early in the 

disease process (e.g. administration of erucamide in models of retinal 

degeneration, before neuronal death starts) is critical and effective for avoiding 

further disease progression. These findings suggest that potentially more effective 

therapies for human retinal neurovascular diseases can be developed if a similar 

approach is followed; better outcomes will be attained if therapeutic strategies aim 

at restoring functionally effective intercellular communication within retinal NVUs 

(by reverting metabolic derangements) early in the disease process, before 

irreversible phenotypic changes take place. 

 

Chapter IV-B identifies the most severely dysregulated metabolic pathways in 

eyes affected with late-stage diabetic retinopathy (PDR). By expanding knowledge 

on ocular metabolic dysregulation in PDR, it provides critical information for 

development of targeted therapies aimed at reinstating homeostasis within the 

NVU  
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In PDR eyes, the most perturbed pathways included amino acid metabolism and 

ammonia detoxification, purine related oxidative stress and acylcarnitine 

metabolism. Ocular pathways of amino acid metabolism, were the most 

notoriously dysregulated and, in particular those pertaining to arginine-to-proline 

metabolism. 

Knowing that arginine metabolism is the most severely compromised pathway in 

PDR sheds new light onto dysfunctional ERG responses to flicker-light stimulation 

(defective ‘functional hyperemia’), which have been reported in patients with 

diabetic retinopathy[79,350]. This dysfunctional retinal response to flickering light, 

which consists of insufficient vasodilation in response to light-induced increases in 

neuronal activity, has been attributed to defective communication between Mueller 

glia and the vasculature due to inadequate production of NO, which is an 

important modulator of retinal neurovascular crosstalk[227]. 

The work presented in this dissertation suggests that arginine metabolism occurs 

preferentially by activation of the arginase pathway in the OIR model (and that this 

may also be the case in human PDR) and, as a result, activity in the alternative 

arginine-metabolizing pathway, the NOS pathway (responsible for NO production), 

is reduced. This diabetes-induced perturbation in arginine metabolism can 

potentially restrict NO production in Mueller cells at crucial time-points, being 

responsible for disruption of the crosstalk between Mueller glia and vasculature 

and, consequently, for the defective functional hyperemia response observed in 

diabetic patients. 

Work by Robert Marc et al. further supports involvement of disrupted Mueller cell 

arginine metabolism in neuroretinal disease by showing that arginine works as a 

largely Mueller cell-specific signal that closely follows and reflects alterations in 

Mueller cell function in conditions of extreme retinal remodelling[239]. In a model 

of light-induced retinal damage, retinal neuronal death is followed by extreme 

morphological transformation of Mueller cells and formation of a glial seal, which 

triggers a pronounced increase in arginine levels (especially near the seal) 

followed by a subsequent drop once remodeling is complete.[239] Over-activity of 

the arginase pathway also leads to increased proline production, which may 

further compromise crosstalk within the NVU, contributing to progression of retinal 

disease. Moreover, the compromise in ammonia detoxification pathways also 

identified in PDR ocular samples, can further impair Mueller cell function and 
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produce retinal damage by inducing metabolic overload in these cells[351]. Taken 

together, these findings suggest that metabolites generated during arginine 

metabolism can potentially become valuable metabolic biomarkers for assessing 

risk of progression of DR and for monitoring response to therapy. In addition, 

these results also suggest that (1) metabolic overload and a compromise in 

arginine metabolism in Mueller cells may play a pivotal role in initiating disruption 

of retinal neurovascular crosstalk; and (2) effective therapies for preventing 

progression of DR should be able to antagonize, prevent and/or reverse arginase 

hyper-activity early in the disease process to potentially re-establish homeostatic 

cellular interactions within the NVU, thus avoiding the development of subsequent 

pathological retinal responses. 

 

Chapter IV-C identifies a circulating metabolite with potentially protective 

properties in regard to DR progression in human serum samples, and further 

explores its therapeutic potential for preventing development of features of 

ischemic retinopathy in the OIR mouse model. 

It is widely known that a subset of diabetic patients does not develop severe 

diabetic complications despite long-standing diabetes.[352] The cause and 

mechanisms underlying this protection, however, remain largely unknown and are 

among the most intriguing questions related to diabetes. 

The work presented in this chapter suggests that inosine, an endogenous purine 

metabolite, may be a factor involved in protection against development of severe 

DR in long-term diabetic patients through an effect on retinal oxidative metabolism. 

Studies in the OIR mouse suggest that inosine has therapeutic potential for 

preventing features of ischemic retinopathy and that this beneficial effect is 

accomplished by reducing basal metabolic demand in retinal cells to a level that 

maximizes efficiency of energy usage in conditions of scarce metabolic supply, 

while preserving adequate retinal functioning.  

