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Entanglement in low-energy states of the random-hopping model
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We study the low-energy states of the 1D random-hopping model in the strong disordered regime.
The entanglement structure is shown to depend solely on the probability distribution for the
length of the effective bonds P (lb), whose scaling and finite-size behavior are established using
renormalization-group arguments and a simple model based on random permutations. Parity oscil-
lations are absent in the von Neumann entropy with periodic boundary conditions, but appear in the
higher moments of the distribution, such as the variance. The particle-hole excited states leave the
bond-structure and the entanglement untouched. Nonetheless, particle addition or removal deletes
bonds and leads to an effective saturation of entanglement at an effective block size given by the
expected value for the longest bond.

PACS numbers: 74.62.En, 71.23.-k, 03.67.Mn, 75.10.Pq

I. INTRODUCTION

The interplay between disorder and entanglement in
low-dimensional systems has proved to be a rich source
of problems and surprises. Anderson’s theorem [1] states
that, in one-dimensional systems with uncorrelated dis-
order in the local potential, all single-body states will
localize and, thus, real space blocks within the ground
state present nearly no entanglement. Entanglement en-
tropy is, nonetheless, a good indicator of the localization-
delocalization quantum phase transition in higher dimen-
sions [2]. On the other hand, off-diagonal disorder, as it
appears in the random variants of the XX or Ising mod-
els, leads in certain cases to long-range correlations and
logarithmic violations of the area law.
Let us focus on a relevant special case in which the

clean system is in a 1D critical state, described by a cer-
tain conformal field theory (CFT) with central charge c.
The von Neumann entropy of a block of ℓ contiguous sites
in a system of size L with periodic boundary conditions
follows the law [3–5]

S(ℓ) ≈ c

3
log (ℓ). (1)

There is ample evidence that the inclusion of strong off-
diagonal disorder between nearest neighbors gives raise
to a disorder-averaged von Neumann entropy similar to
eq. (1), but with a different effective value for the central
charge [6]:

〈S(ℓ)〉 ≈ c log (s)

3
log (ℓ) + c′, (2)

where log (s) is the von Neumann entropy of the ground
state of a system with two sites. Indeed, the striking
similarities between the clean and the strongly disordered
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systems are even deeper than expression (2) suggests,
since they also appear in the averages for the correlation
functions and the finite-size effects in entanglement [7].
Those similarities will be the main focus of this work.
In this work we will consider the random-XX model

or, in other terms, the fermionic random-hopping Hamil-
tonian in 1D:

H = −
∑

i

Jic
†
ici+1 + h.c.. (3)

In the clean case, the system is critical, and the central
charge of the associated CFT is c = 1. The log(s) factor
is found by considering what is the entanglement entropy
between sites in a L = 2 system, i.e.: log(s) = log(2).
Thus, we can fill in the values c = 1 and s = 2 in expres-
sion (2).
Whenever the Ji are different, expression (3) is called

the inhomogeneous hopping model, which is exactly solv-
able: diagonalizing the hopping matrix one can study
the single particle energy levels ǫk and the single particle
modes vk,i, where k denotes the eigenvalue number and
i the actual site. When the different hoppings Ji vary
slowly with position, they can be regarded as a modula-
tion on the speed of sound. Indeed, a careful choice for
the Ji can be used to model quantum matter on a curved
space-time background [8]. The modes have some generic
mathematical properties, such as particle-hole symme-

try: a canonical transformation c†i → (−1)ic†i transforms
H → −H. Thus, if {vk,i}Li=1 is a mode with energy ǫk,
then {(−1)ivk,i}Li=1 is also a mode with energy −ǫk. In
absence of zero modes, the ground state can be proved
to take place at half filling and is spatially homogeneous.
Let us consider the {Ji} to be independent random

variables extracted from a probability distribution pδ(J)
pertaining to the following family

pδ(J) ≡
1

δ
J−1+ 1

δ (4)

for 0 < J < 1 and δ > 0; δ characterizes the randomness,
i.e. δ = 1 for the uniform distribution. We will focus on

http://arxiv.org/abs/1402.5015v2
mailto:giovanni.ramirez@uam.es


2

the δ → ∞ limit, the so-called strong disorder regime [6],
in which the sampled J span many orders of magnitude
in the interval (0, 1). In this regime, the renormaliza-
tion group (RG) derived by Dasgupta and Ma [9] gives
an accurate description of the ground state. It proceeds
through decimation: at each RG step, we select the high-
est hopping and put a fermion resonating between the
two sites, i.e.: a bond. In the spin-chain view, we would
speak of a singlet between both spins. The two sites are
then removed from the chain, and their neighbors are
linked by a new effective hopping term. The procedure is
repeated and, when it is finished, the ground state can be
written as a random bond (or random singlet) structure.
Under successive applications of the Dasgupta-Ma RG
approach, the probability distribution for the remaining
hoppings, pδ(J) flows by increasing the value of δ, and
δ → ∞ is the (unattainable) infinite-randomness fixed
point (IRFP) [10, 11]. That is the reason for our choice
to focus on the strong disorder limit.

