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ABSTRACT 

Located on the West Iberian margin, between Cabo Carvoeiro and Cabo da Roca, the 

Estremadura Spur is a trapezoidal promontory elongated in an east-west direction, 

extending until the Tore seamount. In 2011, during the scientific cruise 64PE332 

(PACEMAKER project; Kim & the shipboard scientific party, 2011) a seismic reflection 

SPARKER survey discovered a field with more than 70 pockmarks in the NW region of 

the Estremadura Spur outer shelf (in the Lourinhã Monocline). Pockmarks are the seabed 

culminations of fluid migration through the sedimentary column and their characteristic 

seabed morphologies correspond to cone-shaped circular or elliptical depressions. 

Pockmarks have proven to be important seabed features that provide information about 

fluid flow on continental margins, being used by the oil and gas industry as an exploration 

tool and as an indicator of hydrocarbon sources for prospecting. These pockmarks and the 

associated fluid escape process are the main objectives of this work that aims to contribute 

to the characterization of the structures and to the understanding to their structural and 

stratigraphic control. In pursuing such objectives the following methodological 

approaches were used: 1) Seismic processing and interpretation of the high resolution 2D 

single-channel SPARKER seismic dataset acquired during the PACEMAKER cruise. In 

addition, it was done the interpretation of 2D multi-channel seismic lines from TGS-

NOPEC, which provides information about the deep structure of this area; and 2) 

Bathymetric and Backscatter interpretation. During the EMEPC/PEPC/LUSO/2015 

multi-beam bathymetry that complemented the PACEMAKER bathymetric coverage was 

acquired and were realized two dives using EMEPC Remotely Operated Vehicle (ROV) 

Luso. These dives allowed the direct observation of the seafloor and the recollection of 

push-core samples. 

The analysis of the PACEMAKER high-resolution seismic allowed the identification of 

six seismic units, disturbed by the migration and accumulation of fluids. There was 

concluded that the Estremadura Spur outer shelf has been affected by several episodes of 

fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a 

vast number of seabed and buried pockmarks. At present the pockmarks are mainly 

inactive, as the seabed pockmarks are recovered by recent sediments. 

 

The NW region of the Estremadura Spur outer shelf has been affected by several episodes 

of fluid migration and fluid escape that are expressed by a vast number of seabed and 

buried pockmarks. It was concluded that the migration of fluids to the seabed occurred 
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over the Pliocene-Quaternary, as indicated by the buried pockmarks at different depths. 

At present the pockmarks are mainly inactive, as the seabed pockmarks are recovered by 

recent sediments. 

 

The stacking of various pockmarks suggests a cyclical fluid flow activity that can 

passably be the result of the eustatic sea level variations and the subsequent changes of 

the hydrostatic pressure. An alternative hypothesis can be considered assuming the 

episodes of intense fluid flow as being associated with the local seismicity. Precipitation 

of methane-derived authigenic carbonates (MDAC) inside the migration conduits that 

originate pockmarks can force the deactivation of the fluid migration pathways and, 

consequently, the deactivation of the related pockmarks and creation of new migration 

pathways. 

 

 

Keywords: Pockmarks, Fluid migration, Estremadura Spur, West Iberian Margin, high-

resolution seismic, seismic interpretation. 
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RESUMO 

O Esporão da Estremadura é um promontório localizado na Margem Oeste Ibérica, entre 

o Cabo Carvoeiro e o Cabo da Roca. Apresenta uma forma trapezoidal com uma área de 

cerca de 3583 km2, e prolonga-se desde a margem até às montanhas submarinas de Tore. 

O Esporão da Estremadura separa a Planície Abissal Ibérica, a norte, da Planície Abissal 

do Tejo, a sul. No ano de 2011, durante uma campanha oceanográfica do projeto 

PACEMAKER identificou-se, através dos dados sísmicos de reflexão, um conjunto de 

pequenas depressões no fundo do mar (pelo menos 70), reconhecidas como pockmarks. 

Este campo de pockmarks localiza-se entre os 240 e 350 m, na região NW da plataforma 

externa do Esporão da Estremadura, conhecida como Monoclinal da Lourinhã. Estas 

estruturas apresentam diâmetros que variam entre alguns metros a mais de 400 m e até 

cerca de 4 m de profundidade. 

 

Os pockmarks são estruturas formadas pela libertação rápida e abrupta de fluidos, que 

migram através da coluna sedimentar, no fundo do mar. Foram descritos pela primeira 

vez por King & McLean (1970) na plataforma continental ao largo da Nova Escócia, 

Canadá. Apresentam topografia negativa e uma morfologia muito caraterística, sob a 

forma de depressão cónica circular ou elíptica, com flancos íngremes e fundo 

relativamente plano. Os pockmarks ocorrem em sedimentos finos e permeáveis, 

individualmente ou em grandes clusters, em variados ambientes geológicos como as 

plataformas continentais, os taludes continentais e nos fundos dos oceanos profundos. 

Encontram-se frequentemente associados a depósitos sedimentares com hidratos de gás 

nas margens continentais. A sua distribuição não ocorre de forma aleatória, estando 

frequentemente relacionados a estruturas da sub-superficie marinha, como falhas e zonas 

de maior permeabilidade, que servem de condutas para a migração de fluídos para a 

superfície. O estudo dos pockmarks é importante uma vez que estão muitas vezes 

relacionados com sistemas ativos de migração de hidrocarbonetos e portanto são 

estruturas de interesse para a indústria petrolífera. São também importantes devido ao 

perigo associado ao escape de gás do fundo do mar em zonas de exploração ou de 

transporte de petróleo e/ou gás. 

 

A Margem Oeste Ibérica começou a desenvolver-se durante a abertura do Oceano 

Atlântico Norte. Este processo iniciou-se no Triásico Superior até ao momento de rutura 

continental entre as margens da Ibéria e da Terra Nova, no Cretácico Inferior. Existem na 
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margem, no offshore e também no onshore, diversas bacias sedimentares relacionadas 

com a abertura do Atlântico, como a Bacia Lusitânica. No Cenozoico a margem sofre 

uma fase de inversão tectónica generalizada, relacionada com as fases Pirenaica e Bética 

da Orogenia Alpina, o que levou ao soerguimento de algumas regiões da margem 

continental, como por exemplo o Esporão da Estremadura. O auge da deformação ocorreu 

no Miocénico, possivelmente durante o Tortoniano, com compressão máxima NW-SE. 

Os pockmarks identificados no Esporão da Estremadura são a primeira evidência de 

processos de escape de fluidos identificados na Margem Oeste Ibérica e o presente 

trabalho é o primeiro estudo realizado sobre estas estruturas. As ocorrências escape de 

fluidas conhecidas, mais próximas da margem e portanto do Esporão da Estremadura, são 

a Ria de Vigo, o Estuário de Aveiro e o Golfo de Cádiz.  

 

A principal motivação deste trabalho é o estudo das estruturas (pockmarks) e dos 

processos de escape de fluídos que ocorrem no fundo do mar do Esporão da Estremadura. 

Os principais objetivos podem resumidos nos seguintes tópicos: (1) Mapeamento 

batimétrico da área de estudo e, portanto do campo de pockmarks; (2) Descrição da 

morfologia e características do fundo do mar na área com pockmarks e na plataforma 

envolvente; (3) Caraterização estratigráfica e estrutural dos sedimentos Cenozoicos do 

Esporão da Estremadura e (4) Compreender a origem estratigráfica dos fluidos que dão 

origem aos pockmarks e o que controla a sua migração e escape no fundo do mar. 

 

Para a realização deste estudo foram utilizados dados batimétricos, de refletividade do 

fundo do mar (backscatter), sísmica SPARKER 2D monocanal de alta resolução e 

observações diretas do fundo do mar, através de vídeos adquiridos em mergulhos com 

um submarino ROV (Remotely Operated Vehicle). Estes dados foram essencialmente 

obtidos durante a missão oceanográfica do projeto PACEMAKER (sísmica de alta 

resolução e batimetria), em colaboração com o projeto TOPOMED 

(TOPOEUROPE/0001/2007). Durante a campanha EMEPC/PEPC/LUSO/2015 (no 

âmbito do projeto PES – PTDC/GEO-FIQ/5162/2014) foram adquiridos novos dados de 

batimetria no Esporão da Estremadura, que complementaram os dados anteriores. Foram 

também realizados dois mergulhos com o ROV Luso em duas das depressões 

(pockmarks) identificadas no fundo marinho.  
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A partir dos dados batimétricos foram criados mapas batimétricos e de refletividade do 

fundo do mar, onde foram observadas depressões topográficas com formas circulares a 

alongadas e com backscatter elevado, interpretadas como pockmarks.  

 

De modo a melhorar a qualidade dos dados sísmicos estes foram processados, através do 

software SPW (Parallel Geoscience Corporation). Foram realizados vários passos de 

processamento para as 14 linhas sísmicas PACEMAKER, como por exemplo, a aplicação 

de um filtro butterworth, correção do swell e das máres e migração Stolt. Os resultados 

do processamento foram considerados positivos, uma vez que a maioria do ruído que 

mascarava o sinal sísmico foi eliminado, sendo possível observar a sub-superficie do 

Esporão da Estremadura até cerca de 500 ms TWT.  

Após o processamento sísmico foi realizada a interpretação dos perfis sísmicos no 

software SeisWorks da Landmark Graphic Corporation, sendo desenvolvido um modelo 

sísmostratigráfico. Foram identificadas seis unidades sísmicas (U1 a U6) separadas por 

horizontes (M a H4) que marcam importantes descontinuidades ou variações na fácies 

sísmica. A unidade sísmica mais antiga, U1, foi sujeita a uma intensa deformação dúctil, 

ao contrário das restantes unidades, pelo que a descontinuidade que separa U1 e U2 foi 

associada ao auge da deformação alpina, no Miocénico (Tortoniano). Assim, esta unidade 

sísmica U1 será anterior ao Tortoniano, provavelmente de idades do Miocénico inferior 

e médio. As restantes unidades sísmicas, U2 a U6, formam uma sequência sísmica de 

idades compreendidas entre o Pliocénico e o Holocénico.  

No registo sísmico foram também identificadas várias evidências para a existência da 

migração e acumulação de fluidos. Além dos pockmarks, que já tinham sido identificados 

anteriormente, foram observados paleo-pockmarks (enterrados a varias profundidades), 

condutas de migração dos fluidos, zonas de transparência, turbidez e de blanking acústico.   

Deste modo, foi interpretado que os fluidos estão a migrar verticalmente e a acumular-se 

nas unidades sísmicas Plio-Quaternárias. 

 

Os mergulhos com o ROV mostraram que, apesar da resposta de backscatter de alta 

refletividade associada aos pockmarks e das evidências para a existência de fluidos 

observadas na sísmica, no fundo do mar não se encontram evidências para a atividade 

atual do sistema de escape de fluidos. As depressões visitadas com o submarino 

mostraram que as estruturas estão cobertas por sedimentos arenosos e não foi observada 

fauna nem registado o borbulhar característico de seeps ativas.  
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Pode então ser concluído que na atualidade os fluidos não alcançam o fundo do mar, 

estando a acumular-se em zonas mais permeáveis dos sedimentos. Foram propostos dois 

modelos evolutivos, coexistentes no Esporão da Estremadura, para o sistema de migração 

de fluidos: (1) Atividade cíclica das seeps e (2) selagem do sistema pela precipitação de 

carbonatos autigénicos (MDAC). O primeiro baseia-se na observação de pockmarks 

“empilhados” (stacked pockmarks) no registo sísmico, o que sugere que a migração e 

escape dos fluidos é periódica, possivelmente condicionada pelas variações eustáticas do 

nível do mar. O segundo modelo consiste na descativação de condutas de migração de 

fluidos, pela precipitação de MDAC, o que causa o enterramento do pockmark 

alimentados por essas condutas. Posteriormente, ocorre a criação de novos caminhos de 

migração para os fluidos, que se acumulam em zonas permeáveis dos sedimentos até 

existir pressão suficiente para escaparem pelo fundo do mar. 

 

 

Palavras-chave: Pockmarks, migração de fluidos, Esporão da Estremadura, Margem 

Oeste Ibérica, sísmica de alta-resolução, interpretação sísmica. 
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CHAPTER 1 

 

INTRODUCTION  

 

The Estremadura Spur is a trapezoidal shape promontory, elongated in the east-west 

direction, located on the West Iberian margin (between the Cabo Carvoeiro and the Cabo 

da Roca), extending to the offshore until the Tore seamount (Figure 1). In 2011, under 

the scope of PACEMAKER project (Past continental climate change: temperatures from 

marine and lacustrine archives, ERC Advanced Grant, NIOZ, The Netherlands) and in 

collaboration with the TOPOMED project (TOPOEUROPE/0001/2007), a seismic 

reflection SPARKER survey detected an unknown field with more than 70 pockmarks in 

the Estremadura Spur (Kim & the shipboard scientific party, 2011). These pockmarks and 

the associated fluid escape process are the main objectives of this work that aims to 

contribute to the characterization of the structures and to the understanding to their 

structural and stratigraphic control. This master project was carried out partially in the 

framework of the PES project (PTDC/GEOFIQ/5162/2014) Pockmarks and fluid seepage 

in the Estremadura Spur: implications for regional geology, biology, and petroleum 

systems. 

 

Pockmarks are seabed culminations of fluid (liquid or gas) migration through the 

sedimentary column and their escape to the seawater, which appear as cone-shaped 

circular or elliptical depressions (Judd & Hovland, 2007). Their distribution does not 

occur randomly and are often related to the subsurface geological structures, such as faults 

and weakness planes that serve as conduits for the migration of the fluids to the surface. 

These structures can also be related to the compaction of the sediments and flow straight 

upward to the venting sites. Pockmarks have proven to be important seabed features that 

provide information about fluid flow on continental margins, being used by the oil and 

gas industry as an exploration tool as an indicator of hydrocarbon sources for prospecting 

(Judd & Hovland, 2007). 
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The West Iberian margin (WIM), where the Estremadura Spur is located, began to 

develop during the opening stage of the North Atlantic Ocean, from the Late Triassic 

through the Early Cretaceous (Rasmussen et al., 1998; Pinheiro et al., 1996). The pre-

Mesozoic rocks that form the basement of the WIM are part of the Hesperian Massif. 

During the Cenozoic the evolution of the WIM was characterized by periods of 

compression and tectonic inversion related to the Alpine orogeny (Pyrenean and Betic 

phases), leading to the uplift of some regions of the margin, such as the Estremadura Spur 

(ES). The peak of deformation, with maximum compression NW-SE, occurred in the 

Late-Miocene, possibly during Tortonian (Rasmussen et al., 1998; Pinheiro et al., 1996). 

Although fluid flow is a common process in passive continental margins and sedimentary 

basins, fluid escape processes were not previously identified on the WIM. The above 

mentioned pockmarks and associated fluid escape processes, which are the focus of this 

thesis, are the first fluid seepage system identified in the WIM and in which no 

investigation was previously done. To our best knowledge the nearest occurrences of fluid 

seepage in the offshore of the West Iberia Margin are found only in the estuarine 

environments of the Ria de Vigo (García-García et al., 1999; 2003; 2004; Judd and 

Hovland, 2007; Martínez-Carreño and García-Gil, 2013), the Aveiro Estuary (Duarte et 

al. 2007; Duarte, 2009), and in the Gulf of Cadiz (Pinheiro et al., 2003; Magalhães, 2007; 

Magalhães et al., 2012; León et al., 2010).  

In the onshore portion of the WIM many cases of oil and gas seeps in outcrops are known 

(e.g. Montejunto Fm; Pena dos Reis and Pimentel, 2010; 2014) in the regions of Torres 

Vedras, Leiria and Paredes da Vitória (where a mine that explored oil sand existed). This 

suggests the existence of active hydrocarbon migration in the Lusitanian basin. 

 

1.1 Previous work on the Estremadura Spur 

The WIM has been the subject of many studies over the past decades. The ‘Groupe 

d’Étude de la Marge Continentale’ of the Rennes University was among the first groups 

to study the geological aspects of the Portuguese continental shelf, publishing many 

important works in the 70s. The thesis of Musselec (1974) and Mougenot (1976) 

presented the geomorphology, structure, and geological evolution of the Portuguese 

continental shelf including the Estremadura Spur area, based on seismic reflection 

profiles and samples of seabed sediments. These two works kept their great importance 

and are still used major references for the Western Iberian margin geology. 
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Vanney & Mougenot (1981) did a bathymetric and geomorphological characterization of 

the continental shelf, based on bathymetric (single beam) and reflection seismic surveys. 

The bathymetric analysis was subsequently revised and updated by Mougenot (1989). 

More recently, Badagola et al. (2006) compiled a bathymetric map of the continental shelf 

and the upper slope of the Estremadura Spur, based on the existing bathymetric single 

and multibeam data, characterizing, in detail, the geomorphology of the area. In 2008, 

Badagola updated and detailed the continental shelf morpho-tectonic evolution and the 

geologic structures of the Estremadura Spur. In this work he mapped the rocky outcrops 

and characterize the composition and age of the seabed outcrops. 

The Meso-Cenozoic tectono-sedimentary evolution of the WIM was studied by Alves et 

al. (2002; 2003 and 2006), focusing on the structures observed in the Lusitanian and 

Peniche basins. Canérot et al. (1995) studied the geological evolution of the Caldas de 

Rainha sector of the WIM, allowing a more detailed interpretation of the tectonic 

evolution of the area. The Paleogene and Neogene evolution of the western Iberia was 

compiled by Pais et al., (2012), specifically the geology and tectonic setting of the new 

basins formed during the Cenozoic. The study of the WIM’s surface sedimentary deposits 

was made by Dias et al. (1980a and 1980b), who identified the gravel and sand outcrops 

along the margin. More recently, Balsinha et al. (2014) characterized the patterns of 

sediment transport on the Estremadura Spur continental shelf. The evolution of the coastal 

morphology of the WIM, since the Last Glacial Maximum, was synthesized by Dias et 

al. (2000) and Rodrigues et al. (2000).  

 

1.2 Study Area 

The study area of this project is located in the NW region of the Estremadura Spur outer 

shelf (Lourinhã Monocline; Figure 11. The Estremadura Spur (ES) is a trapezoidal 

promontory, elongated in an east-west direction with an area of about 3583 km2, located 

on the continental shelf off Portugal, between Cabo Carvoeiro (39º21’37.62”N) and Cabo 

da Roca (38º46’49.0”N) and extending from the Portuguese coast line (9º25’02.4”W) 

until the Tore seamounts (10º29’09.9”W) (Figure 1). It separates the Iberian Abyssal Plain 

(at north) from the Tagus Abyssal Plain (at south). 

The Estremadura Spur is part of the WIM, where a series of onshore and offshore 

sedimentary sub-basins, related to the opening of the North Atlantic Ocean, formed from 

                                                           
1 All the maps presented in this work are projected in the coordinate system UTM WGS84 (zone 29N). 
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the Triassic through the Cretaceous. The onshore and shelf basins are usually grouped 

under the domain of the Lusitanian Basin. The ES was uplifted during the Cenozoic 

collision of Africa and Eurasia as part of the Alpine Orogeny. Badagola et al. (2006) 

sustains that in the Lourinhã Monocline region, where the ES pockmarks occur, 

sedimentary basins are established and filled with up to 40 meters of Pliocene and 

Quaternary sediments. 

 

Figure 1 Geographic location of the Estremadura Spur (ES) with the indication of the Lourinhã Monocline 

pockmark field (red rectangle); CC – Cabo Carvoeiro; CR – Cabo da Roca. 

 

In the north the continental shelf of the ES is bounded by the upper and middle sectors of 

the Nazaré Canyon (Vanney & Mougenot, 1990) and in the south it is limited by a slope 

widely carved by straight and parallel gullies, oriented ENE-WSW to NE-SW  (Alves et 

al., 2003). In the west the continental shelf is delimited by a smooth uniform slope, with 

the base defined around the depth of -3000 m.  

 

According to Vanney & Mougenot (1981) the continental shelf in the ES region, is divided 

in two distinct sectors, the internal sector, from the coastline to 120-130 m below the sea 

level (bsl) and the external sector down to 500 m bsl (Figure 2). The internal sector is 

marked by two large plateaus the Costeiras Pêro da Covilhã (CPC) and the Montanha de 
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Camões (MC) separated by a large basin, the Mar da Ericeira (ME), where occurs  the 

deposition of fine-grain sediments. In the external sector of the platform, west of the CPC, 

there is a shallow dipping surface, the Lourinhã Monocline (LM), where Pliocene-

Quaternary sediments lie unconformably on top of folded Mesozoic and Neogene 

basement. In the southern region of the Spur two ridges with NW – SE strike are found 

(PDG – Planalto Diogo Gomes and PGZ – Pico Gonçalves Zarco) separated by a linear 

depression. 

The pockmark field discovered in the Estremadura Spur, during the PACEMAKER 

seismic survey, was found on the external sector of the continental shelf, in the Lourinhã 

Monocline region. 

 

Figure 2 Estremadura Spur's bathymetric map with reference to the different morphologic units (adapted 

from Mougenot, 1989): LM – Lourinha Monocline; PDG – Planalto Diogo Gomes; PGZ – Pico Gonçalves 

Zarco; CPC – Costeiras Pêro da Covilhã; ME – Mar da Ericeira; MC – Montanha de Camões. Bathymetry 

contour intervals, 10m. Red dotted line: separation of the inner shef (from the shore to the line) and 

external shelf (from the line until 500 m bsl). 
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1.3 Research objectives 

The motivation of this work is the study of the fluid escape structures in the Estremadura 

Spur. It aims to contribute to a better understanding of the structural control and the 

characteristics of the fluid escape structures in the Estremadura Spur, both at the seafloor 

and in the subsurface. The main objectives can be outlined as follows: 

 

(1) Bathymetric mapping of the area and of the pockmarks field; 

(2) Description of the morphology and characteristics of the seabed in the pockmarks 

area and surrounding shelf; 

(3) Stratigraphic and structural characterization of the Cenozoic sediments of the 

Estremadura Spur region; 

(4) Understanding the stratigraphic source of the fluids and the control of their 

migration and seepage. 

 

1.4 Thesis outline 

This dissertation is organized in the following eight chapters: 

 

 Chapter 1 – Introduction 

In this chapter the nature and the aims of this research are presented, the objectives 

described, as well as the database and the methodologies used. A brief description of the 

thesis outline and their content is also include. 

 

 Chapter 2 – Pockmarks: an evidence of Seabed Seepage 

In the second chapter the focus is on the characteristics and importance of the fluid flow 

systems and of the fluid escape processes and manifestations (seepages) on the seabed at 

continental margins. Special importance is given to the possible relation between fluid 

escape structures, like pockmarks, and the existence of structural pathways. 

 

 Chapter 3 – Geological Setting 

In this chapter the geomorphological, tectonic and stratigraphic settings of the study area, 

and its geodynamic evolution is presented. 
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 Chapter 4 – Data and Methods 

This chapter lists the different datasets used in the work, referring their provenance. It is 

also made a description of the different types of data (such as bathymetry, seafloor 

reflectivity and seismic profiles), followed by an explanation of the methods and 

procedures used to prepare the data for interpretation. 

 

 Chapter 5 – Geomorphologic Analysis of the Seafloor 

In this chapter the interpretation of the bathymetric and backscatter data acquired in the 

study area is presented. It is also described the visual observations of the seafloor from 

the ROV dives in two different locations. Then, the surface evidences of fluid seepage are 

discussed, based on the previous data interpretation.  

