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a b s t r a c t 

Cross-spring pivots have been widely employed over the last decades in a broad variety of precision 

engineering applications due to the high motion repeatability achieved thanks to the absence of stick 

slip and clearance. In this paper, the non-linear effect of the anticlastic curvature of the leaf-springs is 

considered for the accurate analytical modeling of the elasto-kinematic behavior of cross-spring pivots. 

Finite element analyses (FEA), based on a non-linear thin-shell model, are carried out in order to compare 

them with the analytical results for the main performance parameters of this type of device, i.e. center- 

shift, rotational stiffness and stress in the leaf-springs. Furthermore, an experimental setup is built to 

assess the applicability limits of both models. Finally, remarkable performance aspects of cross-spring 

pivots are discussed aiming for design improvements. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Flexural joints are constructional elements designed to accom-

plish rotational motion through bending-based elastic deflection of

their own. They are characterized by a high “in-plane” rotational

compliance and a high stiffness in transverse directions. Further-

more, they provide a variety of advantages over conventional slid-

ing and rolling joints, such as: no friction (just internal bonding

forces), no clearance, absence of stick slip, low wear and no need

for maintenance ( Wittrick, 1948; Lobontiu and Garcia, 2003; Tian

et al., 2010; Bitencourt et al., 2015; Gómez et al., 2015; Merriam

et al., 2016; Markovi ́c and Zelenika, 2017; Hongzhe and Shusheng,

2010a; Meng et al., 2014 ). Due to these attributes, flexural joints

are preferentially employed in several applications of precision en-

gineering, aerospace fields, MEMS, positioning and manipulation

systems, in metrology (weighing-machines, dynamometers, seis-

mometers and pressure transducers), optical instrumentation and
∗ Corresponding author. 
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yroscopes ( Wittrick, 1948; Zelenika and Bona, 2002; Gonçalves Jr.,

016; Bi et al., 2012; Yong et al., 2008 ), i.e. in applications that

sually require a high repeatability of motion in limited angles of

otation. 

In order to fulfill the requirements of different applications, sev-

ral types of primitive and complex flexural joints have been ex-

loited. Primitive flexural joints are commonly classified in the

iterature as notch and leaf-type flexure hinges ( Pei et al., 2009;

010 ). Notch-type flexure hinges are characterized by a markedly

igh stiffness in transversal direction. On the other hand, a strongly

imited rotation capability due to stress concentration and an

in-plane” parasitic deviation of its rotational center arise as their

ajor drawbacks ( Bi et al., 2012; Pei et al., 2010; Linß et al., 2011;

017; Liu et al., 2014 ). Nevertheless, the rotational range can be

nlarged by the utilization of leaf-type hinges which are able to

ccomplish a larger stroke of motion, in expense, however, of an

ven higher center-shift. 

In face of the limitations presented by the primitive flexural

oints, special attention has been given in the recent years to the

esign of more complex flexural joints, commonly obtained by the

ombination of two or more modules of primitive joints. Within

he group of these joints, many examples can be mentioned. The

artwheel hinge ( Pei et al., 2009; Choi et al., 2007 ) which is
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Cross-spring pivot geometric configurations – (a) symmetric and (b) asym- 
Nomenclature 

A, x, b coefficient matrix, vector of unknowns (i.e. cen- 

ter of rotation coordinates) and vector of con- 

stant terms of the linear system employed for 

the calculation of the cross-spring pivot center- 

shift 

a j , b n , c j Coefficients of polynomials employed to sup- 

port the design of cross-spring pivots, with j = 

0 , . . . , 9 and n = 0 , . . . , 8 

D cross-spring pivot center-shift 

d, d FEM 
, d exp normalized analytical, FEM and experimental 

center-shifts 

D OX , D OY optical path error due to the rotation of the cor- 

ner cube reflectors 

DX, DY components of the cross-spring pivot center- 

shift 

dx, dy normalized components of the cross-spring 

pivot center-shift 

E material Young’s modulus 

EI i , ( EI i ) 
∗ initial and actual flexural rigidity of the i th leaf- 

spring 

I second moment of area of the leaf-spring cross 

section 

k, k FEM 
, k exp normalized analytical, FEM and experimental 

cross-spring pivot rotational stiffness 

L leaf-spring length 

L 12 length of the cross-spring pivot moving mem- 

ber 

M, F, P couple, horizontal and vertical forces acting on 

the cross-spring pivot moving member 

m, f, p normalized couple, horizontal and vertical 

forces acting on the cross-spring pivot moving 

member 

m i ( x i ) normalized internal bending moment along the 

i th leaf-spring 

M i , F i , P i couple, transverse and normal forces acting on 

the moving edge of the i th leaf-spring 

m i , f i , p i normalized couple, transverse and normal 

forces acting on the moving edge of the i th 

leaf-spring 

m 
∗
i 
, f ∗

i 
, p ∗

i 
normalized couple, transverse and normal 

forces acting on the moving edge of the i th 

leaf-spring multiplied by the corrective factor 

ξ i 

OXY i , OXY local coordinate system of the i th leaf-spring 

and global coordinate system 

R principal curvature radius of an arbitrary leaf- 

spring 

R i ( X i ), R i variable and mean principal curvature radii of 

the i th leaf-spring 

s, c non-dimensional parameters 

S U material ultimate strength 

T leaf-spring thickness 

v 1 , v 2 displacements of nodes 1 and 2 in Y -direction 

W leaf-spring width 

x c , y c normalized coordinates of the cross-spring 

pivot center of rotation. 

X i , Y i coordinates of the i th leaf-spring in the local 

coordinate system OXY i 
x i , y i normalized coordinates of the i th leaf-spring in 

the local coordinate system OXY i 
y s normalized cross section Y coordinate from the 

neutral axis 
m

Greek letters 

α semi-angle between the leaf-springs 

β i Searlo’s parameter related to i th leaf-spring 

�d difference of the normalized FEM and experi- 

mental center-shifts to the analytical results 

�X i , �Y i displacement components of the i th leaf-spring 

moving edge in the local coordinate system 

OXY i 
δx i , δy i normalized displacement components of the i th 

leaf-spring moving edge in the local coordinate 

system OXY i 
λ non-dimensional parameter which defines the 

length of the leaf-springs crossing point 

μr coefficient of friction of the pulleys 

ν material Poisson’s ratio 

	i anticlastic factor related to i th leaf-spring 

σ 0.2 material yield strength 

σ 1 , σ1 exp analytical and experimental stress in the leaf- 

spring 1 

σ i ( x i , y s ) normal stress along the i th leaf-spring 

θ rotational angle of the cross-spring pivot mov- 

ing member 

εcor. fact , εsys convergence tolerances of the corrective factor 

ξ i and the non-linear system 

ξ i corrective factor of the i th leaf-spring flexural 

rigidity 

haracterized by a small center-shift but a still limited range of

otion due to high stress concentration on its modules. The but-

erfly configuration proposed by Henein et al. (2003) that provides

 diminished center deviation and a large stroke of motion, with

he detrimental effect of a high geometric complexity, and the

ross-spring pivot which is substantially simpler in terms of ge-

metric arrangement whereas it also allows a high range of rota-

ion ( Markovi ́c and Zelenika, 2017; Gonçalves Jr., 2016 ). More re-

ently, studies of cross-spring pivot variations were delivered by

earden et al. (2018) and Merriam and Howell (2016) in order to

btain hollow-shaft integrated designs and reduced stiffness con-

gurations, respectively. 

When cross-spring pivots are considered to be used in high-

recision applications, there are some design aspects that shall

e observed. For instance, the most commonly found geometric

rrangement of cross-spring pivots ( Fig. 7 (a)), whose leaf-springs

re forming a symmetric cross, presents a substantially high

enter-shift (at least five times higher than the equivalent

artwheel hinge ( Hongzhe and Shusheng, 2010a )). On the other

and, asymmetric configurations provide smaller center deviation
etric. 
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Fig. 2. Cross-spring pivot – (a) geometric parameters, (b) shape parameters and (c) center-shift and load-displacement representation. 
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accompanied, however, by the detrimental effects of higher “in-

plane” stiffness and critical stresses ( Fig. 7 (b)). Therefore, a suitable

modeling of the pivot elasto-kinematic behavior is needed to pre-

dict accurately performance characteristics such as the center-shift,

rotational stiffness and stress levels in the leaf-springs, as well as

to provide useful design insights that enable the choice of the most

adequate geometric arrangement for a given application. 