The aim of this work is to illuminate the surprising
relation between entanglement in critical states, as de-
scribed by CFT, and average entanglement entropies in
strongly disordered systems. In section II we will discuss
the techniques which will be employed to obtain expecta-
tion values of entanglement measures, using both exact
diagonalization and the RG. In section III we will dis-
cuss the finite-size scaling of the average von Neumann
and Rényi block entropies within the ground state of our
model. The statistics of the bond lengths is discussed
in detail in section IV. By successive distillation of the
basic physics we will reach a simple model which yields
accurate predictions for average entropies, based solely
on the analysis of random permutations in section V.
The study of the excited states, performed in section VI,
benefits from the different approaches discussed before.
Section VII is devoted to the exposition of conclusions
and further work.

II. COMPUTING ENTANGLEMENT

ENTROPIES

Our aim is to study the statistical properties of the en-
tanglement of the ground state of Hamiltonian (3) on a
1D system with size L and periodic boundary conditions
(PBC), when the couplings {Ji} are chosen as indepen-
dent random variables from the probability distribution
(4), specially in the strong disorder limit δ → ∞. The
physics of the low-energy eigenstates of Hamiltonian (3)
can be analyzed with two methods:

1.- Exact Diagonalization (ED). In order to obtain the
ground state of (3) it suffices to diagonalize the hop-
ping matrix Tij , with i, j ∈ {1, · · · , L}, whose non-zero
elements are Ti,i+1 = Ti+1,i = −Ji. Its eigenstates,
Tvk = ǫkvk, constitute the modes, which allow us to

compute the correlation matrix:

Cij ≡ 〈c†i cj〉 =
Ne
∑

k=1

v̄k,ivk,j , (5)

for the ground state of the system: a Fermi state of Ne

fermions. Given any block B of ℓ sites in the system,
the eigenvalues of the reduced density matrix, i.e.: its
entanglement spectrum, can be obtained using a reverse
form of Wick’s theorem [12]. Let νk be the eigenvalues of
the correlation matrix when restricted to that block, then
the reduced density matrix ρB of the block is a product

of density matrices of single-site blocks
⊗ℓ

k ρk and the
α-th order Rényi entropy can be obtained as a sum of

the entropies of ρk = νkd
†
kdk +(1− νk)dkd

†
k where d and

d† are other fermionic operators

Sα(B) =
1

1− α

∑

k

[ναk + (1 − νk)
α] (6)

and the von Neumann entropy for the block corresponds
to the limit α → 1,

S1(B) = −
∑

k

[νk log (νk) + (1 − νk) log (1− νk)] . (7)

The application of this technique in our case presents a
serious problem: the diagonalization of the hopping ma-
trix is a highly ill-conditioned problem, since their eigen-
values differ by many orders of magnitude. Thus, it is a
numerical challenge to obtain the actual block entropy,
given a realization of the {Ji}. In practice, it is unfeasible
to study systems with either L or δ too large.
2.- Dasgupta-Ma Renormalization Group (RG).

Within the strong disorder regime, we can rely on
the renormalization group (RG) scheme devised by
Dasgupta and Ma [9] to find out the bond structure
which describes the ground state of the system. This is a
decimation procedure in which one chooses the strongest
link, max{Ji} and establishes a single-particle state as a
bond on top of it. Then, the two neighboring sites are
joined by a renormalized (effective) link, whose strength
can be found using second-order perturbation theory:

J
(R)
k =

Jk−1Jk+1

Jk
. (8)

The strongest link and its two neighbours are replaced
by this (weaker) renormalized link, then we proceed to
pick the second strongest link, and iterate the process un-
til all the links have been renormalized (assuming even
L). At some moment, the strongest link will be one of
the renormalized links in previous iterations. Thus, a
long-distance bond will be established between two sites
which were not nearest neighbors. Why do such long-
distance bonds exist? The physical picture is illustrated
in figure 1. Let us consider the particle at the rightmost
site. It has a certain probability of hopping to its left,
whenever the inner bond particle is also at its left site.
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(a)

(b)

(c)

Figure 1: Illustration of the physical picture which induces
long-distance bonds. (a) A bond has been established on the
central link, which is very strong. A particle at the right ex-
treme attempts to jump in. (b) Sometimes, the particle suc-
ceeds, and the central bond becomes doubly occupied. The
left particle must jump out. (c) We can view the full proce-
dure as a tunneling event through the occupied bond, with a
much lower associated probability amplitude.

At this moment, the inner bond becomes doubly occu-
pied. The original particle inside the inner bond is not
allowed to hop rightwards, but it may hop leftwards. As
particles are indistinguishable, the total procedure can
be described as a tunneling of one particle through an
established bond. The associated probability amplitude
of this event is much lower than the probability ampli-
tude of hopping in the inner bond, thus accounting for
the large differences in energy between them. This proce-
dure, which is akin to the Anderson mechanism describ-
ing the interaction between a magnetic impurity and the
spin of a conduction electron, can be assigned an effec-
tive hopping amplitude using second-order perturbation
theory, thus obtaining expression (8). Similarly, one can
think of the second-order procedure which allows to find
an effective Heisenberg Hamiltonian with J ≈ t2/U from
a Hubbard system in the limit U ≫ t.

When the decimation procedure is finished, we obtain
a bond-structure, as those illustrated in figure (2), with
many bonds of length one, but still with a large frac-
tion covering larger distances. Notice that the random-
bond state factorizes into pairs, i.e.: there is a pairing of
the sites {(i1, j1), (i2, j2), · · · , (iL/2, jL/2)}, such that the
ground state for the system factorizes into the product
of a singlet state for every pair. In other words, each
pair (ik, jk) is disentangled from the rest of the system.
The entanglement entropy of any block B can be found
by simply counting the number of bonds which connect
B to the rest of the system, and multiplying by log(2),
which is the entropy associated to a single bond. Thus,
the RG opens the possibility of a purely combinatorial
solution to this problem, which will be discussed in sec-
tion V. Notice that, within the bond picture, all Rényi
entropies are equal.