 

 Chapter 6 – Seismic Data Processing 

In the sixth chapter the data acquisition and its parameters are described. Then, it is 

presented a brief summary of the theoretical concepts employed for the processing of the 

seismic data, the flowchart of the sequence of the several processing steps applied to the 

PACEMAKER seismic dataset and the results obtained along each steps. The 

parameterization of each processing step and the comparison of the different and 

equivalent steps are tested and discussed. 

 

 Chapter 7 – Seismic Interpretation 

In this section the interpretation of the seismic data acquired in the Lourinhã Monocline 

region is presented. A total of eight 2D high-resolution seismic profiles were interpreted, 

featuring a detailed seismic-chronostratigraphic model, structures interpretation and 

isobaths and isopachs maps. A general interpretation of the low-resolution and high 

penetration TGS-NOPEC seismic was carried out to provide an overview of the 

prominent structures present in the deeper subsurface. Seismic evidences of fluid flow 

are also discussed. 

 

 Chapter 8 – Discussion and Conclusions 

In this last chapter the main interpretations and conclusions that resulted from this study 

are presented. Also possible research lines for future works is summarized. 
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CHAPTER 2 

 

POCKMARKS: AN EVIDENCE OF  

SEABED SEEPAGE 

 

Seabed fluid2 flow is of fundamental importance in the geological, chemical and 

biological cycles of the marine environment and also influences the composition of the 

atmosphere (Judd and Hovland, 2007).  

 

2.1 Seabed Fluid Seepage 

Within the sedimentary basins, fluids migration towards the seabed may result in seafloor 

seepage where fluids are released into the water column. Seabed seepages occur in a wide 

variety of geological environments: in the continental shelf, slope and rise. The intensity 

of the fluid flow in seepages range between the slow diffuse, inter-granular, ‘micro-

seepage’ and the vigorous focused flow, with sometimes violent eruptions of gas (Judd, 

2003; Talukder, 2012). Their activity is in general episodic, with short periods of activity 

intercalated with long periods of dormancy.  

The seeping fluids can be gaseous or aqueous solutions rich in hydrocarbons (in general 

dominated by methane) or can be groundwater more or less modified by the water-rock 

interaction processes (Judd and Hovland, 2007). The seeping fluids do not have a 

significant temperature anomaly (and therefore called “cold seeps”) relatively to the 

seepage setting (sediments and seawater), in opposite to the hydrothermal or volcanic 

origin fluids that define the Hot or Hydrothermal Vents. Regarding the cold seep gases, 

methane is the biggest contributor to seeping gases by volume (Judd and Hovland, 2007). 

Minor quantities of other hydrocarbon gases such as ethane, butane, pentane, and CO2 

can also occur in conjunction with methane (Judd and Hovland, 2007; McGinnis et al., 

2011). The Hydrothermal Vents are places occurring/located mostly along oceanic 

spreading centers where high-temperature fluids (heated in the close vicinity of magma 

                                                           
2 In marine geology and geophysics the term fluid refers both to liquid and gas.   
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chambers) escape from the seafloor. On the contrary, cold seeps (Figure 3) are defined as 

sites where low-temperature fluids and/or gas escape from the seafloor (Talukder, 2012). 

 

2.1.1 Cold Seeps 

As stated above, Cold Seeps are structures where the fluids that escape to the seabed are 

characterized by low temperatures, i.e., temperatures similar to the bottom sea water. 

Examples for active cold seepage in continental margins can be found in many areas of 

the world (Figure 4).  

 

Most seepage of low temperature fluids that occurs on passive continental margins 

(Figure 4) are related to high sedimentary input associated with high fluxes of 

accumulation of organic matter and associated with basins with active petroleum systems. 

The joint effect of thick sedimentary successions, continuous sediment burial, diagenesis 

and maturation of organic matter promotes the widespread occurrence of fluid seepage in 

these geological settings. Examples for passive margins cold seepage occur in the Gulf 

of Mexico (Joye et al., 2004; Roberts and Aharon, 1994), in the Gulf of Cadiz (Léon et 

al., 2006; Niemann et al., 2006; Magalhães et al., 2012) or in the western African margin 

(Gay et al., 2005 and 2007). 

Figure 3 Figure: Gas plumes (white arrows) emanating from the seabed at a cold-seep site on water depths 

less than 500 meters (http://soundwaves.usgs.gov/2014/10/). 
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The morphological expression of seepage include a wide variety of features (Judd and 

Hovland, 2007); the two most common are mud volcanoes and pockmarks. 

 

 

Figure 4 World-wide distribution of modern and ancient cold seeps (adapted from Campbell et al., 2002). 

 

2.1.2 Methane formation and Gas Hydrates 

Methane seepage occurs if organic matter contents in the sediments are sufficient to allow 

the generation of high volumes of methane within the sedimentary column and if 

geological features (such as fractures) that facilitate the methane migration towards the 

seafloor are present. The escape of fluids, such as methane from the seafloor is a 

consistent feature throughout geologic time as documented by seismic surveys and 

seepage outcrops.  

Methane, being highly abundant in the earth’s crust, is often found to be related with fluid 

flow features and gas hydrate formation. In seabed sediments there are three possible 

sources of methane: microbial, thermogenic and abiogenic (Judd, 2003).  

 

Microbial methane is originated by the microbial activity during the decomposition of 

organic matter at small burial depths under low temperature and pressure conditions 
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(Moore and Wade, 2013). The primary producers contribute to most of the organic matter 

available in the oceans that is generated through photosynthesis and, after the dead of the 

organisms, settles through the water column. It is oxidized in the uppermost oxygen-rich 

layer of the sedimentary column (the top few millimeters or centimeters of the sediments) 

as long as oxygen is available. In the anoxic environment immediately below the oxygen-

rich zone, oxidation stops and the organic matter is buried and may be decomposed 

anaerobically. This is a very complex process and the final steps of it may be summarized 

by the following equation representing the formaldehyde decomposition into methane 

and carbon dioxide by the action of methanogenic microbes: 

2𝐶𝐻2𝑂 →  𝐶𝐻4  + 𝐶𝑂2                                        Equation 1 

 

The organic matter that is not degraded by methanogenic microbes within the top 1000 

m of the sedimentary column is buried and can be degraded by thermocatalystic 

processes, forming thermogenic methane. The organic matter which survives the burial 

is transformed into kerogen (amorphous organic matter), under the influence of increasing 

temperature and pressure (Judd, 2001). As burial increases kerogen undergoes thermal 

cracking which leads to the formation of various hydrocarbons compounds with solid, 

liquid and gaseous fractions. Methane is the most abundant hydrocarbon molecule 

formed, and the most mobile since it has the simplest and the smallest molecule size, 

therefore it's the most prone to migrate to the seabed.  

 

Abiogenic methane is formed through inorganic reactions. The most frequently invoked 

reaction for abiotic hydrocarbons generation are the Fischer–Tropsch type reactions (e.g. 

Potter et al., 2004 and 2013; Cao et al., 2014), that converts CO2 to hydrocarbon gas by 

reacting it with H2: 

 

𝑛𝐶𝑂2 + (3𝑛 + 1)𝐻2 → 𝐶𝑛𝐻2𝑛+2 +  2𝑛𝐻2𝑂                   Equation 2 

 

Methane (CH4) is produced when 𝑛 = 1: 

 

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 +  2𝐻2𝑂                              Equation 3 

 

One of the possible origins of the H2 required for the reaction is the hydrothermal 

alteration of Fe-rich minerals, at temperatures above 200ºC (Potter et al., 2004; Tassi et 
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al., 2012). These processes occurs during serpentinization processes, during the magma 

cooling and, more commonly in hydrothermal systems during water–rock interactions 

(Lollar et al., 2002). It is also been claimed that abiogenic methane can have a primary 

mantle origin, emanating from the deep of the Earth and being incorporated into magmas 

(Gold and Soter, 1985). Hence, abiogenic methane may be of magmatic or hydrothermal 

origin and is usually observed in oceanic lithosphere instead of passive continental 

margins. 

 

Gas hydrates are ice-like crystalline solid structures consisting of a rigid cage of water 

molecules that entrap hydrocarbon and non-hydrocarbon gas by hydrogen bonds, forming 

clathrates (Sloan and Koh, 2007). They occur naturally in the pore space of different types 

of marine and lacustrine sediments and permafrost, where appropriate pressure, 

temperature and salinity (PTS) conditions, and sufficient supplies of gas (mainly 

methane) and water exist. Due to these requirements oceanic gas hydrates are only stable 

in the upper few hundred meters of the sediments on the continental margins. This zone 

is called the gas-hydrate stability zone (GHSZ) (Figure 5). The base of the GHSZ 

represents the phase boundary between stable gas hydrates and free gas below. This phase 

boundary is dependent on the geothermal gradient, bottom water temperature, pressure, 

gas composition, pore water salinity and the physical and chemical properties of the host 

rock (Bünz et al., 2003). When the amount of free gas within the sediments bellow the 

GHSZ is sufficient, then the base of the GHSZ is distinctly marked on the seismic 

reflection profiles by a bottom simulation reflection called BSR.  

 

Figure 5 Gas-hydrate stability zone in sub-surface sediments (adapted from Clennell, 1999). 
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The BSR are high amplitude and reversed polarity reflector on the seismic records that 

are sub-parallel to the seafloor (Figure 6) and that are due to an acoustic impedance 

contrast between the hydrate-bearing sediments and free gas trapped in the sediments 

beneath the gas hydrates at the base of the GHSZ (BGHSZ). Hydrate-bearing sediments 

may not have BSR associated if the amount of free gas present underneath the base of the 

GHSZ is not sufficient to produce a significant density/acoustic impedance contrast 

between the hydrate cemented sediments within the GHSZ and the free gas hosting 

sediments below the BGHSZ (Chand and Minshull, 2003; Bünz et al., 2003). 

 

 

Figure 6 Seismic expression of a BSR in the western Svalbard margin (Vanneste et al., 2005). 

 

2.1.3 Migration Pathways 

Pore fluids, generated at depth or entrapped during sedimentation, escape to the seafloor 

through migration pathways. The existence of migration pathways are determined by the 
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interrelationship of sediment permeability/porosity, sedimentation rate, rock deformation 

and flow rates (Hindle, 1997).  

Fluids within sedimentary basins migrate due to pressure gradients, to variations in the 

existent excess pore water pressures and due to the buoyancy diferentials within the 

sedimentary basins (England et al., 1987). The density and pressure gradients between 

sedimentary layers play a major role in the rate of fluid migration. In porous media, the 

rate of fluid flow is controlled by the intrinsic permeability of the medium, fluid viscosity 

and the pressure gradient, as stated by the Darcy’s law. Low-permeability formations can, 

thus, inhibit the flow of fluids, leading to local pore pressure build-up. In unconsolidated 

sediments when the pore fluid pressure exceeds the lithostatic pressure, mechanical 

failure of the low-permeability formation occurs (Clennell et al., 1998) resulting in the 

formation of new pathways which allows the escape of the pore fluids, until the pressure 

is reduced to the hydrostatic values (Roberts and Nunn, 1995). Fluid escape into the low-

pressure areas, usually towards the surface. However, this can be precluded by 

impermeable layers acting as sealing or trap structures. 

 

In non-porous media, vertical fluid migration occurs as a result of either capillary seal 

breaking or permeability enhancement usually related with faults, diapirs or pipes 

(Cartwright et al., 2007). The most important external triggers for fluid migration, as 

enumerated by Talukdar (2012), are the following: 

1. Tectonics (faults and fractures): Faults are the most important conduits for fluid 

flow in sedimentary basins, especially at depths where the sediments are 

consolidated or completely lithified (Ligtenberg, 2005). Faults zones may provide 

permeable vertical pathways through the otherwise impermeable strata (Çifçi et 

al., 2003; Gay et al., 2006 and 2007; Ostanin et al., 2012) and may contain large 

interconnected fractures that act as good pathways for fluid flows. 

2. Erosion of overburden rocks: Overburden erosion, caused for example by 

landslides, reduces the lithostatic pressure. Consequently, entrapped fluid 

overpressure can easily overcome the lithostatic pressure, causing the ascent of 

mud and fluids. 

3. Earthquakes: Onshore and offshore increased fluid venting and seepage, as also 

mud volcano eruptions are frequently related to moderate and strong seismicity 

events. When earthquake waves pass through water-saturated and confined 

unconsolidated sediments it can lead to localized pore fluid pressure increases, 
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exceeding the lithostatic pressure and the cohesion of the overlying sediments will 

cause sediments liquefaction and fluid ascent injections. 

4. Tides and eustatic sea level changes: the decrease of the hydraulic pressure by low 

tides or, on a longer time scale by a sea level drop, can trigger the rise of fluid 

flow. 

 

2.2 Seismic Indicators of Fluid Flow 

Hydrocarbon seepage can often be recognized on seismic data, because it causes a 

diagenetic mechanical change or compositional variability in the geological sequences 

that can produce a detectable acoustic anomaly. Indications for fluid and seepage are 

expressed in characteristic seepage features both at seabed and in the subsurface. 

Evidences for the presence of gas in the sedimentary sequence and fluid flow is inferred 

by the observation of geophysical indicators, such as acoustic turbidity, enhanced 

reflections, intrasedimentary doming, reflectors pulldown, gas chimneys and bright spots 

in the seismic data (Judd and Hovland, 2007; Duarte et al., 2007). Often, these indicators 

are observed in association with other resulting from the presence of gas in the water 

column like acoustic plumes (flares), cloudy turbidity and acoustic turbidity near the 

seabed.  

 

Acoustic turbidity (AT) appears on shallow seismic reflection profiles as a disturbance 

on the seismic record obliterating all seismic reflections of the deeper layers (Figure 7–

A). Sometimes, coherent reflections can still be followed inside AT zones, despite the 

reduced amplitude of the acoustic turbidity areas. This effect is caused by the fact that in 

the sediments with high gas contents, the majority of the acoustic energy is being 

attenuated by the gas bubbles, causing chaotic reflections. Acoustic turbidity is most 

common is soft, fine-grained sediments, but similar effects may also be caused by gravel 

beds, shell beds and peat layers (Ligtenberg, 2005; Judd and Hovland, 2007; Duarte et 

al., 2007). 

Enhanced reflections (ER) are characterized by a marked lateral increase in the 

amplitude of coherent reflectors (Figure 7–B). They are interpreted as indicating an 

increase of the gas contents in relatively porous horizons, generally at the top of a 

sediment bed, or at an angular truncation overlain by a dominantly impermeable muddy 

sequence. The enhanced reflections can also be produced by the presence of 

diagenetically cemented sections of layers, such as the presence of methane-derived 
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authigenic carbonates that occur bellow cold seeps (Ligtenberg, 2005; Judd and Hovland, 

2007; Duarte et al., 2007). They can also be caused by lateral facies variations, with no 

relation to gas bearing sediments. Enhanced reflections are observable in shallow high-

resolution seismic profiles and are the equivalents of the ‘bright spots’ which occur in 

greater depths (only visible in deep seismic profiles). 

Acoustic blanking (AB) is defined by a transparent or signal-starved domain in the 

seismic profile, topped either by an enhanced reflection or by acoustic turbidity (Figure 

7–C). Acoustic blanking is often close to the seabed, usually develops vertically (Judd 

and Hovland, 2007). It is interpreted as the result of the weakening of the acoustic signal 

caused by gas accumulations in the sediments (Ligtenberg, 2005; Judd and Hovland, 

2007; Duarte et al., 2007).  

Gas chimneys (Figure 7–D) are vertical to near-vertical zones associated with upward 

fluid migration. The shape of the gas chimneys can vary from diffuse shadows, funnels 

or pipes. Their appearance can be explained by the transport of gas from a reservoir and 

into the cap rock through a connected fracture network also associated with some lateral 

diffusion. The gas in the sediments causes fluctuations in the compressional velocity field 

which again cause scattering and deterioration of a passing seismic wave. The general 

texture of the internal structure of gas chimneys shows a chaotic reflection pattern of low 

energy. Gas chimneys often terminate in the shallower stratigraphy, topped by a strong 

reflection at the water-sediment interface, and are associated with acoustic evidence of 

gas accumulations (Ligtenberg, 2005; Judd and Hovland, 2007; Duarte et al., 2007). 

Intrasedimentary doming can appear beneath pockmarks in seismic profiles and are 

characterized by the upwards doming of individual reflectors (Figure 7–E). These features 

are considered artifacts caused by the difference in the seismic velocity at sediments 

containing indurated sediments associated with the migration or presence of free gas, in 

relation with the similar contiguous sediments with no gas (Ligtenberg, 2005; Judd and 

Hovland, 2007; Duarte et al., 2007). Unaffected reflections are often observed above the 

intrasedimentary doming, indicating the some of these features are genuine, most 

probably resulting from the upward grow of sedimentary layers due to increased pore 

pressure in some way related to vertical gas migration. 
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Figure 7 Geophysical indicators of the presence of gas and fluid flow in seismic data. A – Acoustic turbidity 

zone (from Ligtenberg, 2005); B – Seismic profile showing enhanced reflections, characterized by very 

high-amplitude positive polarity reflectors (from Cukur et al., 2013); C –Examples of acoustic blanking 

(AB) and a Pull Down from the Ria de Aveiro. FZ: fault zone; S1 – erosive horizon; m –seafloor multiple 

(adapted from Duarte et al., 2007); D – Profile showing several chimneys with loss of coherence and subtle 

convex upwards deformation, from offshore Norway (Hustoft et al., 2010); E – Intrasedimentary doming 

(ID) beneath a seabed pockmark (Judd and Hovland, 2007).  
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Pull down of reflectors (Figure 7.c) correspond to coherent reflections depressed in 

relation to their lateral setting, located below units of gas-charged sediments. The pull 

down reflectors are interpreted as the result of the decrease in seismic velocity at 

sediments containing small amounts of free gas. If the gas-charged zone is thick enough 

this effect gives the impression that the sediments are sagging, due to a longer time travel 

of the seismic waves. The opposite effect, a pull up, would be caused by the presence of 

a high-velocity zone (Ligtenberg, 2005; Judd and Hovland, 2007; Duarte et al., 2007).  

 

2.3 Morphological expressions of Fluid Seepage 

The morphological expression of seepage include a wide variety of features (Judd and 

Hovland, 2007), the two most common being the mud volcanoes and the pockmarks. 

These features are described in more details below. 

 

2.3.1 Mud volcanoes 

Mud volcanoes are defined as conical shape positive morphological features (Figure 8.a) 

formed as a result of the emission of semi-liquid material on the seafloor or on land 

(Milkov, 2000; Kopf, 2002; Dimitrov, 2002). The material extruded is a fluidized mixture 

of sediments dominated by clays (Magalhães, 2007). Usually this mixture includes rock 

fragments dragged from the sedimentary units crossed during the upward flow. The 

extruded material forms characteristic circular to elongated features that varies in shape 

and size, characterized by elevation of a conical shape structure from some centimeters 

to hundreds of meters high or by negative funnel-shaped forms (mud pools). In passive 

margins, such as the WIM, these structures occurs generally associated with thick 

sedimentary sequences composed of soft and fine-grained sediments at great depths that 

are moved upwards together with ascending fluids and expelled at the surface (Judd and 

Hovland, 2007; Magalhães, 2007; Talukder, 2012). 

 

Mud volcanoes were described onshore and offshore in many places on Earth. Until the 

1970s these structures were only recognized on land and in adjacent very shallow waters 

(Jakubov et al., 1971 and Ali-Zade et al., 1984 in Dimitrov, 2002). Examples of onshore 

mud volcanoes can be observed in Azerbaijan (e.g. Mazzini et al., 2009; Bonini et al., 

2013; Antonielli et al., 2014) and in Italy (Giammanco et al., 2007; Heller et al., 2012; 

Rainone et al., 2015). With the development of equipment for underwater research, many 

mud volcanoes have been discovered on the sea floor in water depths between 500 and 



20 

5000 m, in regions like the Gulf of Cadiz (e.g. Somoza et al., 2003; Pinheiro et al., 2003; 

Medialdea et al., 2009; Palomino et al., 2015) and the Black Sea (e.g. Ivanov et al., 1996; 

Stadnitskaia et al., 2008; Xing and Spiess, 2015).  

These features can be easily detected in reflection seismic profiles (Figure 8.b), when the 

host is a well stratified sedimentary sequence and with more difficulty in accretionary and 

overthrust complexes (Dimitrov, 2002). Their identification is based on the characteristic 

bathymetric positive expression at the seabed and on the existence of vertical, narrow 

zone lacking reflections or of chaotically disrupted, short reflections on the sub-seabed, 

beneath the seabed topographic high (Dimitrov, 2002; Magalhães, 2007).  

 

Figure 8 Anastasya mud volcano: a) multibeam bathymetry 3D image and b) single-channel sparker seimic 

profile (Somoza et al., 2003). 1: Downward bending of reflectors; 2: transparent facies. 

 

2.3.2 Pockmarks 

Pockmarks are crater like negative topographic features at the seabed (Figure 9.a) with a 

round to oval shape which vary in diameter from few meters to over 1 km (Judd and 

Hovland, 2007) and vary in depth between <1 m and up to 100 m. Pockmarks occur 

mostly in soft, low permeable fine-grained sediments, in large clusters or individually, in 

a wide variety of geological settings: continental shelves, slopes, rises and in the deep 

a)  

b)  

Fig. 8.b 
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ocean (Judd, 2003; Judd and Hovland, 2007).  The pockmarks can be clearly distinguished 

on the seabed in high resolution seismic reflection profiles (Ligtenberg, 2005), as 

illustrated in Figure 9.b. 

Pockmarks were first described by King and MacLean, 1970 on the continental shelf off 

Nova Scotia, Canada and then observed in many places all over the world (e.g. Judd and 

Hovland, 2007), in various depositional systems at water depths ranging from 30 m to 

over 3000 m (Gay et al., 2007). 

Pockmarks are formed by the expulsion of fluids through the seabed, when the flux is 

rapid and abrupt (Talukder, 2012). Since the generation of fluids and its migration 

towards the seabed occur over geological time periods, fluids escape and, consequently, 

the pockmarks formation are either continuous or intermittent over extended periods of 

time. It is therefore frequently to find buried pockmarks in the seismic profiles, occurring 

vertically stacked or isolated, as in the Turkish shelf of the Black Sea (Çifçi et al., 2003) 

and in the slope of the Gulf of Cadiz (Baraza and Ercilla, 1996) suggesting that the 

migration of fluids is intermittent and periodically repeated in the geological time scale. 

Several reasons for the periodic interruption and reactivation of fluids seeping can be 

invoked, such as periodic sea-level changes, seismologically driven periodical 

overpressure conditions or cycles of fluid pressure build up under a sedimentary 

impermeable layer. 

 

Figure 9 Appearance of pockmarks on the seabed, as imaged with multibeam bathymetry (a) and on a high 

resolution seismic reflection profile (b) (Judd and Hovland, 2007). 

a                                                                b 
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Çifçi et al. (2003) classified the pockmarks into four categories, according to their stage 

of formation (Figure 10). In the first stage, the gas accumulation in the uppermost 

sedimentary sequence under overpressure conditions causes an expulsion, in a single 

event, which fluidizes the sediments and lifts it into the water column forming a 

depression on the seabed. The fine-grained sediments are suspended in the water and drift 

away in the current leaving behind the coarse sediment that fall back to the seafloor. In 

the second stage, the lose sediment expulsion ceased and recent sediments started filling 

the depression formed in the previous first stage. In the third stage, the depression is 

completely filled by the sediments and the pockmark is buried. In the fourth stage, the 

gas expulsion is reactivated so that a new pockmark is formed in the seabed. Judd (2001) 

described an earlier stage to the abrupt expulsion of fluids, the accumulation of these fluid 

beneath the seabed. Where the gas accumulates close to the seabed, the excess pore fluid 

pressure may inflate the sediments to form a seabed dome. 