In the OIR mouse, intravitreal injections of inosine promoted effective intraretinal 

revascularization of vaso-obliterated (hypoxic) areas and, thus, prevented 

development of pathological neovascularization by reducing the characteristic 

metabolic mismatch that exists in these regions. Addressing this mismatch 

between metabolic supply and demand is critical because it fosters progressive 
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neuronal damage, disrupts retinal neurovascular crosstalk and exacerbates pro-

inflammatory responses. 

Formation of new vessels in adulthood only occurs in pathological states, such as 

PDR; in such circumstances (and according to the plane of growth), two types of 

vessels can be distinguished in the retina: (1) intraretinal vessels, which are 

mature, covered by pericytes and smooth muscle cells and do not leak; and (2) 

preretinal vessels, which grow outside of the retinal plane towards the vitreous, are 

immature, not covered by mural cells and therefore leaky. 

One of the most challenging paradoxes in retinal ischemic diseases such as PDR 

and Retinopathy of prematurity (ROP) relates to understanding why and how a 

highly proangiogenic environment promotes misdirected vascular growth towards 

the vitreous rather than into ischemic areas, which desperately need to be 

nourished[40].  

Identifying factors, such as inosine, that are capable of modulating the retinal 

microenvironment to ‘re-educate’ vascular growth and promote significantly higher 

levels of effective intraretinal revascularization of hypoxic areas, provides a 

promising therapeutic strategy, as it optimizes allocation of proangiogenic 

resources in the retina and efficiently eliminates areas of retinal metabolic 

insufficiency, which constitute the driving forces for disease progression. 

This inosine-induced retinal protection observed in the OIR mouse was associated 

with additional metabolic effects that may be beneficial for the overall retinal 

phenotype: (1) after injection, inosine was rapidly metabolized into hypoxanthine, 

and later IMP and uric acid, which can potentially improve the retinal energetic and 

antioxidant cell status, respectively[289,290];(2) inosine treated eyes had lower 

levels of proline, suggesting that inosine may be inhibiting activity in the ocular 

arginase pathway to prevent pathological accumulation of proline, as seen in late-

stage DR; evidence from the literature supports this possibility as inosine and uric 

acid have been shown to be able to  inhibit arginase in other tissues.[295,296] 

By improving the ocular metabolic landscape and impeding continued 

dysregulation in arginine-to-proline metabolism, inosine can restore healthy 

metabolic interactions between cells to maintain a regulated neurovascular 

crosstalk in the retina, stabilizing the NVU. This in turn can prevent activation of 

neuronal stress responses and their detrimental consequences, such as 

development of pathological NV, a hallmark of PDR. 
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These novel findings can potentially contribute to significant improvements in 

diabetic patient care, by: 

 

Favoring development of new biomarkers 

 

Since (1) inosine production increases under conditions of metabolic insufficiency 

due to ATP breakdown and (2) patients with higher levels are apparently protected 

from progressing into PDR, serum measurements of inosine in diabetic patients 

(who all undergo retinal ischemia but only a few can upregulate inosine production 

to protective levels) may become a valuable biomarker in assessing risk of 

progression of DR. Moreover, performing genetic studies in diabetic patients to 

identify predictably functional polymorphisms in inosine producing pathways and 

assessing their potential relationship with risk of DR, may reveal novel protection-

associated genotypes and shed new light into inosine’s role in progression of DR. 

 

Favoring development of novel, more effective therapeutics 

 

Ocular administration of metabolites capable of preventing and/or counteracting 

local metabolic dysregulation could become an effective targeted strategy to 

restore retinal neurovascular crosstalk in the early disease stages and, 

consequently, prevent activation of pathological events, such as extreme neuronal 

hypoxic damage and exacerbated pro-inflammatory responses that foster further 

disease progression.  

Inosine could become a valuable therapeutic agent for early DR due to its 

favorable metabolic effects, which can potentially stabilize cellular interactions 

within the NVU by reducing retinal metabolic demand, thus preventing progression 

of DR into its catastrophic late-stages. 

 

 

Conclusions 

 

 

 Retinal cells form NVUs across the retina, developing interdependent 

interactions that are mediated by metabolic factors; these cellular 
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interactions become disrupted under disease conditions, promoting 

development of pathological retinal neovascularization, neuronal 

degeneration and severe visual dysfunction. 

 

o Regulated metabolic interactions within the NVU play a pivotal role in 

ensuring retinal homeostasis and proper visual function. 

 

o Retinal neurons function in neurovascular units in the different retinal 

layers and play an active role in ensuring their own nutrition by directly 

participating in angiogenesis promoting pathways; retinal neurons (such 

as amacrine cells and photoreceptors) are actively involved in inducing 

retinal vascular development during embryogenesis and in maintaining 

healthy retinal and choroidal vascular beds, in adulthood.  

