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Abstract

We theoretically study the phase behaviour of monolayers of hard rod-plate mixtures using

a fundamental-measure density functional in the restricted-orientation (Zwanzig) approximation.

Particles can rotate in 3D but their centres of mass are constrained to be on a flat surface. In

addition, we consider both species to be subject to an attractive potential proportional to the par-

ticle contact area on the surface and with adsorption strengths that depend on the species type.

Particles have board-like shape, with sizes chosen using a symmetry criterion: same volume and

same aspect ratio κ. Phase diagrams were calculated for κ = 10, 20 and 40 and different values of

adsorption strengths. For small adsorption strengths the mixtures exhibit a second-order uniaxial

nematic-biaxial nematic transition for molar fraction of rods 0 ≤ x . 0.9. In the uniaxial nematic

phase the particle axes of rods and plates are aligned perpendicular and parallel to the monolayer,

respectively. At the transition, the orientational symmetry of the plate axes is broken, and they ori-

ent parallel to a director lying on the surface. For large and equal adsorption strengths the mixture

demixes at low pressures into a uniaxial nematic phase, rich in plates, and a biaxial nematic phase,

rich in rods. The demixing transition is located between two tricritical points. Also, at higher

pressures and in the plate-rich part of the phase diagram, the system exhibits a strong first-order

uniaxial nematic-biaxial nematic phase transition with a large density coexistence gap. When rod

adsorption is considerably large while that of plates is small, the transition to the biaxial nematic

phase is always of second order, and its region of stability in the phase diagram considerably widens.

At very high pressures the mixture can effectively be identified as a two-dimensional mixture of

squares and rectangles which again demixes above a certain critical point. We also studied the

relative stability of uniform phases with respect to density modulations of smectic, columnar and

crystalline symmetry.

PACS numbers: 61.30.Pq,64.70.M-,47.57.J-

∗Electronic address: yuri@math.uc3m.es
†Electronic address: miguel.gonzalezp@uam.es

‡Electronic address: enrique.velasco@uam.es

2



I. INTRODUCTION

It is well known that the properties of biological vesicles and membrane cells strongly de-

pend on the their constituent blocks, usually composed of phospholipid bilayers with embed-

ded proteins. These molecules are in general anisotropic (rod or plate-like) and the demixed

states usually have liquid-crystal symmetries, such as isotropic (I), nematic (N) or biax-

ial nematic (B) symmetries. For certain conditions these complex mixtures of biomolecules

phase separate, creating regions rich in different species and consequently changing the mem-

brane curvature. There is much experimental evidence of demixing transitions in monolayers

and bilayers of mixed anisotropic biomolecules [1–7]. The adsorption of a large variety of

mixtures of rod-like molecules in Langmuir monolayers has been extensively studied both

experimentally and theoretically. Many of these works focus on the chemical and thermo-

dynamic conditions for which the monolayers become spatially heterogeneous, i.e. when

the mixture demixes in different phases usually possessing liquid-crystal ordering [8–11].

Finally many experiments on the adsorption of rod-like colloidal particles at the interfaces

separating two immiscible fluids showed the propensity of these particles to self-assemble

into clusters of different geometries [12–14]. The degree of adsorption of these particles

at the interface and their relative orientation with respect to it strongly depend on their

chemical compositions. This in turn can modify their wetting properties and consequently

the effective capillary forces acting between particles. The resulting effect is the existence of

anisotropy in the pair interaction potential which forces the particles to self-assemble into

clusters [13, 15, 16]. When colloids with very different chemical properties are adsorbed at

the interface they usually phase separate into phases with different composition of species.

A recent experimental work showed how demixing of adsorbed colloids strongly modifies

their self-assembling properties [17].

All the systems discussed above share the following properties: (i) they are mixtures of

anisotropic particles, (ii) the degrees of freedom of their centres of mass are strongly re-

stricted, usually resulting in an effective two-dimensional fluid, and (iii) the particle axes

can rotate in 3D but with certain restrictions which depend on the degree of particle adsorp-

tion on the monolayer, bilayer or interface. The main motivation of the present work is the

formulation of a very simple model for a binary mixture of anisotropic particles (specifically

a mixture of rods and plates) which allows a detailed study of the conditions (particle aspect
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ratios, degree of adsorption) under which these mixtures demix into two different phases.