 

 

Figure 10 Schematic illustration for the evolution of vertically stacked pockmarks (adapted from Çiçfi et 

al., 2003). Circles and drops symbolize the fluids and the red arrows the fluid migration; BP: buried 

pockmark. 
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CHAPTER 3 

 

GEOLOGICAL SETTING OF THE 

ESTREMADURA SPUR  

 

The Estremadura Spur is a structural high with trapezoidal shape that is bounded by two 

deep canyons systems, the Nazaré and Lisbon (Mougenot, 1989; Badagola, 2008). It is 

the result of the overlay of the various tectonic cycles that affect the WIM since the Late 

Paleozoic until the present. 

 

The Estremadura Spur is a positive relief with a triangular shape that lies offshore the 

central part of the Lusitanian Basin that resulted from the various continental rifting stages 

that led to the opening of the Atlantic ocean from Triassic through Early Cretaceous times 

and formation of the West Iberia passive Margin in the Late Cretaceous (Figure 11) 

(Pinheiro et al., 1996; Kullberg et al., 2013). The positive relief results from perpendicular 

tectonic inversion of the LB in Cenozoic times with respect to the direction of opening of 

the rift. The rifting and inversion tectonics reactivated deep seated faults that were 

inherited from the Paleozoic Variscan orogeny. 
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Figure 11 Iberian Peninsula and western Mediterranean schematic geological map (Andeweg, 2002). 

 

3.1 Geodynamic evolution of the Western Iberian Margin 

The WIM began to develop during the early stages of continental rifting that led to the 

opening of the North Atlantic Ocean, from the Triassic through the Early Cretaceous 

(Rasmussen et al., 1998; Pinheiro et al., 1996). The rocks that form the basement of the 

WIM are part of the Hesperian Massif, which incorporate Precambrian and Paleozoic 

rocks. Since the beginning of the Cenozoic the evolution of WIM was characterized by 

periods of compression and tectonic inversion related to the Alpine orogeny (Pyrenean 

and Betic phases), resulting in the uplift of some regions of the margin, such as the ES. 

 

3.1.1 The Late Paleozoic and Mesozoic Evolution 

The Variscan Orogeny 

The rocks that form the basement of the WIM are part of the Hesperian Massif, a segment 

of the Variscan Orogenic Belt that extends all over Europe. This orogenic belt resulted 

from the convergence and collision of two major continents, Laurasia and Gondwana, 

during the Late Paleozoic (Devonian-Permian) Variscan Orogeny, which led to the 

formation of the supercontinent Pangea. The deformed rocks that constitute the WIM 
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basement are from Upper Proterozoic to Carboniferous age and are often metamorphosed 

and intruded by different types of granitoids (Ribeiro, 2013a). 

 

Opening of the North Atlantic 

During the Mesozoic the evolution of West Iberia was controlled by the opening of the 

North Atlantic Ocean. Throughout the Triassic, the supercontinent Pangea began 

fracturing, leading to the formation of epicontinental seas, first by the thinning of the 

continental lithosphere (the continental rifting created graben and half-graben structures 

where continental deposits and evaporates sedimented) followed by whole lithospheric 

rupture that accommodated the initial formation of oceanic lithosphere and subsequently 

by the formation and development of the West Iberia passive margin. 

The western Iberia Atlantic margin evolved as the conjugate of the Grand Banks area 

after four distinct phases of rifting during Late Triassic, Lower Jurassic, Upper Jurassic 

and Early Cretaceous (Pinheiro et al., 1996; Rasmussen et al., 1998; Kullberg et al., 

2013). The continental stretching led to the oceanization of the North Atlantic and the 

process of continental breakup progressively migrated from the south to the north, along 

the margin (Pinheiro et al., 1996; Alves et al. 2006). The complete separation of the 

Iberian margin from North America in the late Aptian (Driscoll et al., 1995; Pinheiro et 

al., 1996) was followed by the development of a separate micro-plate successively 

attached to Eurasia and Africa – the Iberian plate (Sibuet et al., 2007; Soares et al., 2012; 

Ribeiro, 2013b). This micro-plate is limited by four major lithospheric structures: the 

Charlie Gibbs Fracture Zone in the north, the Açores-Gibraltar Fracture Zone in the south, 

the Atlantic Rift to the west and the Tethyan Rift in the south and southeast. The continued 

northward migration of seafloor spreading drove the ocean opening in the Bay of Biscay, 

in the Late Cretaceous and the counter-clockwise and southeast motion of the Iberian 

plate, from the Late Cretaceous to Paleogene (Pinheiro et al., 1996). 

 

In the WIM, several extensional basins evolved during the Mesozoic; they are, from south 

to north, the Alentejo Basin, the Lusitanian Basin, the Peniche Basin, the Porto Basin and 

the internal and external Galicia basins (Pais et al., 2012; Kullberg et al., 2013; Figure 

12). The formation and evolution of western basins were mainly controlled by deep 

normal faults oriented NNE–SSW to N–S and NW–SE, corresponding to the reactivations 

of inherited Variscan faults. The basins are separated by major transfer faults oriented 

from NE–SW to ENE–WSW (from north to south: the Aveiro Fault, the Nazaré Fault and 
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the Arrábida Fault; Figure 12) that played important roles during the Alpine compression. 

Most of the Mesozoic basins are located offshore in the present day, with the exception 

of about a third of the Lusitanian Basin that crops out in the central part of the West Iberia 

Margin as a result of tectonic inversion in Cenozoic times. 

 

 

Figure 12 Geographic localization of the WIM Portuguese sedimentary basins and major faults (adapted 

from Kullberg et al., 2013). 

 

3.1.2 The Cenozoic Alpine Orogeny 

The Cenozoic evolution of Iberia was marked by the Alpine compressional phases that 

affected all of southern Eurasia. At the end of the Cretaceous, the Iberian Peninsula was 

subjected to a compressive tectonic regime, as a result of the counter-clockwise and 

southeast motion of the Iberian plate. This led to the tectonic inversion of the structures 

formed during the Mesozoic extensional periods. The orientation of the maximum 

compression was oriented N–S to NNE–SSW from the Late Cretaceous until the 

Paleogene (Kullberg et al., 2013). During the Miocene the compression direction changed 

to NNW–SSE, evolving to NW–SE to WNW–ESE in the Pliocene-Quaternary (Ribeiro 
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et al., 1996; Cunha et al., 2012). The tectonic inversion occurred in two main phases: the 

Pyrenean (Late Cretaceous – Late Eocene) and the Betic (Oligocene – Late Miocene) 

phase.  

In the Pyrenean phase the Iberian micro-plate moved, along with the African plate, 

northward against the Eurasian Plate. As a consequence of the convergence between 

Iberia and Europe, the southern margin of the Bay of Biscay become active, the 

Cantabrian subduction zone formed with northwards subduction of oceanic crust that led 

ultimately to the continental collision and formation of the Pyrenees. This caused the 

inversion and shortening of some extensional structures. The crustal shortening and 

subsequent intense intraplate deformation were responsible for a drastic change in the 

continental topography of the Iberian plate (Casas-Sainz and De Vicente, 2009; De 

Vicente et al. 2011). The peak of compression occurred in the middle Eocene, with the 

formation of the Pyrenees collisional chain with E–W oriented mountain belts rising to 

approximately 2000 m (De Vicente et al. 2011). 

In the Betic phase, the Iberian microplate started to move along with the Eurasia plate. 

Consequently, Iberia converged with the African plate (maximum compression N–S with 

the paroxysm in the Tortonian) in the southern border of Iberia (Açores-Gibraltar Fracture 

Zone). During the Betic phase a large-scale shortening of Iberia occurred that caused 

lithospheric folding (e.g. De Vicente et al. 2011). As a result of this compressional phase 

the Betic chain formed in southeastern Iberia. This collisional mountain chain trends in 

ENE–WSW orientation and rises to around 700 m (Casas-Sainz and De Vicente, 2009). 

The evolution of the Betic-Rif orogen is intimately related to the mostly northwards 

subduction of the Tethyan ocean, continental collision and development of back-arc 

basins in the West Mediterranean. As a consequence the Betic-Rif arc formed, possibly 

underplating and mantle exhumation and thrusting occurred (Ronda peridotite massif) 

and the a remnant of the Jurassic ocean rolled back into the Atlantic Ocean forming the 

Gibraltar orogenic arc and the Gulf of Cadiz Accretionary Wedge (Gutscher et al., 2002, 

Gutscher et al., 2012, Terrinha et al., 2009; Duarte et al., 2013). The last mountain 

building phases of this processes apparently strongly diminished at the end of the Miocene 

and deformation concentrated in the oceanic domain of the Africa-Iberia tectonic 

boundary (Zittellini et al., 2009). 

Throughout the Pliocene there has been some tectonic stability (Pais et al., 2012). In the 

Late Pliocene and Quaternary, the tectonic regime became compressive with maximum 

compression of NW–SE to WNW–ESE probably due to changes of the Açores-Gibraltar 
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tectonic regime (Terrinha et al. 2009). During the Cenozoic many basins with different 

dimensions developed, bordered by topographic highs related to thrusts or strike-slip 

faults (De Vicente et al., 2011). In the central area of Iberia, the main uplifted zones are 

the Iberian Chain and the Central System (Estrela-Seia-Lousã and Aire-Candeeiros-

Montejunto) that extends westwards to the Estremenho Massif and the Estremadura Spur 

in the WIM offshore. 

 

The WIM was deformed by the compressional Alpine tectonics principally during the 

Betic phase during Miocene times (Pais et al., 2012). The two Cenozoic compressional 

episodes effects on the margin was the formation of folds and the reactivation of old 

Variscan structures (also reactivated onshore). The WIM and its onshore extension were 

differentiated into a series of uplifted blocks (like the Estremadura Spur and its onshore 

prolongation) and areas of subsidence (e.g. Lower Tagus Basin) (Mougenot, 1989; 

Rasmussen et al., 1998). The tectonic inversion is registered in the Lusitanian Basin, 

where the maximum compression has a NW–SE direction (Kullberg et al., 2000). The 

inverted structures in the basin are anticlines associated with thrust faults. These faults 

were Late Variscan strike-slip faults, striking between ENE–WSW and NE–SW that were 

reactivated as reverse faults with NW and SE verging thrusts. The inversion is better 

expressed in the onshore sector of the basin, since the sedimentary record and tectonic 

structures are almost non-existent due to an important and long lasting uplift of the entire 

region. Cenozoic sub-basins developed in the inverted areas of the Lusitanian Basin 

generally conditioned by local halokinesis triggered in different times by different 

processes, including Cenozoic compression or by thin-skinned structures. The 

organization of these dispersed basins is here simplified since most of the basins are, in 

fact, sub-basins of larger basins that were exhumed presumably from the Late Neogene 

to the Present. 

 

3.2 Stratigraphy 

The WIM sedimentary fill is composed of Mesozoic and Cenozoic deposits that rest over 

a Variscan deformed and metamorphosed basement, like in the onshore equivalent. 

During the inversion of the tectonic regime in the Cenozoic the basin was uplifted, which 

lead to the erosion of the emerged areas. As a result, the Cenozoic sedimentary sequence 

in the onshore only occurs in small basins, where the erosion was less intense. 

Contrariwise, in the offshore the Cenozoic sedimentation has a significant thickness and 
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lateral continuity of the deposits. Shell Prospex Portuguesa drilled two wells (17 C-1 and 

20 B-1) in the Estremadura Spur (Figure 13) in the late 70s, which allowed to know the 

Mesozoic stratigraphy of this offshore region of WIM with more detail (the wells 

sequence stratigraphy is summarized in Table 1 and Table 2). It was also used the onshore 

sedimentary sequence as an analogue. 

 

 

 

Table 1 Formations drilled by well 17 C-1. 

Depth (mbsf) Formation/Member Age 

Seabed - 376 Alcobaça Fm Kimmeridgian 

- unconformity - 

376 - 1058 Brenha Fm 
Callovian – Upper 

Sinemurian 

1058 – 1230 Coimbra Fm Sinemurian 

1230 – 1481 Dagorda Fm, Dol. Mbr Hettangian 

1481 – 1799 Dagorda Fm, Salt-Dol Mbr Early Lower Jurassic – 

Figure 13 Localization of the exploration wells drilled in the Estremadura Spur region, 17C-1 and 20B-1. 

Equidistance: 10 m (between 0 and 200 m); 200 m (below 200 m). 
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1799 - 2148 Dagorda Fm, Massive Salt mbr Equ Upper Triassic 

2148 – 2195 Silves Fm, Shale-Lst Mbr Upper Triassic 

2195 – 2308 Silves Fm Triassic 

- unconformity - 

2308 – 2402 

(T.D.) 
Basement Pre-Mesozoic 

 

Table 2 Formations drilled by well 20 B-1. 

Depth (mbsf) Formation Age 

Seabed - 181 - Valanginian 

- disconformity - 

181 - 793 Candeeiros Fm Bathonian – Callovian 

793 - 2285 Brenha Fm Pliensbachian – Bajocian 

2288 – 2541 

(TD) 

Coimbra – Dagorda Fm (?) Hettangian – 

Sinemurian 

 

3.2.1 Paleozoic 

The Paleozoic units represented in the area are igneous (leucogranite) and 

metasedimentary (gneiss and micaschist) rocks, found at the islands of Berlenga and 

Farilhões, respectively. These islands are the only vestige of the Variscan basement, which 

underlay the Mesozoic and Cenozoic units, that outcrops at the surface. In the well 17 C-

1 it was encountered rocks that constitute the pre-Mesozoic basement: tectonized granite, 

which was alike to the granite that forms the Berlenga Islands (Shell Prospex Portuguesa, 

1976a).   

 

3.2.2 Mesozoic 

Mesozoic sediments constitute the foundations of the margin and correspond to the 

offshore part of the Lusitanian basin (Alves et al., 2003). During Upper Triassic coarse 

arkoses and sub-arkoses were deposited followed by sandy-pelitic and laminated pelitic 

with carbonate fragments and arkosandstones from the Conraria Formation. From Upper 

Triassic to Lower Jurassic evaporitic rocks were deposited, in the deeper regions of the 

margin (graben and half-graben structures). In well 17 C-1 was observed that these 

deposits covers unconformably the underlying Paleozoic basement. It was identified the 
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Silves Formation, which consists of clay and claystone interbedded with small salt 

stringers. The Silves Formation is overlain by a sequence of salt with dolomitic, 

calcareous, anhydritic and argillaceous stringers, which is the Salt Member of the 

Dagorda Formation. In the earliest Lower Jurassic occurred fault controlled regional 

subsidence (Rasmussen et al., 1998). This marks the beginning of a marine transgression, 

that lead to the deposition of dolomitic lime-mudstone grading to interbedded dolomite 

and anhydrite and then to anhydrite with argillaceous stringers (in wells 17 C-1 and 

possibly 20 B-1) that corresponds to the Dagorda Marls (Dolomite Member of the 

Dagorda Formation). This sequence is overlain by compacted and cemented lime-

mudstones, which occasionally grade to packstone and grainstones (Shell Prospex 

Portuguesa, 1976a; 1976b), belonging to the Coimbra Formation (observed in both wells). 

In 20B-1 this formation showed minor gas readings, but further studies did not indicate 

the presence of hydrocarbons. The transgression initiated in the Lower Jurassic continues 

during the Middle Jurassic (Rasmussen et al., 1998), but it does not affect the entire region 

of the Estremadura Spur (Figure 14); the area between Cabo Raso and Ericeira was 

emerged during much of the Middle Jurassic (Berthou, 1973 in Badagola, 2008).  

The Brenha Formation was observed in both wells, formed by argillaceous limestone 

interbedded with marlstones and claystones deposited in the Lower-Middle Jurassic 

(Upper Sinemurian – Callovian in well 17 C-1; Pliensbachian – Bajocian in well 20 B-

1). In the well 17 C-1, located in the area north to Peniche, this deeper shelf facies 

sequence constitute the majority of the Middle Jurassic sedimentary deposits, but in the 

well 20 B-1 that is located in the middle of the Estremadura Spur, a large portion of the 

Middle Jurassic (Bathonian – Callovian) consists of carbonate platform sediments of the 

Candeeiros Formation: particle supported limestone of a shallow marine, mainly high 

energy depositional environment.  
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Figure 14 Paleogeographic scheme of the Estremadura region (off- and onshore) during the Lower and 

Middle Jurassic (adapted from Mougenot, 1976 in Badagola, 2008).  

 

The base of Upper Jurassic is marked by an important unconformity, due to the occurrence 

of a marine regression. The sedimentary hiatus of the Upper Callovian – Lower Oxfordian 

is associated with an important episode of crustal uplift (Kullberg, 2000; Terrinha et al., 

2002), which was followed by a strong subsidence of the basin. In the Kimmeridgian 

occurred the deposition of a detritic series (Figure 15) consisting of sandstone, clay and 

conglomerates, characteristic of a sedimentary environment of shallow depth shelf (Grés 

Superiores Formation). This evidenced the resuming of marine conditions in the Late 

Oxfordian. In the well 17 C-1 it was observed a sequence of conglomerates with abundant 

igneous and metamorphic rock fragments, limestone pebbles, some red clay and 

limestone intercalations, interpreted as belonging to the Alcobaça Formation (or Grés 

Superiores Formation).  
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Figure 15 Paleogeographic scheme for the Estremadura region (off- and onshore) during the Upper Jurassic 

(adapted from Mougenot, 1976 in Badagola, 2008). 

 

The lowermost Cretaceous sedimentary sequence is missing in most of the Lusitanian 

Basin (Rasmussen et al., 1998, Dinis et al., 2008). From the Valanginian to the Early 

Aptian occurred the deposition of fluvial sediments of the Torres Vedras Formation. In 

the 20 B-1 well a sequence of lime mudstones and marls of the Valanginian, overlay 

unconformably the Alcobaça Formation. The sedimentation sequence of the Lower 

Cretaceous was dominated by mixed carbonate-siliciclastic systems (Rasmussen et al., 

1998): such systems were characterized by the deposition of shallow carbonates on 

topographic highs, shifting laterally to fluvial-deltaic siliciclastic deposits near the shore 

and to marine shale and limestone towards the deeper parts of the basin (e.g. Wilson, 

1988; Rasmussen et al., 1998). During this period there are several transgressive-

regressive shifts with a regressive maximum in the Barremian (causing the emersion of 

the area that corresponds to the actual continental territory) and other important regional 
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event of erosion in the upper Aptian (Kullberg et al., 2013). It was marked by the influx 

of high-energy clastic material and the installation of fluvial deposits system throughout 

the basin (Figure 16).  

 

 

Figure 16 Paleogeographic scheme for the Estremadura region (off- and onshore) during the Lower 

Cretaceous (adapted from Mougenot, 1976 in Badagola, 2008). 

 

In the beginning of the Late Cretaceous the sea level rose again until the Late 

Cenomanian, causing the expansion of the carbonate platform towards north and east 

(Kullberg et al., 2013) and the retraction of the adjacent clastic systems (Figure 17). In 

the end of Cenomanian the Nazaré Fault was reactivated causing the uplift of areas to the 

south of this fault, causing a northward displacement of marine sedimentation (Berthou, 

1973; Berthou and Lauverjat, 1979; Boillot et al. 1972; 1975 in Pinheiro et al., 1996). 
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Figure 17 Paleogene scheme for the Estremadura region (off- and onshore) during the transition of Lower 

to Upper Cretaceous (adapted from Mougenot, 1976 in Badagola, 2008). 

 

The Cenomanian-Turonian boundary is marked by an unconformity and associated 

karstifications (Kullberg et al., 2013). In the Late Campanian-Maastrichtian (probably 

during the middle Campanian) occurred the principal phase of the Nazaré Fault 

reactivation as a thrust verging to NW (Cunha and Pena dos Reis, 1994 and Pinheiro et 

al., 1996) that led to the uplift and sub-aerial exposure of the Estremadura region and of 

an important portion of the continental shelf establishing in the Cretaceous–Paleogene 

transition (Figure 18), a forced regressive cycle.  
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Figure 18 Paleogeographic scheme of the Estremadura region (off- and onshore) during the Late 

Cretaceous and Paleogene (adapted from Mougenot, 1976 in Badagola, 2008). 

 

3.2.3 Cenozoic 

During the beginning of the Cenozoic occurred the events of tectonic inversion related to 

the Pyrenean phase of the Alpine orogeny. Therefore, the Paleogene deposits are rare on 

the onshore sector of central Portugal, were the tectonic inversion is more intense 

(Mougenot, 1989; Pais et al., 2012) being only deposited in local sub-basins. 

Sedimentation of the continental sequences of Grés do Buçaco (siliciclastic sediments 

predominantly of granitic origin, with common clasts of quartz, quartzite and schist) and 

Benfica Complex (shallow limestones deposited during the Eocene and shallow marine 

sands, conglomerates and red marls during the Oligocene). In the offshore the Paleogene 

deposits are represented north of the Nazaré Canyon and appear locally south of the 

canyon (Musellec, 1974; Mougenot, 1976; 1989). Clastic deposition continued during the 

Neogene, with thick sedimentary sequences deposited in local basins (Rasmussen et al., 

1998), controlled by various phases of tectonic deformation. In the Miocene occurred the 
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sedimentation of fine sand, lacustrine and shallow marine clastic and carbonate deposition 

(Pinheiro et al., 1996) and the Pliocene and Quaternary was marked by the deposition of 

siliciclastic sediments associated to transgression and regression cycles, which led to the 

formation of several generations of protofluvial deltas and prograding wedges truncated 

by ravinement surfaces (Mougenot, 1989). An important hiatus separates the Eocene–

Miocene succession from the Pliocene–Pleistocene succession. It is associated with the 

compressional movements that began in the Middle Miocene, related to the Betic phase 

of the Alpine orogeny.  

Since the Upper Pliocene new tectonic pulses and various glacio-eustatic variations led 

to the erosion and overprint of the Neogene sedimentary sequence (Vanney and 

Mougenot, 1981; Cachão and Silva, 2000). These variations had several effects on the 

WIM, such as continental shelf and coastal areas were eroded, sedimentary bodies 

advanced towards the shelf and upper slope and occurred the incision of major submarine 

canyons and gullies on the continental slope (Mougenot, 1988; Dias et al., 2000). The 

stratigraphic structures observed in the Quaternary consist of progradational wedges, 

eroded at the top, and paleo-valleys in the continental shelf (Lobo et al., 2015). Associated 

with the sea-level regression stages occurred a profound erosion in the inner continental 

shelf and continental slope. The most recent lowstand stage is related to the last glacial 

maximum (LGM) that occurred at ~18 ka BP (Dias et al., 2000; Rodrigues et al., 2000). 

At that time the sea-level was below 140 m depth (Figure 19) and the inner part of the 

continental shelf was enduring subaerial exposure (Dias, 1987). 

 

Figure 19 Evolution of the Portuguese coastline since the LGM (Dias et al., 2000). 
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With the end of this glacial period in the Late Pleistocene (13–11 ka), the sea-level started 

to rise leading to the eastwards migration of the coastline (Lobo et al., 2015; Figure 19). 

The continental shelf exposed during the LGM become submerged and the sediments 

started to accumulate in the shelf (filling of valleys and canyons formed during the LGM). 