Several approaches to model the elasto-kinematic behavior of

cross-spring pivots have been investigated by different authors

over the last decades. Some are restricted to specific geometric

configurations and loading conditions, whereas others are not able

to provide design insights. Just a few of them are able to fulfill

both, performance prediction and geometric optimization. In this

sense, Haringx (1949) proposed a model – based on the solution

through elliptic integrals of the exact expression for the leaf-spring

curvature – to predict the center-shift of the symmetric pivot

loaded by pure couple for even large angles of rotations. Similarly,

the approaches based on kinematic considerations ( Wuest, 1950 )

and pseudo-rigid-body method ( Pei et al., 2010 ) are addressed to

the determination of this parasitic motion. They are, though, less

accurate. In order to overcome the load limitation, Zelenika and

Bona (2002) took into account a planar general condition of load

(vertical, horizontal and couple) to model the elasto-kinematic be-

havior of symmetric cross-spring pivots. However, for large rota-

tional angles, this approach presents lower accuracy than the ex-

act solution of Haringx (1949) due to the use of the approximated

leaf-spring curvature expression. 

Approaches proposed by Hongzhe and Shusheng (2010a,b) pro-

vide a geometric parametrization of the pivot submitted to a

general “in-plane” loading. Although, these approaches showed to

be helpful tools in early design stages, they are derived from the

parametric closed-form result presented by Awtar (2004) which

is based on approximations (series, linear, inverse linear and

inverse quadratic approximations) taken in the solution of the

approximated load-displacement equation of the leaf-spring.

Therefore, they provide less accuracy in the prediction of the pivot

performance parameters when compared with models based on

the exact and even the approximated curvature expression of the

leaf-spring. 

In our previous work Gonçalves Jr. et al. (2014) , an analytical

model was developed to accomplish both, accurate performance

prediction and geometric optimization. In the present work, the

pivot rotational stiffening induced by the non-linear effect of the

anticlastic curvature reduction for increasing deflections of the
eaf-springs is introduced in the analytical model. In addition, a

on-linear thin shell-based FEM model is also proposed and an

xperimental setup, based on laser interferometry, optical systems

nd extensometry is built. The experimental measurements, to-

ether with the reported in the literature, are used to check the

imits of applicability of both models. As far as the effectiveness

f the analytical model is assured, it is finally employed to discuss

esign aspects of cross-spring pivots. 

. Improved analytical model 

In order to accomplish a geometric optimization, the pivot ge-

metry is firstly parametrized. Thus, the following geometric pa-

ameters are defined: λ ∈ [0,1] and α ∈ (0, π /2) which deter-

ine the leaf-springs crossing point and the semi-angle between

hem. In addition, the shape parameters L, W, T – length, width

nd thickness – are used to represent the dimensions of the leaf-

prings, as shown in Fig. 2 (a) and (b), respectively. 

.1. Load-rotational relationship of the cross-spring pivot 

According to Zelenika and Bona (2002) , the load-rotational rela-

ionship of a cross-spring pivot submitted to a general planar load

ondition M, F and P – couple, horizontal and vertical loads – may

e described by 11 variables ( θ , P 1 , P 2 , F 1 , F 2 , M 1 , M 2 , �Y 1 , �Y 2 ,

X 1 and �X 2 ), as shown in Fig. 2 (c). 

For the sake of mathematical convenience, all displacements

nd lengths are normalized by L , forces by EI / L 2 and moments by

I / L as follows ( Gonçalves Jr. et al., 2014 ): 

m i = 

M i L 

EI 
, f i = 

F i L 
2 

EI 
, p i = 

P i L 
2 

EI 
, x i = 

X i 
L 

, y i = 

Y i 
L 

, δx i = 

�X i 
L 

, 

y i = 

�Y i 
L 

, dx = 

DX 

L 
, dy = 

DY 

L 
, d = 

D 

L 
, 1 = 

L 

L 
, t = 

T 

L 
, 

here E is the material Young’s modulus and I the second mo-

ent of area of the leaf-spring cross section. The dimensional and

he equivalent non-dimensional quantities are, respectively, repre-

ented by upper and lower case letters from now on. Moreover, the

ubscript i may be assigned as 1 or 2 and refers either to the two

eaf-springs or to the quantities expressed in the corresponding lo-

al coordinate system OXY i . On the other hand, it is suppressed for

he quantities written in the global coordinate system OXY . 

In order to determine all 11 unknowns, a non-linear system

f 11 equations is built. In the following, Eqs. (1)–(3) are ob-

ained by the equilibrium conditions of the pivot moving member.
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Fig. 3. Load-displacement representation of the leaf-spring. 
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qs. (4) and (5) , in turn, come up from the geometric compatibility

etween this member and the moving edges of the leaf-springs in

 and Y directions. 

f = ( p 2 − p 1 ) sin ( α) + ( f 1 + f 2 ) cos ( α) , (1) 

p = ( p 1 + p 2 ) cos ( α) + ( f 1 − f 2 ) sin ( α) , (2) 

 = m 1 + m 2 + [ ( p 1 − p 2 ) cos ( α) + ( f 1 + f 2 ) sin ( α) ] 

×λ1 sin ( α) cos ( θ ) −[ ( p 1 + p 2 ) sin ( α) − ( f 1 − f 2 ) cos ( α) ] 

×λ1 sin ( α) sin ( θ ) , (3) 

( δy 1 − δy 2 ) cos ( α) + ( δx 1 + δx 2 ) sin ( α) 

= 2 λ1 sin ( α) ( 1 − cos ( θ ) ) , (4) 

( δy 1 + δy 2 ) sin ( α) − ( δx 1 − δx 2 ) cos ( α) = 2 λ1 sin ( α) sin ( θ ) . 

(5) 

The remaining six equations ( Eqs. (7) , (8) and (10) ) are given

y the solutions of the approximated curvature expression (for a

ip deflection of 0.1 L the maximum error is in the order of 3.4%

wtar, 2004 ), the elastic stretching and kinematic constraint (con-

tant arc length) of the deformed leaf-spring shown in Fig. 3 . 

The well-known expression of the approximated curvature

ay be expressed in the non-dimensional form as follows

 Awtar, 2004 ): 

d 
2 

d x i 2 
y i ( x i ) = −p i 

∗( δy i − y i ( x i ) ) + f i 
∗
( 1 − x i ) + m i 

∗, (6) 

here p ∗
i 

= ξi p i , f 
∗
i 

= ξi f i and m 
∗
i 

= ξi m i . ξ i is a corrective factor

efined by the ratio between the initial and actual flexural rigidity

f the leaf-spring ( EI and (EI) ∗
i 
, respectively). This factor takes into

ccount the non-linear effect of the leaf-spring stiffening induced

y the anticlastic curvature reduction in increasing the deflections.

 detailed discussion about this effect is presented in the next sec-

ion. 

The right hand side of Eq. (6) represents the normalized inter-

al bending moment m i ( x i ) along the leaf-springs multiplied by ξ i .

Eq. (6) can be solved by double integration and the use of

roper boundary conditions, as shown in Appendix A . Thus, the

eaf-spring slope and transverse deflection at the moving edge

re obtained assigning x i = 1 in Eqs. (A.1) and (A.2) as follows

 Gonçalves Jr. et al., 2014 ): 

≈ ξi f i 

⎡ 

⎣ 

cosh 

(√ 

ξi p i 

)
− 1 

ξi p i cosh 
(√ 

ξi p i 

)
⎤ 

⎦ + 

ξi m i tanh 

(√ 

ξi p i 

)
√ 

ξi p i 
, (7) 

x i ≈ − p i 
s 

+ ( ξi f i ) 
2 

⎡ 

⎣ 

10 
√ 

ξi p i cosh 
(√ 

ξi p i 

)
+ 2 

√ 

p i cosh 

(
3 
√ 

ξi p i 

)
− 3

4 ( ξi p i ) 
( 5 �2 ) cosh 

(
3 
√ 

ξi p i 

)
+ 12 ( ξi p

+ ξi 
2 
f i m i 

⎡ 

⎣ 

3 cosh 

(√ 

ξi p i 

)
− 2 cosh 

(
2 
√ 

ξi p i 

)
+ cosh 

(
3 
√ 

ξ

( ξi p i ) 
2 
cosh 

(
3 
√ 

ξi p i 

)
+ 3 ( ξi p i )

+ ( ξi m i ) 
2 

⎡ 

⎣ 

sinh 

(√ 

ξi p i 

)
+ sinh 

(
3 
√ 

ξi p i 

)
− 4 

√ 

ξi p i cosh 

4 ( ξi p i ) 
( 3 �2 ) cosh 

(
3 
√ 

ξi p i 

)
+ 12 ( ξi p i ) 

( 3 �2 ) cos
d  
y i ≈ ξi f i 

⎡ 

⎣ 

√ 

ξi p i − tanh 

(√ 

ξi p i 

)
( ξi p i ) 

( 3 �2 ) 

⎤ 

⎦ + ξi m i 

⎡ 

⎣ 

cosh 

(√ 

ξi p i 

)
− 1 

ξi p i cosh 
(√ 

ξi p i 

)
⎤ 

⎦ .

