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Abstract. This work presents a novel control approach for a tendon-
driven soft robotic system. The soft robotic system composed of a silicon
continuum, tendons and antagonistic actuation yields a highly complex
mechanical model. As the high complexity is not feasible here, a linear
time invariant system is approximated instead for the controller design.
A fractional order PDα controller is applied to meet performance and the
high robustness requirements due to the neglected nonlinear dynamics.
Simulation and experimental data confirm a superior performance of the
FO controller while exhibiting a higher robustness to model missmatches
and better disturbance rejection properties.
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1 Introduction

In recent years, inherently soft robots got in focus of research. With this inherent
softness, collisions with humans or the environment can be handled by the hard-
ware of the robot [8]. The soft robotic system of the present paper is a prototype
for a spine and neck for a future humanoid robot [6] (Fig. 1) and the softness
is gained by the use of silicon. The majority of continuum robot systems are
steerable catheters [7]. In these systems, the structural flexibility is mainly used
to bend continuously whereas axial or shear deformations can be neglected. As
these systems are used in positioning tasks with small masses, their control goal
is to be accurate in the task space of the system and usually kinematic [1] or
kinetic controllers [7] are used. Requirements on performance or robustness have
not been investigated since slow motions were of interest. The present system is
able to deform considerably in all directions and the higher mass of the system
implies higher dynamic effects especially since we are interested in fast motions.
To achieve a robust performance of the closed loop system, a FO- controller is
designed as it has proven good results for similar requirements and systems in
the past [3]. The contribution here will be, that the approach previously pub-
lished by the authors [4] is extended towards the design of FO lag-compensators
and the passivity property of this controller will be investigated, which is, to
the authors knowledge the first work in this direction. Furthermore three exper-
iments including the desired nominal behavior, a mass variation and a external
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Fig. 1. Left: Tendon-driven soft continuum mechanism as a neck in a humanoid robot
[6]. Right: Test setup including two linear actuators which are connected via tendons
(blue) to the tip lever plate of the soft continuum mechanism. Top: Close up in straight
and deflected configurations. Bottom: Left side of the antagonistic setup.

disturbance experiment underline the good results of the FO controller from
simulations in comparison with two standard controllers. The work is structured
in five sections. Section 2 presents the control problem and the model equa-
tions. The fractional- and integer-order (IO) controllers are designed in 3 and
the passivity properties of these controllers are examined. Section 4 reports on
all experiments and Section 5 draws the main conclusions of this approach.

2 Problem Statement & System Model

The problem at hand is to control the tip angle θL ∈ IR of the planar soft
continuum mechanism, see Fig. 1, whereas the control action is the external
torque τL ∈ IR at the tip generated by two, antagonistically acting tendon forces
f t ∈ IR2 of each actuator while measuring tendon forces and tendon positions
xLM ∈ IR2 only. As the full dynamic model of this mechanism includes partial
differential equations and a nonlinear dynamic coupling between the tip and the
actuator motion, it is not suitable for the design of a linear controller. Instead,
a linear time invariant transferfunction G(s) ∈ IR is used as an approximation
for the dynamics of ΘL(s) w.r.t. the input τL(s),

G(s) =
Kω2

n

s2 + 2δωns+ ω2
n

=
ΘL(s)

τL(s)
. (1)

with the steady-state gain K = 0.0631, the Eigenfrequency of the system ωn =
37.8021, and the linear damping δ = 0.4. The parameters has been estimated
experimentally by measuring step responses. A comparison between the model
and the real system can be found in Fig. 2 for the dynamic and the static case.
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Fig. 2. Comparison of the model (mod) and the real system (meas). Left: Dynamic
characteristic with an input step of τL = 8Nm. Right: Static characteristic while the
mechanism is slowly moved through the workspace.

3 Controller Design

In the following section, three linear controllers will be designed for the system
(1): a FO controller, a PID controller and a lag compensator. The controller
specification and the constraints are presented subsequently.

3.1 Control Specifications

The controller need to fulfill specifications related to gain crossover frequency
ωcg, phase margin ϕm due to their important significance regarding performance
and stability [5]. The design problem is to find a controller C(jω) such that

|C(jωcg)G(jωcg)|dB = 0dB, with ωcg = 3rad/s (2)

arg(C(jωcg)G(jωcg)) = −π + ϕm, with ϕm = 80◦ (3)

d(arg(C(jω)G(jω)))

dω

∣∣∣∣
ω=ωcg

= 0s (4)

Here, ωcg and ϕm were chosen to fulfill a desired performance. The last equation
forces the phase of the open loop system to be flat at ω = ωcg and so, to be
almost constant within an interval around ωcg yielding more robustness to gain
changes and the overshoot of the response is almost constant within a gain range
(iso-damping property of the time response).