Remarkably, the Dasgupta-Ma RG has recently re-
ceived an interpretation within the the tensor-networks
and holography language [13].

Figure 2: Example of bond structures, with 16 (left) and 64
sites (right) with periodic boundary conditions and δ = 8.

III. AVERAGE ENTANGLEMENT ENTROPIES

IN THE GROUND STATE

Let Sα(ℓ) be the disorder-averaged Rényi entropy of a
block of size ℓ of order α. When α = 1, i.e., the von Neu-
mann entropy, we will sometimes drop the index. Fig-
ure 3 compares the averaged Rényi entropies with both
methods, exact diagonalization and RG, for a chain with
PBC, L = 20 and δ = 10. The RG approach yields the
same curve for all orders Sα, while they differ for exact
diagonalization. Notice that the RG entropy is closest to
the S1 exact diagonalization entropy.
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Figure 3: Average von Neumann and Rényi block entropies
for a L = 20 system with δ = 10, comparing exact diagonal-
ization and RG results for 106 realizations. Notice that the
RG gives the same curve for all Rényi orders, which is closest
to the von Neumann entropy obtained by exact diagonaliza-
tion.

The difference between the RG predictions and the ex-
act diagonalization results can be ascribed to inaccura-
cies in the bond-structure picture. Figure (4) shows a
histogram of the values of the von Neumann entropy at
half-chain for different disorder realizations. Notice that,
as δ increases, the behavior becomes closer to the bond-
structure picture, which predicts a set of delta peaks at
integer multiples of log(2) [14].
The average half-chain von Neumann entropy
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Figure 4: Histogram for the von Neumann entropy for odd-
size blocks (red) and even-size blocks (green) for different val-
ues of δ and L = 64 for 2 · 104 samples.

〈S1(L/2)〉 is specially useful to determine the global be-
havior disregarding finite-size effects. We have run five
million realizations of the disorder with δ = 10 and L
in the range from 64 to 2176, and obtained the average
half-chain entropy as a function of L using the Dasgupta-
Ma RG, as shown in the top panel of fig. 5. The fit to
a form like (2) is very accurate [14, 15]: 〈S1(L/2)〉 grows
logarithmically with a factor c log(2)/3, and the fit for
c ≈ 1.015, i.e.: very close to 1. The additive constant is
c′ ≈ 0.7639.
The average entropy for blocks of different sizes is

shown in figure (5, bottom). We depict 〈S1(ℓ)〉 −
〈S1(L/2)〉 as a function of the fraction of the chain oc-
cupied by the block, ℓ/L using the same data. All the
points collapse to a single scaling function, which we fit
to a CFT finite-size form [16]

S̃(ℓ) = S(ℓ)− S(L/2) ≈ c log(2)

3
log

[

sin

(

π
ℓ

L

)]

, (9)

and plot the resulting curve along with the points. The
difference between the fitting curve and the points is ap-
parent, so we proceed to substract them and plot the
result in the inset of figure (5, bottom). The residual ap-
pears to correspond to higher harmonics, showing that
a different scaling function, Y (x), is required to account
for the finite-size effects [7]. The Fourier series represen-
tation of that function can be written as

Y (x) =



1 +

∞
∑

j=1

kj



 sinx−
∞
∑

j

kj
2j + 1

sin [(2j + 1)x]

(10)
and the more general expression for the finite-size average
von Neumann entropy is given by

S(ℓ) ≈ c log (2)

3
log

[

L

π
Y

(

π
ℓ

L

)]

+ c′ (11)

the contribution of the first modes provides a good ap-
proximation to the entropy. Fitting the finite-size data
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Figure 5: Top: average von Neumann entropy at half-chain
〈S1(L/2)〉 showing the characteristic logarithmic scaling with
prefactor close to log(2)/3. Bottom: vertically shifted data
〈S1(ℓ)〉 − 〈S1(L/2)〉 for different system sizes L collapse into

the continuous line, fitting S̃(ℓ). Inset: residual error when
the fitted expression is compared with the data, note the pres-
ence of higher harmonics.

to this new functional form, we find the additive con-
stant c′ ≈ 0.7338 and the amplitude of the first mode
k1 = 0.1025, which are close to the value c′ ≈ 0.726 re-
ported by Laflorencie and [14] and the value k1 = 0.115
obtained by Fagotti et al. [7].
Despite the many similarities between the average be-

havior of entanglement in the random hopping model and
a conformally invariant system in 1D, there are also sub-
stantial differences. One of the most relevant is in the
Rényi entropies. In the conformal case they present char-
acteristic parity oscillations [5, 17]:

Sα(ℓ) ≈ c

6

(

1 +
1

α

)

log

[

L

π
sin

(

π
ℓ

L

)]