(8) 

The elastic stretching and kinematic constraint of the leaf-

pring, in turn, may be written as follows ( Gonçalves Jr. et al.,

014 ): 

x i ≈ − p i 
s 

+ 

1 

2 

∫ 1 
0 

[
d 

d x i 
y ( x i ) 

]2 

d x i . (9) 

Finally, substituting Eq. (A.1) in Eq. (9) and performing the in-

egration results in: 

 

(√ 

ξi p i 

)
− 3 sinh 

(
3 
√ 

ξi p i 

)
2 ) cosh 

(√ 

ξi p i 

)
⎤ 

⎦ 

−
√ 

ξi p i sinh 
(
2 
√ 

ξi p i 

)
− 2 

h 

(√ 

ξi p i 

)
⎤ 

⎦ 

i p i 

)
 

ξi p i 

)
⎤ 

⎦ , (10) 

here s = 12 ( L T ) 
2 = 

12 
t 2 
. 

.2. Anticlastic curvature 

According to the classic bending theory, a narrow leaf-spring

 W / T << 1) undergoes a plane stress state when a pure couple is

pplied to it. In this case, its flexural rigidity is given by EI and,

ue to Poisson’s effect, an anticlastic curvature (in transverse di-

ection) −ν/R occurs (where −ν is the Poisson’s ratio and R the

rincipal curvature radius). On the other hand, when an uncon-

trained wide leaf-spring ( W / T >> 1) is bent by a pure couple, it

emains fairly flat in transverse direction, with exception of the

oundary regions. Therefore a plane strain state is developed and

he flexural rigidity becomes EI/ (1 − ν2 ) ( Fung and Wittrick, 1955;

omeroy, 1970 ). In a transition state, however, the anticlastic cur-

ature is partially developed and the flexural rigidity depends no

onger only on the ratio W / T , but also on the principal curvature

adius R ( Wang et al., 2005 ). Thus, for general cases, the flexural

igidity may be approached with an accuracy of better than 1% by

he following non-linear equation ( Pomeroy, 1968 ): 

(EI) i 
∗ = 

EI 

(1 − φi ν2 ) 
. (11) 

The parameter 	i in Eq. (11) is an anticlastic factor (non-

imensional number). This factor may be expressed as stated by
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Fig. 4. Anticlastic factor 	i as function of the Searle’s parameter β i . 
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Pomeroy (1970) : 

φi = 1 − 2 

c 
√ 

βi 

( 

cosh c 
√ 

βi − cos c 
√ 

βi 

sinh c 
√ 

βi + sin c 
√ 

β
i 

) 

, (12)

where the Searle’s parameter βi = W 
2 /R i t is the non-dimensional

factor defined in Searle (1908) and c = 
4 
√ 

3(1 − ν2 ) is also a non-

dimensional number which depends only on the material Poisson’s

ratio. 

Fig. 4 shows that 	i tends to 0 when β i << 1 and increases

asymptotically to 1 for β i >> 1 so that, at the limits, Eq. (9) also

holds the leaf-spring plane stress and plane strain cases. 

For a given angle θ of rotation of the pivot moving member,

the curvature 1/ R i ( X i ) is not constant along the leaf-spring. How-

ever, for just smooth variations, Eqs. (11) and (12) may still be used

( Meijaard, 2011 ). In this case, in order to calculate β i , a mean value

of the leaf-spring curvature (reciprocal of the curvature radius) is

taken ( Pomeroy, 1968 ): 

1 

R i 
= 

1 

L 

∫ L 
0 

1 

R i ( X i ) 
d X i . (13)

Eq. (13) may be written in terms of the normalized internal

bending moment as follows: 

1 

R i 
= 

∫ 1 
0 

1 

L 
ξi m i ( x i ) d x i 

= 

1 

L 

∫ 1 
0 

[ −p i 
∗( δy i − y i ( x i ) ) + f i 

∗
( 1 − x i ) + m i 

∗] d x i . (14)

Thus, substituting Eq. (A.2) into Eq. (14) and performing the in-

tegration, a closed-form expression for the mean curvature is ob-

tained: 

1 

R i 
= −δy i p i 

√ 

ξi p i sinh 
√ 

ξi p i − m i 

√ 

ξi p i sinh 
√ 

ξi p i 
p i L 

+ 

f i (1 − cosh 
√ 

ξi p i + 

√ 

ξi p i sinh 
√ 

ξi p i ) 

p i L 
(15)

Fig. 5 shows the calculation procedure of the elasto-kinematic

behavior of cross-spring pivots. At this point, it is important to

emphasize that two interactive procedures are performed in order

to obtain the final solution of the load-displacement relationship

block (11 unknowns presented in the beginning of this section):

one for the non-linear system defined by Eqs. (1)–(5), (7), (8) and

(10) and another for the calculation of the corrective factor ξ i . The

Levenberg-Marquardt algorithm proved to be efficient in solving
edium-size problems and therefore is employed to solve the non-

inear system ( Gonçalves Jr. et al., 2014; Roweis, 2018 ). The correc-

ive factor ξ i calculation, in turn, is carried out by means of simple

terations. Performed tests showed, in this case, that the final so-

ution for ξ i is reached in a maximum of three iterations, when a

onvergence tolerance εcor. fact = 0.001 is considered. 

Another non-linear effect that occurs as a consequence of

he moving member rotation is the additional rotational stiffen-

ng of the pivot induced by the anticlastic curvature preclusion

t the ends of the leaf-springs due to the clamping constraints

 Brouwer et al., 2013 ). According to Meijaard (2011) the non-

imensional factor L / W may be used as a measure of the influ-

nce of this effect on the leaf-spring rigidity. In this sense, the

maller the ratio L / W , the greater is the additional stiffening in-

uced by the clamped edges of the leaf-springs. Furthermore, this

ffect is even more relevant when the leaf-springs undergo sub-

tantially small displacements (tip deflections smaller than 0.01 L ).

n fact, the additional rotational stiffening of the pivot is domi-

ated by small ratios of L / W ( L / W < 4) for very small deflections

f the leaf-springs (i.e. very small rotations of the moving mem-

er) whereas it turns into being governed by the anticlastic curva-

ure reduction (large Searlo‘s parameter, β i > 10) in the rest of the

ivot rotational range ( Brouwer et al., 2013 ). Since the clamping

onstraint effect is relevant under restrict conditions ( L / W < 4 and

ery small deflections of the leaf-springs) and due to the mathe-

atical complexity to incorporate it into the analytical model, it is

ereby neglected. 

.3. Performance parameters 

The solution of the load-displacement block allows the calcula-

ion of the cross-spring pivot performance parameters (center-shift,

otational stiffness and stress in the leaf-springs), as discussed be-

ow. 

.3.1. Center-shift 

The cross-spring pivot center-shift OO 
′ is inherent to the rota-

ional motion of this flexural joint, as shown in Fig. 2 (c). This par-

sitic motion may be determined by the geometric consideration

n which the intersection of the straight lines tangent to the leaf-

prings at the moving edges (points A 1 and A 2 ) defines the position

f the pivot center of rotation, for a given rotational angle θ of its

oving member. 

The normalized equations of each straight line tangent at A 1 
nd A 2 may be written in the local leaf-spring coordinate systems

XY i as follows ( Hasselmeier, 1951 ): 

 i − δy i = tan (θ ) [ x i − (1 − δx i ) ] . (16)

To determine the intersection point, the linear system com-

osed by both straight lines must be solved. Therefore, they need

o be written at the same coordinate system. Thus, performing a

otation and a translatory transformation from the local coordinate

ystems OXY i to the global coordinate system OXY results in: 

x = b , (17)

here: 

 = 

[
cos (α) + sin (α) tan (θ ) sin (α) − cos (α) tan (θ ) 
cos (α) − sin (α) tan (θ ) − sin (α) − cos (α) tan (θ ) 

]
, 

x = 

{
x c 
y c 

}
, b = 

{
(δx 1 − λ) tan θ + δy 1 
(δx 2 − λ) tan θ + δy 2 

}
. 

