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Abstract 
The optical appearance of electroplated chromium layers is a crucial factor for decorative applications. Currently in the 
decorative chromium plating industry the so far used hexavalent electrolytes are being replaced progressively by solutions 
of trivalent chromium. However, chromium deposited from trivalent baths tends to have a yellowish color hue at thicknesses 
beyond 100 nm, which is undesired for most applications. The shift in color is related to a change in surface morphology 
due to the globular growth of the chromium nuclei. By utilizing pulsed current with on-times in the range of seconds, the 
grain growth is suppressed and the formation of fresh nuclei is favored. As a result, the average grain size of the layer can 
be decreased significantly. Compact chromium layers with small grains and improved color values are formed. A blueish 
appearance and high brightness were maintained up to thicknesses of more than 200 nm. Based on the results a combination 
of constant and pulsed current is suggested, yielding similar visual appearance as in the case of pulsed current only, but 
reaching the targeted film thickness much faster.
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1  Introduction

Electrodeposition of chromium for decorative applications 
plays a prominent role in the surface finishing industry, 
especially in sanitary, automotive, shopfitting, housewares, 
plating on plastics and similar fields [1]. In these appli-
cations, chromium layers are usually several hundreds of 
nanometers thick and provide a high level of brightness 
and corrosion resistance in combination with the underly-
ing layers of bright or semi-bright nickel [2]. Processes 
based on chromic acid electrolytes have been state of the 
art in decorative chromium plating for many decades [3]. 
However, the use of hexavalent chromium compounds is 
more and more restricted due to their toxicity and carci-
nogenicity [4, 5]. Thus, solutions of trivalent chromium 
salts have been introduced to industry around 1970 as a 
less harmful alternative to chromic acid electrolytes [6]. 
The reduction of trivalent chromium takes place via two 
steps (Eqs. 1, 2).

Usually organic additives are added to the bath to increase 
the efficiency of reaction (2) [7, 8]. Today there is a broad 
variety of commercially available trivalent chromium baths 
in Europe, North America and East Asia [9]. On the other 
hand, commercially applicable processes based on trivalent 
chromium cannot fully meet the requirements in terms of 
optical appearance. While chromium deposits from a hexa-
valent bath exhibit a blueish color appearance, a slight yel-
low or dark hue is characteristic for chromium layers plated 
from most trivalent chromium based electrolytes [10]. In 
addition, the reproducibility of a specific color is poorer. 
This is clearly due to a lack of fundamental understanding 
of the influencing factors on optical appearance. Besides 
aesthetic considerations, these aspects are crucial if chro-
mium-plated parts form different suppliers are installed side 
by side. The aim is to achieve a process-stable hue in the 
blue range of the color spectrum, as close as possible to 
the appearance of parts from hexavalent baths. The latter 
are still considered as benchmarks in decorative chromium 
plating [11].

In our previous paper [12], we showed that the color of 
chromium with a small amount of impurities depends on 
surface morphology. In the case of a trivalent chromium 
electrolyte, grain size and roughness increase during layer 
growth, causing a color shift from blueish at very low thick-
ness to yellowish at thicknesses beyond 100 nm. In contrast, 
surface morphology and visual appearance remain nearly 
constant in the case of hexavalent electrolytes. To achieve a 
blueish appearance for a trivalent based system while having 

(1)Cr
3+ + e

−
→ Cr

2+

(2)Cr
2+ + 2e

−
→ Cr

0

a sufficient protection ability of the coating, a fined-grained 
surface structure has to be realized for layers thicknesses of 
several hundred nm. By application of pulsed instead of con-
stant cathodic current, the grain growth can be suppressed 
due to the periodic interruption of the deposition process 
[13]. With the beginning of each current pulse, the formation 
of fresh nuclei starts again.