This tendency was disturbed by a rapid and drastic climate crisis (Younger Dryas; 11 ka), 

attributed to the massive inflow of ice meltwaters into the Atlantic Ocean (Dias et al., 

2000). This crises interrupted the thermohaline circulation and led to a global cooling and 

to the development of more ice masses to each is associated a sea-level fall of about 60 

m below its actual level. In response to the lowering of the sea-level renewed river erosion 

of the sedimentary infill of estuaries occurred, leading to massive influx of terrigenous 

sediments (coarse-grained sand and gravel) on the shelf (Dias et al., 2000), deposited in 

thick shore bars. The finer material was transported by shelf currents to greater depths 

(Rodrigues et al., 2000). During the Holocene the sea-level rise rapidly between 10 and 8 

ka (Figure 19) and reached its present level between 5 to 2.5 ka (Figure 19), when the 

rates of the sea-level rise were attenuated (Dias, 1987). These transgression spread 

throughout the margin and was responsible for the formation of progradational coastal 

sand bodies on the continental shelf (Dias et al., 2000). 

 

3.2.4 Magmatism 

Between the Nazaré Fault and the north of Lisbon, two important phases of igneous 

activity in the Lusitanian Basin were recognized (Miranda et al., 2009; Kullberg et al., 

2013). The first phase occurred from at least 148 to 140 Ma (Mata et al., 2015) and was 

characterized by its transitional geochemistry (mildly alkaline magmas). This phase is 

associated with the late stages of the extensional regime associated with the Iberia-

Newfoundland rifting, during the Jurassic-Cretaceous transition. 
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Figure 20 Main magmatic occurrences in the Lusitanian Basin (adapted from Miranda et al., 2009). 

 

In the Late Cretaceous (Figure 20), from 94 to 69 Ma, another important phase of igneous 

activity was recognized in the Estremadura Spur. This episode is characterized by the 

alkaline chemical signature bodies that can be found in the Tore-Madeira Rise and in the 

Estremadura Spur (Neres et al., 2014), related with the Sintra Intrusive Complex, the 

Radial Dyke swarm of Mafra Complex and the basaltic Lisbon Volcanic Complex.  

 

3.3 Estremadura Spur 

3.3.1 Geological Evolution 

The morpho-tectonic evolution of the ES continental shelf (Figure 21) was studied in 

detail by Badagola (2008) who concluded that the tectonic regime was the main 

conditioner for the evolution of the ES continental shelf. The same author established four 

important phases to the Neogene and Quaternary geological evolution of the ES shelf, as 

follows below. 
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Figure 21 Geological map of the Estremadura Spur shelf (Badagola, 2008). 
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In the transition from the Paleogene to the Neogene two thirds of the continental shelf 

were uplifted and exposed sub-aerially. A transgressive cycle occurred during the late 

Chattian and Aquitanian with a maximum in the Langhian. This led to the formation of 

two gulfs in the middle shelf, the Lourinhã Basin and the Ericeira Sea (Figure 22). During 

the Langhian, localized subsidence of some areas of the outer shelf, led to the formation 

of various sub-basins with ~40m of sediment deposition (e.g. the Lourinhã Monocline 

basin in Badagola et al. 2006b; Figure 22).  

 

 

 

The Miocene tectonic inversion in the WIM led to shoreline setback exposing again a 

Figure 22 Estremadura Spur evolution during Chattian and Aquitanian-Burdigalian (adapted from 

Badagola, 2008). SIC - Sintra Intrusive Complex; Gray areas – Subaerial exposure of the continental shelf. 
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significant area of the inner and middle shelf (Figure 23). Faults with NNE-SSW direction 

were reactivated as thrusts with folding of the basement and sedimentary cover, creating 

or accentuating reliefs, such as the Pico Gonçalves Zarco and the Costeiras Pêro da 

Covilhã. After the tectonic inversion, during the Pliocene-Quaternary (Figure 23), the 

deposition of predominant siliciclastic sediments filled paleo-valleys and depressions on 

the continental shelf (especially in the outer shelf).   

 

 

  

Figure 23 Estremadura Spur geologic evolution during the Tortonian (Miocene) and Pliocene-Quaternary 

(adapted from Badagola, 2008). SIC - Sintra Intrusive Complex; Gray areas - subaerial exposure of the 

continental shelf; Yellow areas - sub-basins formed during the Pliocene-Quaternary. 
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3.3.2 Shelf geomorphology and sedimentary deposits 

The continental shelf of the ES reaches 400 m depth, being abnormally extensive (Vanney 

and Mougenot, 1981). The ES continental shelf has slopes between 0.1 and 5%, being the 

strongest slopes associated with the limit of the shelf (continental slope), associated with 

rocky outcrops (Figure 24) or associated with some well-developed morphological units 

(Balsinha, 2008). 

 

 

Figure 24 Map of rocky outcrops (in gray) and seafloor sediments (adapted from Folha 4 da Carta dos 

Sedimentos Superficiais da Plataforma Continental Portuguesa, 2010). 

 

The sedimentary cover of the ES continental shelf is characterized by its wide variability, 

due to the morphological diversity and local heterogeneities and was described by 

Balsinha et al. (2014). The deposited sediments are essentially of terrigenous origin 

(detritic particles transported by local rivers, cliff and submarine outcrop erosion), but 

with a significant contribution of biogenic particles, particularly near the main rocky 

outcrops and autigenic particles, which abundance tends to increase with depth (Balsinha, 

2008). The sediments that predominate in the inner shelf are well sorted fined grained 
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littoral sands. In the northern part of the mid shelf (until ~120 m depth) the sedimentary 

cover is made of coarse particles (sandy gravel) and in the southern part is covered by 

finer sediments with a nucleus of sandy mud at 115m (Ericeira mud patch; Figure 24). 

The outer shelf is dominated by deposits of sand and muddy sand. 

 

The LM is a flat area delimited by the Nazaré canyon at north and by the PDG ridge at 

south. In the west the continental shelf is bounded by the continental slope (the ES west 

border) and in the east by the CPC plateau (Figure 24).  
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CHAPTER 4 

 

DATA AND METHODOLOGY  

 

The following data were used during this study: bathymetry, seafloor reflectivity 

(backscatter), seismic profiles and direct observations of the seafloor, in order to reach 

the proposed objectives of this research. Processing and interpretation of these data were 

done. The used dataset, followed by a brief explanation of the methods and the softwares 

employed for the processing and the interpretation are presented. 

 

4.1 Dataset 

The data used for this thesis was collected essentially in the scientific cruise 64PE332 

with RV Pelagia (Kim & the shipboard scientific party, 2011), within the PACEMAKER 

(in collaboration with the TOPOMED project –TOPOEUROPE/0001/2007) and during 

the EMEPC/PEPC/LUSO/2015 cruise onboard the NRP Gago Coutinho, within the PES 

project (PTDC/GEO-FIQ/5162/2014). In addition to this, seismic data from TGS and 

exploration wells (courtesy of DGEG) were used. 

 

4.1.1 PACEMAKER survey 

During the PACEMAKER (PM) cruise a dataset was collected in the northern and central 

WIM, including high-resolution 2D single-channel seismic lines with a 1 kJ SPARKER 

seismic reflection system and bathymetry using a Kongsberg EM300 multibeam sea 

bathymetry system of RV Pelagia. For this dissertation only 30 km of high-resolution 

seismic data and multibeam bathymetry acquired simultaneously in Estremadura Spur 

was utilized (Figure 25).  

 

4.1.2 EMEPC Cruise 

During the EMEPC/PEPC/LUSO/2015 (27.05.2015 – 03.06.2015), in the Estremadura 

Spur region, multi-beam bathymetry (Figure 26) that complemented the PACEMAKER 

bathymetric grid was acquired. Two dives were done in the Estremadura Spur region 

using EMEPC Remotely Operated Vehicle (ROV) Luso (Figure 26).  
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Figure 25 Seismic and bathymetric data acquired during the PM survey. Equidistance: 10 m (between 0 

and 200 m); 200 m (below 200 m). 

 

 

Figure 26 Bathymetric data acquired during the EMEPC/Luso/2015 cruise, to complement the PM grid 

(transparent in this figure) and the location and transects of the ROV Luso dives. Equidistance: 10 m 

(between 0 and 200 m); 200 m (below 200 m). 
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4.1.3 TGS-NOPEC seismic data 

Low-resolution 2D multi-channel seismic data acquired during the PD-00 survey by 

TGS-NOPEC (www.tgs.com), in the Estremadura Spur region (Figure 27) was also used 

as a courtesy of DGEG.  

 

4.1.4 Wells  

As part of their Portuguese continental shelf research program the Shell Prospex-Sacorex 

association conducted two exploration wells on the Estremadura Spur shelf (Figure 27), 

17C-1 (39º29’01.8’’N, 09º22’00.2’’W) in the concession area no. 17 ‘Chicharro’ and 

20B-1 (39º04’48’’N, 09º36’02’’W) in the concession no. 20 ‘Safio’ that provided data on 

the lithostratigraphy of the Estremadura Spur. These oil exploration wells reports offshore 

Portugal was also presented as a courtesy of DGEG. 

 

 

Figure 27 Localization of the TGS-NOPEC 2D seismic profiles (PD00-302, PD00-303 and PD00-409split) 

and of the two exploration wells drilled in the Estremadura Spur region, 17C-1 and 20B-1. 

 

4.2 Methodology  

The pockmark field was studied using geophysical acoustic methods and direct 

observations using ROV. These methods are an essential tool for investigation of the 

seafloor morphology and the subsurface geology.  

The interpretation of the multibeam bathymetry and backscatter data was done in order 
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to characterize the seafloor geomorphology and to identify the pockmarks herein. The 

seabed backscatter from the swath-bathymetry echo sounder was used to characterize the 

nature of the seabed, mapping of different reflections’ sedimentary deposits and 

identification of rocky outcrops or carbonate hardgrounds. The interpretation of the 

seismic reflection datasets provides the stratigraphic and structural characterization of the 

Pliocene-Quaternary sediments and of the basement of the Estremadura Spur region. The 

PM high resolution 2D single-channel seismic dataset was processed using Seismic 

Processing Workshop (SPW) to improve the quality of the seismic lines for the 

interpretation (see detailed description and processing in Chapter 6). After that, the single-

channel seismic dataset, as well, as the multi-channel seismic from TGS-NOPEC were 

interpreted with the Landmark software. The interpretation of the high-resolution 2D 

single-channel seismic provided information on the shape, stratification and structural 

control of the Estremadura Spur pockmarks. The interpretation of the low-resolution 2D 

multi-channel seismics provided information about the basement structure. 

 

4.2.1 Multibeam Sonar Method 

Imaging the seabed using sonars is widely used in the marine environment. The 

multibeam sonar system permits the full coverage of bathymetric data along a corridor on 

the seafloor, thus, creating an altimetric map of the seabed. The system comprises two 

transducers: a transmitter and a receiver. The transmitter is composed of several high-

precision echo-sensors that produce multiple acoustic beams, arranged in a fan shape so 

as to cover a determined seafloor’s band. The size of this band varies according to the 

angle formed between the beams and water depth. The receiver obtains the echo of the 

emitted waves and calculates the time between the emission and reception for the various 

beams, thus determining the water depth for the central footprint of each seafloor area 

imaged by each beam, 

 

The PM dataset was acquired with Kongsberg-Simrad EM300 multibeam sonar system. 

This system is designed to do seafloor mapping from 10m depth down to more than 

5000m depth with swath widths up to about 5000m. The technical specifications of 

EM300 system are enumerated in Table 3. 
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Table 3 EM300 technical specifications (from Kongsberg Technical Manual 2003). 

Main operational frequency 30 kHz 

Angular coverage sector up to 150º 

Number of beams 135 

Beam width Simultaneous 1x1º, 1x2º, 2x2º or optionally 2x4º 

Range sampling interval 17 m (variable with depth) 

Beam spacing Normally equidistant 

Pulse length 0.7, 2 or 15 ms (variable with depth) 

Peak power 4.5 or 9 kW 

Depth range 10 m to >5000 m 

Maximum swath width >5000 m 

 

During the EMEPC/PEPC/LUSO/2015 onboard the RV Gago Coutinho was used the 

Kongsberg-Simrad EM710 multibeam. The technical specifications of EM710 system are 

enumerated in Table 4. 

 

Table 4 EM710 technical specifications (from Kongsberg Technical Manual 2014). 

Frequency range 40 to 100 kHz 

Angular coverage sector up to 140º 

Number of beams up to 400 or 200 soundings per swath  

Beam width 0.5x1º,1x1º, 1x2º or 2x2º 

Range sampling interval 17 m (variable with depth)  

Beam spacing Equidistant, equiangular, high density 

Pulse length max. 120 ms 

Depth range 3 m (below transducers) to max. >3000 m 

Maximum swath width max. >3000 m 

 

4.2.2 Backscatter analysis method  

The collected depth data from each sounding also contains the amplitude of the return 

sound pulse. This information is called backscatter data. The backscatter signal depends 

on the physical nature of the seafloor, orientation of the illuminate surface and the 

frequency and angle used. Acoustic backscatter data are used for classifying seafloor 

characteristics. In simplified terms: a weak return signal (low amplitude) indicates a soft 

bottom substrate and a strong return signal (high amplitude) indicates a hard bottom 

substrate. 
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The acoustic reflectivity response of the seafloor is affected by three factors: geometry of 

the sensor-target system (e.g. local slope, local angle of incidence), the intrinsic nature of 

the surface (e.g. composition, density) and the physical characteristics of the surface 

(roughness, sound speed, etc.).  

 

Both chemosynthetic cold seep communities (supported by the expulsion of methane and 

sulfide-rich fluids from the seafloor) and authigenic carbonate (precipitated from the 

bacterial oxidation of methane) may cause higher acoustic reflectance and roughness than 

occur in the surrounding seafloor. Therefore, acoustic backscatter data can be used to 

identify the distribution of potential seeps sites (Orange et al., 2002; Gay et al., 2007; 

Naudts et al., 2008). The distribution of anomalous reflectivity can be used to constrain 

the area of the seafloor characterized by venting, both active (cold seep communities and 

carbonate) and dormant (carbonate). 

 

Gay et al. (2007) developed a model, based on observations in the Lower Congo Basin 

(Western African margin), that correlated the seafloor backscatter response with chemo-

biological facies that occur in the seabed associated with fluid seep activity (Figure 28). 

This model sustains that both active and recently active and buried under 10 m of 

sediments seep sites may create anomalies of high backscatter. The increase in surface 

roughness (Figure 28–B and C) when compared to the surrounding smooth seafloor of 

fine-grained hemipelagic sediments (Figure 28–A) leads to an increase in the seafloor 

acoustic reflectivity response, i.e. higher backscatter facies. The diminution of seepage 

sites activity can also be inferred from the backscatter data, since the burial of seepage 

related features leads to a decrease in acoustic reflectivity response of the seafloor (Figure 

28–D and E). 

Then, according to this model, a high backscatter anomaly indicates that fluid expulsion 

is active (chemosynthetic fauna and/or carbonate buildups present at the seabed; Figure 

28  –B and C) or has been recently active (dead or dormant site characterized by buried 

chemosynthetic fauna and/or carbonate buildups within the upper 10 m; Figure 28–D).  
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Figure 28 Correlation between backscatter response and seafloor chemo-biological facies chemo-

biological, associated with fluid seep activity (from Gay et al., 2007). 

 

 

4.2.3 Seismic Reflection Method  

Seismic reflection is a geophysical method used to get an acoustic vertical 2D image of 

the structure and the stratigraphic layers under the seabed. This method depends on the 

generation and detection of acoustic waves that are mechanically generated. In shallow-

marine seismic profiling, the acoustic source generates a short pulse of sound (shot) which 

travels through the water and into the rock layers (Figure 29). Some part of this energy is 

reflected back to the surface from different layers of rocks beneath, due to acoustic 

impedance (𝐼 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) contrasts generally occurring where the lithology 

changes. The reflected energy is recorded by seismic receivers (hydrophone). These 

recordings are processed (see Chapter 6), and the data are transformed into visual images 

that give a picture of the subsurface geology in the survey area.  
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Figure 29 Configuration of a shallow single-channel seismic survey (adapted from Stoker et al., 1997). 

 

Since the target zone for the seismic survey was located in the continental shelf at 

relatively shallow depths and the aim was to study the cover sediments a high-resolution 

single-channel seismic was used. The seismic profiles processed and interpreted in this 

work were acquired with a SPARKER seismic reflection system from Geo-Marine 

Systems (www.geomarinesurveysystems.com).  

 

This system consists of a catamaran mounted Geo-Source 200 multi-tip sparker source, a 

1 kJ Geo-Spark high voltage power supply unit, 2 Geo-Sense mini streamers of different 

lengths, with 3.5 and 6.8 m long active sections. The technical specifications of Geo-

Spark system are enumerated in Table 5. 

 

Table 5 Geo-Source 200 Light Weight technical specifications (adapted from GEO Marine Survey Systems 

Technical Manual). 

Water depths 2 to 500 m 

Penetration 200 to 300 ms below seabed 

Vertical resolution up to 20-30 m 

Streamer lengths 3.5 and 6.8 m 

Effective source depth 15-20 cm below the surface 

Electrode modules Two, spaced in a planar array of 0.50 m x 1.00 m 

100 tips each; 10 J per tip 
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Energy output for highest resolution < 400 J 

 

4.2.4 Seismic Interpretation  

Interpretation of seismic data usually consists of a seismic stratigraphic interpretation as 

much as possible calibrated by chronologic information/data. Structural and tectonic 

interpretation complements this interpretation and stratigraphic models are produced. The 

data was interpreted using the concepts of seismic stratigraphy that is essentially a 

geologic approach to the stratigraphic interpretation of seismic data, in other words, is the 

application of geologic concepts of physical stratigraphy on the seismic data. This method 

of seismic interpretation was developed by R. Mitchum, P. Vail and associates in the 70s 

(Mitchum et al., 1977a, 1977b and 1977c). This methodology is focused in the 

interpretation of seismostratigraphic surfaces, allowing the extraction of geological 

information related to tectonic and/or sedimentary events and eustatic variations, from 

the seismic profiles.  

 

The interpretation of seismic stratigraphy is based on the identification of seismic 

sequences. Stratigraphic analysis involves the subdivision of seismic sections into 

sequences of reflections, which are interpreted as a seismic expression of genetically 

related sedimentary sequences, termed depositional sequences (Figure 30). A 

depositional sequence is defined as a stratigraphic unit composed of a relatively 

conformable succession of genetically related strata (numbers in Figure 30), bounded by 

unconformities or correlative conformities (surfaces A and B – Figure 30) in their top and 

base (Mitchum et al., 1977a and 1977b). An unconformity has an associated hiatus and 

is itself a surface generated by erosion and/or non-deposition that separates rocks of 

different ages. A hiatus is a time interval that is not represented in a geological record, if 

the time interval is significant at a geological scale then the surface it originates is defined 

as an unconformity. A conformity is a surface that separates strata of different ages but 

where no physical evidence of erosion and/or non-deposition can be identified and no 

significant hiatus is identifiable.    

 

A seismic sequence is a depositional sequence identifiable on the seismic record; it is 

made up by seismic units and bounded by discontinuities. Seismic units are tri-

dimensional bodies made up by sets of reflectors (interpreted as genetically related strata) 

whose parameters and configuration differ from the ones in the adjacent units. A sequence 
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has to be bounded by unconformities associated with erosion or nondeposition, which 

can, however, laterally pass onto conformities.  

 

 

Figure 30 Basic concept of depositional sequence, limited by bounded unconformities and their relative 

conformities (surfaces A and B) and termination of reflectors (from Mitchum et al., 1977b). 

 

Seismic facies can be defined as a set of seismic and geometric parameters that allow 

characterizing a seismic unit and that distinctly differ from those of other facies. These 

parameters are configuration, amplitude, continuity, interval velocity and frequency. 

Seismic facies analysis consists in the identification of the following characteristics: type 

of reflection terminations, characteristics of the reflections patterns, types of internal 

reflections patterns and external shape and reflection configuration patterns (Mitchum et 

al., 1977c). 

 

(1) Reflection terminations 

The geometry and the type of reflection terminations allowed the identification of the 

limits of seismic upper and lower units. It is possible to distinguish five types of 

reflections with respect to their terminations: onlap, downlap, toplap, truncation and 

conformity (Figure 31). 

Conformity can be used both in relation to the upper and lower sequence boundaries and 

are characterized by the parallelism of reflections. It indicates that the depositional 

conditions remained unchanged in what regards the control on the local strata geometry. 

 

Top-discordant relations include truncation or toplap. Truncation (erosional and 

structural) can be characterized by the abrupt lateral ending of the reflectors against a 

discordant surface. It can be generated by tectonic tilting of a sequence followed by 



55 

erosion over large areas or confined to the flanks of submarine channels. Toplap is the 

termination of reflections interpreted as strata against an overlying surface. This type of 

termination forms as a result of non-deposition hiatus and minor erosion.  

 

Base-discordant relations include seismic onlap and downlap. Onlap is a relation in 

which seismic reflections are interpreted as initially horizontal strata terminating 

progressively on top of a dipping surface, or as initially inclined strata terminating 

progressively updip against a surface of higher dip. This termination can be associated 

with seafloor irregularities, caused by non-depositional hiatus or by deposition on tilted 

blocks. Downlap is a relation in which seismic reflections are interpreted as initially 

dipping strata terminating downdip against an initially dipping or horizontal surface. It is 

caused by non-depositional hiatus. 

 

Figure 31 Seismic reflection terminations according to Mitchum et al., 1977b (from Roque, 2007). 

 

(2) Characteristics of the reflection patterns 

The characteristics of the reflections can provide information on the lithologies that 

constitute the seismic sequences (Mitchum et al., 1977c). Thus, several seismic 

parameters are studied, as reflection signature, continuity, amplitude and frequency. 

Reflection signature consists of the particular characteristics of a single reflector and can 

give useful information about the stratification patterns and consequently more 

information on the depositional processes, erosion, paleotopography and fluid presence. 

Reflection continuity corresponds to the lateral juxtaposition of successive reflections 

of the same horizon and is related to the physical continuity of the strata. Thus, continuous 
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reflections suggest widespread, uniformly stratified deposits. Continuity of a given 

horizon is interpreted as preservation of the depositional conditions with no main changes 

in the energy of the environment.  

Reflection amplitude is related to the maximum amplitude of the reflected wave which 

is dependent on the velocity and density contrasts through each individual interface and 

the spacing between interfaces (high amplitudes reflect high acoustic impedance). Fluid 

content in the sediments can have an influence in the reflections amplitude. Usually, if a 

high amplitude reflection diminishes rapidly it indicates a high energy depositional 

environment and the opposite suggests a large continuity of the formations and a stable 

depositional environment.  

Reflection frequency is the time interval between two successive reflections. It reflects 

the instrumental seismic characteristics but it is also influenced by other factors such as 

the presence of fluids and by the thickness of the layered deposits. There is an inverse 

relation between strata thickness and reflection frequency: high frequencies correspond 

to thin strata.  

 

(3) Configuration of internal reflection patterns 

The geometric relations between the internal reflections of a seismic sequence often 

allows to assigning specific seismic facies to the depositional processes, erosion, 

paleotopography or the presence of fluids (Mitchum et al., 1977c). Various types can be 

distinguished as follows. 

 

Parallel and subparallel patterns, even or wavy, refer to high amplitude, continuous and 

parallel reflections (Figure 32). These patterns suggest uniform rates of deposition in a 

steady subsiding shelf or a stable basin environment. 

Divergent pattern is characterized by a wedge-shaped sequence of seismic horizons 

(Figure 32). It is associated with lateral variations of the deposition rate, to the progressive 

tilting of the depositional surface and syn-rift sequences.  