To this purpose we choose particles to have a board-like shape and interact through a

hard-core repulsion. Also, for simplicity, we use the Zwanzig approximation to account

for the orientational degrees of freedom, which are restricted to be three. Finally, we will

use a mean-field density functional (DF) based on the fundamental-measure theory (FMT),

derived for the present model in the late 90’s [18] and more recently implemented to calculate

the phase diagrams of rod and plate board-like particles [19]. Monolayers of one-component

rods or plates were recently studied within this theory, considering uniaxial [20] and biaxial

[21] particle geometries. In the latter work, phase diagrams were calculated as a function of

a geometric parameter θ ∈ [−1, 1] that measured particle shape, with θ = ±1 for uniaxial

rod and plate geometries, respectively. One-component monolayers of prolate or oblate

freely-rotating ellipsoids were also recently studied via the Parsons-Lee DF and Molecular-

Dynamics simulations [22]. In particular, the effect of orientational restriction of ellipsoids

on the orientational properties of monolayers was studied. The ground states of monolayers

of hard ellipsoids interacting through a quadrupole pair-potential were recently found [23].

Apart from the T-like configurations, three more particle orientations were predicted to be

stable.

Stable B phases were observed in 3D lyotropic fluids [24] and also in liquid-crystals

made of bent-core organic molecules [25–28]. However, in the latter case controversial issues

about the correct identification of the B phase still remain. Recent experiments on colloidal

dispersions of board-like mineral biaxial particles showed an stable B phase in some range

of particle aspect ratios [29] while the degree of biaxiality can be tuned by an external

magnetic field [30]. For recent reviews on B liquid-crystals see Refs. [31–33]. As we have

already shown in previous works [20–22] the 2D constraint on the centers of mass of plates

favors the stability of the B phase. We will show here that the same constraint together with

a high adsorption of rods greatly enhance the stability of the B phase in rod-plate mixtures.

Here we extend our previous model [20] to a binary mixture of uniaxial rods and plates.

Board-like-shaped rods and plates are taken to be symmetric: although they have different

eccentricities (prolate and oblate), their volumes and their aspect ratios (ratio between major

and minor particle edge-lengths) are taken to be the same. This choice of shape geometries

is motivated by their extensive use in studies of the biaxial-nematic (B) phases stability

with respect to nematic-nematic (N-N) phase separation in binary [34–36] and polydisperse
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[37, 38] mixtures of rods and plates. We are interested in the effect of particle adsorption

on the phase behaviour of the mixture, in an effort to elucidate (i) the propensity of the

system to phase separate into different phases, (ii) the nature (second vs. first order) of

the N-B transition when the adsorption strengths are changed, (iii) the relative stability of

the B phase with respect to the N or other non-uniform phases, and (iv) the representative

phase diagrams of the system (calculated for certain selected values of model parameters).

In general we found a rich phase behaviour with the presence of two disconnected demixed

N-B phase transitions, one located at low pressures, with a B phase rich in rods, and the

other at very high pressures, with a B phase rich in plates (although B-B demixing also

occurs in a narrow range of pressures). When plates are strongly adsorbed, the mixture

exhibits a strong first-order phase transition. Different demixing scenarios depend on the

relative values of plate and rod adsorption coefficients. When adsorption of rods is large

while that of plate is small, the B-phase stability is greatly enhanced, the N-B transition is

always of second order, and no demixing occurs.

The article is organized as follows. In Sec. II we introduce the model and the theoretical

tools used to perform the calculations. In Sec. III we summarize all the results obtained,

with subsections presenting different mixtures with various relative adsorption strengths and

particle aspect ratios. Finally some conclusions are drawn in Sec. IV.

II. MODEL

We use the Zwanzig model for a binary mixture of prolate (rods) and oblate (plates)

board-like particles with centres of mass lying on the xy plane and with main axes pointing

along the ν = x, y, z directions. The edge lengths of species s (s = 1 for rods and s = −1

for plates) are represented through the tensor

στ
sν = σs + (Ls − σs) δντ , (1)

with δντ the Kronecker delta symbol, while Ls and σs are the particle sizes parallel and

perpendicular to the main particle axis, respectively. Therefore, particles are uniaxial paral-

lelepipeds with a square section of area σ2
s . Only symmetric mixtures will be studied, namely

those composed of particles with the same volume (which is set to unity, v0 = Lsσ
2
s = 1),

and with aspect ratios κ1 and κ−1 related by κ ≡ κ1 = L1/σ1 = κ−1
−1 = σ−1/L−1 ≥ 1. Thus
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FIG. 1: Schematic representation of the Zwanzig model of a symmetric rod-plate mixture adsorbed

on a monolayer.

the edge lengths of the different species are calculated as Ls = κ2s/3, σs = κ−s/3. See Fig. 1

for a schematic representation of our model.