Finally, the normalized center-shift is determined by: 

 = 

√ 

dx 
2 + dy 

2 = 

√ 

x c 2 + y c 2 , (18)

here x c , y c are the normalized coordinates of the pivot center of

otation. 
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Fig. 5. Flowchart of the calculation procedure of the elasto-kinematic behavior of cross-spring pivots. 
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.3.2. Rotational stiffness 

The cross-spring pivot rotational stiffness provides a measure

f the angular response of this flexural joint to a certain loading

pplied to its moving member. In addition, this parameter is use-

ul to evaluate the pivot stability, since it reveals at which load

onditions the buckling of the leaf-springs occurs, i.e., when it be-

omes negative. The normalized rotational stiffness may be readily

efined by Gonçalves Jr. et al. (2014) : 

 = 

m 

θ
, (19) 

here m is the normalized couple applied to the pivot moving

ember. 

.3.3. Stress analysis 

The analysis of stress developed along the leaf-springs is useful

o determine the motion capability of the cross-spring pivot, once

t is designed to work within the elastic range (under the material

ield strength). 

Knowing that the leaf-springs are considered to be slender

 L / T >> 1), the shear stress may be neglected. Thus, the stress dis-

ribution along them may be expressed as follows ( Hongzhe and

husheng, 2010b ): 

i ( x i , y s ) = −
√ 

3 E m i ( x i ) y s √ 

s 
+ 

E p i 
s 

, (20)

here the first term on right side of Eq. (20) represents the bend-

ng stress and the second expresses the axial stress. In addition,
 s ∈ [ −1 , 1] is the stress evaluation point on the leaf-spring cross

ection (from the neutral axis) normalized by the half of the thick-

ess T /2. 

. FEM model 

In order to verify the analytical results reported in the lit-

rature, models based on non-linear beam finite elements have

een widely proposed so far ( Merriam et al., 2016; Markovi ́c

nd Zelenika, 2017; Hongzhe and Shusheng, 2010a; Bi et al.,

012; Merriam and Howell, 2016; Hongzhe and Shusheng, 2010b;

onçalves Jr. et al., 2014 ). In this paper, however, to properly cap-

ure the transition between the plane stress and plane strain states,

 more comprehensive model based on non-linear thin shell ele-

ents was built in the environment of the well-known commer-

ial package ANSYS TM . For this purpose, the element “SHELL63”

as used. This element has four-nodes and six degree of freedom

DOFs) on each node: translation along and rotation about X, Y and

 axes. Both bending and membrane stiffness are permitted. In ad-

ition, large deflections and stress stiffening are also included on

ts formulation ( ANSYS, 2007 ). 

Owing to the capabilities aforementioned, the element

SHELL63” is able to adequately represent the non-linear ef-

ects of the pivot kinematics and the rotational stiffening induced

y the leaf-spring anticlastic curving reduction ( Brouwer et al.,

013 ). On the other hand, to take into account the anticlastic

urvature preclusion due to the clamping constraints, suitable
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Fig. 6. FEM idealization – (a) loading and mesh discretization and (b) center-shift. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

a

4

 

i  

s  

s  

a  

s  

c  

s

1  

a  

a  

m  

w  

1  

t  

u  

a  

i  

p  

t  

e  

c  

m  

p  

g  

t  

w  

fi  

t  

t

4

 

m  

T  
boundary conditions have to be used. In this case, all six DOFs

of the nodes at the fixed member are constrained, whereas rigid

elements with six DOFs (beam-like “MPC189” elements) are used

along-width to prevent the transverse curvature development on

the moving edges, as shown in Fig. 6 (a). 

The compatibility of motion between the moving edges is also

assured by two “MPC189” elements. They both, in turn, play the

role of the pivot moving member. The in-between node is used

as a load and couple application point. Furthermore, another ele-

ment of the same type is vertically placed from this node up to the

crossing point of the undeformed leaf-springs, in order to capture

the position of the pivot center of rotation for a given rotational

angle θ of the moving member, as shown in Fig. 6 (b). This rota-

tional angle, in turn, is given by: 

θ = arcsin 

( | v 1 − v 2 | 
L 12 

)
, (21)

where v 1 and v 2 represent the displacement of nodes 1 and 2 in

Y direction and L 12 the moving member length ( Fig. 6 (b)). In addi-

tion, a typical isotropic linear elastic material model was employed

( E = 200 GPa, ν = 0.3). 

Convergence tests revealed that, for any “in-plane” loading con-

dition, 12 elements along the width provide accurate results (dif-

ference smaller than 0.1% to a further refinement with 16 ele-

ments) for the stress in the leaf-springs, rotational angle θ and

center-shift of the pivot. Thus, in order to obtain a mesh with

good quality a mapped discretization with a maximum aspect ra-

tio of 1.12 was created so that 36 elements were fitted along the

length for a 20-mm-width per 60-mm-long leaf-spring configura-

tion (the same leaf-spring dimensions are used in the experimen-

tal prototypes). In order to simulate the cross-spring pivot behavior

properly, no nodal connectivity at the intersection line of the leaf-

springs was established. Moreover, the gravity effect was not con-

sidered, since a self-weight compensation was applied in the ex-

perimental tests. Finally, a solution control of static large displace-

ment was chosen to perform the calculations. 

4. Experimental procedure 

Experimental tests were carried out to check the effectiveness

and limits of applicability of the improved analytical model. Thus,
n the following the cross-spring pivot design and the experimental

pproach applied in the tests are described. 

.1. Design of the cross-spring pivots 

Two cross-spring pivot configurations were set up with cross-

ng points defined by λ = 0 . 5 and 0.127 (of diminished center-

hift according to Hongzhe and Shusheng (2010a) ) for α = π/ 4 , as

hown in Fig. 7 . They are, from now on, named as prototypes 1

nd 2, respectively. A four-strip arrangement was employed (two

tripes for leaf-spring) to enable the symmetrical placement of the

orner cube reflectors used for the measurement of the center-

hift components. Each strip was manufactured with 0.5 mm ×
0 mm × 60 mm ( T × W × L ) resulting in a leaf-spring equiv-

lent width of 20 mm. In order to minimize the shearing effect,

 ratio L / T >> 1 was adopted. The leaf-springs were made of 0.5-

m-thick sheets of cold rolled austenitic steel (EN 1.4310 FC)

ith the following mechanical properties: E = 200 GPa, σ 0.2 =
200 MPa and S U = 1350 MPa – Young’s modulus, yield and ul-

imate strengths. This material was chosen due to its high fig-

re of merit ( σ 0.2 / E ) which avoids plastic deformations in case of

ccidental loads. To prevent sheet warping owing to machining-

nduced residual stress, laser cutting was employed to obtain the

rofiles of the leaf-springs. A sandwich-like configuration was used

o assure the effective leaf-spring length. For this purpose, sharp-

dge blocks made of martensitic steel were used. They were ma-

hined together to avoid assembly misalignments resulting from

achining uncertainties. Furthermore, following the approach ap-

lied by Zelenika and Bona (2002) mounting jigs were used to

uarantee equality of the effective length for both leaf-springs and

o avoid twisting while assembling. Moving and fixed members

ere milled in high strength aluminium blocks, in order to ful-

ll both: enough robustness to be assumed rigid and low density

o reduce the mass required to perform the self-weight compensa-

ion. 

.2. Test bench 

In order to measure the moving member angular displace-

ents, the optical setup schematically shown in Fig. 8 (a) was used.

hus, to perform the measurements, a laser beam emitted by a
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Fig. 7. Cross-spring pivot geometric configurations – (a) prototype 1 and (b) prototype 2. 

Fig. 8. Schematic representation of the measurement procedures – (a) moving member rotational angle and (b) center-shift. 
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iode is triply reflected, on a movable, fixed and adjustable mirror,

ounted on the pivot moving member, on an aluminium frame

nd on a rotary table, respectively. This laser beam is then directed

oward a telescope with a reference mark inside. The initial angular

osition of the adjustable mirror is then conveniently set to make

he incoming laser match this mark. When the pivot moving mem-

er rotates, this beam is deviated outward the mark. Thus, the ro-

ary table is adjusted to realign the incoming beam. The difference

etween the initial and final angles on the table scale represents

he moving member angular shift. 