Chaotic pattern refers to discontinuous, discordant and disordered reflections (Figure 32), 

characterized by high frequencies. This pattern is associated with a high energy 

environment with large variability of the depositional conditions and it is commonly 

found in slumps, erosion derived deposits, cut-and-fill channel bodies and on high energy 

zones affected by faults or folds. 
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Transparent pattern is characterized by the total or partial absence of reflections or by 

lack of lateral continuity. This pattern is related to homogeneous rocks (with low acoustic 

impedance contrasts), highly deformed or metamorphosed rocks, evaporites or igneous 

bodies. Rapidly deposited large sequences of pelitic rocks can also give a transparent 

acoustic response. 

 

 

Figure 32 Seismic internal reflection patterns (from Mitchum et al., 1977c). 

 

Prograding clinoforms configurations are packages of oblique to sigmoidal shaped 

reflections. They are interpreted as strata where the main deposition occurred by the 

prograding or lateral sedimentation outbuilding. Several sub-types of prograding 

configurations can be identified (Figure 33), such as sigmoid, oblique (tangential and 

parallel), sigmoid-oblique, shingled and hummocky. These configurations result from 

variations of deposition rate and water depth and are formed in a wide variety of 

environments.  
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Figure 33 Seismic internal reflection patterns of prograding clinoforms (from Mitchum et al., 1977c). 

 

Sigmoid progradational configuration is an S-shaped clinoform with thin, shallow 

dipping strata at the top and base and a thicker, steeper intermediate sector. They are 

characteristic of a low energy environment with a low sediment supply, rapid basin 

subsidence and/or rapid sea level rise. 

Oblique configuration is interpreted as a prograding clinoform pattern of steep dipping 

strata with a toplap termination at a horizontal or subhorizontal boundary and a downlap 

termination at the bottom boundary. Due to the foreset steepness, the new strata builds 

almost laterally. In the tangential oblique pattern the dip diminishes gradually in the 

foreset generating a concave-upward architecture that passes onto a gently dipping 

bottomset. Towards the bottom the strata become thinner with downlap terminations. In 

the parallel oblique configuration the foreset maintain its strong dip from the top to the 

bottom where it has a downlap termination at a high angle with the lower boundary. The 

oblique progradational configuration owes its formation to high energy sedimentary 

regime characterized by a high sedimentary supply, slow to none basin subsidence or a 

stillstand of the sea level to allow sediment bypass and scouring of the upper depositional 

surface. 

The complex sigmoid-oblique configuration is a complex prograding clinoform made 

up of a combination of variably alternating sigmoid and oblique progradational 

configurations. Within the same seismic unit. This architecture suggests an alternate 

history of upbuilding and depositional bypass on a high energy environment.  
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Singled configuration is a thin prograding pattern, commonly with parallel top and 

bottom boundaries and with gently dipping parallel internal reflectors oblique to these 

boundaries that terminate with apparent toplap and downlap. This configuration is 

generally interpreted as prograding seismic units formed in shallow water. 

The hummocky clinoform consists of irregular and subparallel reflection segments 

forming a somewhat irregular pattern marked by non-systematic termination and splits. 

This pattern is interpreted as the strata forming small, interfingering clinoforms lobes 

forming in a shallow water prodelta or interdeltaic environment.  

 

(4) External shape and reflection configuration patterns  

The classification of the external form patterns is used to identify and individualize a 

seismic unit in relation to the adjacent units and it is also used to infer the type of 

depositional environment. The external shape of a seismic unit is dependent, among other 

factors, on the geometry of the surface on which it lies on. Various types of external 

shapes can be distinguished, such as sheet, sheet drape, wedge, bank, lens, mound and fill 

(Figure 34). 

 

External shapes as sheets, wedge, lens and bank can reach over large areas, are 

commonly associated with shelf deposits and can display internal configurations as 

parallel, divergent or prograding. Sheet drape shapes are usually associated with pelagic 

or hemiplegic sediments deposited in a low energy or deep environments. Mound shapes 

can be of different origins, such as carbonate edifications and diapirs, and their 

dimensions are usually small, the configuration of their internal reflections is varied and 

when associated with detrital deposits it reflects a high energy event. Fill type deposits 

like the mound type ones can have different configurations (e.g. onlap, chaotic, 

prograding, divergent), however these deposits may reach over larger areas (from meters 

to kilometers) when in a basin context or can be smaller (from centimeters to meters) 

when in the dependency of a channel.  
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Figure 34 External forms of seismic facies units (from Mitchum et al., 1977c). 

 

4.4 Software  

During this work several software packages were used in order to process, view and/or 

interpret the data. The used programs are listed below: 

 

4.4.1 Seismic Processing Workshop 

The Seismic Processing Workshop (SPW) by Parallel Geoscience Corporation 

(http://www.parallelgeo.com/), was the software used to perform the processing of the 

seismic data from the PACEMAKER project. It was used the SPW version 3, which 

Flowchart allowed the creation of a project (in which all the data and processing is 

organized), building processing flows and the display of the seismic profiles.  

 

4.4.2 SeiSee 

SeiSee developed by Dalmorneftegeophysica Company (DMNG) was also used in the 

seismic processing, to have a first view of the seismic data and its properties and to edit 

the Trace Headers (coordinate correction).  
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4.4.3 Landmark 

 Landmark from Landmark Graphic Corporation was used for the interpretation of the 

seismic profiles. SeisWorks and Power View tools were utilized. SeisWorks was used to 

viewing and interpret the seismic data, allowing the mapping of seismic horizons and 

faults. Power View was used to create isobath maps, that show the spatial distribution of 

the selected horizons depth and isopach maps that represent the spatial variation of the 

unities thickness. 

 

4.4.4 ArcGIS 

ArcGIS is a geographic information system (GIS) from ESRI. In this work, it was used 

the main component of this software package, the ArcMap, to compile all the available 

data and to create the maps presented in this thesis.   
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CHAPTER 5 

 

GEOMORPHOLOGIC ANALYSIS 

OF THE SEAFLOOR 

 

During the PACEMAKER cruise the Estremadura Spur was surveyed simultaneously 

with multibeam and sparker seismics and a more detailed survey was done at the Lourinhã 

Monocline region (Figure 35), where pockmarks were identified. In May – June 2015, 

during the EMEPC/PEPC/LUSO/2015 cruise, onboard the NRP Gago Coutinho the area 

previously surveyed during the PACEMAKER cruise was enlarged showing a larger area 

comprising the pockmarks (Figure 35). In this chapter the characterization and 

interpretation of the Lourinhã Monocline seabed morphology as well as its composition 

(classification of the sedimentary cover and identification of rocky outcrops or carbonate 

hardgrounds) is presented.  

 

Figure 35 Estremadura Spur with the PACEMAKER seismic lines and the PACEMAKER and 

EMEPC/LUSO survey multibeam coverage. Equidistance: 10 m (between 0 and 200 mbsl); 200 m (below 

200 mbsl). 
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5.1 Seabed morphology 

The Estremadura Spur continental shelf is unusually large, with an area of 4.760 km2 

(Vanney and Mougenot, 1981; Badagola, 2008), reaching water depths of 500 m. 

Badagola (2008) enumerated the principal characteristics of  the ES continental shelf, 

according to Table 6: 

 

Table 6 Estremadura Spur continental shelf parameters (from Badagola, 2008). 

 Minimum Maximum Average 

Width (km) 38 79 60 

Length (km) 14 70 52 

Shelf break (m) 70 440 264 

Slope (º) 0.1 29  

 

The pockmark field is located in the Lourinhã Monocline, on the NW edge of the 

Estremadura Spur outer shelf (Figure 35), at water depths between 240 and 350 m (Figure 

36). This morphology is described in detail below.  

 

 

Figure 36 The Lourinhã Monocline area of the Estremadura Spur with the PACEMAKER seismic lines 

and the PACEMAKER and EMEPC/LUSO survey multibeam coverage. Equidistance: 5 m. 
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Figure 37 Slope map of the Lourinhã Monocline region obtained from the multibeam bathymetry. 

Equidistance: 10 m.  

 

In general, a more or less flat and featureless seabed with a gentle slope is observed 

(Figure 37), until the shelf edge, where the slope increases abruptly (from 400 to more 

than 2000 m depth, in about 20 km). The mean slope angle of the Lourinhã Monocline is 

less than 0.65°.  

To facilitate the description of the studied sector, the LM zone was subdivided in three 

different areas (Figure 36) based on their morphological characteristics, each being 

interpreted in more detail below. Area 1, located in the western part of the LM, is limited 

at the W by the shelf break defined in this region by the 400 m bathymetric curve. The 

outstanding morphological feature of this area is an elevated region with circular shape 

(305 m in the top; Figure 36). Area 2 corresponds to a smooth and flat region, dipping < 

0.50° to the NNW, with maximum depths of about 330 m. Area 2 also displays an 

elongate moat-like depression parallel to the general trend of the isobaths. A view at the 

low resolution bathymetry suggests this trend can vary from NNW-SSE to N-S in the 

central part of the LM (Figure 35). The eastern zone, Area 3, exhibits bathymetric 

contours with sub-parallel orientation to the present shoreline, dipping 0.75° - 2° to the 

NNW, with depths ranging between 240 and 300 m.  
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In the PACEMAKER surveyed region, 76 shallow round depressions were identified in 

the bathymetry, occurring mainly in Area 3 (Figure 38). These depressions have depths 

of 2-17 m, with respect to the local sea floor, with diameters ranging from 30 m up to 400 

m and slopes of more than 3º. In plan-view they have circular, sub-circular and elliptical 

shapes, while in cross-sections they have ‘U’ and ‘V’ shaped profiles (Figure 38).  

 

 

Figure 38 Detail of the seafloor bathymetry in a region with two depressions and topographic profiles of 

these features. Vertical exaggeration of profiles is approximately 25x. 

 

Besides these negative round morphologic features, one topographically positive mound-

like structure was mapped in the northwest of Area 1 (Figure 39). This feature has vertical 

relief of about 4 m and 200 m of diameter. 

 



67 

 

Figure 39 Detail of the seafloor bathymetry in the area with the positive relief and topographic profile of 

this high. Vertical exaggeration of profile ~25x. Slope of the flanks ~2º.  

 

5.2 Backscatter analysis 

The multibeam-derived backscatter images (Figure 40) shows different patterns for the 

Areas 1, 2 and 3. Area 2 display a monotonous low backscatter pattern with occasional 

intermediate intensity spots, separating Areas 1 and 3 that show a spotted backscatter 

pattern. The western region of Lourinhã Monocline, Area 1, is marked by a wide variation 

of backscatter intensity, with predominant low-backscatter areas and the high-backscatter 

facies appearing as spot clusters with a high concentration at the north-west edge of the 

covered area. In the eastern region of the Lourinhã Monocline, Area 3 a spotted 

backscatter pattern is observed, but as opposed to Area 1, this zone is characterized by 

the prevalence of high-backscatter facies.  

 

Balsinha et al. (2014) characterized the sedimentary deposits of the outer shelf of the 

Estremadura Spur as dominated by sand and muddy sand sediments. In Sheet 4 of the 

Superficial Sediments Map (Figure 24 in Chapter 3) the seafloor sediments of the 

Lourinhã Monocline is also described, being this region mostly composed by sandy mud, 

but also by sand and some mixed sediments. Thus, the low acoustic seafloor reflectivity 

can be a consequence of the presence of these fine-grain sediments. The high-backscatter 
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facies, on the other hand, was interpreted as a consequence of the occurrence of coarser 

sediments or even exposed rocky outcrops, in areas of increased topographic relief (like 

the circular relief in Area 1, Figure 36, and the general higher slope angle in Area 3, 

Figure 36).  

 

Some of the round depressions that have been observed in the bathymetry (Figure 38) are 

also visible in the backscatter imagery, being characterized by high-backscatter signal in 

the central part the depressions. Closer inspection of the image shows that the high 

backscatter spot can have a round (spot-like) shape, linear or wriggly. 

 

 

Figure 40 The Lourinhã Monocline area of the Estremadura Spur with the PACEMAKER Multibeam-

derived backscatter imagery (lighter grey: low backscatter; darker grey: high backscatter). Equidistance: 5 

m. 

 

In Areas 2 and 3 six linear low-backscatter anomalies were identified, approximately with 

a NNE–SSW to N–S direction (Figure 40), that are oblique to the ship tracks, indicating 

that they are not artifacts resulting from data acquisition. These features were interpreted 

as the possible morphological expression of faults affecting the Lourinhã Monocline.  

In Figure 41 it is observed the offset of the high backscatter facies (at SE) separated by 

one of these lineaments (red lines), suggesting a sinistral strike-slip component.  
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Figure 41 Detail of the Multibeam-derived backscatter imagery from the PACEMAKER survey in Area 2 

and 3 (lighter grey: low backscatter; darker grey: high backscatter). Red lines: strike-slip faults; Black 

circles: icebergs ploughmarks. Equidistance: 5 m. 

 

Other lineaments of smaller lengths and with various orientations are observed in Figure 

41 (marked by black dotted circles), and have morphologies similar to the icebergs 

ploughmarks observed in the Norway offshore (Hovland, 2008). Both the faults and 

ploughmark-like have a small morphological expression and are not evident in the 

bathymetric map (Figure 36) due to their small depth. 

 

 

5.3 ROV dives 

During the research cruise EMEPC/PEPC/LUSO/2015, onboard the NRP Gago 

Coutinho, two dives with the EMEPC ROV Luso were carried out in the Lourinhã 

Monocline region (Figure 42). These dives, D06 and D07, allowed the direct observation 

of the seafloor and the recollection of push-core samples inside 3 of the rounded 

depressions. 
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Figure 42 Location of the ROV Luso dives D06 and D07.Equidistance 5 m (between 0 and 200 mbsl); 200 

m (below 200 mbsl). 

 

5.3.1 ROV dive D06  

Two of the depressions, located at 284 m water depth, were inspected (Figure 42) during 

this dive. The ROV was piloted along SE–NW and ENE–WSW transects. The first 

depression, L15D06.1, corresponds to the largest structure identified in the available 

multibeam dataset, it is elliptical with the big axis trending NW-SE, a maximum length 

of 400 m and a minimum of 230 m, and a depth of 17 m. The second structure, L15D06.2, 

is located W of the previous one. This feature has a circular shape, a diameter of about 85 

m and height of 6 m. The seafloor, both outside and inside the depressed areas, is 

composed of a fine to coarse sandy non-consolidated sediment (Figure 43-A,C,D,E) rich 

in heavy minerals with very well consolidated rock clasts dispersed at the seafloor in 

small clusters (Figure 43-A,B,F). These rock clasts are more frequent along the slopes of 

the depressions and preliminary hand speciems observations indicate that they are 

composed by black colored breccias formed by sedimentary and igneous clasts, with 

quartz and bioclasts. 
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Figure 43 Photographs and samples collected during ROV/LUSO dive L15D06. Distance between lasers 

is 80 cm. (A-D) Seafloor aspects observed during the dive: (A) fine to coarse sandy sediment with a rock 

clasts cluster; (B) detail of a rock clasts (breccia) cluster; (C) and (D) general aspect of the sedimentation 

in the seafloor; (E) push-core recollected during the dive, showing fine to coarse sands, rich in heavy 

minerals and (F) rock clasts (breccia with heavy minerals) also recollected during the dive (courtesy of 

EMEPC). 

 

5.3.2 ROV dive D07 

This dive, carried out along a SE–NW transect, aimed to investigate one pockmark like 

feature (Figure 42), located at 300 m water depth, selected because it presented a high 

backscatter signature at its interior. This structure has a diameter of 120 m and 4 m depth. 

It started at 150 m SE of the structure, in an area of medium to high backscatter, 

corresponding to sandy sediments with some dispersed rock clasts (Figure 44-A, B, D) 

and sometimes small negative reliefs (20 to 50 cm in diameter and 10-20 cm depth) 
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(Figure 44-C), frequently filled by rock clasts of 2-10 cm in size (Figure 44-E, F). The 

flanks and base of the depressed structure had similar characteristics as the observed 

outside of the depression, but with a strong increase in the rock clasts density and a 

significant increase in the frequency of the small depressions filled with rock clasts.  The 

lithology of these rock clasts is the same of the rock clasts observed in the dive D06, black 

colored breccias. 

A

 

 B 

 

C

 

 D

 

E

 

 F 

Figure 44 Photographs and samples collected during ROV/LUSO dive L15D07. Distance between lasers 

is 80 cm. (A-D) Seafloor sedimentation is mainly composed by fine to coarse sandy sediment with punctual 

rock clasts clusters, as seen in (C); (E) sediment recollected during the dive (push-core): fine to coarse 

sands, rich in heavy minerals and (F) rock clasts (breccia with heavy minerals) also recollected during the 

dive (courtesy of EMEPC). 

5 cm 

L15D07R01 
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These direct observations of the Lourinhã Monocline seafloor confirm the composition 

of the sedimentary deposits that occur in this region of the Estremadura Spur outer shelf. 

The black breccia clasts found dispersed at the seafloor in small clusters (e.g. Figure 43–

B) appears to be an exotic lithology in this region, associated with the small depressions 

(20 to 50 cm in diameter and 10-20 cm depth) observed in the seafloor (Figure 44–C), 

especially within the depressed areas with low backscatter response. 

 

5.4 Surface indications for fluids seepage from the seafloor  

Multibeam and side-scan sonar surveys distinguish variations in the seafloor morphology, 

which can mark the location of fluid seeps (Judd and Hovland, 2007). The topographic 

expression of fluid expulsion at the seafloor commonly includes depressions, such as 

pockmarks and buildups, such as mud volcanoes. Commonly associated with these 

features exist chemosynthetic communities and authigenic carbonates that may cause 

higher acoustic impedance and roughness than in the surrounding seafloor (Orange et al., 

2002 and Klaucke et al., 2006), making possible the recognition of these features by the 

effects they cause on the acoustic properties of near-surface sediments and the seafloor 

physiography. 

The topographic depressions with circular to elongated shapes are interpreted as 

pockmarks, caused by the fluid escape at the seabed, based on their morphology, 

dimensions and for having high-backscatter response in their central part. The high 

acoustic seafloor reflectivity are, most probably, associated with the presence of hard-

grounds of methane-derived authigenic carbonates. Although the existence of high-

backscatter anomalies could be observed in several features in the Estremadura Spur, the 

seafloor observations during the ROV dives, has provided no evidences for seepage 

activity at present-day. The structures observed during the dives were found to be covered 

with sandy sediments and no carbonates were found. Also, neither bubbling nor 

characteristic fauna were observed and the seafloor in these sites.  

Gay et al. (2007) sustains that seep sites, both active and recently active but currently 

inactive and buried under 10 m of sediments, may create anomalies on the backscatter 

signal (described in Chapter 4; Figure 28).  
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CHAPTER 6 

 

SEISMIC DATA PROCESSING  

 

The aim of the seismic data processing, is to increase the signal-to-noise ratio and to 

improve the vertical resolution of the individual seismic traces. The main types of 

waveform manipulation are frequency filtering and inverse filtering (deconvolution). 

Frequency filtering can improve the signal-to-noise ratio, but it damages the vertical 

resolution, conversely the inverse filtering improves the resolution, but decreases the 

signal to noise ratio (Kearey et al., 2002). The processes of seismic data processing used 

in this work are presented in this chapter as well as a brief explanation of the basic 

theoretical concepts involved and the results of each process in the seismic data. 

 

6.1 Data Acquisition Parameters 

The processed seismic data consist of 14 single-channel high-resolution 2D seismic 

profiles acquired during the PACEMAKER survey, with a sparker source, during the 

Cruise 64PE332 aboard the RV Pelagia in March 2011.  

 

The PM seismic dataset was acquired with 1000 J of energy except PM-C01, which was 

obtained with 300 J and the lines PM-C02 and PM-C02pt1, obtained with 500 J. In Table 

7 a portion of the log book from the campaign is presented where the different acquisition 

parameters and characteristics are listed as well as some other relevant informations. The 

sparker seismic profiles had an average signal penetration of 100 ms below the seafloor, 

with coherent signal being observed at more than 150 ms below seafloor.  
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6.2 Processing Steps 

A total of fourteen seismic profiles from the PACEMAKER data set were processed. A 

seismic processing flow chart was developed (Figure 45), based in the basic processing 

of high resolution seismic data. The processing steps and their results are here illustrated 

for the line PM-C07. The geometry have been already corrected onboard, thus it was not 

necessary to perform this step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 SEG-Y Import 

The first step of the processing sequence was the import of the seismic raw data (Figure 

46) in SEG-Y format into SPW. This was done using the SEG-Y Import function 

(Processing Categories > Seismic Data > SEGY Import). Since SPW uses SEG-Y as its 

internal processing file format, this step was done to create an index file for each SEG-Y 

file (Build Index). The index files contain the necessary information (trace header fields) 

to perform the processing and are required to be present for the display of the data.  

 

Early Mute Picking 

2. Trace Header Math 

3. Butterworth Filtering 

Frequency Analysis 

1. SEG-Y Import 

First Arrival Picking 

4. Swell Correction 

5. Tide Correction 

6. Signature Deconvolution 

7. Early Mute 

8. Stolt (FK) Migration 

9. Coordinate Correction 

Figure 45 Processing steps of seismic data. 
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Figure 46 PM-C07 raw data. 

 

6.2.2 Trace Header Math 

To perform the picking of the seafloor reflection and for muting the noise present in the 

water column it is necessary that each trace data is sorted according with its offset 

(therefore, the sort keys must be displayed according to common shot). To be able to sort 

the keys according to the shot order, the trace headers fields: Source Line, Source 

Location and Offset were edited (with the function Trace Header Math, from Processing 

Categories > Editing). The Source Line field was calculated as equal to the Channel field 

value (which was a constant value, as the data is single-channel), the Source Location 

was also filled with a constant value (in this case: 13), and the Offset header (that was 

absent) was calculated as being equal to the Field File multiplied by 2.  

 

6.2.3 Butterworth Filtering 

Unwanted frequency bands are removed from the seismic data preserving the frequency 

band that contains the relevant information. In other words, before the filter application 

it is advisable to limit the frequency band of the data, in order to remove components that 

are usually classified as noise, such as the low frequencies (produced by ocean waves for 

example). 

The application of frequency-filtering requires the display of the data in the frequency 

domain (amplitude as a function of frequency), which is achieved using the Fourier 

transform. The most common types of filters in the processing are Band-pass, High-pass 

and Low-pass filters. 
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To select the most appropriate filter to this dataset we first analyzed the amplitude spectra 

of the seismic lines (Data and Display Tools > Calculate Spectra in a Rectangular 

Window in the Seismic Display Control Panel), and then select a trace/time window for 

which we calculate the amplitude spectra. According to the amplitude spectra of the PM-

C07 seismic line, the predominant band of frequencies was located between 450 Hz and 

2000 Hz (Figure 47).  

 

 

To decrease the level of low-frequency noise, various hypotheses were tested (Table 8) 

to find the right parameters for the filtering the seismic raw data (Figure 48 – A).  

 

Table 8 Parameters used in the Butterworth band-pass filter tests. 