Pulse and pulse reverse plating have been applied for 
both hexavalent [14–16] and trivalent [17–19] based sys-
tems, mostly at frequencies between 10 Hz and 10 kHz. 
An increased current efficiency of chromium deposition 
was observed and has been explained with the removal of 
adsorbed hydrogen during off-times and the replenishment 
of chromium ions at the electrode surface [20]. Furthermore, 
grain structure and texture formation were affected, lead-
ing to improved mechanical properties [21] and better cor-
rosion resistance [22]. These approaches were focusing on 
producing thick chromium layers for functional applications. 
They placed less emphasis on the optical appearance. For 
tailoring the color of the chromium surface by refining the 
surface morphology at the nanometer scale, pulse duration 
and off-times in the range of seconds appear to be more 
favorable [23]. This corresponds to very low frequencies 
(< 1 Hz). A recent approach discusses the application of 
low-frequency pulse plating to reduce the internal stress of 
chromium deposits [24, 25].

Pulse plating is a powerful technique in which the current 
can be modified over a wide range via various parameters. 
In this work, two different pulse regimes were chosen for the 
electrodeposition of chromium from a trivalent electrolyte. 
The results will be compared with samples plated at constant 
current from the same solution. Color values were measured 
and SEM pictures were taken to assess the optical appear-
ance and morphological characteristics of the deposits. 
Different stages of layer growth were observed for the low-
frequency pulse regime, so that conclusions on chromium 
nucleation and growth can be drawn. The findings from our 
previous paper on color-morphology relations of chromium 
[12] were taken as a basis for the interpretation of the results.

2 � Experimental

2.1 � Sample preparation

Polished brass panels (size 5 × 7.5 cm2) were used as sub-
strates. The panels were degreased with a commercial 
alkaline electrolytic cleaner (HSO Uni 1, Herbert Schmidt 
GmbH Solingen, Germany) applying a cathodic current 
density of 2 A dm−2 for 4 min. Stainless steel served as 
anode material. After degreasing, the samples were dipped 
in 10 vol% sulfuric acid for activation and plated with 10 µm 
of nickel from a commercial bright nickel electrolyte [26] 
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(Table 1). Sulfur-depolarized nickel plates were used as 
anodes.

The deposition of chromium was carried out in a com-
mercial chromium(III)-sulfate based electrolyte (SAPHIR 
2000 provided by Kiesow Dr. Brinkmann GmbH & Co. KG, 
Germany) at pH 3.2 and 55 °C [27]. Two liters of electrolyte 
were used in a beaker with two parallel mixed metal oxide 
anodes (De Nora GreenChrome®). During the plating, the 
samples were moved parallel to the anodes in an alternate 
motion at a velocity of 6 cm s−1 in order to support the 
removal of hydrogen bubbles from the surface and facilitate 
mass transport. The same setup was used for both constant 
and pulsed current plating experiments. A BioLogic SP-150 
potentiostat with VMP3B-20 (20A/20 V) booster was used 
for the pulse plating experiments.

The constant current (DC) plated samples were prepared 
at 5 A dm−2 and characterized by colorimetry. In accord-
ance to the practically applicable thickness range of decora-
tive chromium layers [2], about 500 nm was chosen as the 
maximum plating thickness with equidistant intermediate 
steps. The plating time was varied from 1 to 14 min, corre-
sponding to layer thicknesses of 40 and 550 nm, respectively. 
Pulse plating experiments were performed with a peak cur-
rent density of 5 A dm−2. At higher current densities, the 
efficiency of chromium deposition decreases rapidly due to 
the formation of chromium hydroxides near the electrode 
surface, so that any further increase of the peak current den-
sity is detrimental [28]. Two different pulse periods were 
used. Firstly, a frequency of 1 Hz with an on-time of 0.5 
and an off-time of 0.5 s was applied. The duration of the 
plating was 14 min. Secondly, low-frequency pulse plating 
was done with an on-time of 15 s and an off-time of 22.5 s. 
The deposition time was varied from 37.5 s (one pulse) to 
15 min and 37.5 s (25 pulses). One sample was prepared for 
each condition.