As stated by Zelenika and Bona (2002) , the experimental assess-

ent of the center-shift of cross-spring pivots may be performed

apping the trajectory of a single point of the moving member. A

ew contact and low-resolution non-contact methods using point-

rs on scribed scale and toolmaker’s microscopes were found in

he literature for this purpose ( Wittrick, 1948; Wuest, 1950; Young,

944 ); none of them, however, delivered accurate measurement.

n the other hand, the two-dimensional laser tracking technique

roposed by Zelenika and Bona (2002) showed to produce reli-
ble results characterized by low uncertainty. Thus, a similar setup

as designed to assess the pivot parasitic motion in this work.

onetheless, on the arrangement applied by them, just one cor-

er cube reflector was used to reflect two in-angle laser beams.

herefore, to determine the center-shift components DX and DY ,

his angle must be accurately calibrated and trigonometric expres-

ions have to be applied. To overcome these inconveniences, two

aser heads were directed into two independent corner cube re-

ectors perpendicularly placed to each other on the pivot moving

ember, as schematically shown in Fig. 8 (b). In this case, a fine

djustment of the incoming laser beams was performed by mon-

toring the output signal in an oscilloscope. Then, the center-shift

omponents were obtained directly by the measurement of each

orresponding interferometer. 

According to Niebauer et al. (2015) , length measurements taken

ith laser interferometer are invariant to angular movements

bout the optical center of corner cube reflectors. Thus, an ade-

uate positioning of the corner cubes so that their optical cen-

ers coincide with the crossing point of the undeformed leaf-
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Fig. 9. Measurement of the optical path error due to the corner cubes rotation – (a) experimental setup, (b) schematic representation of the experimental procedure. 

Fig. 10. Compensation curves of the optical path error due to the rotation of the corner cubes – (a) OX and (b) OY . 
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springs would eliminate the parasitic displacements accounted on

the center-shift measurements, due to the rotation of them. Pre-

liminary experiments showed, however, that the optical center of

corner cubes varies from one to another; therefore, locating them

accurately becomes a complex task. For this reason, the optical

path error resulting from rotations of each corner cube was mea-

sured for a reference point ( RP ) instead. To perform the measure-

ment, each corner cube was positioned on a precision linear stage

(setting sensitivity of ±1 μm) that was attached to a graded ro-

tary table (setting sensitivity smaller than 100 μrad), as shown in

Fig. 9 (a). The interferometer beam was then directed to the cor-

responding corner cube. Subsequently, this corner cube was car-

ried to the reference position associated to RP through a displace-

ment imposed in the linear stage. Finally, rotational increments of

1 ° were applied to the rotary table and the corresponding displace-

ments where measured by the interferometer ( Fig. 9 (b)). 

Fig. 10 shows the dependence of the optical path error on the

rotation of corner cube reflectors OX and OY ( Fig. 8 (b)) for a refer-

ence position of 6.6 mm from the initial position. Thus, the com-

pensation displacements D OX and D OY were applied to the mea-

surement of the corresponding center-shift components. 

Together with the moving member rotational angle and center-

shift measurement systems, following the approach employed by

Wittrick (1948) , resistance strain gauges (S.G.) with thermal ex-

pansion coefficient appropriate for austenitic steel (26x10 6 /K) were

fixed on specific points of the leaf-springs to check the stress dis-

tribution along their length (shown in the detail of Fig. 11 ). 
The rotary table used in the experiments provides a resolu-

ion of 291 μrad (1’) through the interpolation of the scale inter-

al (582 μrad). Major source of errors in the measurements of the

oving member rotation came up from the laser beam alignment,

ealignment and reading errors of the rotary table scale. Thus, an

ncertainty interval of ± 873 μrad was estimated for the angu-

ar measuring setup. The center-shift measurement system, in turn,

rovided a resolution of 0.01 μm. The major uncertainties were as-

ociated to systematic errors of assembly misalignment, whereas

andom errors were negligible (refractive index of air, dead-path

rror, etc ( Zelenika and Bona, 2002 )). The strain gauge electrical

esistances were measured with a resolution of 10 μ�. Major un-

ertainties in these measurements arised from parasitic contact re-

istance. To minimize this effect, an offset compensation feature

as set on the data acquisition device (DAQ) used in the stress

easurement system ( Agilent, 2003 ). 

The pivot prototypes and measurement systems were fixed to

he profiled aluminium frame of Fig. 11 . The whole test bench was

ounted on a vibration isolated granite table, in order to minimize

ibration interferences. Couple and vertical loads were applied to

he prototypes up to a maximum rotational angle of about 15 °. A
ystem of calibrated masses, pulleys and wires tied on the mov-

ng member was used for this purpose. Compensation of the mov-

ng member self-weight was performed by means of a compressive

ertical load ( P load in Fig. 11 ). On the other hand, the friction ef-

ect was neglected since the frictional moment and force produced

y the lubricated rolling-bearings of the pulleys (coefficient of fric-
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Fig. 11. Experimental setup. 
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ion μr ≈ 0.0 01–0.0 03) did not overcome 0.012% and 0.006% of

he total generated couple and vertical force, respectively. The self-

eight of the wires was also neglected. 

. Results and discussion 

A comparison between the theoretical results and the experi-

ental measurements performed here and reported in the litera-

ure is carried out for both prototypes 1 and 2, in order to check

he effectiveness of each model (analytical and FEM) in the predic-

ion of their performance parameters. Furthermore, remarkable de-

ign aspects concerning the behavior of the pivot center-shift and

otational stiffness are also discussed. 

.1. Assessment of cross-spring pivots performance parameters 

Fig. 12 shows the dependence of the center-shift on the rota-

ional angle θ for prototypes 1 and 2 loaded by pure couple. For

he sake of better visualization, the analytical prediction is exhib-

ted on the left axis, whereas the FEM results and experimental

easurements are expressed in terms of the difference to the an-

lytical values ( �d = d F EM/exp. − d) on the right axis. 

First of all, there is an excellent correlation between the analyti-

al and FEM results for the prototype 1 (maximum error | d F EM −d 

d F EM 
| ×

00% ≈ 1 . 7% for θ around 14.4 °). A very good agreement was also

chieved when the analytical predictions are compared with the

nterferometer measurements. The growing difference displayed in
his case could be mainly attributed to the approximation in the

urvature expression ( Zelenika and Bona, 2002 ). However, the ana-

ytical model remains applicable, in even relatively large rotational

ngles, since an error | d exp −d 

d exp 
| × 100% ≈ 6 . 2% for θ of about 12.8 °

as obtained. Furthermore, Fig. 12 (a) also shows that the mea-

urements provided by the low-resolution non-contact and contact

ethods (toolmarker’s microscopy and pointer on scribed scale)

eported in the literatures Wuest (1950) and Young (1944) are

haracterized by high uncertainties, as revealed by the large differ-

nces in even small angular rotations of the pivot moving member.

When the analysis comes to prototype 2, no experimental data

as found in the literature. Thus, the analytical results are only

ompared with the numerical prediction and the interferometer

easurements, as shown in Fig. 12 (b). Conversely to the accu-

ate results achieved for the prototype 1, a just reasonable correla-

ion between both models was achieved (maximum error smaller

han 12.4% for θ of about 11.4 °), whereas a large difference oc-

urred when the analytical center-shift prediction and the inter-

erometer measurements are compared. According to Hongzhe and

husheng (2010a) , this pivot configuration ( λ = 0 . 127 for α = π/ 4 )

roduces a diminished center-shift, with X and Y components

ominated by high order terms ( θ4 and θ3 , respectively). Thus, the

xperimental measurements become very sensitive to manufactur-

ng uncertainties and assembly misalignments, which may result

n these large differences. Even so, a comparison between inter-

erometer measurements of both prototypes reveals, as expected,

hat the center-shift of the configuration 2 is substantially smaller
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Fig. 12. Normalized analytical center-shift d on the left axis and its difference �d to FEM and experimental results on the right axis – (a) prototype 1 and (b) prototype 2. 

Fig. 13. Stiffness characteristics: normalized couple needed to carry the moving member to a given rotational angle θ ( °) – (a) prototype 1 and (b) prototype 2. 
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than that produced by the prototype 1. Similar results – not shown

graphically – were obtained for both prototypes loaded by couple

alongside vertical loads (compressive and tensile forces). 