 

o This neurovascular crosstalk is, at least in part, mediated by metabolites 

that function as signaling factors whose production is highly regulated in 

order to guarantee harmonious interdependent cellular interactions within 

the NVU. Disease (e.g. diabetes) disrupts retinal cell metabolism, thus 

compromising production of these signaling metabolic factors and 

destabilizing retinal neurovascular crosstalk, leading to further metabolic 

dysfunction and development of retinal pathological phenotypes.  

 

 Highly sensitive MS-based metabolomic analyses identified  

 

a) The most severely compromised metabolic pathways in PDR eyes 

b) A circulating metabolite with potentially protective properties   

 

o Global characterization of the ocular metabolic landscape in PDR 

revealed severe biochemical perturbations, with the most prominent one 

being in the arginine-to-proline metabolic pathway (with marked 

upregulation of proline levels) 

 

o Metabolomic analysis performed in the blood of long-term diabetics who 

do not develop severe DR revealed the elevated presence of a purine 
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metabolite, inosine, with potentially protective properties in the context of 

ischemic retinopathies 

 

 A novel integrated therapeutic approach to DR is suggested 

 

o In order to effectively prevent progression of diabetic retinopathy and 

other retinal diseases, it is critical to act early to restore homeostatic 

interactions within the NVU by: (1) administering exogenous metabolic 

signaling factors to stabilize their local concentrations to physiologic 

levels; (2) administering drugs that counteract the most prominent 

biochemical perturbations, such as inhibitors of the arginine-to-proline 

pathway (e.g. arginase inhibitors). 

 

o Inosine is a promising therapeutic agent for DR management as it can 

counteract activity in the arginine-to-proline pathway and potentially exert 

beneficial effects in both energy and antioxidant retinal status, to stabilize 

retinal neurovascular crosstalk and prevent development of late-stage 

pathological retinal features 

 

--------------------------------------------------------------- 

 

The work presented in this dissertation provides evidence that pathological retinal 

insults, such as hypoxia and other conditions leading to metabolic insufficiency, 

induce prominent metabolic dysregulation in retinal cells potentially disrupting 

retinal neurovascular crosstalk within the NVU. This disrupted communication 

leads to inadequate provision of energy supplies to highly metabolically 

demanding neurons, such as photoreceptors, which activate ‘neuronal stress 

responses’ culminating in deregulated production of commonly vasculo- and 

neurotrophic factors, such as erucamide and VEGF. These factors are beneficial 

when produced in moderate levels under physiologic conditions, however, when 

produced in massive amounts (as occurs in hypoxia), they promote development 

of pathological neovascularization, disorganization of the retinal architecture and 

further neurodegeneration. 
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Given the close interaction and interdependence among different retinal cell types 

shown by defects in NV coupling after flickering light stimulation[79], retinal 

diseases such as DR should not be regarded as resulting from a primary vascular 

or neuronal defect but, rather, as resulting from disrupted cellular interactions in 

the neurovascular unit. Accordingly, therapeutic efforts should be directed at 

restoring the intercellular “symbiotic relationships” that were present before 

disease onset.  
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Future directions 

 

The work presented in this dissertation suggests that inosine may have significant 

potential in treating diabetic retinopathy and, eventually, other ischemic retinal 

diseases through its direct effect on retinal oxidative metabolism and its secondary 

effect on arginine-to-proline metabolism.  

Further metabolic experiments can provide additional insight regarding inosine’s 

mechanism of action in retinal tissue undergoing ischemia or other pathological 

conditions characterized by metabolic insufficiency. Such studies can also assist in 

the development of specific biomarkers to use in the clinic. 

To further understand inosine’s mechanism of action in the retina under ischemic 

conditions, the following questions need to be answered: 

 

(A) How does inosine affect aerobic glycolysis and substrate utilization in 

OIR retinas?  

 

Retinal metabolism is extremely interesting because retinal cells perform not only 

high levels of oxidative metabolism (i.e., mitochondrial respiration) but also 

relatively high levels of aerobic glycolysis, in order to meet the extremely 

demanding metabolic needs of its neuronal cells. [353]. In the work presented here 

it is shown that inosine is able to induce an energetically conservative 

“hypometabolic” state to better match up metabolic demand with supply in the 

ischemic retina. Performing Seahorse analyses on retinas from P17 OIR mice will 

be interesting in order to assess if there are additional changes in oxidative 

metabolism after a longer period of hypoxia.   

Aerobic glycolysis also plays a relevant role in retinal ATP production, and it is 

possible that ischemic retinal cells in vaso-obliterated areas are using this pathway 

to cope with metabolic stress and obtain the additional ATP they need to maintain 

their basal functioning. It would be of interest to understand what is happening at 

this level by analyzing lactate production in ischemic area (as this would indicate 

the level of aerobic glycolysis).  