2.2 � Characterization of the deposits

For the color measurements, the recommendations of 
the International Commission on Illumination (CIE) for 

colorimetry [29] were followed. The samples were irradi-
ated by visible light with a D65 standardized spectrum. The 
spectrum of the reflected light was detected under an angle 
of 8° to normal. Both the specular and the diffuse reflected 
light were considered for analysis. A spectral photometer 
CM-700d from KONICA MINOLTA with a spot size of 
6 mm was used. From the collected spectral data, the color 
values in the L*a*b* system were derived according to 
ASTM guidelines [30]. Twelve positions on one sample for 
each condition were measured and the average values for 
each sample were calculated.

The thickness of the chromium layers was determined by 
X-ray fluorescence spectroscopy (XRF) using a Fischerscope 
XDV at a voltage of 50 kV, spot size of 3 mm and measur-
ing time of 30 s per position. The same specimen as used 
for colorimetry was characterized. Thickness values were 
collected for each sample from nine positions distributed 
uniformly over the surface and the average value was cal-
culated. Scanning electron microscopy (SEM) and electron 
dispersive X-ray spectroscopy (EDS) were carried out with 
a SEM Hitachi S4800 with secondary electron detector at 
an acceleration voltage of 5 kV and 10 kV, respectively. A 
section with an area of about one square centimeter was 
cut from each sample for transfer into the electron micro-
scope. Grain size and pore diameter were evaluated from 
the micrographs.

3 � Results and discussion

3.1 � Constant current (DC) plating

L*, a* and b* color values of the DC-plated samples are 
plotted versus thickness in Fig. 1. The L* parameter indi-
cates the lightness in a range from 0 (black) to 100 (white). 
a* and b* represent the directions of color hue, with posi-
tive a* as red, negative a* as green, positive b* as yellow 
and negative b* as blue direction. Colorlessness corresponds 
to a* = b* = 0. A linear fit was made for each parameter to 
reveal tendencies in the data (Table 2). The relation between 
color and thickness is qualitatively the same as already dis-
cussed previously [12], i. e. decreasing L* and increasing 
b* with increasing thickness. a* depends only weakly on 
thickness, as is apparent from the low correlation coefficient 
(R2 = 0.05). Standard deviations are in the expected range 
for colorimetry of electroplated chromium layers [10, 12]. 
A blueish appearance can be achieved by DC plating only 
for layer thicknesses below 100 nm, which is unsuitable for 
most decorative applications.

The shift in L* and b* is caused by a coarsening of the 
surface structure during layer growth, leading to an increase 
of grain size and roughness. As can be seen from the SEM 
images (Fig.  2), the average grain size increases from 

Table 1   Composition of the bright nickel electrolyte ORION 4000 
provided by Kiesow Dr. Brinkmann GmbH & Co. KG [26]

Component Concentration

Ni2+ 75 g l−1 (1.3 mol l−1)
Cl− 18 g l−1 (0.5 mol l−1)
H3BO3 40 g l−1 (0.6 mol l−1)
Nickel additive 520 15 ml l−1

Nickel additive TR A 3 ml l−1

pH 4.4
Temperature 55 °C
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approximately 40 nm at a thickness of 40 nm to 250 nm at 
a thickness of 550 nm. Furthermore, the grain size distri-
bution becomes broader, leading to a more heterogeneous 
structure. Pores with a diameter of about 20 to 40 nm can 
be found in all samples due to simultaneous hydrogen evo-
lution during chromium plating. The EDS analysis of the 
sample with a thickness of 550 nm (Table 3) reveals small 
amounts of impurities. Sulfur (approx. 2 wt%) and carbon 

(approx. 1 wt%) are incorporated due to organic additives 
in the electrolyte, while oxygen (approx. 1 wt%) originates 
from the formation of oxides once the sample comes into 
contact with air. As the electrolyte composition was kept 
constant for all experiments, a similar chemical composition 
can be assumed for all samples. The impurities in the layers 
may have a slight effect on their optical appearance, but this 
is superimposed by morphological effects. 