The theory used in the present calculations is the uniform limit of the FMT density

functional obtained by applying the dimensional crossover property. This feature allows

to correctly transform the functional from 3D to 2D by assuming a 3D density profile, for

species s and orientation along the ν-axis, of the form ρ
(3D)
sν (r) ≡ ρsνδ(z), i.e. imposing that

the particle centres of mass are constrained to the flat surface perpendicular to z. When this

density is substituted into the 3D version of the excess free-energy functional, the resulting

functional depends on the (constant) 2D number densities

ρsν = ρxsγsν , (2)

where ρ is the total number density, xs is the molar fraction of species s, while γsν is

the fraction of species s with main axes pointing along the ν-direction. Obviously these

quantities fulfill the following constraints:
∑

s

xs = 1 and
∑

ν

γsν = 1 or alternatively

∑

s

ρs = ρ and
∑

ν

ρsν = ρs, with ρs = ρxs the number density of species s. The resulting

excess free-energy density in reduced thermal units kT depends on the following weighted

densities:

n0 = ρ =
∑

s,ν

ρsν , n2 = η =
∑

s,ν

ρsνσ
x
sνσ

y
sν , (3)

n1x =
∑

s,ν

ρsνσ
x
sν , n1y =

∑

s,ν

ρsνσ
y
sν , (4)

and has the explicit form

Φexc ≡
βFexc

A
= −n0 log(1− n2) +

n1xn1y

1− n2
, (5)
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where β = 1/kT is the Boltzmann factor and A the total area of the system. We note that

the weighted density n2 is just the total packing fraction, η, of the binary mixture. The

ideal part, Φid ≡ βFid/A is, as usual

Φid =
∑

s,ν

ρsν (log ρsν − 1) , (6)

and the effective interaction between species s, with projected area on the xy plane asν =

σx
sνσ

y
sν , and the surface, is accounted for by an external potential contribution to the free-

energy density:

Φext ≡
βFext

A
= −

∑

sν

ǫsρsνasν . (7)

Note that this contribution is proportional to the projected particle areas, and that we allow

for the possibility that the adsorption strengths ǫs ≥ 0 be dependent on species s.

To find the equilibrium orientational properties of the fluid we minimize the total free-

energy density Φ = Φid +Φexc +Φext with respect to the fractions γsν . These can be related

to the uniaxial nematic order parameters,

Qs ≡
3γsz − 1

2
, s = ±1, (8)

which measure the order about the direction perpendicular to the surface, and to the biaxial

nematic order parameters,

∆s =
s (γsx − γsy)

γsx + γsy
, s = ±1, (9)

which measure the degree of biaxial order. Note that the factor s = ±1 in the definition of

∆s is necessary to take account of the orthogonality of the plate and rod main axes when

their projections have the same orientations.

We have calculated the phase diagram by searching for possible demixing transitions

through (i) the equality between chemical potentials of species s, βµs ≡
∂Φ

∂ρs
, and (ii) the

equality between the pressures of the demixed phases. The latter can be calculated as

βp =
n0

1− n2

+
n1xn1y

(1− n2)2
(10)

(in reduced thermal units). These calculations are equivalent to finding the coexisting molar

fractions of the demixed phases through the double-tangent construction of the Gibbs free-

energy density,

βg(x) ≡ Φ + βpρ−1, (11)
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FIG. 2: Phase diagrams of rod-plate binary mixtures with κ = 10 shown in the pressure-molar

fraction of rods (x ≡ x1) plane. The values of the external potential strengths in (a) and (b) are

(ǫ1, ǫ−1) = (0, 0) and (1, 1), respectively. The dashed lines show the second order N-B transitions,

while the solid lines show the binodals of N-B or B-B coexistences. The grey-shaded region (labelled

as N/B+B) is the demixing region. The open diamond corresponds to the demixing critical point.