Low cut (Hz) High cut (Hz Attenuation ramp 

(dB/octave) 

Figure 

200 1500 18/18 Figure 48 – B 

500 2100 18/18 Figure 48 – C 

800 3000 18/18 Figure 48 – D 

 

According to the tests, the best results were obtained with the cut-off values defined in 

the 500 and 2100 Hz domain, and the attenuation ramp set for 18 dB/ octave in both 

(Figure 48– C). After the application of the filter some noise is still observed in the upper 

part of the seismic data. Considering the characteristics of the equipment used for the 

acquisition and the amplitude spectrum of this noise, one can assign it to the direct waves, 

i.e., seismic waves that have traveled directly from the transmitter to the receiver. This 

Figure 47 Amplitude spectra of PM-C07 seismic profile. The predominant signal frequency are located 

between 450 and 2000 Hz. Black box: sampled area; Red line: frequency mean.  

Dominant 

frequency 

band 
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noise was not eliminated in this processing step because since its frequency band is 

similar to the signal's band its elimination would lead to signal loss. 

 

Figure 48 Butterworth band-pass filter test. The best results were acquired with the low-cut of 500, high-

cut of 2100 and an attenuation ramp set for 18 dB/ octave (C). 

 

6.2.4 Swell Static Correction 

The swell filter refers to the static correction that restores the coherence of a high 

resolution seismic profile. High-resolution marine seismic surveys, such as this dataset, 

are used to detail image subsurface geology. During the seismic data acquisition, the sea 

swell condition influence quality of the data, not only the signal/noise ratio, but also the 

sea swell, leads to a loss of lateral coherence of the reflectors. The application of the swell 

filter minimizes the positioning errors of the seismic traces from the seismic profile. The 

A B 

C D 
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swell filter is a static correction applied to each trace, according to a sinusoidal function 

with a height and wave length defined by the user that will compensate the vertical shift 

of each trace during the acquisition due to the sea swell. 

To correct the swell it was first necessary to pick the seafloor reflection on each trace and 

save it in a card data: this was done by applying a first arrival picking detection algorithm 

to detect the sea floor and then a manual adjustment was done to accurate the picking. 

After doing that, the SPW's Swell Statics function (Survey > Marine Statics) was used, 

and the statics shifts caused by the ocean swell was corrected, by applying a filter to the 

file resulting from the seabed picking. Various hypotheses were tested for finding the 

right filter length, as shown in Figure 49. These were the filter lengths tested: 15, 25 and 

35 traces with the maximum shift of 10 ms. 

 

Figure 49 Swell filter length test in seismic line PM-C02. A: data without the swell correction; B, C and 

D: filter length of 15, 25 and 35, respectively. Black rectangles shown differences in the attenuation of the 

seabed caused by the different filter lengths. 

C D 

B A 

Without 

Swell 
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It was chosen the filter length of 25 traces because although it soothes the seabed surface 

and corrects the swell effect, it keeps the small variations of this reflector that may be 

related to its geological structure or real morphology (Figure 49– black rectangle). 

 

Finally, this file was loaded into a trace statics card file (Processing Categories > 

Auxiliary Data R-Z > Trace Statics) and a Statics Shift was applied, based on this file 

(Processing Categories > Statics > Apply Statics Shift). The final result of this step is 

shown in the Figure 50. 

 

6.2.5 Tide Static Correction 

In seismic data processing, tidal static corrections are important to determine the 

reflection arrival times that would have been observed if data had been recorded on a flat 

reference datum. The level of the ocean as well as its physical properties varies with tides, 

currents or seasonal changes. Tide variations will affect the water depth, whereas changes 

in salinity or temperature will result in a change of seismic velocity. As marine data were 

acquired in a group of seismic lines that were shot in different days, or in different phases 

of the tide cycles, this will induce lateral discontinuities between the different seismic 

lines. So, it’s important to correct these variations before the seismic lines are imported 

into an interpretation software, so the interception of the different seismic lines will not 

show any vertical lags or discontinuities. 

 

To make the correction of the tidal statics tide tables were used, even though their 

accuracy can be questioned. The tide tables from Instituto Hidrográfico were used 

(www.hidrografico.pt/previsao-mares.php), measured in Peniche in the days of seismic 

lines acquisition (21, 22 and 22 March 2011). After getting the tide level data (values of 

A B 

Figure 50 Detail of PM-C07 line before (A) and after (B) the swell correction 
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high tide and low tide) these values were linearly interpolated for all Trace Numbers of 

each seismic line. Linear interpolation is a method to estimate the value of a function 

between two known values using the equation of the straight line. The calculation of the 

tide level was done using Excel, following these steps: 

 

 Tide level interpolation for certain time intervals in order to know the tide level 

when the line was started (SoL) and finished (EoL); 

 Interpolation of the tide level for each Trace Number, to know the height of the 

tide in each shot of lines; 

 Conversion from depth (m) to time (twt in ms), using a reference value of 1500 

m/s (sound velocity in salt water). 

 

Linear interpolation involves estimation of a new value by connecting two adjacent 

known values with a straight line. The equation of linear interpolation for the interval 

(𝑥0, 𝑥1) is (solving it for y, which is the unknown value at x),  

 

𝑦 =  𝑦0 + (𝑦1 − 𝑥0)
𝑥−𝑥0

𝑥1−𝑥0
                                     Equation 4 

 

To convert the tide level from depth to time the following conversion was made, 

 

𝑡𝑤𝑡 = (𝑡𝑖𝑑𝑒 𝑙𝑒𝑣𝑒𝑙 1.5) × 2⁄ .                                   Equation 5 

 

Then the values were copied (trace number and tide level in two way time) for a Trace 

Static card file (Processing Categories > Auxiliary Data R-Z > Trace Statics). Finally 

the file was loaded into a trace statics card file (Processing Categories>Auxiliary Data 

R-Z> Trace Statics) and a Statics Shift was applied, based on the tidal values file 

(Processing Categories> Statics> Apply Statics Shift). This step is important since when 

the seismic lines were imported to the interpretation software, the points where the lines 

intersect show a good coincidence and the vertical displacement between the lines is 

minimal. 
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6.2.6 Deconvolution 

Deconvolution is an inverse filter used to improve seismic data since it removes the 

adverse filtering effects encountered by seismic waves as they pass through the ground. 

It is applied to increase the temporal or vertical resolution of seismic traces and can also 

remove reverberations and contributes to the attenuation of multiple reflections. This 

filter should be able to provide the impulse response of the earth (reflectivity function) 

when applied to the seismic trace. 

 

It was chosen to apply a Signature Deconvolution to the data (Processing Categories > 

Wavelet Shaping > Signature Deconvolution), which filters the data with the seismic 

signature inverse. This signature is supplied from the selected data traces. The seafloor 

reflection was used to estimate the trace signature since the direct wave signal was 

affected by the swell and didn't provide enough quality to choose the parameters.  

A set of parameters need to be defined for the signature deconvolution application, such 

as pre-whitening, inverse filter length, signature input start time and the input signature 

length. Three different combinations of parameters (values) were tested for the 

implementation of the deconvolution in the seismic data (Table 9; Figure 51). 

 

Table 9 Parameters combination tested for Signature Deconvolution. 

Pre-whitening Inverse Filter 

Length 

Signature Input 

Start Time 

Input Signature 

Length 

Figure 

0.10 % 2.5 ms 415 ms 5 ms Figure 51 – B 

0.10 % 5 ms 415 ms 10 ms Figure 51– C 

0.10 % 7.5 ms 415 ms 15 ms Figure 51– D 

 

The test that presented better results was the one that defined the inverse filter length in 

5 ms and the signature input start time in 415 ms with a length of 10 ms, where it was 

observed a slight improvement in the resolution of the signal. Despite this, it was not 

noticed any great improvements in seismic signal from the application of this processing 

step. 
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Figure 51 Deconvolution parameters test. A: data before the deconvolution was applied. B, C and D: 

tests with the deconvolution parameters pre-whitening (PW), inverse filter length (IFL), input signature 

start time (ISST) and input signature length (ISL). The parameters defined in C were those with the best 

results. 

 

6.2.7 Early Mute 

To apply the mute, it was first necessary to pick the seismic lines just a little above the 

seabed reflector, in order to cut the whole area above, and save it in a card data (Seismic 

Picker > Mutes: Early Mute). Then, all traces were muted between 0 ms and the seafloor 

reflector (Figure 52), in order to eliminate the relative contributions of the direct arrivals 

and the noise present in the water column (Processing Categories > Mutes > Apply Early 

Mute).  

 

A B 

C D 



86 

 

 

 

6.2.8 Migration 

Migration is one of the key steps in seismic data processing. Migration is a process in 

which a seismic section is reconstructed, so that all the seismic events are repositioned to 

their correct subsurface location with a corrected vertical reflection time. The process of 

migration also improves the resolution of the seismic section by focusing all the energy 

spread over the Fresnel zone and collapses diffractions, thereby delineating subsurface 

features, such as fault planes, with increased detail. 

 A Stolt (2D) migration was performed (Processing Categories> Migration), with a 

constant velocity of 1500 m/s (sound velocity in sea water) and the maximum frequency 

to migrate defined in 2100 ms (the high-cut frequency of the Butterworth filter). It was 

also defined the true trace spacing of 2.2 m. The result of this processing step is observed 

in Figure 53.  

Figure 52 PM-C07 seismic line before (A) and after (B) the application of early mute. 

A B 



87 

 

 

6.2.9 Coordinates Correction 

The last step in the processing flow was the correction of the location or coordinates of 

the seismic lines. It was done in SeiSee software. First, the geographic coordinates were 

converted to Universal Transverse Mercator (UTM). Then, in SeiSee the trace headers of 

the seismic data were exported as an ASCII file. The headers were edited, modifying the 

columns from SAC, SRCX and SRCY (scale factor and coordinate values). Finally, the 

changed files were imported back into the SeiSee (Import Trace Headers from ASCII 

files). 

B 

A 

Figure 53 Detail of PM-C07 seismic line before (A) and after (B) migration. 
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The final result of the processing flow was considered positive, since most of the noise 

that were masking the seismic signal was eliminated. Thus, (e.g. PM-C07; Figure 54) the 

structure of the ES subsurface can be effectively observed in the seismic profiles, to about 

500 ms TWT.  

 

6.3 Seismic Resolution 

Seismic resolution is the ability to distinguish between two features in seismic data. It 

refers to the necessary minimum distance between these features such that is possible to 

distinguish that these are two features rather than one (Sheriff and Geldart, 1995). In 

reflection seismic data, the depth is normally measured in two-way travel time in 

milliseconds or seconds. This is the time that the sound waves takes since they leave the 

seismic source until they hit the reflector and return to the seismic receiver. With the 

increase in depth, the frequency of the signal will decrease while the velocity and 

wavelength will increase. This means that with the increase in depth, the seismic 

resolution decreases. The high frequencies are preferentially reflected from the shallower 

reflectors, while the low frequencies can reach further down in the sedimentary column. 

The velocity of the sound increases with increasing depth as the sediments are gradually 

more compacted with increasing depth and therefor denser. The seismic resolution can be 

characterized in two types, vertical resolution and horizontal resolution. 

 

6.3.1 Vertical resolution 

The smallest distance, in time or depth, between two layers appearing as separate 

reflections is called vertical resolution. The vertical resolution is dependent on the 

wavelength of the sound waves and the layers can be discerned when their thickness is 

more than 1/4 of the dominant wavelength. For two reflections, the limit for how close 

they may be is calculated by the Yilmaz (2001) expression: 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝜆 4⁄ = (𝑣
𝑓⁄ ) 4⁄                      Equation 6                                                

 

where 𝝀 the dominant wavelength, v is the seismic velocity and f is the seismic frequency. 

A spectrum analysis was performed to calculate the frequency spectrum and the dominant 

frequencies of the PACEMAKER dataset (third topic of the Processing Steps - 

Butterworth Filtering). As shown in Figure 47, the predominant band of frequencies are 

located between 450 Hz and 2000 Hz, and the dominant frequency is 700 Hz. For the 
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sound wade velocity value it was considered the velocity of the sound in water, 1500 m/s 

and therefore the seismic vertical resolution is approximately 50 cm. 

𝜆 = 𝑣 𝑓⁄   

𝜆 = 1500 700⁄  

𝜆 = 2.14 

 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1 4⁄  𝜆  

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 0.5 𝑚3 

 

6.3.2 Horizontal resolution  

Horizontal resolution is the minimum distance between two reflection points that will 

give two separate reflections. It depends on the frequency and on the velocity of the 

seismic waves (Yilmaz, 2001) and is determined by the width of the first Fresnel Zone 

on the non-migrated seismic sections. The Fresnel Zone is a function of the signal 

frequency and of the distance between the reflector and the signal source (Equation 4). 

When the reflector dimensions are smaller than this zone, their response is that of a 

diffraction point (Sheriff and Geldart, 1995). 

𝑟 =  𝑣 2⁄  √𝑡 𝑓⁄                                             Equation 7 

 

Where r is the radius of the 1º Fresnel zone, v is the average sound velocity, t the depth 

in time and f the signal frequency. Using the parameters of the PACEMAKER acquisition 

the horizontal resolution can be calculated as follows:  

𝑟 =  1500 2⁄  √0.42 700⁄  

𝑟 =  750 √0.0006 

𝑟 =  18.37 𝑚 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  18.37 𝑚, for 420 ms depth. 

 

 

 

 

                                                           
3 The calculated value is in disagreement with the values from the Technical Manual in Chapter 4. 
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CHAPTER 7 

 

SEISMIC INTERPRETATION  

 

7.1 Seismic-stratigraphic model 

Seismic reflection profiles acquired during the PACEMAKER survey (PM–C03, PM–

C04, PM–C05, PM–C06, PM–C07, PM–C08, PM–C09 and PM–C10) were interpreted 

using the seismic-stratigraphic methodology, allowing the identification of several 

seismic units with evidence of the occurrence of fluids or fluid flow (Figure 55). The 

remaining seismic profiles (PM–C01, PM–C02, PM–C02pt1, PM–Cc01, PM–Cc02 and 

PM–Cc02pt1) do not display sufficient quality to attain these objectives. The criteria used 

in the identification and definition of seismic units are enumerated in Chapter 4. 

 

b) 
Estremadura 

Spur 

a) 

Figure 55 Location of the PACEMAKER 2D high-resolution seismic profiles in the Estremadura Spur (a) 

and location of the interpreted seismic profiles in the Lourinhã Monocline (b). 
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Using this set of high-resolution seismic six seismic units (U1 to U6) delimited by 

horizons (M to H4) were identify. These horizons mark the main geologic discontinuities 

or variations in seismic facies (e.g. PM-C05 – Figure 58, PM-C10 – Figure 63). Their 

characteristics are described below: 

 

- Horizon M discontinuity is the deepest horizon identified in this area with this 

dataset, overlying a set of well layered reflections, but discontinuous and poorly 

imaged on the majority of the seismic profiles. This horizon is characterized by a 

high amplitude reflector with good lateral continuity that marks a major 

discontinuity in the sedimentary sequence: an erosive unconformity that truncates 

a folded unit (U1) overlain by a seismic sequence of quasi-conformable units, U2 

to U6 (e.g. Figure 58 and Figure 63).  

- Horizon H1 tops seismic unit U2 that fills depocentres located above synclines of 

unit U1. Horizon amplitude varies laterally as it tops an acoustically 

heterogeneous unit U2 separating it from a more homogeneous unit U3 unit. This 

horizon either truncates or toplaps reflections of unit U2 and is usually 

conformable with reflections of the overlying unit U3. 

- Horizon H2 is a coherent seismic reflection with good lateral continuity. It is 

outlined by a high amplitude reflection and by truncations topping the underlying 

unit U3; it is usually covered by shallow dipping downlap or onlap terminations 

of U4 unit reflections.  

- Horizon H3 separates unit U4 and U5 unit usually eroding the underlying unit U4 

sediments. It does not have a good lateral continuity because in some places these 

units do not have contrasting reflections packages. At places (e.g. PM-C05; Figure 

56) it constitutes an unconformity truncating folded unit U4 reflections. 

- Horizon H4 has good lateral continuity in the depocentre of the study area, usually 

separating underlying low amplitude reflections of unit U5 from higher amplitude 

reflections of unit U6. Usually these reflections lie conformable on top of unit H4 

or at a very shallow angle, while unit U5 sediments are generally toplapped or 

truncated. 

 

The identification of these seismic discontinuities permitted the individualization of six 

seismic units, U1 to U6 from bottom to top, described in the following table (Table 10). 
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Table 10 Principal features of the seismic units identified in the PACEMAKER dataset (the red lines mark discontinuities in the seismic sequence). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Seismic 

Unit 

Thickness 

(twt) 
Internal Characteristics  Probable Age 

U6 ± 15 ms 

Characterized by high amplitude, continuous and parallel reflections that are only locally 

disturbed, defining a stratified configuration. This unit is restricted to the basin area and 

has a lenticular shape. It is possible to subdivide unit U6 into sub-units, since in this 

interior is possible to identify reflections with toplap and onlap terminations, marking 

local discontinuities. 

Upper 

Pleistocene-

Holocene 

U5 ± 16 ms Characterized by chaotic to transparent facies, locally with some lateral continuity. 

Lower-Middle 

Pleistocene 

(Gelasian-

Middle) 
U4 ± 10 ms 

It shows seismic facies similar to unit U3, with continuous and parallel reflections but 

with lower amplitude and with lower lateral continuity. In shallow areas unit U4 has a 

chaotic character. 

U3 ± 5 ms 

Internal reflections show good continuity, high amplitude and parallel configuration. 

Occasionally, this unit seems to lose its lateral continuity due to semi-transparent 

reflections. 

U2 ± 10 ms 

This unit has a lens shape pinching out laterally onlapping horizon M, i.e. U2 fills in the 

main depocentre above unit U1. Internally, it consists mainly of a whole thickness semi-

transparent body within which thick segments of well bedded high amplitude can occur. 

The semi-transparent facies are made up of discontinuous non-parallel low amplitude 

reflections. 

Pliocene 

(Piacenzian) 

U1 > 15 ms 

This unit, topped by horizon M, is characterized by coherent high amplitude, continuous 

and parallel reflections. It constitutes the deepest imaged signal of  seismic record, and it 

is not include in the seismic sequence developed above horizon M. 

Lower-Middle 

 Miocene 
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The exact ages of the seismic units have not been determined, since there are no wells in 

the study area, therefore it was not possible to carry out the chronostratigraphic calibration 

of the interpreted seismic units and horizons. However, a chronostratigraphic constrain is 

proposed for the seismic sequence based on its acoustic characteristics and the regional 

geology. 

As previously mentioned, unit U1 underwent an intense ductile deformation, which can 

be associated with the peak of the alpine compression (Tortonian) in the Western Iberian 

Margin. This reasoning suggests that the seismic horizon M marks the Miocene 

discontinuity (related to the compression peak at Middle Miocene; Rasmussen et al., 

1998), thus allowing constraining of the age of the unit U1 consists of Lower to Middle 

Miocene age sediments.  

As in the overlying 50.4 ms (approx. 38 m) thick seismic sequence (units U2 to U6) it is 

not observed a deformation of intensity similar to the one observed in unit U1, therefore 

is reasonable to interpret that the age of these units as corresponding to the deposits of 

Late Pliocene and Quaternary age. The seismic unit U2 was considered as of Late 

Pliocene (Piacenzian) age, due to the fact that in the region of Lisbon no sedimentation 

occurs during the Zanclean (Pais, 2002). This seismic unit is separated from U3 by a 

discontinuity possibly related to a sea-level low-stand in the Pliocene-Pleistocene 

transition (Haq et al., 1987). Therefore, seismic units U3, U4 and U5 were considered of 

Lower and Middle Pleistocene age (Gelasian-Middle). The most recent seismic unit (U6) 

is separated from U5 by other discontinuity and was considered to be of upper Pleistocene 

(Upper)-Holocene age, since the discontinuity was possible related to the LGM (~18 ka 

BP). 

 

7.2 Faults 

The poor quality of the seismic data (partially as result of the accumulation of fluids in 

the seismic sequence - discussed in 7.5) difficult the identification and interpretation of 

faults. Despite that, some probable fault planes were identified (black and black dotted 

lines in Figure 56 to Figure 63) in all the PACEMAKER seismic profiles. 

 

In the NW – SE seismic profiles (e.g. PM–C05, PM–C06 and PM–C10) the seismic unit 

U1 and the Pliocene-Quaternary units occur laterally and the sequence ends at the 

northwest segment of the profiles with onlap terminations against horizon M (e.g. PM-

C10; Figure 63). This may be caused by the deposition of the more recent units in the 
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synform folds of U1, meaning that the displacement of the horizon M is a consequence 

of the ductile deformation suffered by this unit.  

Mapping this discontinuity (onlap termination against the top of U1) in profiles PM – 

C10, PM – C06, PM – C05, PM – C04 and PM – C03 (Figure 55) it is oriented along a 

NNE – SSW direction, which is the orientation of the strike-slip faults orientation 

previously mapped by Badagola (2008) in the Estremadura Spur. The displacement of the 

top of U1 is maximum in PM-C10 (Figure 63), where the horizon M depth changes from 

419 to 468 ms, a difference of 49 ms (approx.  37 meters), in approximately 1 kilometer 

along strike.  

Despite no fault plane reflections are evident in the seismic data, the orientation of this 

feature and the displacement of U1, was interpreted as being the result of the activity of 

a near vertical strike-slip fault (F1), with NNE-SSW orientation and a minor dip-slip 

component during the Pliocene-Quaternary. Based on the present day NW-SE orientation 

of the maximum horizontal stress (Ribeiro et al., 1998, Cunha et al., 2011), the NNE-

SSW faults in the Estremadura Spur have a sinistral strike-slip component. The position 

and kinematics of these faults agree with the similar interpretations proposed by Badagola 

(2008). Besides this, the backscatter data interpreted in this study (Chapter 5) also support 

this interpretation (Figure 41). 

Approximately 2.5 kilometers southeast of F1, the Pliocene-Quaternary units were 

displaced, being noticed the deepening of the northwest segment, which indicate the 

presence of a NNE – SSW important normal fault (F2), also identified in the backscatter 

map (Figure 41).  
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Figure 56 Interpretation of seismic profile PM-C03. Black letters: seismic units; White letters and colorful lineaments: Seismic horizons. Black and black dotted lines: faults and possible fault planes. White arrows: onlap and toplap terminations. Shaded area: 

christmas-tree structure. TR: traces; TWT (ms): two-way time in ms (Location in Figure 55).  
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Figure 1 Interpretation of seismic profile PM-C10. Black letters: seismic units. White letters and colorful lines: seismic horizons. Black and black dotted lines: possible fault and fault planes. White arrows: toplap and onlap terminations. TR: traces; TWT 

(ms): two-way time in ms (Location in Figure 55). 
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7.3 TGS–NOPEC Seismic Segments 

To better understand the deep structure of the subsurface of the Lourinhã Monocline, 

three sections of 2D multichannel low-resolution and high-penetration seismic profiles of 

TGS-NOPEC were used. These profiles allowed the visualization of the subsurface at 

depths greater than 500 ms TWT, the range of the PACEMAKER seismic data. The three 

seismic profiles crossing the study area are: PD00–302, PD00–303 and PD00–409_split 

(Figure 64). 

 

 

 

Four seismic units were observed in this dataset (S1 to S4) separated by reflections that 

mark major discontinuities in the seismic stratigraphy, T1 to T3 and M (Figure 65, Figure 

66 and Figure 67). Seismic horizon M was considered as corresponding to the horizon 

that marks the base of the Pliocene-Quaternary seismic sequence (the base of U2) 

observed in the PACEMAKER seismic profiles. 