3.2 FO Controller

As a novel control approach for the soft continuum mechanism, we propose the
use of a FO PDα controller [4] which corresponds to a fractional order lead
compensator. The three parameters α, λ, x ∈ IR are obtained with the method
in [5]. As the characteristic of our model in combination with the desired ϕm

demand a phase-lag, the method is extended to the design of a fractional lag
compensator. For this case, the controller will be designed as a lead compensator
according to [5] giving a phase |ϕlead| = |ϕlag|, and later the sign of α will be
changed so that the phase contribution is negative. It has to be taken into
account that a change in the sign of α for the lag compensation leads to an
inverted magnitude of the designed compensator. To keep the gain unchanged
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(fulfilling already the specification of crossover frequency), the lag compensator

should be multiplied by a gain klag = 1/ |G(jωcg)|2 yielding a fractional lag
compensator with

CFOC(s) = klag

(
λs+ 1

xλs+ 1

)−α

, (5)

Now a FO controller of the form in (5) is designed so that the specifications
(2,3,4) are achieved resulting in

CFOC(s) = 905.7688

(
6.97s+ 1

0.0069s+ 1

)−1.12

, (6)

The Bode plots of the open-loop system with this FO controller are shown in
Fig. 3, where it can be observed that the phase margin, gain crossover frequency,
and robustness constraints (flat phase) are fulfilled. The implementation of a FO
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Fig. 3. Left: Bode plots of the open-loop system of all three designed controllers. Right:
Nyquist plots of the P (s) functions corresponding to the three controllers. The dashed,
red curve corresponds to the finite approximation of the FO controller.

controller is usually done by an IO- approximation. For details and a review see
[4]. Here (6) is approximated using the MATLAB c© routine invfreqs which fits
the frequency response of the FO controller in a frequency of two decades around
the gain crossover frequency, with two poles/zeros:

C̃FOC(s) =
0.3908s2 + 67.3s+ 774.4

s2 + 7.465s+ 0.8204
(7)

3.3 IO- controllers

A IO- PID and a IO- LAG compensator are designed with the frequency domain
specifications of the previous section. However, as for an IO- controller, the
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maximum contribution in phase is −90◦, therefore (3) can not be met. The PID
is tuned with the Automated PID Tuning method incorporated in the Control
Systems Toolbox in MATLAB c©. The designed PID controller is

CPID(s) = 41.17 · (1 + 0.024s)2

s
, (8)

whose open-loop Bode plots are presented in Fig. 3 where one can see that (2,3,4)
are fulfilled. A physical interpretation of this controller is that by choosing both
zeros of (8) to be at z1,2 ≈ 41.6rad/s, the controller approximately cancels the
poles of the system (1) and extends the flat phase to the system (see Fig. 3).
The general transfer function of an IO- lag compensator incorporates on pole p
and one zero z, with z > p. Therefore it lacks on parameter and the flat phase
robustness constraint (4) cannot be guaranteed. By solving (2) and (3), we find
the IO- lag compensator with the Bode plots in Fig. 3 and the transfer function

CLAG(s) =
s+ 39.74929

s+ 0.3007329
. (9)

3.4 Passivity Analysis

The controller design in the previous section was based on a linear model. The
experimental results in Section 4 will confirm that the inaccuracy in the lin-
ear approximation of the system dynamics can be handled by these robustness
properties. Subsequently, we want to discuss to which extent one can make an-
alytical stability statements for the application of the (linear) fractional-order
controller to the nonlinear system dynamics. In particular, we look at the passiv-
ity properties of the closed-loop system. As a purely mechanical structure, the
continuum mechanism clearly is a passive system with the physical energy as a
storage function, considering the input τL and the output θ̇L. This input-output
pair represents the physical power between the controller and the mechanism. In
the following, we will investigate if the designed controllers represents a passive
system w.r.t. the input θ̇L and the output −τL, i.e. in feedback interconnection
with the mechanism. Since passivity is preserved by feedback interconnection of
passive subsystems [9], we can then conclude passivity of the closed loop system.
For showing the passivity of the controller we have to consider the transfer func-
tion P (s) = −CFOC(s) 1

s . Passivity requires Re(P (jω)) ≥ 0 (positive realness)
for all frequencies ω, which can be checked with a Nyquist plot. Figure 3, right
shows the Nyquist plots of P(s) corresponding the three controllers discussed in
the previous sections. One can easily observe that the fractional-order controller
as well as its finite-order approximation are positive real, while this is not the
case for the PID controller. Notice that this analysis assumes that the electrical
dynamics of the force-controlled actuators is sufficiently fast so that it can be
neglected and thus the desired control torque τL can be realized instantaneously.
While unmodeled dynamics at the level of the continuum mechanism can be
handled in this way, unmodeled dynamics at the actuator level would need a
different approach.