+ c′

+ (−1)ℓfα

[

L

π
sin

(

π
ℓ

L

)]−2K/α

(12)

where c and c′ are the same as in eq. (9), fα is the oscilla-
tion amplitude, which typically increases with α, K is the
Luttinger parameter (K = 1 in our case) and the term
(−1)ℓ corresponds to cos(2kF ℓ), where kF = π/2 is the
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Fermi moment for half-filling. On the other hand, within
the bond-structure picture, all Rényi entropies are equal
to the von Neumann case since, in the strong disorder
regime, an ℓ-size block has 2ℓ-fold degenerate eigenval-
ues 2−ℓ [6] then, the α order Rényi entropy is

Sα =
1

1− α
log 2ℓ(1−α) = log 2ℓ (13)

Figure (6) compares the average Rényi entropies ob-
tained with exact diagonalization in the clean and
strongly disordered cases for a system with L = 64,
δ = 8.5 using 2 · 104 disorder realizations, for the low-
est Rényi orders (α from 1 to 4). The upper panel shows
the clean case, notice the strong parity oscillations in the
higher order Rényi entropies. The bottom panel of de-
picts the average Rényi entropies in the disordered case.
Notice that their amplitude is substantially lower. The
inset in the lower panel of figure (6) analyses that de-
crease in amplitude: the fα factors fitted in eq. (12) are
plotted against δ, the disorder intensity. They can be
seen to attenuate very slowly. In fact, even for very large
δ they are still not negligible showing that the conjecture
in [18] holds. Nonetheless, for infinite disorder, the effect
of fα will disappear.

A. Variance of the von Neumann entropy

The variance of the von Neumann entropy presents
also interesting universal behavior alike to the CFT pre-
dictions, but with an interesting difference: parity oscil-
lations remain even in the strong disorder regime, as the
RG calculations show. Fig. (7) depicts the results of
simulations run with 106 samples for sizes L = 32, 64,
128, 256, 512 and 1024, obtained with the RG and δ = 8,
along with a very accurate fit to a law similar to (12):

σ2
S = cσ log(2) log

[

L

π
sin

(

π
ℓ

L

)]

+ c′σ

+ (−1)ℓfσ

[

L

π
sin

(

π
ℓ

L

)]−2Kσ

(14)

with cσ ≈ 0.4, c′σ ≈ 0.46, fσ ≈ 0.78 and Kσ ≈ 2/3. Re-
markably, the oscillations are also present in the higher
order cummulants of the distribution. They are only ab-
sent in the average.
The origin of those oscillations in the variance of the

von Neumann entropy, and their accurate fit to the CFT
expression is an open problem. These oscillations bear
resemblance to the density oscillations found by [19] in
a clean system, which are explained as an effect of the
boundaries and subleading corrections to the CFT pre-
diction.
Notice that the variance is always higher for the even

blocks, and the even-odd difference is much larger for
smaller blocks. Also let us remark that although the
average number of outgoing bonds increases smoothly as
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Figure 6: Top: Rényi block entropies in the clean case, for
L = 64 and PBC. Notice the strong parity oscillations in
the higher order entropies. Bottom: average Rényi entropies
for 2 · 104 realizations of a L = 64 system with δ = 8.5.
Notice how entropies of all orders become much closer, and
how the oscillations attenuate. The inset shows a decrease in
the magnitude of the oscillation amplitude fα in eq. (12) as
a function of δ.

we increase the block size, the probability distributions
are quite different: even-sized blocks can only cut an
even-number of bonds, and viceversa.

B. Open boundary conditions

Let us consider what are the differences in the case
of open boundary conditions. In that case, translational
invariance is lost: the entropy of a block depends not
only on its size, but also on its distance to the extreme
of the chain. It is customary to choose blocks starting
from the left extreme. In that case block only presents
one inner boundary instead of two. The CFT predic-
tion for the clean (critical) case is that the prefactor of
the logarithmic term in the expression of the von Neu-
mann entropy is halved. In the disordered case we can
also observe a reduction of the entanglement entropy, but
with remarkable differences. Figure (8) shows the aver-
age von Neumann entropy for three sizes (L = 32, 64 and
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δ = 8, obtained with the RG. Notice how the parity oscilla-
tions fit accurately expression (14).

128) with open boundary conditions, using 106 realiza-
tions with δ = 8. Notice the parity oscillations, which
are similar to those appearing in the higher order Rényi
entropies with periodic boundary conditions. In fact, a
fit to a expression similar to (12) works very well [20]

S(ℓ) ≈ copen log(2)

6
log

[

L

π
sin

(

π
ℓ

L

)]

+ c′open

+ (−1)ℓfopen

[

L

π
sin

(

π
ℓ

L

)]−Kopen

(15)

where copen ≈ 1.5, c′open ≈ 0.76, fopen ≈ −0.24 and
Kopen ≈ 1. Thus, even though the entropy is reduced
in the case of open boundary conditions, the results in
this case differ considerably from the expectation that
copen should be one, but the value for Kopen agrees with
previous results obtained for clean systems [18, 21].
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Figure 8: Average von Neumann entropy of the random hop-
ping model with open boundary conditions. Notice the char-
acteristic parity oscillations, which fit to a Luttinger param-
eter K = 1/2.
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Figure 9: Average von Neumann entropy compared for even
and odd number of sites. Notice the plateau which gets estab-
lished for intermediate block sizes in the case of odd chains.

C. Odd chains

On the other hand, disordered chains present very dif-
ferent behavior when the number of sites is odd, as op-
posed to the clean case. Effectively, in that case one site
is not allowed to establish a bond, and entanglement is
effectively reduced, see fig. (9). Moreover, bonds can not
be established over the single site and, thus, this site can
be regarded as an opening in the boundary conditions.
Effectively, the average von Neumann entropy becomes
nearly flat for intermediate block sizes, showing a plateau.