The dotted lines are the spinodal instability to non-uniform phases. The regions of stability of the

N and B phases are correspondingly labelled.

as a function of the molar fraction x ≡ x1 at constant value of p. This constraint allows us

to find the total number density ρ(x, p) as a function of x at fixed p, while all the quantities

γsν should be calculated for the same values (x, p) from the set of equations ∂Φ/∂γsν = 0.

To find the location of second-order phase transitions to biaxial phases we use a bifurcation

analysis of the total free-energy density Φ with respect to the (small) order parameters ∆s.

For details of these calculations see Appendix A. In the rest of the manuscript we use

dimensionless densities ρ∗ ≡ ρv
2/3
0 and pressures p∗ ≡ βpv

2/3
0 .

III. RESULTS

This section is devoted to the study of the phase diagram topologies as a function of the

adsorption strengths (ǫ1, ǫ−1) and the aspect ratio κ of the mixture.
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A. Mixtures with κ = 10 and low and symmetric adsorption

We firstly studied the monolayer of rods and plates with zero adsorption to the surface

by setting (ǫ1, ǫ−1) = (0, 0). The phase diagram obtained for a mixture with κ = 10 is

shown in Fig. 2(a) in the pressure-composition plane. The dashed line, which departs at its

lowest pressure from the left vertical axis (x ≡ x1 ∼ 0), represents a continuous N-B phase

transition.

From low to high pressures, but below the N-B spinodal, the configuration of plates

changes from a nearly equimolar composition of their three species to that in which the

species with the largest (square) projected area, equal to κ2/3, has the lowest composition

while the other two species, with rectangular projected shapes of aspect ratio κ and surface

area κ−1/3, have equal compositions. The plate axes of the latter species are parallel to

the surface but their rectangular sections are yet randomly oriented in 2D. This phase is

a planar N with a negative uniaxial order parameter which decreases with pressure. The

configuration of rods at low pressures always exhibits a preferential alignment perpendicular

to the monolayer, resulting in a higher proportion of projected (small) squares of surface

area κ−2/3. The other two species of rods, having rectangular shapes, aspect ratio κ, and

surface area κ1/3, have again the same composition. Thus the uniaxial order parameter of

rods is always positive and increases with pressure. The authors of the recent work [39]

showed that the uniaxial order parameter Q1 of one-component rods on a surface increases

linearly from zero as a function of ρ∗.

As the pressure increases, the fraction of plates with their axes oriented parallel to the

surface and that of rods oriented perpendicular to it become larger, and the uniaxial order

parameters tend to −1/2 and 1, respectively. At a certain pressure (which depends on

molar fraction), the xy orientational symmetry is broken in a continuous fashion, and the

projected rectangular species for both, rods and plates, begin to align along a preferential

direction, say the y direction. From this pressure the B phase becomes stable and the B

order parameters continuously increase from zero. See Fig. 3 for a sketch of projected shape

configurations for the different phases. Fig. 2 indicates that biaxial ordering is promoted

by the plates: the N-B spinodal, departing from the left vertical axis (x ≡ xr = 0), is a

monotonically increasing function of x and possesses an asymptote at x = 1. The latter

means that one-component monolayers of rods do not exhibit B ordering. From now on we
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(a) (b) (c)

FIG. 3: Schematic representation of projected particle areas corresponding to rod-plate binary

mixtures in (a) a low-density N phase, (b) an intermediate-density B phase, and (c) a high-density

N phase.

refer to this spinodal as the plate N-B spinodal.

At very high pressures, most of the plate axes align parallel to the monolayer, while those

of rods are perpendicular to it. Thus the system can be approximated by a 2D mixture

of Zwanzig hard rectangles (of area κ−1/3 and aspect ratio κ) and parallel hard squares (of

area κ−2/3). This 2D mixture demixes into two phases, each one rich in one of the species,

as shown in Fig. 2. The critical point of the demixing transition is above the N-B spinodal,

meaning that B-B coexistence takes place in some pressure interval. For pressures above the

crossing point between the right demixing binodal and the N-B spinodal the system phase

separates into a B phase, rich in plates, and a N phase, rich in rods. Finally the dotted line

in Fig. 2 represents the spinodal instability of the uniform phases with respect to density

modulations, which corresponds to the presence of stable non-uniform phases (see Appendix

B for details on these calculations). We can see that the N/B-B demixing is, except for a

small interval of pressures, metastable with respect to transitions to non-uniform phases.