 

7.3.1 Seismic profile PD00 – 302  

Seismic profile PD00-302 (Figure 65) trends W–E and shows a slightly folded pre-

Neogene sediments, with at least three major discontinuities in the upper 1200 ms. The 

Pliocene-Quaternary sequence has a thickness of less than 500 ms, without any 

Figure 64 Localization of TGS-NOPEC seismic lines PD00-302, PD00-303 and PD00-409-split. The red 

lines represent the interpreted segments in this study. 
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observable internal structures. A sinistral strike-slip fault (near trace number 6800) was 

interpreted as being the F1 fault of the PACEMAKER profiles (Figure 56 to Figure 63). 

 

7.3.2 Seismic profile PD00 – 303  

Seismic profile PD00-303 (Figure 66) has a W–E and is located 6 km south of profile 

PD00-302. In both profiles it is also observed a folded basement with at least three major 

discontinuities in the upper 1000 ms TWT. The depocenter of the Pliocene-Quaternary 

sequence is located between traces 6600 and 6750, and reaches 1.6 km long and a 

maximum thickness of about 120 ms. Onlap and toplap terminations of their internal 

reflections against the basin walls and the top reflection (seismic horizons M and SB) are 

observed. The presence of the strike-slip fault (near trace 6600), corresponding to the 

sinistral strike-slip fault F1 identified in the PACEMAKER profiles was also registered. 

 

7.3.3 Seismic profile PD00 – 409_split 

This profile strikes N-S and crosses profiles PM-C10 and PM-C03 (Figure 67). In this 

deep seismic section is possible to observe the deformation of the basement (unit U1) and 

the three major discontinuities located above 1300 ms. The Pliocene-Quaternary sub-

basin was observed between traces number 4000 and 3850, with maximum thickness of 

about 120 ms and with 2 km in length. The depositional sequence that infills this basin 

presents reflections with onlap and toplap terminations against seismic horizons M and 

SB. In the vicinities of trace 4200, a thrust-fault is observed, which evolves upwards into 

a strike-slip fault, interpreted as F1 in the PACEMAKER seismic profiles (Figure 56 to 

Figure 63).  

 

These high-penetration seismic sections show that the Pliocene-Quaternary sub-basin 

thickens towards the SW. In the section PD00 – 302, that is located further north the 

Pliocene-Quaternary sub-basin is almost absent and in the sections that cross the sub-

basin at the south (PD00 – 303 and PD00 – 409) it exhibits a greater thickness (about 3x 

higher). This is consistent with the observations done in the PACEMAKER seismic 

profiles.  
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7.4 Isobaths and isopachs maps  

After the picking of the horizons (M, H1, H2, H3, H4 and H5) in all the PACEMAKER 

seismic profiles, isobath surfaces were calculated for the base and the top of each seismic 

unit. Isobath and isopach maps were created using Power View for SeisWorks tool of the 

Landmark software, for all seismic units as well as for the complete Pliocene–Quaternary 

seismic sequence. The depth units in the isobaths and isopach maps are milliseconds in 

two-way travel-time (TWT ms). Contour lines were plotted to give a better perception of 

the values. 

 

7.4.1 Isobath maps 

The seismic horizons picked in the PACEMAKER dataset and the isobath maps, allow 

the visualization of the geometry and morphology of each horizon. In the following maps 

the blue color refers to deeper depths while the orange color represents zones where the 

horizons are located at shallower depths. 

 

The isobath map for the top of the unit U1, discontinuity M (Figure 68), shows a close 

correspondence with the present-day bathymetry (Figure 36). It  is possible to observe a 

depressed area with elongated in NE–SW direction, with a maximum depth of 

approximately 460 ms that corresponds to the axis of synform that folds of the basement 

unit (U1) observed in the seismic profiles (e.g. PM – C10;Figure 63). The northwestern 

and southeastern limits coincide with tectonic structures observed in the seismic sections 

and correspond to the faults (F1 and F2). The deeper part of the horizon M is found in the 

northern end of the map. The horizon M is shallower at southeast end of the map, reaching 

depths of about 330 ms and that gradually deepens northwestward with a constant slope. 

In the western area of the map there is another zone of high depths, being observed a 

circular area that reaches depths of 415 ms. 

In the isobath maps of the seismic horizons H1, H2, H3 and H4 (Figure 69, Figure 70, 

Figure 71 and Figure 72) the observed structures and the morphologies are similar to the 

ones described for the horizon M. It is possible to notice the migration of the deeper region 

towards NW, accompanied by the advancement of the high region localized in the 

southeast area of the map, which suggests the  migration of the depocenter through time 

(in total moved about 450 meters). This can be caused by the development of a progradant 

body through time, due to the lack of accumulation space for the newer units, causing 

their sedimentation to occur forward.    



113 

 

Figure 68 Isobath map for the seismic horizon M. Black line: synform axis; Red dotted lines: possible 

faults identified in the seismic data, F1 and F2. Equidistance: 10 ms. 

 

 

Figure 69 Isobath map for seismic horizon H1. Red dotted lines: possible faults identified in the seismic 

data, F1 and F2. Equidistance: 10 ms. 
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Figure 70 Isobath map for seismic horizon H2. Red dotted lines: possible faults identified in the seismic 

data, F1 and F2. Equidistance: 10 ms. 

 

 

Figure 71 Isobath map for seismic horizon H3. Red dotted lines: possible faults identified in the seismic 

data, F1 and F2. Equidistance: 10 ms. 
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Figure 72  Isobath map for seismic horizon H4. Red dotted lines: possible faults identified in the seismic 

data, F1 and F2. Equidistance: 10 ms. 

 

7.4.2 Isopach maps 

The isopach maps illustrate the thickness of the several seismic units, defined as the time 

vertical distance between two horizons that delimit each seismic unit. These maps permit 

the location of depocenters, paleo-highs and paleo-depressions. The isopach maps for 

each seismic unit are based in the interpretation of the PACEMAKER seismic profiles 

and of the entire Pliocene-Quaternary sedimentary sequence. For the following maps, the 

blue color stands for the thicker zones and red color represents the thinner zones of the 

units. Artefacts due to the grid characteristics or to the small thickness of the units are 

observed in all the maps, especially when the units are thinner, such as in units U3 and 

U4 (Figure 74 and Figure 75).   

 

The isopach map of unit U2 (M – H1) shows that its thickness varies from less than 1 ms 

to about 26 ms TWT (Figure 73). The unit presents the maximum thickness in the 

northeast region of the map. This indicates that when the deposition of U2 occurred, the 

depocentre of this small basin was located in the northeastern part of the map. Unit U3 

(limited by horizons H1 – H2) has a maximum thickness of approximately 16 ms in the 
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central part of the map and a minimum of about 2 ms (Figure 74). The thickness of unit 

U4 (limited by horizons H2 – H3) varies from less than 1 ms to about 20 ms (Figure 75). 

In the isopach maps of this unit it is not clear the presence of a depocentre, and this unit 

is prone to the interpolation artifacts. The isopach map for unit U5 (limited by horizons 

H3 – H4; Figure 76) shows a minimum thickness of less than 1 ms and a its depocenter 

is located in the south and southeast region of the map, reaching a maximum thickness of 

approximately 20 ms. The isopach map of the top unit, U6 (limited by horizons H4 – FM) 

is thicker within an area with a NNE - SSW orientation, reaching a maximum thickness 

of about 20 ms in the southern part of this zone, where the depocentre is localized. The 

minimum thickness of this unit is less than 1 ms (Figure 77). 

 

 

Figure 73 Isopach map for seismic unit U2 (M-H1). Black dotted lines: possible faults identified in the 

seismic data, F1 and F2. Shaded region: basin depocenter. Equidistance: 2 ms. 
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Figure 74 Isopach map for seismic unit U3 (H1-H2). Black dotted lines: major faults F1 and F2. Shaded 

region: basin depocenter. Equidistance: 2 ms. 

 

 

Figure 75 Isopach map for seismic unit U4 (H2-H3). Black dotted lines: major faults F1 and F2. Shaded 

region: basin depocenter. Equidistance: 2 ms. 
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Figure 76 Isopach map for seismic unit U5 (H3-H4). Black dotted lines: major faults F1 and F2. Shaded 

region: basin depocenter. Equidistance: 2 ms. 

 

 

Figure 77 Isopach map for seismic unit U6 (H4-FM). Black dotted lines: major faults F1 and F2. Shaded 

region: basin depocenter. Equidistance: 2 ms. 
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The Pliocene-Quaternary sequence isopach map (Figure 78) shows the global tendency 

of deposition of all the units described in the Lourinhã monocline basin. The thickness of 

the Pliocene-Quaternary sucession varies from less than 5 ms up  to 60 ms. The maximum 

thickness occurs within a region with a NE–SW orientation. There are two zones in which 

the thickness of the sequence is minimum (less than 5 ms): one in the northwest zone and 

another in the south of the map. 

 

 

Figure 78 Isopach map for the Pliocene-Quaternary seismic sequence. Black dotted lines: major faults F1 

and F2. Shaded region: basin depocenter. Equidistance: 2 ms. 

 

From the interpretation of the isopach maps is possible to conclud that the Pliocene-

Quaternary basin depocentre corresponds to the NE– SW synform area delineated in the 

isobath map of the horizon M (Figure 68). There are two regions were the thickness is 

maximum, the first at SW and the other at NE. During the deposition of the seismic units 

U2 and U3 the basin depocente was located at SW and later moved to the NW, were the 

variation of the basin depocentre was possibly caused by the decrease of the space 

disponible for the sediments to accumulate, which forced the depocenter migration to a 

region with more space to fill.  
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7.5 Seismic evidences of fluid flow 

The acoustic evidences of fluids accumulation and seepage in the seismic profiles are 

expressed by the presence of migration pathways, acoustic transparency, acoustic 

turbidity and acoustic blanking. The occurrence of pockmarks at the seabed and buried is 

also an indicator of the presence of fluid flow in the subsurface. 

 

7.5.1 Pockmarks  

A series of “U” and “V” shaped depressions affecting the seafloor were identified on the 

PACEMAKER seismic profiles. The largest depression identified was found on  seismic 

profile PM-C09 (Figure 79), and has a diameter of 147 meters and a depth of 

approximately 5 ms. These cone shaped depressions correspond to the depressions 

described in the results of the bathymetric analysis (in Chapter 5), that are characterized 

by high backscatter responses. Based on their dimensions and geometry, these features 

were interpreted as seafloor pockmarks produced by recent fluid seepage from the 

subsurface. The seafloor pockmarks are more frequent in the area of the Lourinhã 

monocline with higher slope angles (Area 3 in Figure 36 – Chapter 5) that corresponds to 

an area where U6 is absent (e.g. PM–C04 and PM–C05; Figure 57 and Figure 58). 
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In the seismic records is also possible to observe buried pockmarks, located at various 

depths within the seismic unit U6. The geometry and size of these buried pockmarks are 

similar to the ones found on the seafloor (Figure 80 and Figure 82). These structures are 

currently inactive, since the pockmark is totally filled-up with sediments, which indicate 

that the fluid migration to the seabed is an episodic process.  

 

 

Figure 79 Detail of seismic profile PM–C09 showing a pockmark at the seabed (Figure 62 for location). 
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Figure 80 Detail of profile PM – C07 showing a buried pockmark and sub-seafloor evidences for fluid 

migration (see location of section in Figure 60). Layers with AT are interpreted as fluids reservoirs. 

 

Figure 81 
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Figure 81 shows the details of the buried pockmark identified above (Figure 80). The base 

of his structure, which corresponds to horizon H4, is buried at approximately 12 ms below 

the seabed. The feature has a maximum diameter of 152 meters. The sedimentary infill 

appears greatly disrupted with a complex pattern, but it is possible to observe parallel 

reflections and onlap terminations against the depression walls and with toplap 

terminations against the overlying reflection.  

 

Figure 81 Detailed interpretation of a buried pockmark in profile PM–C07. Three phases of fluid expulsion 

causing deformation of the pockmark substract were identified (C1, C2 and C3) marking the paleo-

depressions. The white arrows represent onlap and toplap terminations. Section location is given in Figure 

80. Vertical exaggeration ~15x. 

 

Based on the geometry of the sedimentary infill (lateral continuity, onlap and toplap 

terminations; Figure 81) three phases of intense fluid seepage at the paleo-seabed were 

interpreted: the horizon H4, and the A and B surfaces mark paleo-depressions (C1, C2 

and C3, respectively) which are separated by the sediment packages: 1, 2 and 3. From 

horizon H4 to B fluids migration and seepage through the seabed was relatively constant, 

with periods of minor intensity that permitted the deposition of sediments. Between the 

horizon H4 and the surface a sedimentary package with a thickness of approximately 1 

ms was deposited. The sedimentary package in between reflections A and B corresponds 
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of about 4.5 ms thick. The paleo-depression C3 was the last to form and above it occurred 

once more the deposition of sediments (approximately 3.5 ms), not being observed the 

formation of a new depression above them, which indicates that the pockmark became 

inactive.  

 

Dubious evidence for possible pockmarks located deeper in the sedimentary sequence are 

also found within U5 (PM – C09; Figure 82). These evidences are beneath a pockmark 

(with a diameter of 165 m and depth of 7 ms) in the seabed two stacked structures with a 

morphology and dimensions that resemble the buried pockmarks. Both features have a 

diameter of about 110 m and depths of 6 ms. The three pockmarks appear to be separated 

by sediments infilling the corresponding depressions and sediments deposited in 

horizontal layers (with thickness of about 4 or 5 ms). The stacked pockmarks are 

underlying by a structure with an inverted cone shape (I, Figure 82; approximately 12 ms 

high), which will be discussed later on. 

 

The region observed in Figure 82 was marked by acoustic turbidity (to be discussed below 

in this work) and lower amplitude reflections. The inverted cone structure (I) can be 

interpreted as related to a root zone of the fluids migration pathway, which were active 

during long periods of time, as it is observed a continuous pockmark formation above this 

structure location.  

Figure 82 Detail of the northeast region of PM - C09 seismic line. A seabed pockmark stacked buried pockmarks. 

C: paleo-craters; I: inverted cone-shape. Location in Figure 62. 
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7.5.2 Mounds and tepee-shaped structures 

In the northwestern sector of the study area, in the PM–C03 seismic profile (Figure 83) it 

is possible to identify a single mound structure, with 120 m wide, rising about 7.2 ms 

above the seabed. This structure is also observed in the bathymetry being characterized 

by a low backscatter acoustic signal. It seems to be an intrusive structure that cuts across 

the seismic sequence and whose nature is unknown. 

Figure 83 Mound like structure observed on the seismic profile PM–C03 (location in Figure 56). The lateral 

fluid intrusion interpretation is based on reflections terminations (cut offs). This structure may correspond 

to a mud volcano, diapir or carbonate mound, see text for discussion. 
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Mougenot (1989) and Badagola (2008) report the existence of several igneous intrusions 

in the Estremadura Spur, associated with the Upper Cretaceous volcanism. However, 

since the discovery of the evidences of fluid migration and seabed fluid extrusion in the 

Lourinhã Monocline region implies the consideration of alternative hypothesis on the 

nature of this structure, such as the hypothesis that this structure could be a shallow mud 

volcano, mud diapir or an seafloor doming due to an increase in the sediments pore 

pressure due to the presence (migration and accumulation) of fluids. This hypothesis is 

strengthened by two particular observations in the seismic data: (i) it is still possible to 

recognize inside the structure relics of the seismic horizons (something that is impossible 

in igneous intrusions, since they destroy the older structure); (ii) the observation of a 

christmas-tree structure, which is characteristic of subsurface mud volcanoes edifices. As 

the multibeam backscatter does not show any evidences of mud extrusive features, such 

as mud flows, this structure is probably a mud diapir or it is caused only by early stages 

of fluids accumulation. 

 

In some seismic profiles (e.g. PM–C05 and PM–C06) inverted cone-shaped structures are 

also observed (Figure 84 and Figure 85) affecting the units U1 to U4, but with a greater 

expression in U2 and U3. These structures present a disturbed vertical zone (in U1) topped 

by reflections with higher amplitude and with 112-141 m wide and 2 to 5 ms high.  

In some profiles (e.g. PM–C05; Figure 84) these structures appear to have formed post-

sedimentation, since there was no evidence of a positive relief in the seabed, being 

interpreted as tepee structures constituted by complex carbonate rocks (Kauffman et al., 

1996; Kennedy et al., 2001; Jiang et al., 2003). And so it was interpreted that these 

Figure 84 Inverted cone-shaped structure observed in PM-C05: tepee in U3. Location in Figure 58. 
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features were formed due to the upward migration of fluids that deformed the layers 

during the fluids upward migration. 

However, in other seismic profiles (e.g. PM – C06; Figure 85) it is possible to observe a 

lateral thinning and onlap terminations of the overlying layers in these structures. This 

indicate long periods of development of these structures and suggest that they were 

formed at the seabed and then buried,  which may indicate that they are carbonate mounds 

formed as the result of shallow sediments doming due to increased pore pressure during 

fluids migration and accumulation. 

 

 

7.5.3. Acoustic evidences 

In all the profiles vertical to sub-vertical columnar zones of acoustic wipe out (seismically 

transparent features) are observed, more commonly in the sector where the Pliocene-

Quaternary sequence is thicker (the seismic profile PM-C07 cuts through this sector –

Figure 60; isopach map of the seismic sequence in Figure 78). These features may be 

seismic artifacts that were not completely eliminated during the data processing or real 

structures caused by the circulation of fluids in the subsurface. Since they are observed 

throughout all the stages of the seismic processing (Chapter 6) were considered as real 

structures. 

These structures commonly terminate at the seabed pockmarks, at buried pockmarks or 

at disturbed horizons and the majority of them seem to originate in unit U1 (e.g. Figure 

80 and Figure 86), although some originate in the more recent units. Thereby, these 

features were interpreted as pipes or chimneys, formed by the upward migration of fluids. 

Two types of wipe out zones were observed in the seismic profiles:  

Figure 85 Inverted cone-shaped structure from PM-C06 (location in Figure 59). It is observed that the 

layers above this structure terminate onlaping against it (white arrows). 
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- The first group consists of sub-vertical narrow zones that are transparent or where 

the amplitude of the reflections is reduced. These features have approximately 10 

m wide and seem to extend across the seismic sequence, as shown in Figure 86. 

The reflections of the host sedimentary package are usually offset or deformed 

close to these features. These observations suggest that these features are related 

to the upward migration of fluids along small faults or that the fluid overpressure 

caused fractures in the host strata;  

- The second type, observed in Figure 86, comprises wider zones of disrupted or 

attenuated reflections with upward convex bending reflections that become 

narrow downwards. The reflections in the host strata appear to be bending 

upwards near to this features.  

In the present work the first group of narrow structures are designated as pipes and the 

second group, with wider features, are referred as chimneys. 

 

Throughout the seismic sections several disturbed reflections are observed where many 

of the fluid migration pipes begin or end. These disturbed zones are clearly identified in 

the seismic units characterized by continuous and coherent reflections (U3 in Figure 80; 

U4 and U6 in Figure 80 and Figure 86). These are interpreted as acoustic turbidity caused 

by fluid accumulation along these sediments. Vertical zones of acoustic anomaly that 

cross cut the seismic sequence, end near the seabed and are characterized by loss of lateral 

coherency and low amplitude of the reflections (Figure 86). These acoustic anomalous 

zones are observed in the seismic sections and interpreted as acoustic blanking zones, 

resulting from vertical migration and accumulation of fluids.  

 

Seismic units U2 and U5 are characterized by chaotic to transparent facies although it is 

possible to follow coherent reflections with reduced amplitude. These characteristics can 

be due to the presence of fluids accumulated in the two units (Hovland, 1991; Hovland et 

al 1999), being observed variable degrees of disturbance (Figure 80 and Figure 86) most 

probably caused by different amounts of fluids in the pore-space of these seismic units. 

Since the disruption of the reflections is spread all over these units, it is not possible to 

clearly sustain that it is caused only by the presence and circulation of fluids, as 

alternatively it may be a consequence of lateral facies variations of these units.   

Associated with the buried pockmarks it is frequently observed the presence of narrow 

pipes, approximately 10 m wide (Figure 80), through which occurs focalized fluid 
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migration. In general, the significant loss in the imaging accuracy with depth makes it 

difficult to define the root zones of these pipes. Nevertheless, it is possible to consider 

that some pipes are originated in seismic unit U1 or even in older sediments (traces 

between 525 and 600); and other pipes clearly originated, in seismic unit U2 (between 

traces 675 and 700). The upwards limit of these pipes is located bellow the seabed in 

acoustic turbidity horizontal layers and in buried pockmark. Seismic units U3, U4 and U6 

are affected by acoustic turbidity, which suggest the accumulation of fluids within these 

units. The reflections observed on both sides of the buried pockmarks (in unit U6) have 

distinct characteristics. To the West of the buried pockmark (near trace 550 of the seismic 

profile PM-C07; Figure 80) the reflections appear disturbed, with low amplitude and that 

lose their lateral continuity. These characteristics are interpreted as acoustic turbidity. 

Contrariwise, the reflections to the East of the buried pockmark (traces from 600 to 700 

of the seismic profile PM-C07; Figure 80) present good lateral continuity, being only 

observed two thin horizontal zones of acoustic turbidity, with 1 ms wide and some pipes, 

away from the buried pockmark boundary, that cross or terminate in these zones. This 

may indicate that after the pockmark was buried, fluid migration was still active and the 

system began to migrate along the buried pockmark west border, and accumulate in unit 

U6, perturbing stratabound layers of this seismic unit.  

 

In Figure 86 are observed all the seismic units with exception of unit U2. Units U4 and 

U6 have stratabound like zones of acoustic turbidity, with 1.5 to 5 ms high, suggesting 

once more that fluids accumulate in these units. The seabed does not seem to be affected 

by fluid seepage, suggesting that the fluids do not migrate to the surface. Between traces 

2450 and 2400 a vertical zone of acoustic anomaly affecting seismic units U4, U5 and U6 

(near 16 ms high) is visible and interpreted as acoustic blanking. This feature ends 4 m 

below the seabed, and is connected with an acoustic turbidity zone in unit U4.  
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In this section of PM–C06 the two types of localized migration pathways are observed, 

the chimneys and the pipes. Near trace 2550, it is possible to observe a chimney 

terminating in the acoustic turbidity zone of unit U6 with approximately 23 m wide. This 

Figure 86 Detail of PM–C06: Seismic acoustic evidences for fluid accumulation and migration. AT: 

acoustic turbidity; AB: acoustic blanking (Figure 59). 
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structure narrows downwards (to approximately 9 m in units U3 and U4). The host units 

internal reflections (U1, U3 and U4) are bending upwards near this migration pathway 

that appears to be rooted in unit U1 or older rocks. Fluid pipes are also observed, rooting 

in U1 or in stratabound acoustic turbidity zones in unit U4 and terminating in the chaotic 

unit U5 and in acoustic turbidity layers of units U4 and U6.  

The chimneys, pipes and acoustic blanking perturbations point towards different types of 

fluid flow, focused fluid flow recorded as chimneys and pipes, and diffuse fluid flow 

recorded as acoustic blanking. In some cases both types of fluid flow are observed in 

close association. It is worthwhile to note that the deformation associated with the 

different types of fluid flow is also different. While, the diffuse flow (acoustic blanking) 

causes distributed deformation and the formation of localized folds and collapse 

structures (synclines), the localized flow (chimneys and pipes) profits from preexisting 

fractures and can become diffuse upwards. 
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CHAPTER 8 

 

  DISCUSSION  

 

8.1 Lithostratigraphy and structure 

A seismostratigraphic and tectonic map of the Lourinhã Monocline was done with the 

information gathered during the interpretation of the geomorphologic maps and seismic 

profiles of the PACEMAKER data (Figure 87). It is observed that only the seismic units 

U4, U5 and U6 of middle Pleistocene through Holocene age outcrop on the sea floor. 