Fig. 13 (a) and (b) provide a measure of the rotational stiffness

of prototypes 1 and 2, respectively. A comparison between them,

confirms that a larger couple is needed to carry the moving mem-

ber of prototype 2 to a certain angular position so that it has a

larger rotational stiffness ( Gonçalves Jr. et al., 2014 ). Furthermore,

the fairly linear relation between m and θ shown in both cases

evidences a constant behavior of the rotational stiffness when the

pivot is submitted to pure couple or couple together with a con-

stant vertical load. On the other hand, the stiffness varies when

a variable vertical load is considered. In the cases of prototypes 1

and 2, the stiffness decreases under a compressive loading and in-

creases when a tensile force is applied to them. A wider analysis

about the influence of the vertical load on the pivot stiffness is

presented in the next section. 

m  
The results obtained by the analytical and numerical models

chieved a very good correlation with a maximum error | k F EM −k 

k F EM 
| ×

00% of about 2.6% and 4.6% at normalized couples m of 0.55 and

.74 for prototypes 1 and 2, respectively. The experimental mea-

urements of prototype 1 are in good agreement with both models

ikewise (error | k exp −k 

k exp 
| × 100% < 10% in most cases), whereas those

erformed in prototype 2 presented greater errors (maximum in

rder of 32% when θ is around 1 °), which could be due to residual

ompliance of the constraints ( Zelenika and Bona, 2002 ). 

When the stresses are considered, prototype 1 provides a bet-

er distribution of compliance along the leaf-springs and due to

hat, the configuration 2 is submitted to substantially higher stress

evels for a given rotational angle θ (critical stress of almost 60%

f the material yield strength for a rotational angle of about 14.7 °,
s shown in Fig. 14 (b)). Therefore, this configuration has smaller

otion capability than the symmetric one. In addition, measure-

ents of the strain gauges S.G. 2 and S.G. 4 (not shown in Fig. 11 ),
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Fig. 14. Stress distribution along the lower ( y s = −1 ) and upper ( y s = 1 ) surfaces of the leaf-spring 1 normalized by the material yield strength – (a) prototype 1 and (b) 

prototype 2. 

Fig. 15. Stress distribution along the lower ( y s = −1 ) and upper ( y s = 1 ) surfaces 

of the leaf-spring 1 normalized by the material yield strength for the prototype 1 

submitted to a large compressive vertical force. 
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onded at opposed faces ( y s = −1 and 1), show that the stress dis-

ribution along the leaf-springs is dominated by the bending com-

onent, since they produced fairly symmetric values. This conclu-

ion may be extended to a broad angular interval, with the ex-

eption of substantially small rotational angles, at which the axial

omponent becomes dominant. 

It is also possible to note from Fig. 14 that the critical stress

s developed at one end of the leaf-spring. In fact, according to

ongzhe and Shusheng (2010b) it always occurs when the pivot is

oaded by pure couple or a couple with tensile load. On the other

and, if a compressive force large enough is applied, the critical

tress displaces from the end to an intermediary point of the leaf-

pring, as shown by the S.G. 2 and S.G. 4 in Fig. 15 . 

The comparison among the results provided by the analytical

odel (normal and dashed lines), finite element analyses (trian-

le and diamond marks) and experimental measurements (points

nd cross marks) produced, at least, a reasonable correlation in
ll cases. Maximum errors (| σ1 exp 
−σ1 

σ1 exp 
| × 100%) between analytical

nd experimental data in the measurement of the highest mea-

ured stresses did not overcome 3.0% and 12.4% (when θ is about

4.7 °) for the prototypes 1 and 2 under the load conditions of
ig. 14 (meas. of S.G. 1 and S.G. 3, respectively). The case of large

ompressive load, in turn, produced an error smaller than 6.5%

or θ around 6.5 ° (meas. of S.G. 4). A smaller rotational angle

as adopted in this case to avoid plastic deformations in the leaf-

prings. The errors in the stress measurements could be mainly at-

ributed to the uncertainties associated to the manual process of

ositioning and bonding the strain gauges. 

.2. Design aspect of cross-spring pivots 

The comparison between the theoretical results and experimen-

al measurements performed in the previous section shows that

he improved analytical model fulfills the requisites to be applied

s a tool to support the design of cross-spring pivots, since the

ompared results presented a similar global behavior, even though

ome few did not produce a tight numerical correlation. 

When the design of cross-spring pivots is considered, an opti-

al geometric configuration will depend upon the intended appli-

ation, since in most cases it is not possible to optimize all perfor-

ance parameters simultaneously ( Markovi ́c and Zelenika, 2017 ).

n practice, the geometric parameters λ and α are usually chosen

o either optimize the center-shift or the rotational stiffness while

 stress check is performed to verify the motion capability of the

esigned pivot, as well as whether the shape parameters ( T, W and

 ) of the leaf-springs are adequately dimensioned. Thus, the influ-

nce of the geometric parameters on the center-shift and rotational

tiffness are here analyzed separately and hence conclusions about

ossible design solutions are drawn. 

The center-shift of cross-spring pivots is strongly influenced by

heir geometric arrangement. Fig. 16 (a) shows that this parasitic

otion reaches a maximum when λ is 0.5 and increases for large

alues of α. Moreover, the geometric parameters yield a more pro-

ounced influence on the center-shift in large rotational angles. On

he other hand, the pivot geometric configuration presents less im-

act over this deviation for small rotations ( θ < 5 °). 
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Fig. 16. Influence of the geometric parameters λ and α on the pivot normalized center-shift – (a) for different angles of rotation, (b) diminished center-shift paths for pure 

couple and (c) diminished center-shift paths for couple combined with the vertical load. 
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In some specific applications of payload scientific instruments a

very small center-shift is required ( Henein et al., 2003 ). According

to Markovi ́c and Zelenika (2017) , the pairs ( α, λ) at which this par-

asitic shift is diminished, varies with the pivot rotation θ . Fig. 16 (b)
reveals that these values shift toward the symmetric pivot ( λ =
0.5) for increasing rotational angles, as shown by the dark arrow.

This effect is more pronounced when α becomes smaller than 30 °
and is accompanied by a substantially increase of the center-shift;

on the other hand, the larger α is the smaller the center devia-

tion in this region. A similar behavior is noted for reciprocal pivot

configurations (e.g. λ = 0.127 and 0.873). 

The coloured curves in Fig. 16 (b) represent the projection of the

“diminished center-shift paths” for different pivot rotational angles.

They show that, when λ< 0.5, 15 ° ≤α ≤ 75 ° and a range of 5 °
≤ θ ≤ 30 ° are considered, the center-shift is reduced for λ val-

ues varying from 0.1274 up to 0.1760. Analogously, for λ> 0.5 this

range varies between 0.8715 and 0.9338 (not shown graphically).

These curves are, in both cases, well-fitted by 9 th order polynomi-

als as follows: 

λ(α) = a 9 α
9 + a 8 α

8 + a 7 α
7 + a 6 α

6 + a 5 α
5 + a 4 α

4 

+ a 3 α
3 + a 2 α

2 + a 1 α + a 0 . (22)

The coefficients a 9 , a 8 , a 7 , a 6 , a 5 , a 4 , a 3 , a 2 , a 1 , a 0 for α ∈ [3/36 π ,

15/36 π ] of each polynomial are shown in Table 1 . 

Fig. 16 (c) shows, in turn, that the vertical load affects the “di-

minished center-shift paths” greatly. Thus, when p varies from
Table 1 

olynomial coefficients of the diminished center-shift paths for the pivot loaded by pure 

θ ( °) a 9 a 8 a 7 a 6 a 5 

λ
<
 0
.5
 

5 −1.011567 7.616263 −25.049645 47.213966 −56.1857

10 −0.595071 4.789678 −16.827459 33.879746 −43.1292

15 −4.021361 30.548268 −101.324089 192.502501 −230.821

20 −6.568491 49.625305 −163.623492 308.911833 −368.037

25 −7.885312 60.393501 −201.989214 387.005671 −468.063

30 −10.276802 78.246428 −260.189654 495.814967 −596.816

λ
>
 0
.5
 

5 0.663325 −5.198213 17.794030 −34.880942 43.10623

10 1.682285 −12.913212 43.229113 −82.783721 99.92070

15 2.177382 −17.256766 59.787865 −118.735443 148.8476

20 5.411118 −41.530595 139.130793 −266.780651 322.4509

25 7.452554 −56.742325 188.511207 −358.440185 429.7631

30 9.303452 −70.777426 235.060327 −447.064450 536.5205
ompressive to tensile loads, the geometric configurations which

roduce reduced center-shifts change toward the triangular ar-

angements, i.e. to λ = 0 for pivot configurations in which λ<0.5

nd to λ = 1 for the geometries with λ> 5 (not shown graphi-

ally). Furthermore, it is noteworthy a markable variation on the

diminished center-shift paths” for large α values ( α > 60 °). On
he other hand, smaller variations are noted for α varying between

0 ° and 60 °, even when a broad range of p is considered. Owing to

hat and also to the fact that the center-shift grows substantially

or α < 30 °, this interval ( α ∈ [30 °, 60 °]) shall be preferred for de-
ign matter. The curves for θ = 15 °, λ< 0.5 ( Fig. 16 (c)) and λ> 0.5

not shown graphically) are well-fitted by 8 th order polynomials as

ollows: 

(α) = b 8 α
8 + b 7 α

7 + b 6 α
6 + b 5 α

5 + b 4 α
4 + b 3 α

3 

+ b 2 α
2 + b 1 α + b 0 . (23)

The coefficients b 8 , b 7 , b 6 , b 5 , b 4 , b 3 , b 2 , b 1 , b 0 for α ∈ [3/36 π ,

5/36 π ] of each polynomial are shown in Table 2 . 