3.2 � Pulse plating at 1 Hz

First pulse deposition experiments were done at a frequency 
of 1 Hz with an on-time and off-time of 0.5 s each. This 
equals to a duty cycle of 50%. The relation between the pulse 
duration is given by Eqs. 3 and 4.

(3)f = 1∕T = 1∕
(

t
on
+ t

off

)

Fig. 1   Plots of the color values L*, a* and b* versus the thickness of chromium layers electroplated at constant current with a current density of 
5 A dm−2. The trend lines of the linear fit are indicated to expose linear dependencies between color values and thickness

Table 2   Linear fit data corresponding to the plots of the color values 
L*, a* and b* versus the thickness of chromium layers electroplated 
at constant current with a current density of 5 A dm−2 (Fig. 1)

Plot Linear fit y = a × + b

a b R2

L* versus thickness  − 0.0030 ± 0.0005 83.5 ± 0.2 0.73
a* versus thickness 0.00014 ± 0.00011  − 0.71 ± 0.04 0.05
b* versus thickness 0.0032 ± 0.0002  − 0.51 ± 0.07 0.96
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In Eqs. 1 and 2, f is the frequency, T the period, ton the 
on-time, toff the off-time, and Θ the duty cycle. An average 
chromium thickness of 290 nm was deposited. The surface 
morphology of the deposit (Fig. 3) is very different from 
DC-plated chromium layers. Instead of a globular-like struc-
ture, the grains have a triangular or polygonal shape with 
sizes between 50 and 150 nm. However, the grain boundaries 
are much harder to distinguish compared to DC plating. In 

(4)Θ = t
on
∕T = t

on
∗ f .

addition, density and diameter of the pores are way higher 
for the pulse plated than for the DC-plated samples. Such a 
high porosity degrades the corrosion resistance as well as 
the visual appearance of the chromium layer. In comparison 

Fig. 2   SEM images of chromium layers electroplated at constant current with a current density of 5 A dm−2. The average layer thickness is 
a 40 nm, b 230 nm and c 550 nm, respectively

Table 3   Chemical composition 
(determined by EDS) of a 
chromium layer electroplated at 
constant current with a current 
density of 5 A dm−2

The average layer thickness is 
550 nm

Element Concentra-
tion (wt%)

Cr 96
S 2
C 1
O 1

Fig. 3   SEM image of a chromium layer electroplated at pulsed cur-
rent with a peak current density of 5 A dm−2, a frequency of 1 Hz and 
a duty cycle of 50%
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to the color values of a DC-plated layer with the same thick-
ness taken from Fig. 1, L* is decreased from approximately 
82.5 to 79.9 and b* is increased from + 0.5 to + 1.6, giving 
a darker and more yellowish color hue.

3.3 � Chromium layer growth

The reason for the formation of the structures discussed 
above lies in the formation and growth of chromium nuclei 
during electrodeposition. Figure 4 is a schematic sketch of 
the formation of a chromium deposit on a smooth metal sub-
strate electroplated in a trivalent chromium electrolyte. In the 
initial stage, a high number of chromium nuclei are formed 
at the electrode surface (Fig. 4a). With increasing plating 
time, the nucleation rate decreases while the growth of the 
nuclei proceeds, leading to a globular-like type of growth 
(Fig. 4b). Several seconds are needed to form a compact 
layer given the low deposition rate of chromium (Fig. 4c). In 
the case of pulse plating at frequencies of 1 Hz and higher, 
the growth is stopped in an early stage well before a compact 
layer is formed, resulting in a polygonal morphology with 
the high porosity that is visible in Fig. 3. At very high fre-
quencies, double layer charge and discharge processes also 
affect the deposition process as they can distort the current 
waveform [13]. Hence, the deposition of a compact layer of 
chromium during one current pulse appears to be beneficial 
for the surface properties of the coating. Consequently an 
on-time of several seconds is needed.