 

Additionally, inosine may also be inducing a shift in substrate utilization (towards 

alternative fuel sources) by the mitochondria of these ischemic retinal cells, which 
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would be beneficial in conditions of glucose scarcity. For example, if glucose 

supply were to become limited due to high utilization for lactate production, retinal 

cells could adapt to these new conditions by using alternative substrates, such as 

fatty acids or amino acids, for oxidation; By using alternative energy sources such 

as glutamine, for example, inosine could be inducing a metabolic substrate switch 

while reducing mitochondrial metabolism, to overcome the energy deficit present 

in vaso-obliterated areas.  

Performing flux analysis in OIR retinas treated with inosine or vehicle would trace 

alternative oxidative substrates (e.g., amino acids and fatty acids) and provide 

accurate information on the ‘metabolic fuels’ that are being used by ischemic 

retinal cells to cope with metabolic stress. Differential regulation of substrate 

utilization has been previously shown in other cell types with drugs such as 

glitazones[354]. 

 

(B) How does inosine induce a hypometabolic state in the hypoxic retina? 

 

Even though hypometabolic states are critical for survival under conditions of 

extreme environmental stress (e.g. hypothermia, drought, oxygen and/or nutrient 

deprivation) and are common across the animal kingdom, the mechanisms 

controlling entry into these energetically conservative states remain largely 

unknown[355]. 

One aspect of this dissertation that merits further work is investigation of the 

molecular events implicated in inosine’s induction of hypometabolic states in vaso-

obliterated regions of OIR retinas.  

It has been shown that activation of the adenosine A1 receptor reduces oxidative 

metabolism in cells, allowing them to better tolerate noxious stimuli, such as 

prolonged hypoxia[356].  Inosine has been shown to exert beneficial effects on the 

CNS through activation of this receptor[357,358].  

Especially considering that the dose of inosine provided in our studies (which may 

be too low to be directly acting as a carbon or energy source), it is conceivable 

that inosine is inducing its effects on retinal oxidative metabolism through 

activation of this receptor. To test this hypothesis, treatment with DPCX (an A1 

receptor antagonist) can be intraperitoneally injected before inosine or vehicle 

(intravitreal) injections in OIR mice. If inosine can no longer provide protection 
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under these circumstances, metabolomic analyses using the Seahorse flux 

analyzer should be performed to assess the effects of A1 receptor blockade on 

retinal oxidative metabolism.  

 

(C) Is arginase inhibition required for inosine’s beneficial effect? 

 

Studies have shown that arginase over-activity plays a major role in promoting 

progression of retinal DR changes in diabetic models and in driving pathological 

neovascularization in the OIR model[230,231,234,359].  

Inosine was able to significantly depress proline production (which is a 

downstream product of the arginase pathway) in the OIR mouse eye and, along 

with uric acid, has been shown to act as a noncompetitive antagonist to arginase 

in different tissues[295,296]. To conclusively determine if arginase inhibition is 

required for inosine’s beneficial effect on the ischemic retina, future research 

studies may use transgenic mice with constitutive arginase expression (in retinal 

neurons), raise them under OIR conditions and evaluate inosine’s potential to 

prevent progression of retinal pathology.  

 

(D) Does proline dysregulation play an active role in progression of DR?  

  

The work presented in this dissertation shows that proline is one the earliest and 

most prominently dysregulated metabolites both in human PDR and in the OIR 

mouse eye. Nevertheless, proline’s role in favoring disruption of the neurovascular 

crosstalk and development of retinal pathological neovascularization remains 

unclear and it is not known if it is a secondary “player” or an actual signaling factor. 

In order to evaluate this further, future research could focus on manipulating 

proline’s ocular levels in different models of retinal ischemic diseases to assess 

how these affect (1) development and progression of pathological features and (2) 

retinal metabolism (oxidative and glycolytic). 

(E) How do variations in NO levels contribute to the generation of PDR-like 

retinal features? 

 

As a consequence of increased arginase activity in the OIR and DR rodent retina, 

the alternative arginine-metabolizing pathway, which is catalyzed by NOS and 
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produces NO, is also expected to be functioning abnormally. In normal retinas, NO 

can be produced by every retinal cell type and is responsible for regulating 

hemodynamics and for promoting cell viability[227,359]. NO is also involved in 

intercellular communication within the NVU, where it acts not only as a simple 

mediator of neurovascular coupling but rather as a modulator[100,152]; its effects 

on retinal neurovascular crosstalk and on retinal homeostasis cannot be fully 

explained by varying overall NO levels, which suggests that its final retinal actions 

may depend on more subtle aspects, such as its temporospatial distribution in the 

eye or even the consequences arising from dysfunction of the cell type where its 

production is more markedly compromised. 

In future studies dedicating to understanding the role of NO in OIR, a NO-donor 

agent, such as nipradilol, can be administered locally and early in the disease 

process (for example at P7 as well as P12) and its effects on development of the 

PDR-like phenotype assessed at P14 and P17. To prevent potential increases in 

formation of reactive nitrogen species due to increased free NO levels, an 

antioxidant (e.g. gluthathione) could be concomitantly administered. 