IV. THE BOND-LENGTH DISTRIBUTION

Let us consider a 1D random hopping chain of length
L and PBC, close enough to the IRFP, where the
bond-structure picture becomes accurate to describe the
ground state of the system. Given a bond between sites
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i1 and i2, let lb ≡ |i1 − i2| (mod L) be its length. Let us
consider the probability distribution for the bond lengths,
P (lb). As indicated in [22], we will show that all entan-
glement properties in the IRFP stem from the knowledge
of this P (lb) and the assumption of (approximate) bond
independence, beyond the constraint that two bonds can
never cut.
The scaling behavior of P (lb) has been estimated via

the Dasgupta-Ma RG [23]. As the RG proceeds, the typ-
ical length scale of the bonds increases. It can be ar-
gued that the likelihood of a given site surviving until
the typical length scale is lb scales as l−1

b . A bond can
be established only between two surviving sites, so, if we
assume independence, the probability of establishing a
bond of length lb scales as the product: P (lb) ≈ l−2

b . If
that probability distribution is assumed to be exact for
all (odd) values of lb, the normalization constant should
be 8/π2. But for small values of lb the fitting exponent
deviates from −2. For the scaling regime, the best fit is
found to be P (lb) ≈ (2/3) l−2

b [22].

i
B

Figure 10: Illustration of the bond counting procedure which
leads to expression (16). Let us consider box B of size ℓ.
Bonds stemming from site number i will contribute to the
block entanglement only if their length is larger than their
distance to the boundary (blue bonds only). Notice that ac-
tual bonds are only allowed if their length is odd.

The average von Neumann entropy of a block B with
size ℓ is given by the expected number of bonds crossing
its boundaries, multiplied by log(2), see fig. (10). Let the
sites in the block be numbered from 1 to ℓ, and consider
site i and its bond. Let i′ be the other extreme. The
bond will contribute to the entropy if its length is larger
than the distance to the boundary. If i′ is at the left of
i, then the bond only contributes if lb ≥ i. The expected

number of such bonds is
∑L/2

lb=i P (lb). If i
′ is at the right

of i, the bond will contribute if lb ≥ ℓ − i + 1, and we

get
∑L/2

lb=ℓ−i+1 P (lb). Summing for all i, and considering
that leftwards and rightwards bonds are equally likely,
we get:

S1(ℓ) =
log(2)

2

ℓ
∑

i=1





L/2
∑

lb=i

P (lb) +

L/2
∑

lb=ℓ−i+1

P (lb)



 . (16)

This expression can be recollected into a more conve-
nient one [22]:

S(ℓ) = log (2)





ℓ
∑

lb=1

lbP (lb) + ℓ

L/2
∑

lb=ℓ+1

P (lb)



 (17)

where the first term is the most relevant, since smaller
bonds have the largest probabilities. Inserting the pre-
vious estimate for P (lb) ≈ (2/3) l−2

b into the first term

of eq. (17), we obtain S(ℓ) ≈ (log(2)/3) log(ℓ), as in eq.
(2).
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Figure 11: Top: Probability distribution for the bond-lengths
obtained with the RG and δ = 8 for different sizes. Alongside,
the scaling fit to intermediate bond-lengths, (2/3) l2b , and the
fits to the chord –eq. (18)– and the anharmonic chord –eq.
(19). Inset: plot of l2bP (lb), showing the approach to 2/3
during the scaling regime. Bottom: average von Neumann
entropy for L = 512 and δ = 8 (dots), along with predictions
obtained by inserting different approximations to P (lb) in eq.
(17): the scaling law P (lb) ∝ l−2

b , the chord approximations,
and the exact P (lb) obtained from the simulations. Notice
that the accurate fit for this last one, validating expression
(17). Inset: detail of the same plot.

Figure (11, top) studies the behavior of P (lb) by aver-
aging over five million disorder realizations with L rang-
ing from 32 to 512 and δ = 10, in logarithmic scale. The
leading l−2

b behavior is apparent, as a fit for intermediate
values of lb shows. The straight line corresponds to the
scaling regime approximation, P (lb) = (2/3) l−2

b . The
large-lb deviation, for lb comparable to the system size,
is a finite-size correction. Let us distribute the L points
uniformly in a circumference of diameter 1. The proba-
bility for a bond between sites separated lb lattice units
is approximately proportional to the inverse squared of
their actual distance, i.e., to their chord:

P (lb) ∝ sin−2 (πlb/L) . (18)
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The accuracy of the fit to P (lb) can be further im-
proved using an anharmonic chord approximation:

P (lb) ∝ [Y (lb)]
−γ

(19)

with Y (lb) given in expression (10), and only retaining
the first anharmonic term. The fit gives k1 = 0.12 and
γ = 2.11, with very good accuracy.
Figure (11, bottom) compares the average entropy S(ℓ)

obtained by direct sampling with three possible estimates
from the probability distribution for the bond-lengths us-
ing eq. (17): (i) the scaling law P (lb) ∝ l−2

b , (ii) the
chord and anharmonic-chord laws, eqs. (18) and (19),
and (iii) the sampled distribution for P (lb). Notice that
approximation (iii) is indistinguishable from the sampled
entropy.
It is interesting to ask whether the bond-length sam-

ples are actually independent or not. We have inves-
tigated the bond-length correlations. Given a bond-
structure, consider the list of the bond-lengths obtained
when the bonds are ordered according to the index of
their left-most site: {lb,1, lb,2, · · · , lb,L/2}. Let us con-
sider the conditional probabilities P (lb,i|lb,i−1), i.e.: the
probability of finding a bond-length lb,i knowing that the
previous bond-length was lb,i−1. The independence as-
sumption is equivalent to P (lb,i|lb,i−1) = P (lb), i.e.: that
knowledge of the previous bond-length is irrelevant. In
fact, this assumption is false. After a bond of length
lb,i−1 = 3, a bond lb,i = 1 must ensue. Nonetheless, the
difference |P (lb,i|lb,i−1)−P (lb,i)| decays to zero very fast
when lb,i−1 grows. Since the contribution to the entropy
is larger for larger bonds, the independence assumption
becomes accurate in that case.

A. Order Statistics for the Bond-Length

Let πk(lb) denote the probability distribution function
(PDF) for the k-th longest bond. Thus, π1(lb) will be
the PDF for the longest bond in the system, lb,max. Fig-
ure (12) shows the histogram found over five million re-
alizations with δ = 10 for L = 32 and L = 64 with the
RG. A thermodynamic limit curve appears for those rela-
tively small sizes, with a peak at lb,max/L ≈ 0.2, i.e.: the
longest bond covers approximately 1/5 of the total sys-
tem. After the maximal bond, the curve appears almost
flat, up to 1/2, which is the maximal realizable value.
The independence assumption allows us to give an es-

timate for π1(lb). Let X be a 1D random variable with
probability distribution P (X), and Xmax,N represent the
maximal observation out of a series of N independent
realizations. The probability distribution for Xmax,N

can be found this way: (i) find the cumulative distri-
bution function (CDF) for X : F (x) ≡ P (X > x) =
∫ x

−∞
p(s) ds; (ii) the CDF for the maximal observation is

just P (Xmax,N > x) = F (x)N ; (iii) the probability dis-
tribution for the maximal observation is found by differ-
entiation of the CDF: P (Xmax,N) = ∂x

[

F (x)N
]

. Since
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Figure 12: Histogram for lb,max/L in the IRFP. Notice how
both curves seem to converge to a thermodynamic limit. For
low lb,max, the probability increases fast up to a a value
lMb,max/L, which is close to 0.2. The continuous curve cor-
responds to the estimate for π1(lb) given in equation (20).
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Figure 13: Probability distribution functions for the k-th
longest bond in a chain with 256 sites, with δ = 10 and 106

realizations.

we have L/2 bonds in our system, the CDF for the max-
imal bond will be F (lb)

L/2. Assuming a continuous PDF
P (lb) ∝ l−2

b , we get the estimate

π1(lb) ∝
(

1− 1

lb

)L/2−1 (
1

l2b

)

. (20)

This estimate, which is plotted in fig. (12), can be
used to find the value of lMb,max, the most likely maximal

bond-length. In the thermodynamic limit, lMb,max ≈ L/4.

Figure (13) depicts the different πk(lb), i.e.: the PDF
for the k-th longest bond, for a system with 256 sites and
106 disorder realizations. Notice how they become more
and more peaked as k increases.

B. Longest bond and energy gap

The average energy gap ∆E is known to vanish very
fast in the thermodynamical limit [23]. In this section we
will consider the relation between this average gap and
entanglement. Since energy scales are linked to length
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Figure 14: Average logarithm of the energy gap as a function
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64, 128 and 256), and δ = 8. Alongside, fit to functional form
(21).

scales, the connection is made via the longest bond. We
have applied the Dasgupta-Ma RG to 106 disorder real-
izations with δ = 8 for systems of L = 64, 128 and 256.
The average value of log(∆E) for each value of lb,max fits
to an exponential decay:

〈log(∆E)〉 ≈ A+B exp(−lb,max/l0) (21)

In all three cases, l0 ≈ L/5, i.e.: the expected value for
the maximal bond-length.

V. RANDOM PERMUTATIONS AND

ENTANGLEMENT

A simple model can be devised which reproduces most
features of the ground state of the random hopping
model, in which all the disorder effects are collected into
a model of random permutations.
Let us consider a variant of the random hopping model

in which each new disorder realization is associated with
a random permutation σ of the set {1, · · · , L}. Let us
associate the i-th element of the permutation, σi, to the
i-th hopping term of the chain: Ji = exp(−σi). The
rationale is that the renormalization rule eq. (8) becomes
now additive in the values of σi:

σ
(R)
i = σi+1 + σi−1 − σi, (22)

i.e.: the lowest element of the permutation is removed,
along with its two neighbors, and all three are replaced by
a renormalized element. Each random permutation de-
termines a bond-structure, which in turn determines all
the correlation and entanglement properties within the
ground state of the system. Thus, we conjecture that
sampling over disorder realizations amounts to sampling
over random permutations, i.e.: a discrete set of possi-
bilities. Random permutation theory has already made
appearance in other areas of physics, such as the statis-
tical mechanics of growing interfaces [24], where it links
the shape fluctuations in the Kardar-Parisi-Zhang (KPZ)
universality class with the Tracy-Widom probability dis-
tributions from random matrix theory.
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Figure 15: Study of entanglement of the ground state of the
random permutations model. Top: average von Neumann
entropy as a function of ℓ/L, for L = 32, 64 and 128. Cen-
ter: Histogram for the bond lengths, lb. Bottom: Histogram
for lb,max/L obtained by RG and random permutations for
L = 128. Notice how both curves seem to converge to a ther-
modynamic limit. For low lb,max, the probability increases
fast up to a a value lMb,max/L, which is close to 0.2.