Fig. 2 (b) shows the phase diagram when the adsorption strengths are still relatively

small: (ǫ1, ǫ−1) = (1, 1). We can observe that the phase diagram topology is similar to

that of the preceding case, except that now there appears a region, close to x = 1 and

bounded by a dashed line, where the B phase becomes stable. From now on this spinodal

will be called the rod N-B spinodal. The total free-energy is lowered when the fraction

of rods with main axes parallel the monolayer increases, since this is proportional to the

projected areas. In turn, these rods exhibit two continuous N-B and B-N transitions: B
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ordering increases with pressure, reaches a maximum, then decreases and finally disappears

altogether. This reentrant behaviour of the B phase with pressure can be explained as

follows. When the loss in free-energy given by a preferential adsorption and further alignment

of rods with projected rectangular shapes cannot compensate the free-energy increase due

to the large excluded volumes between rectangular projected species, as compared to those

of small squared species, the most favored configuration of particles is that of rods pointing

perpendicular to the monolayer. As the total amount of rods lying on the surface becomes

small a B-N transition takes place. This behaviour was already found in monolayers of

one-component Zwanzig rods with κ > κc and zero adsorption. The values of κc were found

to be 21.3 and 12 from the spatially continuous [20] and discrete lattice models [39]. When

the continuous orientational degrees of freedom are restored, this transition disappears [22].

However if particles can rotate freely except for a small solid angle with respect to the

surface normal, the B phase again becomes stable [22]. Thus in real situations when the

surface/interface promotes a preferential adsorption of rods with their axes parallel to the

surface the B phase will certainly become stable.

B. Mixtures with κ = 10 and high and symmetric adsorption

Now we proceed to describing the phase behaviour of monolayers of rods and plates with

relatively high adsorption strengths, specifically those with (ǫ1, ǫ−1) = (4, 4). The phase

diagram in the pressure-composition and total density-composition planes are shown in Fig.

4(a) and (b), respectively. The most salient features that can be observed from the figure

are: (i) the presence of strong N-B demixing at pressures located between two tricritical

points, both lying on the rod-N-B spinodal which ends at x = 1, and (ii) the existence of

a strong first order N-B transition departing from x = 0 and ending in a tricritical point

located at the plate-N-B spinodal. Panel (b) shows the density of the coexisting phases

along all these binodals and spinodals.

We first describe the N-B demixing. Fig. 4(b) shows that the values of the coexisting

densities in the demixed phases are similar, with B being the densest phase, rich in rods

(two different pairs of coexisting densities are shown with circles and squares). However the

packing fraction has the opposite behaviour (see the black line of Fig. 5): the phase with

the highest packing fraction is the N phase, rich in plates. This behaviour (nearly the same
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FIG. 4: Phase diagrams of rod-plate binary mixtures for κ = 10 and (ǫ1, ǫ−1) = (4, 4) in the (a)

pressure-molar fraction plane, (b) scaled density-molar fraction plane. Solid lines show the binodals

of N-B (or B/B) coexistence, with the coexistence regions shaded in grey. The dashed, dotted lines

and diamond have the same meaning as in Fig. 2. Open circles correspond to tricritical points,

while black squares and circles in (b) are used to show a pair of coexisting points at different

binodals. Inset in (a) is a zoom showing the first-order character of the N-B transition.

coexisting densities but very different composition) is typical in entropy-driven demixing.

Note that plates in both coexisting N and B phases have always a positive uniaxial order

parameter along the binodals [see Fig. 6(b)], so the fraction of projected large squares (cross-

section of plates) is relatively high. The projected rectangles corresponding to rods lying on

the surface also have a relatively high fraction (see the negative values of Q1 in (a) along the

binodals, except for a region close to the upper tricritical point), as compared to that of the

square projected areas (when rods point perpendicular to the monolayer). As usually occurs

in entropy-driven demixing, the total excluded area between the rod-projected rectangles

and the plate-projected squares is lowered if the demixed phases are rich in one of the species.