If the metal growth proceeds constantly after forming a 
compact layer, the concentration gradients around the nuclei 
will overlap, so that some nuclei will grow at the expense 
of others (Fig. 4d). This leads to an increase of grain size 
and roughness and, therefore, a shift in color. Such effects 
take place with DC plating. In contrast, if the current is 
interrupted, the concentration gradients relax, the nuclea-
tion will be re-initiated as soon as the current is turned on 
again and the process of formation and growth would start 
over. The applied current regime would equal pulse plating 
with frequencies far below 1 Hz. Assuming that the nuclea-
tion mechanism is reproducible at every current pulse, a 

layer-by-layer structure would form (Fig. 4e). As each sub-
layer would have similar surface characteristics, morpholo-
gies of the final surface and a single sub-layer should be 
comparable. Or in other words, the optical appearance of 
the final deposit should be similar to one individual layer.

3.4 � Low‑frequency pulse plating

As a proof of concept, low-frequency pulse plating was done 
with an on-time of 15 s and an off-time of 22.5 s, giving a 
frequency of 0.027 Hz and a duty cycle of 40%. The peak 
current density was kept at 5 A dm−2. The total deposition 
time, i. e. the number of pulses, was varied and color val-
ues and thickness were measured afterwards. For the low-
frequency pulse plating, the deposition time is referred as 
the number of pulses as this notation is more suitable to 
represent the number of deposited sub-layers. The thickness 
increases linearly with the number of pulses (Fig. 5), which 
is in accordance with the proposed model. As in the case 

Fig. 4   Schematic representation 
of the chromium layer growth 
during electrodeposition. 
a–c indicate the early stages of 
layer formation, d the further 
growth at constant current and 
e the layer-by-layer growth at 
low-frequency pulsed current, 
respectively

Fig. 5   Plot of the layer thickness versus the number of pulses for 
chromium layers electroplated at pulsed current with a peak current 
density of 5 A dm−2, a frequency of 0.027  Hz and a duty cycle of 
40%
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of the DC-plated samples, L* and b* were plotted versus 
thickness (Fig. 6). The standard deviation is comparable to 
the DC-plated samples. SEM images were taken at several 
stages (Fig. 7). The results for the bright nickel substrate are 
shown first, which correspond to a chromium thickness of 
zero. Since nickel has a strong yellowish color, the b* value 
is in the high positive range (+ 6.7), while L* is in the same 
range as DC-plated chromium (83.0). The morphology of 
bright nickel is very fine-grained, but has a different texture 
than chromium (Fig. 7a).

After applying one pulse, about 5 to 10 nm of chromium 
is plated, shifting b* to lower values (+ 2.5), while L* 
decreases (80.1). As the chromium thickness is very low, 
both the nickel substrate and the chromium top layer con-
tribute to the overall optical appearance. Furthermore, the 
chromium layer might not be completely dense, so that part 
of the nickel lies still open. The morphology is very similar 
to bright nickel (Fig. 7b), as the structure of the nickel is 
just replicated by the chromium and the typical chromium 
morphology has not formed yet. After five pulses, corre-
sponding to a thickness of 40 nm, the b* is shifted to nega-
tive values, indicating a blueish color hue. L* is increased to 
83.9, a lightness value that is even higher than the L* value 
of the DC-plated samples. A morphology has formed that is 
similar to the DC sample with the same thickness (Figs. 2a 
and 7c, respectively). The porosity is likewise as low as for 
the samples plated under constant current. The grain size is 
about 40 nm. If the number of pulses and thus the chromium 
thickness is further increased, L* and b* remain almost sta-
ble, while the morphology is changing (Fig. 7d). Optimum 
color values of L* = 84.0 and b* =  − 0.5 could be achieved.