Our RG flow in the permutation space is not perfectly
determined. It sometimes finds coincidences, i.e.: despite
all elements are initially different, after some RG steps,
some of them will coincide. If the coinciding elements are
sufficiently far apart, the order in which we renormalize
them is immaterial. In a few cases, they are close enough,
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thus forcing to choose one of them randomly in order to
proceed. Nonetheless, those coincidences get more and
more sparse as the system size grows, and become negli-
gible in the thermodynamic limit.
Let us show that the Dasgupta-Ma RG and the ran-

dom permutations model give the same results for the
entanglement. As it was discussed above, all the relevant
magnitudes stem from a single function: the probability
distribution for P (lb). Figure (15) shows runs performed
for 105 samples for L = 32, 64 and 128 for the average
von Neumann entropy (top), bond length histogram (cen-
ter) and maximal bond length histogram (bottom), along
with comparison with the Dasgupta-Ma RG approach.

Permutations RG

L c c′ χ2/10−4 c c′ χ2/10−4

32 1.043 0.567 2.2 1.167 0.519 2.3

64 1.047 0.557 1.4 1.148 0.524 1.0

128 1.048 0.547 1.2 1.124 0.538 0.5

Table I: Fitting values for the von Neumann entanglement
entropy (see eq (9)) to compare the model of random permu-
tations and the RG method for δ = 10 and 5 · 106 samples.

The main feature of the random permutations model
is the strong hierarchy among the link strengths. Our
model bears strong similarities to the hierarchical model
of RNA-folding [25, 26]. In this model, random binding
energies are provided for each pair of sites on a 1D chain,
and bonds are established among them in order with a
no-crossing condition. Renormalization group arguments
show that the universality class is captured merely by
choosing the L(L − 1)/2 binding energies ǫij such that
ǫi1j1 ≪ ǫi2j2 ≪ · · · ≪ ǫiL(L−1)/2jL(L−1)/2

. This model
can be considered an infinite-dimensional version of the
random hopping model.

VI. EXCITED STATES

Entanglement of excited states has been studied re-
cently within the CFT framework [20, 27–31]. In this
section we will extend the techniques developed in our
work to study the excited states of the random hop-
ping model. Indeed, entanglement of all eigenstates
can be constructed using either exact diagonalization,
Dasgupta-Ma RG or random permutations approaches.
As it has been stated above, the eigenstates of the hop-
ping matrix constitute the single-body modes: bonds be-
tween pairs of sites, with negative energy, and their cor-
responding anti-bonds, with positive energy. The ground
state is obtained by filling up the set of all negative en-
ergy modes, i.e.: all the bonds. The full spectrum of the
Hamiltonian is obtained as we either reduce the number
of particles to allow empty modes and/or add particles in
modes with positive energy. Both negative and positive
energy modes, bonds and anti-bonds, give the same con-
tribution to the entanglement entropy but, when both

Figure 16: Pictorial representation of the excited states. Top-
left: Bond-structure of the ground state |0〉. Top-right: the
excited state |1〉 is obtained by removing the longest bond.
Bottom-left: if the second longest bond is removed, the ex-
cited state |2〉 is obtained. Bottom-right: the PH state is
built by upgrading the closest particle to the Fermi point to
the first mode above it. Due to the particle-hole symmetry,
in our case we upgrade the longest bond to the corresponding
anti-bond, which presents the same entanglement.

are present on the same pair of sites, their contribution
to entanglement cancels out, leaving two factorized sites.
For a clean system, the entanglement entropy increases

substantially when a particle-hole (PH) excitation is cre-
ated, i.e.: when a particle in an occupied mode is up-
graded to an empty state above the Fermi level [28, 31].
Moreover, entanglement remains invariant for compact
states, i.e.: states in which the list of occupied modes
presents no holes. Those states are represented by ver-
tex operators.
The situation is very different for the strongly disor-

dered system. Figure (16) illustrates the different types
of excited states and their effects on entanglement. In
the top-left panel we show a possible bond structure de-
scribing the ground state. The lowest energy excitation is
the compact state obtained by either removing the weak-
est bond or adding a particle on the weakest anti-bond.
Both cases result in the longest bond being removed from
the system, as shown in the top-right panel. A second
compact excitation can be obtained by removing/adding
a further particle, as shown in the bottom-left panel. The
last panel shows the effect of a PH excitation, in which
the longest bond is upgraded to be an anti-bond, which
leaves the entanglement structure untouched.
Let |x〉 denote the excited state in which x particles

have been removed from the ground state (equivalently,
we could say added), and let S(ℓ, x) denote the average
von Neumann entropy of a block of size ℓ within state |x〉.
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Figure 17: Top: Average von Neumann entropy of the ground
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of excited states |1〉 and |2〉, and the invariance for the PH
excitation. Bottom: S(ℓ, x) for a system of 64 sites for differ-
ent number of removed/added particles x (x = 0 corresponds
to the ground state).