The high proportion of large squares is the reason behind the high packing fraction values

of the coexisting N phase, as compared to that of the B phase. It is interesting to note the

highly non-monotonic behaviour of the packing fraction along the demixing binodals (see

Fig. 5), a direct consequence of the dependence of η not only on ρ∗ and x but also on the

order parameters Qs. Finally Fig. 7 shows the evolution of the biaxial order parameters

12



0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

η

1

2 4

3

5
6

7

8

FIG. 5: Packing fractions corresponding to the N-B coexistence binodals (solid) and N-B second-

order transitions (dashed) of a rod-plate binary mixture with κ = 10 and (ǫ1, ǫ−1) = (4, 4) as a

function of molar fraction. The symbols have the same meanings as in Fig. 4 and correspond to

the same state points. Packing fractions corresponding to the lines belonging to the low pressure

N-B demixing and to the strong first order N-B transition of Fig. 4(b) are here shown in grey and

black, respectively.

along the demixing binodals. The biaxial order of both species along the coexisting B phase

rapidly increases and saturates to its highest value (unity) as the mixture gets away from

the lower tricritical point. At some point they invert their monotonicity and decrease to

zero at the upper tricritical point.

From the other side of the phase diagram (x = 0), and for intermediate values of pressure,

a strong first order N-B phase transition takes place, as can be inferred from the large

coexisting density gap in Fig. 4(b). This transition ends in a tricritical point located at

the plate-N-B spinodal, and is driven by the reorientation of plates. Note the positive and

negative values of Q−1, corresponding to the coexisting N and B phases, respectively [see

Fig. 6(b)]. The rods are now mainly oriented perpendicular to the monolayer (perfectly

oriented in the N phase, and with a small degree of orientation in the B phase). It is

interesting to note that the coexisting molar fractions are now similar (with the B phase

slightly rich in plates), while the coexisting densities are very dissimilar (B being the densest

phase). This transition is driven by a differential change in free-energy from a N phase with
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FIG. 6: Uniaxial orientational order parameters of (a) rods, and (b) plates as a function of the

molar fraction along the N-B coexisting binodals and spinodals of Fig. 4, i.e. for a rod-plate binary

mixture with κ = 10 and (ǫ1, ǫ−1) = (4, 4). The solid and dashed lines, and symbols (showing the

same state points) have the same meanings as in Fig. 4.
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FIG. 7: Biaxial orientational order parameter of rods (solid) and plates (dashed) as a function of the

molar fraction along the N-B demixing binodals (a) and along the N-B strong first order transition

(b) corresponding to Fig. 4, i.e. for the rod-plate binary mixture with κ = 10 and (ǫ1, ǫ−1) = (4, 4).

The symbols have the same meanings as in Fig. 4 and represent the same state points.
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a high fraction of adsorbed larges squares (plate axes perpendicular to the monolayer) to a

B phase with a high fraction of projected rectangles (corresponding to plates with their axes

lying on the monolayer and pointing along y). When we follow a constant pressure path

from the N to the B coexisting phases, the free-energy contribution corresponding to the

external potential increases, while that coming from the entropic interaction part is lowered

(because the particle excluded areas decrease). The differential change in the total adsorbed

area of particles is huge, so the transition becomes strongly first order. Again the coexisting

packing fractions are inverted: that of the B phase is lower (see the gray solid curve in Fig.

5). At very high pressures the same N/B-B demixing transition ending in a critical point

takes place [similar to the cases (ǫ1, ǫ−1) = (0, 0) and (1, 1)].

Finally we calculated the instability of uniform phases with respect to non-uniform density

modulations. The pressures and densities at which these instabilities occur are plotted as

a function of x in Fig. 4(a) and (b), respectively. We can see that the lower tricritical

point is located above this curve, suggesting that all demixing transitions are metastable

with respect to transitions or demixing between non-uniform phases. When the molar

fraction of plates with axes perpendicular to the surface is high due to their large surface

adsorption, their square cross-sections may crystallize in a simple square lattice at a certain

pressure. If pressure is increased beyond this value, plates will reorient their axes parallel

to the monolayer and consequently crystal ordering could be destabilized with respect to

a uniform or nonuniform phase exhibiting B ordering. On the other side of the phase

diagram, where the molar fraction of rods is high and the B phase is stable, the most likely

scenario is that of B-smectic or B-columnar phases, where the projected rectangles exhibit

two-dimensional smectic or columnar arrangements. These open questions should be settled

out by performing DF minimisation with respect to non-uniform density profiles, ρsν(x, y),

and search for possible coexistences, a formidable task that we leave for future studies.