At 25 pulses, corresponding to a thickness 210  nm, 
the grain size increased to values between 70 and 100 nm 

(Fig. 7e). Thus, surface morphology is still not fully inde-
pendent from thickness. The color values are slightly shifted 
to L* = 83.6 and b* = − 0.3. However, b* is still in the nega-
tive range. A DC-plated sample with similar thickness, as 
can be seen in Fig. 1, shows color values of around L = 82.5 
and b =  + 0.3. The optical appearance was improved signifi-
cantly by shifting the color hue from yellowish to blueish 
and increasing the lightness.

3.5 � Combination of DC and pulse plating

As has been discussed above an improvement of the appear-
ance can be accomplished by low-frequency pulse plating. 
However, the method is very time-consuming. Compared 
to a DC process, the plating time is prolonged by a factor of 
2.5. To deposit a chromium layer with a thickness of approx-
imately 220 nm, about 6 min and 15 s are needed at constant 
current and 25 pulses (15 min and 37.5 s) at pulsed current 
(Fig. 8a, b). One way to reduce the total plating time is the 
combination of DC and pulse plating (Fig. 8c). First, 5 min 
of constant current with a current density of 5 A dm−2 are 
applied to deposit about 180 nm of chromium, correspond-
ing to 80% of the final layer thickness. Five pulses (3 min 
and 7.5 s) of low-frequency pulse plating at the parameters 
mentioned above were added subsequently.

In this way, five thin sub-layers with a fine-grained struc-
ture are plated on a thick base layer. The total plating time 
was about 8 min. Color values of L* = 83.7 and b* =  − 0.5 
are achieved by this method. The morphology of the deposit 
(Fig. 9) is very similar to the surface structure of the sam-
ple plated with 25 pulses of low-frequency pulse plating 
(Fig. 7e). The grain size (70 to 100 nm) and the porosity are 
the same. The average thickness of both samples is close to 

Fig. 6   Plots of the color values L* and b* versus the thickness of chromium layers electroplated at pulsed current with a peak current density of 
5 A dm−2, a frequency of 0.027 Hz and a duty cycle of 40%. The red data points at a thickness of zero correspond to the bright nickel substrate
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Fig. 7   SEM images of a bright nickel layer and chromium layers elec-
troplated at pulsed current with a peak current density of 5 A dm−2, a 
frequency of 0.027 Hz and a duty cycle of 40%. a Bright nickel with-

out chromium, b one pulse applied (5 to 10 nm of chromium), c five 
pulses (40 nm), d 15 pulses (95 nm) and e 25 pulses (210 nm)
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each other, too. About 220 nm of chromium was deposited 
by the combined pulse regime and 210 nm by 25 cycles of 
pulse plating. Thus, similar results were achieved by both 
using a combination of DC and pulse plating and by apply-
ing pulse plating only.

4 � Conclusions

Pulse plating has been applied to deposit chromium from a 
trivalent chromium sulfate electrolyte with a tailored opti-
cal appearance. By applying a constant current, the surface 
grain size increases during metal deposition, leading to a 
color shift from blueish to yellowish. Low-frequency pulse 
plating with a pulse current density of 5 A dm−2, an on-time 
of 15 s and an off-time of 22.5 s was beneficial for the layer 
quality. In this way, chromium layers with a blueish color 

Fig. 8   Current regimes for the electrodeposition of approx. 220 nm of chromium at a constant current, b pulsed current with a frequency of 
0.027 Hz and a duty cycle of 40% and c a combination of both

Fig. 9   SEM images of a chromium layer electroplated in a com-
bined process of constant current at a current density of 5 A/dm2 and 
pulsed current with a peak current density of 5 A dm−2, a frequency 
of 0.027 Hz and a duty cycle of 40%. The current regime is displayed 
in Fig. 8c
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hue and high brightness could be produced with thicknesses 
of more than 200 nm. Optimum color values of L* = 84.0 
and b* =  − 0.5 were achieved after 9 min and 22.5 s (15 
cycles) of pulse plating. A combination of constant and 
pulsed current gives similar results in morphology and color 
values as using pulsed current only, but at half of the pro-
cess time. Future work will aim at a detailed investigation of 
pulse parameters and the microstructure of the layers.
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