Nipradilol has shown promising effects in protecting RGC from apoptosis in 

streptozotocin-induced diabetic rats.[360]   

 

(F) Do IMP and uric acid play a role on retinal neurovascular crosstalk? 

 

This dissertation shows that inosine is metabolized in vivo to IMP and uric acid in 

the OIR mouse eye. It may be that these metabolites also play a role in inosine’s 

protective effects seen in OIR retinas, by acting directly as signaling factors, or 

indirectly as modulators of cellular communications within the NVU. In order to 

evaluate these scenarios, modulation of IMP and uric acid levels in vivo in the eye 

(in OIR mice), along with studies using labeled isotopes can be performed in the 

future. 

 

 (G) How does diabetes lead to ocular metabolic dysregulation and how does 

it destabilize crosstalk within the retinal NVU? 

 

Another important research effort would be to determine the precise mechanisms 

by which diabetes destabilizes neurovascular crosstalk in the retina. From the 
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work presented in this dissertation one can suggest that perturbations in arginine 

metabolism play an important role; however, the mechanism through which this 

dysregulation destabilizes crosstalk within the NVU remains elusive. In order to 

achieve a deeper understanding of this event, it will be important to investigate if 

there is a retinal cell type that instigates the disruption, having the greatest impact 

on the existing pathological metabolic landscape. One of the most promising 

candidates is the retinal Mueller glial cell[227,239] and detailed characterization of 

its metabolome can potentially reveal new mediators of the neurovascular 

crosstalk, thus shedding new light onto diabetes-induced disruption of 

neurovascular coupling. 

In addition, studying the metabolome and performing Seahorse analysis in parallel 

to look for hypometabolic states in different cultured retinal cells types treated with 

inosine or vehicle can potentially identify interesting correlations between 

production of specific metabolites and effects on mitochondrial metabolism. These 

studies can pave the way towards development of promising therapeutics to 

stabilize retinal neurovascular crosstalk.   

 

(H) How do inosine injections impact retinal functionality of ischemic 

retinas? 

 

In this work, ERG experiments performed on normal mice (raised in normoxia) 

after intravitreal inosine or vehicle injections showed that inosine is safe and does 

not compromise retinal function. 

Even though performance of functional studies (e.g. ERG; optokinetic reflexes 

testing) is quite challenging in young OIR mice, assessing the effects of inosine 

and PBS injections on retinal functioning in other rodent models of 

neurodegeneration and ischemic retinopathies is still valuable as it can provide 

insightful information that can be interpreted in light of the accompanying 

metabolic phenotype (by performing Seahorse analyses at the same time-points). 

From a more clinical perspective, it would be valuable to further assess the 

following issues: 
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(A) Validate our study results suggesting that elevated inosine levels are 

significantly associated with “protection” from developing late-stage DR by 

performing additional studies with larger patient cohorts 

 

(B) What causes higher inosine production in a subset of long-term diabetic 

patients? 

When does systemic upregulation become noticeable? 

 

In the protected diabetic patient cohort analyzed in this work, allopurinol was ruled 

out as a potential cause for higher inosine levels. Unveiling the cause for higher 

inosine production in a subset of long-term diabetic patients can potentially provide 

new biomarkers and new mechanistic information on DR pathophysiology. 

It is possible that genetic polymorphisms determine variations in activity of 

enzymes involved in inosine metabolism should be considered and investigated. 

To better understand when inosine dysregulation starts in diabetic patients, it 

would be interesting to conduct long-term prospective epidemiological studies with 

serial assessments of serum inosine levels (ideally until most diabetic patients 

started developing DR changes) in pre-diabetic patients, diabetic patients without 

evidence of DR and age matched non-diabetic controls.  

Since inosine serum levels in healthy populations have not yet been evaluated, it 

would be helpful to have this type of large-scale studies conducted in parallel, as 

these would show if factors such as age play a relevant role in promoting 

differential regulation of inosine levels. 

 

(C) Are arginine, proline and inosine viable biomarkers for assessing risk of 

DR? 

 

In order to evaluate reliability of these metabolites’ levels as predictive and 

therapeutic biomarkers for DR, clinical studies with large cohorts of diabetic 

patients suffering from different DR stages will have to be performed. Assessing 

differences in circulating levels of these metabolites and determining their ratios 

between distinct patient groups can potentially validate their use for clinical 

purposes. 
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(D) Can early administration of vasculotrophic factors prevent progression 

of DR? 

 

While the initial events that trigger DR and other retinopathies remain to be 

identified, novel therapeutic opportunities can arise from exploiting the role of early 

administration of vasculotrophic factors to the retina, as these (1) appear to be 

significantly reduced early in the retinal (neurodegenerative) disease process and 

(2) vascular maintenance appears to be key to maintain retinal neuronal health. 