There is a crude relation between distribution outcropping seismic units and their 

backscatter response, since the seismic unit U5 outcrops in the areas where the backscatter 

has a spotted pattern (SW of Area 1 and Area 3 in Figure 40) and the seismic unit U6 

corresponds to monotonous low backscatter are with  elongate moat-like depression (Area 

2 in Figure 36 and Figure 40). Unit U4 only outcrops in a small circular area on the south 

limit of the map, corresponding to the region of Area 3 (Figure 40) were the backscatter 

pattern is constant and exhibit a facies with low response.  

Four blind NNE-SSW to N-S striking, sub-vertical strike-slip faults were observed 

(Figure 87) in the Lourinhã Monocline both in the seismic profiles and backscatter image. 

The left-lateral kinematics are based on the present day approximate NW-SE orientation 

of the maximum horizontal stress (Ribeiro et al., 1998, Cunha et al., 2012). The position 

and kinematics of these faults agree with the interpretations resulting from study (Chapter 

5) and are similar to the proposed by Badagola (2008).  The tilting of the sequences shows 

tectonic deformation at a larger scale that encompasses the Lourinhã monocline (LM). 

Actually, the LM is bound by a roughly NNE-SSW trending extensional fault, probably 

a transtensional strike-slip fault, while the eastern part of the LM merges into the crest of 

an anticline. This indicates that active strike-slip tectonics has been occurring during the 

Pliocene and Quaternary, which is also in agreement with active seismicity in the 

Estremadura Spur. Custodio et al. (2015) have recently shown the existence of a West-

East trending seismicity cluster just west of the study area. We can speculate that the 

observed N-S faults are associated as transfer faults to East-West thrusts. 
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Figure 87 Sismostratigraphic and tectonic map of the Lourinhã Monocline. Red dotted lines: major faults 

identified in the LM; Red crosses: identified pockmarks. 

 

8.2 Evidences for the presence and migration of fluids 

Evidences of fluid migration and accumulation within the Estremadura Spur shelf 

sediments and fluids seepage at the seafloor were here presented and their geophysical 

signature was analysed (Chapter 5 and 7).  

The occurrence of a large number of morphologic features interpreted as pockmarks from 

multibeam bathymetry and backscatter images of the seafloor (Figure 38 and Figure 40) 

was the first direct evidence of the presence of fluids seepage in this zone of the West 

Iberian margin. High-backscatter anomalies are commonly associated with recent 

seafloor seepage sites and suggest the presence of authigenic carbonates (Orange et al., 

2002; Klaucke et al., 2006) that typically occur associated with active seepage sites. In 

order to investigate this hypothesis, visual observations made with the ROV Luso of three 

pockmarks were done, but showed that the high-backscatter depressed areas had no signs 

of active seepage at present (Figure 43 and Figure 44) and the pockmarks are recovered 

with sandy sediments. 

The interpretation of the PACEMAKER seismic data also provided important indication 

for the presence of fluids trapped within the shelf sediments, but not for the occurrence 

of gas hydrates which are frequently found associated to the pockmarks in other regions 



135 

(e.g. Pinheiro et al, 2003; Judd and Hovland, 2007; Gay et al., 2006; 2007; Chand et al., 

2008; Barnes et al., 2010). Fluid migration pathways (pipes and chimneys; Figure 79, 

Figure 80 and Figure 86) were observed as well as acoustically disturbed zones where the 

fluids accumulate (AT and AB in Figure 80 and Figure 86), mainly where the Pliocene-

Quaternary sequence is thicker (Figure 88). 

The pockmark field of the Estremadura Spur can be subdivided in two regions. The first 

is characterized by the preferential occurrence of buried pockmarks that corresponds to 

the basin depocentre area, where the seismic unit U6 outcrops (Figure 87; Area 2 in 

figure). The second region corresponds to the seismic unit U5 outcrops, where the 

Pliocene-Quaternary sedimentary package is normally thinner, and here most of the 

pockmarks occur at seafloor with a seabed expression (Figure 79). The pockmarks that 

occur at the seafloor or are buried near it (at less than 10 ms bsf) could have been formed 

during the same seepage event and then buried in the region where the sedimentary rate 

is higher.  

 

The buried pockmarks are localized in the region where the Pliocene-Quaternary 

sequence is thicker, i.e. where the sedimentation rate is higher, leading to the faster 

burying of these features after their activity. The pockmarks that have expression in the 

seabed are located in the slope and less deeper zones of the studied area, where the 

sedimentation rate is lower or the erosion was more intense, allowing for their 

preservation instead of burial. Since this seismic unit is of Holocene age and many 

pockmarks are still marked on the seafloor, it is deduced that the fluid expulsion is 

occurring at present-day or has occurred recently. 

Figure 88 Conceptual model for fluid migration in the Estremadura Spur. Major faults are represented (F1 

and F2). AB – acoustic blanking; AT – acoustic turbidity; BP – buried pockmark. Dashed arrows – 

principal migration pathways; Black arrows – onlap terminations (based on PM-C10). 
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8.3 Seepage activity during upper Pliocene and Quaternary 

Cathles et al., 2010 suggest that pockmark craters form abruptly, when local 

accumulations of overpressured pore-water and gas erupt through the seafloor surface 

sediments, and they are thereafter maintained by slow pore-water and gas seepage. When 

the system that feeds the pockmarks becomes inactive the depressions are buried under 

the continuous deposition of sediments. 

The presence of buried pockmarks along the Pliocene-Quaternary seismic unit (at various 

depths) indicates that the migration of fluids is intermittent and repeated periodically in 

the Estremadura Spur, at least since the upper Pliocene. This episodic occurrence of fluids 

seepage can be caused by several processes: by the cyclical sea-level changes, by 

seismologically driven periodical overpressure variations, or by periodically sub-basin 

pressure bluid-up and release triggered by unknown factors. It is also possible to 

recognize in the seismic data the accumulation of fluids in stratabound units (marked by 

acoustic turbidity; e.g.Figure 86) below the seafloor. 

 

Based on the interpretation of the seismic profiles it can be interpreted that at present-

day, the migration of fluids (probably a mixture of water and gas) does not reach the 

seafloor, since the system is in a dormant phase of vertical fluid migration and the fluids 

are accumulating within the seismic sedimentary sequence, as demonstrated by the 

seismic data (Figure 80 and Figure 86). This is consistent with the ROV images (Figure 

43 and Figure 44), the structures observed during the dives were found to be covered with 

sandy sediments and no carbonates were found. Also, neither bubbling nor characteristic 

fauna were observed and the seafloor in these sites. Gay et al. (2007) sustains that seep 

sites, both active and recently active but currently inactive and buried under 10 m of 

sediments, may create anomalies on the backscatter signal (Figure 28).Therefore, the 

seepage in the Lourinhã Monocline pockmark field is possibly currently inactive although 

it has been active recently (probably during the Holocene).  

 

Two possible evolution models are hereafter proposed to explain the fluid migration 

system that originate and control the Estremadura Spur pockmarks field: (i) seepage 

cyclic activity and (ii) MDAC system sealing. 
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8.3.1 Seepage cyclic activity 

The fluids migration and expulsion at the seafloor occur in individual episodes 

intercalated with periods of dormancy (Figure 89). This model is sustained by the vertical 

stacked buried pockmarks that are observed the seismic profiles, as in profile PM–C09 

(Figure 82). These features provide evidence for paleo-seepage activity, at least since the 

Pleistocene as the buried pockmarks are identified at various depths, being the oldest one 

in seismic unit U3. The stacked buried pockmarks appear to be separated by sediments 

infilling the corresponding depressions and sediments deposited in horizontal layers, 

which indicates that the seepage activity is not continuous. 

A four phase cycle model is illustrated in Figure 89. Firstly, the occurrence of sub-surface 

pockets enriched in fluids (possibly accumulating in the seismic unit U1 or below) causes 

local deformation of the overlying sediments (doming as seen in PM–C09 figure, forming 

inverted cone-shaped structures). Due to the overpressuring the yield point of the 

sedimentary material is reached leading to an increase of percolation pathways and the 

vertical fluid migration throughout the seismic sequence (Figure 89–Stage 1). . If fluid 

flow is rapid and sudden then a pockmark forms at the seafloor (Figure 89–Stage 2), due 

to the remobilization of seabed fine sediments (Hovland et al., 2010). Fluid flow becomes 

slower or even stops after the pressure release event. In these phases of inactivity the 

pockmark depression is filled with sediments (Figure 89–Stage 3) until complete burial. 

Although the seafloor seepage is inactive, the fluid migration can still be active, with 

fluids migrating vertical or laterally through and/or along the sedimentary package and 

accumulate underneath impermeable layers. If the overpressure builds up again and 

overcomes the cohesion of the overlying cover, a new pockmark will form at the seafloor, 

caused by the new phase of rapid and abrupt fluid flux (Figure 89–Stage 4).  
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Figure 89 Seepage cyclic activity hypothesis. 1 – Start of the accumulation of fluids, causing the folding 

of the overlying sediments; 2 – Fluids overpressure is reached, causing its vertical migration and expulsion 

through the seafloor (pockmark formation); 3 – When the pressure decreases, the seafloor seepage ceases. 

The pockmark is buried by new sedimentation. The fluid continues to migrate through weak zones of the 

seismic sequence and accumulates within more permeable layers; 4 – With the increase of the pressure 

occurs other phase of fluid expulsion on the seafloor, creating a new pockmark depression over the buried 

one. Red arrows: migration pathways; Red dashed arrows: possible migration pathways; Circles and 

drops: fluid; Dashed gray lines: acoustically disturbed reflection; Black arrows: onlap terminations. 

Evidences for this model are observed in seismic profile PM-C09 (Figure 82). 

 

Various reasons for the periodic interruption and reactivation of fluids seepage can be 

proposed, such as eustatic sea-level changes or earthquakes occurrence. This topic will is 

discussed elsewhere in this work. 
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8.3.2 MDAC system sealing  

The precipitation of methane-derived authigenic carbonates (MDAC) inside the 

migration conduits (chimneys and pipes) that originate the pockmarks can seal the 

pathways for fluid flux (Hovland et al., 2010 For this process to occur is necessary an 

anoxic environment, which is not common at shallow depths in porous sediments. The 

oxidation of migrating light hydrocarbons (such as methane), partly dissolved in 

advecting porewater and in a free gas phases, after some time causes the formation of 

anoxic conditions (Hovland, 2002). Thus, the required conditions for MDAC 

precipitation are formed. The MDAC precipitation forces the deactivation of the fluid 

migration pathways (and, consequently, the deactivation of the related pockmarks). 

Thereafter, new migration pathways will be formed laterally (Hovland et al., 2010), most 

probably in weak or more permeable zones of the seismic sequence. This model is 

supported by the observations done in seismic profiles such as line PM-C07 (Figure 80), 

in which is possible to recognize that a buried pockmark is completely sealed and a 

stratabound acoustically disturbed zone (acoustic turbidity), characteristic of the 

accumulation of fluids is formed laterally. This stratabound acoustically disturbed zone 

is interpreted as the result of migration of fluids through the border of the buried 

pockmark along a new conduit path after the pockmark sealing that is due to MDAC 

precipitation or as result of a stop of the fluids input and subsequent burial of the 

pockmark by impermeable sediments and then a subsequent sealing of the original 

migration pathway. 

The occurrence of high backscatter facies inside pockmarks with seafloor morphologic 

expression also supports the existence of MDAC. It is likely that the areas with high 

backscatter are sealed and therefore no fluids seepage occurs where the MDAC seals the 

pockmark. The direct inspection of the seafloor using ROV did not show any evidence of 

MDAC hardgrounds in the two visited sites, but nevertheless it is possible that they were 

buried under the recent detritic sandy deposits (discussed in Chapter 5). 

This evolution model is sub-divided in five phases, illustrated in Figure 89. The first two 

phases are similar to the ones described in the stacked pockmarks model (Figure 90–

Stages 1 and 2). The third phase corresponds to the sealing of the migration pathways by 

the precipitation of MDAC (Figure 90–Stage 3). In this phase the fluid is still able to 

migrate upwards through fractures of the MDAC deposited in these conduits (Hovland et 

al., 2010). When the migration pathways are completely sealed the pockmark becomes 

inactive. With the closure of the original migration pathways, the fluids open new 
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conduits in fragile zones of the sediment package (Figure 90–Stage 4), and the fluids 

migrate vertically until more permeable layers within the seismic unit U6 allow the 

accumulation of fluids near the seabed (Figure 90–Stage 5), this corresponds to the 

present-day state of the system. 

 

 

Figure 90 Metane-derived authigenic carbonates evolution model. 1 and 2 – With the start of the fluid 

accumulation, the overlying sediments are deformed and when the overpressure is reached these fluids start 

to migrate vertically and are expulsed through the seafloor to the water column, creating a pockmark (these 

two first phases are common two the two hypothesis); 3 – The subsurface formation of MDAC started to 

bloke the migration pathways that feed the pockmark, that will be eventually closed; 4 – with the migration 

pathways blocked the pockmark became inactive and is buried by new sediments. The fluid continues to 

migrate, opening new pathways through weaker zones of the seismic sequence; 5 – The fluid accumulates 

within permeable layers around the buried pockmark, not reaching the seafloor. Red arrows: migration 

pathways; Red dashed arrows: possible migration pathways; Circles and drops: fluid; Dashed gray 

lines: acoustically disturbed reflection; Black arrows: onlap terminations. In the seismic profiles is possible 

to observe evidences that confirms this evolutionary model, such as in PM-C07 (Figure 80). 
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Based on the interpretation of the available seismic data we can consider that these two 

evolution models can coexist in the Estremadura Spur pockmarks. 

 

8.4 Geological control on fluid migration 

Fluids tend to move towards lower hydraulic heads, i.e. towards locals of lower confining 

pressure. The fluids capacity to move upwards is controlled by the nature of the overlying 

sedimentary deposits and the availability of migration pathways. Typically, migration 

occurs by diffusion most readily through coarse and permeable sediments (Judd, 2001) 

and along fractures in a focused manner. Geological traps, i.e. impermeable layers or 

boundaries limit and control the direct fluid migration pathways. Thus, the fluid (water, 

gas or a mixture of both, which is believed to originate pockmarks) gets trapped below 

these impermeable layers, forming pore-water and gas pockets. The pressure at the base 

of the pocket is hydrostatic and at the top is much larger than the hydrostatic pressure, 

due to gas density being lower than the sediments’. As the thickness of the fluid pocket 

grows, the excess pressure increases and eventually becomes sufficient to crack the seal. 

When the yield point is reached the seal fails and the fluid is discharged through migration 

pathways (like chimneys and pipes), which propagate vertically through the sedimentary 

sequence (Cathles et al., 2010). These overpressured fluids gather along sedimentary 

discontinuities and favorable geologic structures, such as fault planes, anticline axes and 

preexisting deformations (Mazzini, 2009). 

The fluid migration evidences in the Pliocene-Quaternary seismic sequence are clearly 

distinct from the migration evidences in the older and folded unit U1. The vertical fluid 

migration mostly takes place within the Pliocene-Quaternary sedimentary sequence, here 

it is better represented in the number of structures and their characteristics are more 

evident than in U1. In U1, the migration is essentially focused, occurring through fracture 

planes (which may be possibly opened during the folding event). This means that U1 is 

more compact and impermeable that the sequence that covers it (U2 to U6), where the 

upward movement of the fluid has a more diffuse character with many pathways that 

occur over large disturbed areas. In some units of the Pliocene-Quaternary sequence it is 

also observed lateral fluid migration suggesting that these rocks are relatively permeable 

and porous, allowing the accumulation of fluids that remain trapped by overlying seals of 

low permeability layers close to the seabed (Figure 80 and Figure 86). 

 



142 

There are several geological processes that may trigger vertical fluid migration and 

subsequent expulsion associated with excess pore-fluid pressure, such as tectonics, rapid 

sediment loading, earthquakes and sea-level changes (Kopf, 2001; Taluker, 2012). 

From the observation of the sea-level variations through the last 3000 ka (De Boer et al., 

2010; Figure 91) it is possible to recognize that the differences between high-stands and 

low-stands are more accentuated during the last 1000 ka, being observed four high-stand 

important periods.  

 

During sea-level low-stands, hydrostatic pressure in the fluid reservoir decreases, causing 

the fluid migration and expulsion through the seabed, creating pockmarks. During the 

high-stand the water column is thicker and heavier, causing the increase of the hydrostatic 

pressure and consequently the decrease of the fluid expulsion (and the pockmarks become 

inactive). 

Figure 91 Sea-level changes in the last 3000 ka (from De Boer et al., 2010). Four important low-stand peaks 

are observed during the Quaternary (black arrows). 
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Based on the stacked pockmarks model (Figure 89) the fluids accumulation and/or 

overpressure conditions at the Estremadura Spur suffers periodic variations. Therefore, 

the sea-level changes can be the trigger mechanism for seepage and pockmark formation. 

Despite being part of a passive margin, the Estremadura Spur is seismically active, so 

other possible trigger for cyclic seepage is the earthquake driven overpressure conditions. 

It was considered that the eustatic sea-level variations are more likely to have trigger the 

activation and interruption of the seepage, since it seems to be restricted to the Quaternary 

times. In Figure 82 is observed four stacked pockmarks, one is at the seafloor and the 

other three are buried. These structures affect the seismic units U3, U4 and U5 of lower 

to middle Pleistocene age. As referred, in Figure 91 are observed four low-stand important 

periods during the Pleistocene. This can be interpreted as the events that caused the fluid 

seepage at the seafloor and consequently the pockmarks. 

 

No evidences or indications of the presence of gas hydrates in the sedimentary sequence 

were identified. This can be justified by the restricted thermodynamic conditions of their 

pressure/temperature stability domain. As gas hydrates (or methane hydrates, here we 

consider the gas composition of the hydrates as being methane) are stable at water depths 

of more than 300 m. Even, for water depths of 400 m (approximately the maximum water 

depth of the pockmark field area), gas hydrates to be stable require a seafloor temperature 

of less than 3°C. These conditions are not met in the Estremadura Spur continental shelf 

in the area of the pockmarks field where the average annual seabottom water temperature 

value, at 400 m water depth is of 11.7ºC and the minimum annual seabottom water 

temperature value is of 6.2ºC (Locarnini et al., 2013), therefore gas hydrates are not 

expected to be found in this area. 

 

8.5 Origin of the fluids 

The nature and origin of the fluids present in the Estremadura Spur is not fully understood, 

but it can be assumed that there is only one fluid circulation system.  

The seismic interpretation allows the characterization of the fluids migration pathways, 

their shallow accumulations, and therefore permits to constrain a minimum depth of 

origin and infer their origin and age. Since the seismic image resolution diminishes with 

depth, the source and geometry (and hence tectonic/structural control) of migration 

pathways (pipes and chimneys; e.g. Figure 86) is limited. In addition, upward propagation 
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of these pathways may erase earlier evidences for pipe growth-arrest at intermediate 

stages (Cartwright et al., 2015).  

The seismic observations presented in this work show various locations where the fluid 

migration pathways seem to be rooted below the Pliocene-Quaternary sediments (Figure 

80 and Figure 86) in the older seismic unit U1. This is an indication that the fluids in the 

sedimentary cover of the Lourinhã Monocline originate, at least partially, in the Lower to 

Middle Miocene sediments or deeper. Since the seismic profiles do not allow the imaging 

of the Lourinhã Monocline subsurface under 500 ms (approx. 375 m), it is not possible 

to be sure that the fluids are not even older. This supports a deep-seated source for the 

fluid origin.  

In the onshore part of the Lusitanian basin, equivalent to the Estremadura Spur 

(Estremanho Massif) several cases of oil and gas seepage in the Jurassic outcrops are 

referred (e.g. Montejunto Fm; Pena dos Reis and Pimentel, 2010; 2014), suggesting the 

existence of an deep sourced and at present day active hydrocarbon migration system. 

Pena dos Reis and Pimentel (2014) also suggest that the migration pathways efficiency 

was enhanced by the Late Miocene intense uplift, related with the Alpine compressive 

phase, which was responsible for the Estremadura Spur uplift. In the well 20B-1 

(described in Chapter 3 of this thesis), localized about 40 km SE of the Lourinhã 

Monocline, a small gas occurrence in the Late Jurassic Coimbra Formation was reported. 

These two occurrences can indicate that the fluids that originated the pockmarks observed 

in the studied area formations have a deep origin, with a source-rock older than the 

Lower–Middle Miocene formations (seismic unit U1) and can be possibly related with 

the hydrocarbon system of Jurassic age. Thus, to better restrain the fluid age a more 

detailed characterization of the migration pathways geometry with high resolution and 

deep seismics and the analysis of the chemical nature of the fluids would be required.  

However, with the available data, the presence of fluids formed at shallow depths within 

the Pliocene-Quaternary sequence cannot be discarded. It is not possible to determine the 

chemical nature of the fluids in the Lourinhã Monocline subsurface sediments just by 

using acoustic seismic data, it would be necessary to have geochemical data obtained 

through fluids, pore water and gases geochemical analysis of the near-bottom seawater 

and of the shallow sediments under the pockmarks crater or in an acoustic disturbed area 

(AB and AT zones; e.g. Figure 80). 
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CHAPTER 9 

 

CONCLUSIONS 

 

The main conclusions of this work can be summarized as follows: 

i) The analysis of the PACEMAKER high-resolution seismic dataset allowed 

the identification of a sequence of six seismic units, disturbed by the migration 

and accumulation of fluids. The existence of N-S striking strike-slip faults 

cutting through the most recent seismic units is consistent with the 

instrumental seismic activity and NW-SE trending main horizontal stress. 

ii) The NW region of the Estremadura Spur outer shelf has been affected by 

several episodes of fluid migration and fluid escape that are expressed by a 

vast number of seabed and buried pockmarks. It was concluded that the 

migration of fluids to the seabed occurred over the Pliocene-Quaternary, as 

indicated by the buried pockmarks at different depths. At present the 

pockmarks are mainly inactive, as the seabed pockmarks are recovered by 

recent sediments. 

iii) The stacking of various pockmarks suggests a cyclical fluid flow activity that 

can passably be the result of the eustatic sea level variations and the 

subsequent changes of the hydrostatic pressure. An alternative hypothesis can 

be considered assuming the episodes of intense fluid flow as being associated 

with the local seismicity. 

iv) Precipitation of methane-derived authigenic carbonates (MDAC) inside the 

migration conduits that originate pockmarks can force the deactivation of the 

fluid migration pathways and, consequently, the deactivation of the related 

pockmarks and creation of new migration pathways. 

 

9.1 Future Work 

This work was the starting point of the fluid expulsion structures occurring in the 

Estremadura Spur northwest outer shelf. Many questions still remain unanswered, such 

as the source-rocks of the fluid that originate the pockmark fields and the relation of this 
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field with the iceberg plug-mark evidences discovered during this work. Hence the need 

to continue the study of these structures. Some works are proposed to be realized in the 

future within the framework of the PES project: 

- Microscopic characterization of the rock samples obtained during the 

EMEPC/PEPC/LUSO/2015 and roughly described in Chapter 5; 

- New seismic surveys (high-resolution seismic) that complement the information 

that already exist and was interpreted in this study; 

- More ROV dives for direct observations of the Estremadura Spur seafloor and 

other pockmark depressions and the single mound observed in the seismic data 

(in PM-C03) and; 

- Geochemical analysis of the fluids (pore water and gases) of the near-bottom 

seawater and of the shallow sediments under the pockmarks crater. 
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