4 Experimental Results

The setup used for the experiments is depicted in Fig. 1. Two linear actuators
from Linmot c© with incorporated position sensors are equipped with an axial
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ISE m2s CA 104 (Nm)2

Controller PID LAG FOC PID LAG FOC

Nominal 12.34 17.05 7.63 2.52 2.26 2.94

1 Mot. 9.56 13.23 5.94 1.88 1.71 2.19

097 20.91 27.34 13.09 1.87 1.75 2.96

Mass 194 22.07 27.65 12.54 1.82 1.73 2.93

380 20.51 26.84 12.90 1.82 1.71 2.84

566 20.72 26.46 12.87 1.73 1.63 2.75

663 unstable unstable 12.84 unstable unstable 2.61

849 unstable unstable 12.85 unstable unstable 2.53

Disturb. 0◦ 0.90 1.19 0.69 0.28 0.23 0.12

20◦ 0.80 0.90 0.40 0.32 0.30 0.25

Table 1. ISE and CA of the three different controllers.

force sensor from Omega c© to measure position and external force at each slider.
The designed motion controllers are implemented in MATLAB/Simulink c© using
real time workshop on a QNX-neutrino 6.5 target. An EtherCAT bus sends
the generated control signals to the current controller of the linear motors and
receives sensor information within a control cycle of 1kHz. The soft continuum
mechanism is molded out of silicon from Dragonskin c© and connected to a 3D-
printed bottom plate and tip plate. The polyethylene tendons are looped around
a ball bearing, and are connected to the mechanism at the tip, see Fig. 1. The
tendons are routed with pulleys at each side towards the actuators.

4.1 Evaluation

The performance of each controller is evaluated using the ISE- index [2]. The
ISE- value is associated to the error energy indicating a small control error,
which is desirable. Furthermore, we want to assess the control action by

CA =
1

tend

∫ tend

0

(τL(t = 0)− τL(t))2dt (10)

to indicate the amount of energy created by the control law. A low CA-value
indicates less control action, which is desirable.

4.2 Experiments

Three experiments are present in which all three controllers are examined. 1)
A nominal step response with step input of 20◦. 2) A nominal step input were
additional masses of mext = {97, 194, 380, 566, 663, 849}g are place at the tip of
the mechanism to increase the overall inertia and a nominal step were 1 motor
is disconnected to reduce the overall inertia. 3) A disturbance test in which a
dropdown mass is attached to the tip of the mechanism by a cord to generate
reproducible disturbances of the controlled system at the θL = 0◦ and 20◦.
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4.3 Results

Fig. 4, left, shows the experimental step responses of the system and respective
control laws in closed loop of all controllers. As can be seen in the figure, the
FO controller presents a slightly underdamped response (peak value of 20.44◦),
as expected, and a soft control law below 8Nm. The final value of the response
is 19.65◦, presenting a small but negligible steady-state error due to the absence
of an integral component. The PID presents zero steady-state error due to the
effect of the integral action. The lag compensator presents a higher steady-state
error (final value of 17.77◦). Though the three controlled systems present a tran-
sient with similar settling time, the rise time for the FO controller is lower and
its steady-state error negligible, providing a better response than the IO- con-
trollers. The assessment of the three controller w.r.t. the performance measures
is shown in Table 1. For the nominal response (first line). one can observe that
the FO controller has the lowest ISE value, meaning the least error over time to
the desired motion. However, the FO controller needs the highest control action,
indicated in a higher CA value. In order to test that the device behaves experi-
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Fig. 4. Left: Experimental step responses θL of the system in closed-loop and corre-
sponding control inputs τL of all three controllers. Right: Experimental step responses
of the system with the FO controller (red) for different step inputs with amplitudes in
the range (5◦, 25◦).

mentally as a linear system around the nominal working point, the FO control
system has been tested for different step inputs with amplitudes in the range
(5◦, 25◦). The results are presented in Fig. 4, right, showing that only slight vari-
ations are appreciated w.r.t. the nominal performance. When additional masses
are placed at the tip, the FO controller presents a robust performance, while
the PID controller and the lag compensator become unstable for mext = 566g.
The reported behaviour is substained by a video that shows the experiments,
see https://www.youtube.com/watch?v=ivR-3bN0LVA&feature=youtu.be.
When the closed loop system is disturbed by the drop down mass, a robust per-
formance is obtained in all the cases. However, the disturbance rejection property
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of the FO controller is superior to the IO- controllers since the ISE- and the CA-
value are both smaller which means that the FO controller needs less power to
reject the disturbance, see Tab. 1.

5 Conclusions and Future Works

This paper reports on a model-based approach to control the tip angle of a
tendon-driven soft robotic system. The complete nonlinear dynamic model of
the system is not feasible here. Therefore, an approximation of a linear time
invariant second-order system is used. A FO lag compensator is designed with
this model and is proven to be passive. The required specifications for the closed-
loop system are met with this controller and the incorporated robustness is
able to cope with neglected nonlinear dynamics. In order to compare the FO
controller, two standard IO- controllers are designed with the same specifications:
a PID controller, which is not passive and a lag compensator, which is passive. All
three controllers prove an experimentally stable response. However, FO controller
has three major advantages. It exhibits a faster transient response compared to
the IO- controllers and at the same time is more robust to unmodelled dynamics
and furthermore exhibits a superior disturbance rejection. These three points
could be validated within the experiments and two standard measures to assess
the controller performance. In the future, we will extend the problem to the multi
DoF case to see whether the approach can handle the increased nonlinearity.
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