Administering vasculotrophic factors may seem counterintuitive when one 

considers that we are using anti-VEGF agents to antagonize pathological 

neovascularization in late stages of DR; however knowing that these 

vasculotrophic factors are normally produced by neurons to maintain the 

surrounding vasculature healthy and to ensure their own adequate nourishment, 

administration of these factors early on in the disease process could actually be 

promising because it would avoid states of metabolic insufficiency in retinal 

neurons and the subsequent detrimental consequences they induce.
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A. Appendix A  

A.1. Additional data regarding “Photoreceptors generate erucamide for 

maintenance of the retinal vasculature” 

 

The following data is related to the concepts presented in the section 

“Photoreceptors generate erucamide for maintenance of the retinal 

vasculature”(Chapter IV A). These additional experiments were performed to 

assess angiogenin’s ocular effects in the the C57/Bl6 mouse eye.  

  

Effects of angiogenin overexpression in the mouse eye 

  

To assess angiogenin’s effects on the adult mouse retina, angiogenin recombinant 

protein (500 ng) or angiogenin overexpressing ShH10 (an adenovirus – AAV – that 

specifically transfects Mueller cells and astrocytes) and their respective controls 

were intravitreally injected in adult C57/Bl6 mice. The subsequent retinal 

phenotype was evaluated by using the following techniques: 

 

1. Fundus photography (Micron III) 

 

Enhancing intravitreal levels of angiogenin (both through viral overexpression and 

through injection of the recombinant protein) induced rapid development of white-

yellow, raised patchy lesions resembling those observed in retinal inflammatory 

processes. The fact that the lesions show a similar phenotype in virus and protein 

injected eyes and that there is no evidence of lesions in control AAV injected eyes 

shows that the effect is specifically induced by angiogenin. 
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Figure 68 – Fundus lesions induced by angiogenin overexpression in the eye. Left side: 
representative images of retinas from eyes injected with angiogenin overexpression 
adenovirus (ShH10) and control adenovirus, at 3 days post injection; Right side: 
representative images of retinas from eyes injected with recombinant angiogenin protein 
and control protein at 5 days post-injection. 

 

2. Spectral Domain-OCT (Bioptigen)  

 

Cross sectional in vivo images of retinas from angiogenin-virus overexpressing 

injected eyes showed prominent subretinal and outer retinal lesions, consistent 

with inflammatory infiltrates and potential pathological neovascularization at these 

levels. Even though preretinal neovascularization was also observed, this only 

happened in rare cases and most lesions were actually seen at deeper retinal 

levels. Since angiogenin was delivered via intravitreal injection but angiogenin-

induced lesions were mainly observed in the outer retina and subretinal space, it 

suggests that there is a higher sensitivity to its effects at this level, which could be 

explained by the presence of a specific receptor.  

Angiogenin'AAV)D3PI) Control'AAV)D3PI) Angiogenin)D5PI) Control)D5PI)
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Figure 69 – Retinal lesions induced by intravitreal injections of angiogenin-overexpressing 
ShH10 showing prominent defects in the outer retina and in the subretinal space (3 days 
post injection). 

 

3. Gene expression: Angiogenesis and wound healing PCR arrays 

 

To assess inosine’s effect on gene expression of genes involved in angiogenesis 

and fibrinolysis, PCR arrays were performed using retinal lysates from angiogenin 

and control injected eyes (ShH10) at 3 days post injection. Angiogenin 

overexpression in the retina affected expression of multiple genes in both 

pathways, suggesting that it induces an increase in fibrinolysis and matrix 

degradation that potentially facilitates and is associated with the growth of 

neovessels in undesired retinal locations. Moreover, angiogenin also elicited 

upregulation of inflammatory cytokines, such as Cxcl1 and Cxcl2, which are known 

to attract neutrophils with proangiogenic properties (via their receptor, 

CXCR2)[361].  

  

Angiogenin'D3PI' Control'D3PI'
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Table 16 – Dysregulated gene expression levels of cytokines and angiogenic factors in 
Angiogenin-AAV injected eyes  

 

Upregulated in ANG-AAV retinas
 

Gene 
Fold 

change 
P-value Function 

Serpine 1 
(PAI1) 

Plasminogen activation 
inhibitor1 

4.888473391 0.039845021 Anti-fibrinolysis 

Plaur 
(uPAR) 

Urokinase plasminogen 
activator receptor 

12.22 0.04171 Profibrinolytic 

Plat (tPA) Tissue plasminogen activator 3.12 0.01463 Profibrinolytic 

Timp1 
Tissue inhibitor 

metalloprotease 1 
3.02 0.02116 

Extracelular matrix (ECM) 
degradation 

Col5a3 Collagen type V Alpha 3 1.55 0.01228 Evidence of ECM degradation 

Sphk1 Sphingosine kinase1 2.705879637 0.004637169 
Possibly required for VEGFA 
induced tumor angiogenesis 