Regarding the rotational stiffness, Fig. 17 (a) shows that it is

trongly influenced by the geometric parameter λ and less sen-

itive to α variations. Thus, when the pivot is loaded by pure

ouple, the stiffness minimization is obtained for the symmetric

onfiguration ( λ = 0.5) whereas it is maximum for the triangu-

ar arrangements ( λ = 0 and 1) ( Gonçalves Jr. et al., 2014 ). Simi-

arly, it is possible to see from this figure, that the vertical load p

as also a substantial impact on the rotational stiffness behavior.
couple. 

a 4 a 3 a 2 a 1 a 0 

27 43.781046 −22.353784 7.225946 −1.348271 0.239176 

31 36.086224 −19.925556 7.045633 −1.461504 0.265137 

093 181.210051 −93.268360 30.441502 −5.753140 0.613720 

226 287.168265 −147.024809 47.810507 −9.026126 0.892751 

230 370.787131 −192.720847 63.616580 −12.193256 1.178165 

996 471.060437 −244.348190 80.678697 −15.512669 1.473816 

6 −34.803038 18.359466 −6.112946 1.171664 0.774618 

3 −78.877586 40.797108 −13.382620 2.544431 0.662603 

97 −122.118039 65.610190 −22.311711 4.382229 0.503878 

50 −254.723011 131.618649 −43.010542 8.115843 0.216400 

47 −337.089167 173.234229 −56.443008 10.652945 0.014943 

49 −421.501944 217.081866 −70.898981 13.410464 −0.200183 
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Table 2 

Polynomial coefficients of the diminished center-shift paths for the pivot loaded by couple combined with vertical forces. 

p load b 8 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 

λ
<
 0
.5
 −4.2379 3.348276 −21.658315 60.426156 −94.835550 91.545477 −55.692551 20.910670 −4.453007 0.553547 

0 1.919676 −13.159903 38.723857 −63.839310 64.477440 −40.883114 15.930877 −3.507614 0.466065 

4.2379 1.484218 −10.296389 30.573506 −50.780064 51.626832 −32.949968 12.927825 −2.870914 0.400114 

λ
>
 0
.5
 −4.2379 −1.695147 10.643474 −28.891815 44.192930 −41.635469 24.744878 −9.084456 1.890616 0.706353 

0 −1.857842 12.688921 −37.148986 60.845725 −60.967233 38.298721 −14.768157 3.215379 0.580763 

4.2379 −2.570751 17.661291 −51.983096 85.619418 −86.333262 54.639734 −21.252592 4.675435 0.443362 

Fig. 17. Influence of the geometric parameters λ and α on the pivot normalized rotational stiffness – (a) for pure couple and couple combined with vertical load, (b) regions 

delimited by the intercepting curves A, B and C which define different stiffness behaviors under variable vertical loads. 
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u  
he markers on it show that when the vertical load is positive, the

inimum stiffness displaces slightly toward the geometric config-

ration at which λ = 0, contrarily for negative p this minimum

ends to λ = 1. This characteristic may be very useful for design

urpose since, in general applications, the smaller the pivot rota-

ional stiffness the higher is the instrument sensitivity. However, if

t is excessively small, a loss of rotational accuracy may arise, e.g.

hen a vertical load is applied to the pivot ( Bi et al., 2016 ). Thus,

his condition shall be avoided while the pivot is designed. 

Fig. 17 (b) provides a general picture of the rotational stiffness

ehavior in dependence of the geometric parameters ( λ, α) for a

nterval of p ranging from negative to positive values. When the

air ( λ, α) is selected on the cyan area, compressive and tensile

 loads lead, respectively, to a decrease and an increase of the ro-

ational stiffness. On the other hand, the opposite occurs for the

ellow region. Thus, for the majority of the geometric configu-

ations, the rotational stiffness is substantially affected by varia-

ions of the vertical load. However, in some practical applications,

uch as torque standard machines (TSM) ( Bitencourt et al., 2011;

asquez, 2014 ), gimballed devices ( Bi et al., 2016 ), among others,

t is desired that the pivot stiffness be invariant to variable vertical

oads, in order to reduce realization and measurement uncertain-

ies. According to Hongzhe and Shusheng (2010b) , a constant stiff-

ess is obtained if the pair ( λ, α) fulfills the following equation:

os 2 α = 

−2 
(
9 λ2 − 9 λ + 1 

)
. (24) 
15 λ
In fact, it is not possible to design a pivot with constant stiff-

ess, especially when a large range of p varying between positive

nd negative values is considered (e.g. p ∈ [ −4 . 2379 , 4 . 2379] ). Even

o, it is still possible to obtain configurations with reduced influ-

nce of p variations on the stiffness if λ and α are selected on the

ransition region in purple. It is important to note that this region

s compounded by two subregions: one – delimited by the curves

 and A – defines the selection area of the pair ( λ, α) for the par-

icular cases in which the pivot undergoes p variations from 0 over

ensile loads, and another – bounded by the curves C and B – for

he cases of p varying from 0 over compressive loads. 

Nevertheless, the width of the purple region depends on the

imits of p so that the smaller it is, the narrower this region is. For

ery small magnitudes of it, (e.g. | p | ≤0.8476) the curves A and B

pproach the curve C , so they become practically coincident and

he rotational stiffness quasi-constant ( Bi et al., 2016 ). 

The curves A, B and C are well-fitted, for the range of p shown

n Fig. 17 (a), by the following 9 th order polynomials: 

(λ) = c 9 λ
9 + c 8 λ

8 + c 7 λ
7 + c 6 λ

6 + c 5 λ
5 + c 4 λ

4 

+ c 3 λ
3 + c 2 λ

2 + c 1 λ + c 0 . (25) 

The coefficients c 9 , c 8 , c 7 , c 6 , c 5 , c 4 , c 3 , c 2 , c 1 , c 0 of each poly-

omial are written in Table 3 . 

Where, for A : λ∈ [0.1287, 0.8342], B : λ∈ [0.1592, 0.8070], C :

∈ [0.1442, 0.8209] and α is given in radians. 

Above analyses confirm that it is not possible to obtain a config-

ration of minimized center-shift and rotational stiffness in once.
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Table 3 

Polynomial coefficients of the intercepting curves A, B and C that delimit the regions of different stiffness behaviors of the pivot submitted to variable vertical loads. 

Curve c 9 c 8 c 7 c 6 c 5 c 4 c 3 c 2 c 1 c 0 

A −4606.5318 21384.8288 −43085.4068 49393.7105 −35486.7050 16579.6194 −5054.2414 979.2813 −111.5832 6.7240 

B −27560.3189 125460.9055 −248133.9324 279411.4560 −197120.4480 90242.0801 −26794.3356 4981.8084 −528.7167 25.5410 

C −12227.5579 56125.1750 −111809.5812 126689.6560 −89857.2386 41338.3897 −12341.2312 2314.5604 −249.8687 12.9258 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

a  

e  

n  

p  

a  

b

A

 

T  

f  

t  

t  

B  

s

A

e

 

t  

c

 

d

 

 

t

y

 

A

s

 

b  

f  

m  
However, for practical applications which require high rotational

compliance in just small rotational angles (up to 1 °) ( Bitencourt
et al., 2011; Vasquez, 2014 ), the pair ( λ, α) = (0.5, 55.54 °) – over

curve C – may be chosen, since it provides the minimization and

also just slightly varied stiffness under p load variations, whereas

the center-shift is not significantly disturbed by the geometric con-

figuration for small rotations of the pivot moving member (no

problem to select λ= 0.5 in this case). For general cases, the poly-

nomials defined by Eqs. (22) , (23) and (25) may be used to support

the pivot design. 