Figure (17, top) shows this average von Neumann entropy
for the ground state and three excited states, obtained
with exact diagonalization and the RG. The first one,
the PH excitation, coincides with the entanglement of
the ground state. The other two correspond to states |1〉
and |2〉, in which one (S(ℓ, 1)) or two (S(ℓ, 2)) particles
are added or removed. Notice that, in this case, a plateau
appears for intermediate block sizes, similar to the one
appearing for the ground state of odd-sized systems. The
bottom panel of fig. (17) shows how this plateau reduces
slowly its height as the number of added/removed parti-
cles increases, i.e.: the curves S(ℓ, x) flatten progressively
for increasing x.

Figure (18, top) shows the behavior of S(ℓ, 1) for sizes
ranging from L = 32 to L = 2048, as obtained with
the RG. All of them present a similar plateau, but at
increasing heights. Notice that the sizes are in geometric
progression, and the plateau heights appear to grow only
arithmetically. This shows that the behavior of S(L/2, 1)
is be logarithmic with the system size L. Indeed, let us
claim that

S(L/2, x) =
cex log(2)

3
log(L) + c′ex(x). (23)

with cex = 1. This claim receives support from the re-
sults shown in the bottom panel of fig. (18), which shows
S(L/2, x) as a function of L (in logarithmic scale), for
different values of x. Notice that all curves are, in fact,
parallel straight lines, and the slope is indeed close to
log(2)/3. The additive constant c′ex(x) is the only differ-
ence, and its decay with x is shown in the inset of fig.
(18). For the x = 1 case, the reduction in the value of the
additive constant from the ground state can be explained
by assuming a reduced effective system size, from L to
L/5, i.e.: c′ex(1) ≈ c′ − log(2) log(5)/3. This reduction in
the effective system size can be explained if we assume
that it coincides with the length of the expected maximal
bond.
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The curves S(ℓ, 1) for different sizes collapse when the
maximum value is substracted from the entropy values
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and, in the thermodynamic limit, they fit to the finite-
size form:

S(ℓ, 1) ≈ c log (2)

3
log(L) + c′x − βe−γ

√
ℓ/L (24)

where γ ≈ 10 allows us to estimate the size of the region
in which entropy grows to reach the value S(L/2, 1) as
approximately 1/5 of the total size of the system. Re-
markably, L/5 is again the average size of the bond of
maximal length, as shown in figure (12).
From all those analysis we can attempt a physical pic-

ture of the entanglement in the first excitation. Removal
of the weakest bond is usually the same as a removal of
the longest bond, which has a typical size lb,max ≈ L/5.
Since bonds can not cross, entanglement can grows nor-
mally only within the region of size ≈ L/5 which lies
under this longest bond. The region outside, with size
4L/5, is devoid of long bonds, and contributes less to the
entanglement. Similar arguments apply for the higher
excitations.

VII. CONCLUSIONS

In this work we have analyzed the properties of entan-
glement in random hopping models, focusing on the sim-
ilarities between the CFT predictions for the clean case
and the strong disorder RG predictions. We have used
a combination of exact diagonalization, the Dasgupta-
Ma renormalization scheme and a new tool based on the
study of random permutations. All techniques coincide in
providing a compelling image, based on a bond-picture.
All the entanglement properties within the ground

state stem from the probability distribution for the bond
lengths P (lb) and an assumption of approximate inde-
pendence for large bond lengths. Both the thermody-
namic limit and the finite-size form for the average von
Neumann entropy can be deduced from the scaling anal-
ysis of that distribution function. The behavior of the
Rényi entropies can not be established solely from the
bond picture, since the Dasgupta-Ma RG prediction is
that all orders will give the same result. Indeed, we have
observed that the parity oscillations which appear in the
clean case, according to the CFT prediction, attenuate
as the disorder grows, making them similar for all values
of the Rényi order.

Interesting results were obtained for odd chains, where
a plateau appears in the average von Neumann entropy,
for intermediate system sizes. Moreover, parity oscilla-
tions appear both in the average von Neumann entropy
of chains with open boundary conditions and in the vari-
ance of the von Neumann entropy in all cases. They fit
nicely an expression similar to the CFT prediction, but
with different constants. Remarkably, the scaling of the
maximal variance is again logarithmic, but with a differ-
ent prefactor.
We have introduced the random permutation picture,

which is a simplification of the Dasgupta-Ma renormal-
ization in which the hoppings are given fixed values which
differ broadly in order of magnitude, but are distributed
at random among the lattice links. All the properties of
entanglement and correlation in the ground state can be
established solely in this picture.
Furthermore, we have analysed the average entangle-

ment of excited states. Indeed, excited states are of two
types: those which convert a negative energy mode into
its corresponding positive energy mode do not alter the
bond picture. But excitations which add or remove par-
ticles alter them in a remarkable way. Indeed, the aver-
age entanglement entropy of the first excitation presents
a plateau at intermediate sizes, whose magnitude scales
logarithmically with the size of the system as if the size of
the system corresponds to the average size of the maximal
bond. Higher excitations result in a further reduction of
the effective size of the system.
There are still many open questions related to this sys-

tem. First of all, a thorough analysis of entanglement for
intermediate values of the disorder would clarify the de-
cay and convergence of the parity oscillations in the Rényi
entropies of all orders. Moreover, it would be interesting
to study the system from a dynamical point of view, i.e.:
the clean to disorder transition.
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