Ctgf 
Connective tissue growth 

factor 
2.87 0.00594 

Angiogenic modulator 
(regulates the balance 

between ECM synthesis and 
degradation) 

STAT3 

signal transducer and 
activator of transcription 3 

(acute-phase response factor 
 

2.41 0.03490 
Mediates cellular responses to 

interleukins, 
and growth factors (e.g. FGF) 

IL1b Interleukin 1 beta 1.81 0.04170 
Pro-inflammatory and 

proangiogenic cytokine 

Cxcl1 
chemokine (C-X-C motif) 

ligand 1 
9.610077063 0.000246191 

Attract neutrophils with 
proangiogenic properties; 
remodelling of connective 

tissue 
Cxcl5 

chemokine (C-X-C motif) 
ligand 5 

1.974305618 0.052647881 

Tgfa 
Transforming growth factor 

alpha 
1.657044485 0.036907222 

Promotes angiogenesis and 
cell growth 

FGF2 Fibroblast growth factor 2 3.518054096 0.001789747 Proangiogenic factor 

Downregulated genes in ANG-AAV retinas 
 

NOS3 
(eNOS) 

Endotelial nitric oxide 
synthase 

1.681534447 0.030106684 
Maintenace of antiproliferative 
environment in the vasculature 

Kdr 
(VEGFR2) 

VEGF receptor 2 1.651946159 0.008327158 Regulator of angiogenesis 

Tek (Tie2) Endothelial Tyrosine Kinase 1.503101048 0.02205797 Regulator of angiogenesis 
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4. Protein: ELISA based angiogenesis array  

 

Levels of angiogenesis-related proteins were also assessed in retinal lysates from 

mice injected with angiogenin and control virus (3 days post injection). The 

upregulation of TIMP-1 was confirmed at the protein level and two cytokines were 

also found to be dysregulated: CCL5 (RANTES), a chemokine produced by T cells 

that attracts monocytes, memory T helper cells and eosinophils to the sites of 

inflammation; and CCL11, a chemokine that attracts eosinophils. 

  

 

 

Figure 70 – Effects of angiogenin overexpression on protein levels of angiogenic factors 
in the retina (3 days post injection). Angiogenin -AAV injections increased production of 
TIMP-1, CCL5 and CCL11. (n=8; Two-tailed Student’s t-test; values represent 
mean+SEM). 

 

5. Metabolomic analyses 

 

To further understand how angiogenin overexpression affected the ocular 

metabolic landscape, metabolomic analyses of angiogenin-AAV and control AAV 

injected eyes were performed 3 days post-injection. Angiogenin-AAV injected eyes 

showed a statistically significant (p<0.01) downregulation in levels of adenosine 

(6.7 fold), inosine (3 fold) and hypoxanthine (3 fold) when compared to control 

eyes, which further suggests that purine metabolism plays a central role in retinal 

pro-inflammatory and neurovascular diseases. 
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A.2. Additional data regarding “Neurovascular crosstalk between 

interneurons and capillaries is required for vision” 

 

The following data is related to the section “Neurovascular crosstalk between 

interneurons and capillaries is required for vision” and presents additional 

figures that further illustrate and reinforce the concepts introduced in the main text. 

 

 

 

Figure 71 - Chronic intermediate plexus attenuation is observed in ptf1a-Cre; VEGF 
knockout mice. The intermediate plexus capillaries in the whole mount retinas of VEGFf/f 
or ptf1a-Cre; VEGFf/f mice at 2, 4, 6, 12 months. Scale bar: 50 μm. 
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Figure 72 - Blood vessels do not advance to the OPL in Vhl mutants (A) Vessels sprout 
from the superficial plexus towards the OPL in controls (VHLf/f mice), but are directed 
towards the IPL in ptf1a-Cre; VHLf/f mice at P5 where Vegfa is most highly expressed. (B) 
In vivo imaging of the ocular fundus and indocyanine green angiography in ptf1a-Cre; 
VHLf/f mice and controls revealed dense vasculature. (C and D) The dense convoluted 
intermediate plexus, and attenuated superficial and deep plexuses persisted until as late 
as 20 months (C). Note that the abnormally high number of branching points persists in 
both groups longitudinally (D) (n = 4-5). ***P<0.001; 2-tailed Student’s t tests. Error bars 
indicate mean ± SD. Scale bar: 50 μm (A and C). GCL, ganglion cell layer; INL, inner 
nuclear layer; ONL, outer nuclear layer. 
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Figure 73 - Loss of VEGF in amacrine and horizontal cells accelerates photoreceptor 
atrophy in an animal model of retinal degeneration. (A) No degeneration (thinning of the 
ONL layer) is observed in SD-OCT images of P17 ptf1a-Cre; VEGFf/f; Pde6brd10/rd10 
mice compared with controls (VEGFf/f; Pde6brd10/rd10). (B and C) Significant ONL 
thinning is observed in rd10 mice with impaired intermediate plexuses (ptf1a-Cre; 
VEGFf/f; Pde6brd10/rd10) compared with rd10 mice (VEGFf/f; Pde6brd10/ rd10), or with 
non-degenerating controls (one recessive rd10 allele; ptf1a-Cre; VEGFf/f; Pde6brd10/+) 
using OCT (B) and histology (C). (D) The integrity of the intermediate plexus is shown in 
P21 ptf1a-Cre; VEGFf/f; Pde6brd10/rd10 mice (green) compared with controls (VEGFf/f; 
Pde6brd10/rd10). Scale bar: 50 μm (C); 100 μm (D-F). IPL, inner plexiform layer; INL, 
inner nuclear layer; ONL, outer nuclear layer. 
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B. Appendix B 