6. Conclusions 

In this paper the non-linear effect of the leaf-spring anticlas-

tic curvature was introduced in the analytical formulation pro-

posed in our prior art Gonçalves Jr. et al. (2014) to predict the

elasto-kinematic behavior of cross-spring pivots. Furthermore, a

non-linear thin shell-based FEM model and an experimental test

bench were built to verify the analytical results. 

Performance characteristics (i.e. center-shift, rotational stiffness

and stress along the leaf-springs) were experimentally assessed for

two geometric configurations: λ = 0.5 and 0.127 for α = 45 °. The
comparison between the results achieved by both models and the

experimental measurement showed at least a good agreement for

the symmetric configuration ( λ = 0.5). In the case of the asym-

metric arrangement ( λ = 0.127), theoretical and experimental data

did not produce a tight numerical correlation for the center-shift,

possibly due to the high sensitivity of this parasitic motion to man-

ufacturing uncertainties and assembly misalignments of the exper-

imental setup. The rotational stiffness and critical stresses of this

configuration presented, in turn, a reasonable and a good agree-

ment, respectively. 

Comparison of the analytical results with the numerical and ex-

perimental data ensure that the improved analytical model satis-

fies the requisites to be applied as a design tool of cross-spring

pivots. Thus, analyses of design aspects of this type of flexural

joint showed that the geometric parameters λ and α affect the

pivot performance characteristics significantly. Furthermore, they

evidenced that it is usually not possible to obtain an optimal ge-

ometry to fulfill a broad range of applications, since the improve-

ment of determined performance parameter leads to a worsening

of others, e.g. an optimal center-shift characteristic leads to high

rotational stiffness and high critical stresses and vice-versa. 

The pivot center-shift is substantially reduced within the inter-

vals of λ∈ [0.1274, 0.1760] and λ∈ [0.8715, 0.9338] for α ∈ [15 °,
75 °], when a pure couple loading and moving member rotations θ
varying from 5 ° up to 30 ° are considered (smaller θ values lead to

a small impact of the geometric configuration on the center-shift).

When a vertical force is applied alongside the pure couple, it is

shown that the λ values which produce a diminished center-shift

change according to the force direction and magnitude. For a ten-

sile load, λ values move toward the triangular configurations ( λ =
0 and 1) and to the symmetric arrangement ( λ = 0.5) for compres-

sive loads. 

Contrary to the center-shift, the rotational stiffness reaches a

minimum when λ is around 0.5. Furthermore, it is also affected

by the variation of the vertical load. However, this effect can be

minimized if the pair ( λ, α) is adequately chosen. For instance,
he geometric configuration of λ = 0.5 and α = 55.54 °, provides
 high compliance of motion and also a fairly stable stiffness for

ven broad intervals of variable vertical loads. Due to its good stiff-

ess characteristics, this configuration is suggested for specific ap-

lications whose require high “in-plane” compliance in just small

ngles of rotation, e.g. Torque Standard Machines (TSMs) and gim-

alled devices. 
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ppendix A. Solutions of the approximated curvature 

xpression 

To obtain the solutions of Eq. (6) , it is integrated twice. In order

o determine the constants of integration, the following boundary

onditions are employed: 

d 

d x i 
y i (0) = 0 , y i (0) = 0 , 

Thus, performing the integration of Eq. (6) , the slope in depen-

ence of the leaf-spring length is obtained: 

d 

d x i 
y i ( x i ) = ξi f i 

⎡ 

⎣ 

sinh 

(√ 

ξi p i x i 

)
√ 

ξi p i 
−

cosh 

(√ 

ξi p i x i 

)
ξi p i 

+ 

1 

ξi p i 

⎤ 

⎦ 

+ 

ξi m i sinh ( 
√ 

ξi p i x i ) √ 

ξi p i 
− δy i 

√ 

ξi p i sinh 
(√ 

ξi p i x i 

)
. (A.1)

Finally, integrating the resulting Eq. (A.1) , the transverse deflec-

ion along the leaf-spring length is determined: 

 i ( x i ) = ξi f i 

⎡ 

⎣ 

cosh 

(√ 

ξi p i x i 

)
ξi p i 

−
sinh 

(√ 

ξi p i x i 

)
( ξi p i ) 

( 3 �2 ) 
+ 

x i 
ξi p i 

− 1 

ξi p i 

⎤ 

⎦ 

+ ξi m i 

⎡ 

⎣ 

cosh 

(√ 

ξi p i x i 

)
ξi p i 

− 1 

ξi p i 

⎤ 

⎦ 

+ δy i 

[ 
1 − cosh 

(√ 

ξi p i x i 

)] 
. (A.2)

ppendix B. Equations for the non-linear system initial 

olution 

Eqs. (B.1)–(B.8) represent low-order approximations proposed

y Hongzhe and Shusheng (2010b) for the variables θ , p 1 , p 2 , f 1 ,
 2 , m 1 , m 2 , δy 1 and δy 2 , whereas Eq. (B.9) expresses an approxi-

ated solution based on series, linear, inverse linear and inverse

https://doi.org/10.13039/501100002322
https://doi.org/10.13039/501100001659
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uadratic functions for δx 1 and δx 2 ( Awtar, 2004 ). In order to im-

rove the non-linear system convergence, Eqs. (B.1)–(B.9) are used

o generate its initial solution. 

= 

15 cos (α) [ λ f cos (α) + m ] 

[ 18 λ2 − 18 λ + 15 λcos 2 (α) + 2 ] p + 120 cos (α) 
(
3 λ2 − 3 λ + 1 

) , 

(B.1) 

p 1 = 

1 

2 
F 11 − 1 

20 

[
(1 − 12 λ) F 12 + 120 cot (α)(1 − 2 λ) 

]
θ, (B.2) 

p 2 = 

1 

2 
F 21 + 

1 

20 

[
(1 − 12 λ) F 22 + 120 cot (α)(1 − 2 λ) 

]
θ, (B.3) 

f 1 = − 1 

20 

[
(1 − 12 λ) F 11 + 120(1 − 2 λ) 

]
θ

+ 

1 

200 

[
(1 − 12 λ) 

2 
F 12 + 40 cot (α)(108 λ2 − 78 λ + 7) 

− 160 

sin (α) cos (α) 
(9 λ2 − 9 λ + 1) 

]
θ2 , (B.4) 

f 2 = − 1 

20 

[
(1 − 12 λ) F 21 + 120(1 − 2 λ) 

]
θ

− 1 

200 

[
(1 − 12 λ) 

2 
F 22 + 40 cot (α)(108 λ2 − 78 λ + 7) 

− 160 

sin (α) cos (α) 
(9 λ2 − 9 λ + 1) 

]
θ2 , (B.5) 

 1 = 

1 

60 

[
( 4 − 3 λ) F 11 + 120(2 − 3 λ) 

]
θ

− 1 

600 

[
(1 − 12 λ) ( 4 − 3 λ) F 12 + 120 cot (α) 

× (24 λ2 − 29 λ + 6) − 240 

sin (α) cos (α) 
(9 λ2 − 9 λ + 1) 

]
θ2 , (B.6) 

 2 = 

1 

60 

[
( 4 − 3 λ) F 21 + 120(2 − 3 λ) 

]
θ

+ 

1 

600 

[
(1 − 12 λ) ( 4 − 3 λ) F 22 + 120 cot (α) 

× (24 λ2 − 29 λ + 6) − 240 

sin (α) cos (α) 
(9 λ2 − 9 λ + 1) 

]
θ2 , (B.7) 

here: 

F 11 = 

(
− f 

sin α
+ 

p 

cos α

)
, F 12 = 

(
f 

cos α
+ 

p 

sin α

)
, 

 21 = 

(
f 

sin α
+ 

p 

cos α

)
, F 22 = 

(
− f 

cos α
+ 

p 

sin α

)
. 

y i = −(1 − 3 λ) θ1 2 + (1 − 2 λ) θ1 3 (B.8)

x i = −
[ 
p i 
s 

+ 

(
−3 

5 
+ 

1 

700 
p i 

)
δy i 

2 + 

(
1 

10 
− 1 

700 
p i 

)
θδy i 

+ 

(
− 1 + 

1 
p 

)
θ2 

] 
(B.9) 
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