B.1. Additional data regarding “Inosine slows retinal metabolism in hypoxic 

conditions  and  prevents  development  of  the most  severe  features  of 

diabetic retinopathy” 

 

Metabolic pathways of purine metabolism 

 

The following schematics illustrate the most relevant metabolic pathways for 

understanding inosine metabolism.  

The questionnaire provided to patients who accepted to be part of the MS-

metabolomics blood serum study is also shown here (after the metabolic 

pathways).  

Figure 74 – Inosine production. Inosine can be produced both from Adenosine, by 
deamination (through AMP deaminase) and from Inosine-5-monophosphate (IMP), by 
cleavage of the phosphate group from the 5' C of the ribose (via 5’ nucleotidase). AMP = 
adenosine monophosphate; IMP = inosine-5’-monophosphate. 

 

AMP 

Adenosine Inosine 

IMP 

Adenosine 
deaminase 

AMP 
deaminase 

Nucleo dase Nucleo dase 
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Figure 75 – Inosine metabolism in normoxic conditions (adapted from El Shafy et al[292]). 
Basal inosine levels in the plasma are practically undetectable (0.10 -0.1 um/l). In basal 
conditions, inosine is produced through deamination of adenosine by adenosine 
deaminase. Catabolism of inosine is performed by (a) purine nucleoside phosphorylase, 
yielding hypoxanthine, and by (b) xanthine oxidase, giving rise to uric acid.    
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Figure 76 – Inosine metabolism in stress conditions (e.g. hypoxia). (adapted from El 
Shafy et al) [292] Under hypoxic conditions, due to ATP degradation, intracellular 
adenosine levels rise and so do those of inosine, which is shunted to the insterstitial 
space where it can reach concentrations greater than 1mM. Under hypoxic conditions, 
inosine can be greatly useful for the cell because (a) its phosphorylated ribose moiety can 
be used for anaerobic glycolysis (and the pentose phsophate pathway) for energy 
production[315] and (b) inosine can be used through the hypoxanthine-IMP-AMP pathway 
for ATP production. 

  



	

334	

Patient Data Collection Form for the Diabetic Retinopathy Study 
Blood-borne infections 

Patient details 

Diagnosis 

Diabetes history 

 

 

1. HBV/HCV/HIV infection: 
  Not aware of 

  Yes: Patient is excluded from the study. 

2. Patient study ID: TK- 

3. Date of blood sampling:  

4. Patient initials:  

5. DOB:  

6. Gender:   Male      Female 

7. Ethnicity:  White    Hispanic    Asian    African-American    Other 

8. Weight (lbs):  

9. Height (ft, in):  

10. Diabetic retinopathy stage: 

  Mild NPDR      Moderate NPDR      Severe NPDR      PDR 

 

Remarks: 

 

11. Type of diabetes:   Type 1 diabetes mellitus      Type 2 diabetes mellitus 

12. Year of diabetes diagnosis:  

13. Latest HbA1c (%): Value:                      Date:                                       HbA1c not known 

14. Oral antidiabetic therapy:   No      Yes, year of oral therapy start: 

15. Insulin therapy:   No      Yes, year of insulin therapy start: 

16. Type of insulin therapy: 

  Conventional (fixed injection scheme) 

  Intensive (meal-adapted injection scheme) by pen 

  Intensive (meal-adapted injection scheme) by pump 

17. Systemic diseases: 

  Hypertension    If yes:    Antihypertensive therapy 

  Hyperlipidemia    If yes:    Statin therapy 

  Cardiovascular disease    If yes:    Myocardial infarction 

  Cerebrovascular disease    If yes:    Stroke 

  Diabetic nephropathy    If yes:    Renal dialysis therapy 

18. Smoking:   No      Yes, pack years: 