C. Mixtures with κ = 10 and asymmetric adsorption

In this section we study the effect of adsorption asymmetry on the phase behaviour of

monolayers of rods and plates. To this purpose we have chosen the adsorption strengths

as (ǫ1, ǫ−1) = (5, 3), i.e. rods are more strongly adsorbed on the surface than plates. To

better compare the results obtained with those described in the preceding sections, we
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FIG. 8: Phase diagrams in the pressure-molar fraction [(a)] and scaled density-molar fraction [(b)]

planes for a rod-plate binary mixture with κ = 10 and (ǫ1, ǫ−1) = (5, 3). The lines, symbols and

labels have the same meanings as in Fig. 4.

again set the aspect ratio to κ = 10. The phase diagram for this mixture is plotted in

Fig. 8 in the (a) pressure-composition and (b) density-composition variables. The main

features we can extract from these results are: (i) When the rods are strongly adsorbed

on the surface, the lower part of the rod-N-B spinodal meets the plate-N-B spinodal at

intermediate compositions, creating a monotonic, fully connected spinodal curve over the

whole composition interval. (ii) There is a lower tricritical point located on this curve,

above which a demixing transition occurs. (iii) The demixing transition coalesces with the

strong first-order transition driven by plates at higher pressures (the one ending at x = 0).

(iv) The upper part of the rod-N-B spinodal joins the right part of the plate-N-B spinodal,

creating an island of N phase stability. (v) The entropic N/B-B demixing at high pressure

remains invariant, which confirms the fact that the system behaves like a 2D mixture of

squares and rectangles. Fig. 9 shows the strong non-monotonic behaviour of the packing

fraction along the coexistence binodals, with the presence of a large loop. (vi) The spinodal

for the uniform phase instability with respect to density modulations is located again below

the tricritical point. Also, packing fraction inversion (with respect to density) does occur,

with N being the densest phase. Figs. 10(a) and (b) show the uniaxial order parameters

along the binodals, with a B phase of rods and plates having axes lying on the monolayer,
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FIG. 9: Packing fraction, as a function of the molar fraction, along the N-B binodals and spinodals

of Fig. 8, i.e. for the rod-plate mixture with κ = 10 and (ǫ1, ǫ−1) = (5, 3). The lines and symbols

have the same meaning as in Fig. 8, and they correspond to the same state points.

and a N phase with plate axes pointing perpendicular to it. Interestingly, the rods in N

phase are oriented parallel to the surface, although to a lesser degree. The insets show

the completely saturated ordering of particles (perpendicular and parallel to the surface for

rods and plates, respectively) along the boundaries limiting the island of N phase stability.

Finally Fig. 11 shows the biaxial order parameters along the coexisting binodals, which have

the usual behaviour: a rapid increase as the system gets away from the tricritical point, and

then saturation to perfect biaxial ordering.

Fig. 12(a) shows the phase diagram of a mixture with κ = 10, but with larger asymmetry

in their adsorption strengths, (ǫ1, ǫ−1) = (5, 1). Now the plates are slightly adsorbed on the

surface, while rods are strongly adsorbed. We can see that: (i) the demixing and first-order

N-B transitions (present in the (5, 3)-mixtures) are substituted by continuous transitions,

with the N-B spinodal now being a monotonically decreasing function of x. Thus the region of

B stability is greatly enhanced. (ii) The island of N-phase stability and the N/B-B demixing

at high pressure remain as before. Fig. 12(b) shows the phase diagram of the mixture

(ǫ1, ǫ−1) = (2, 5), i.e. plates and rods are strongly and slightly adsorbed, respectively. Note

the presence of a strong first-order N-B transition driven by the desorption of plates at

intermediate pressures. As before, this transition ends in a tricritical point located on the
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FIG. 10: Uniaxial nematic order parameter of (a) rods, and (b) plates along the B binodals and

spinodals of Fig. 8, i.e. for the rod-plate binary mixture with κ = 10 and (ǫ1, ǫ−1) = (5, 3). The

lines and symbols have the same meaning as in Fig. 8. The inset in (a) shows the order parameter

corresponding to the highly oriented rods along the N-B spinodal located at high pressures and close

to x = 1 in Fig. (8). The inset in (b) shows the order parameter of plates with close-to-perfect

planar nematic ordering along the same N-B spinodal.
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symbols have the same meaning as in Fig. 8, and show the same state points. The inset is a zoom

of the main figure.
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FIG. 12: Phase diagrams in the pressure-molar fraction planes corresponding to rod-plate binary

mixtures with (a) κ = 10 and (ǫ1, ǫ−1) = (5, 1), and (b) (2, 5). The lines, symbols and labels have

the same meaning as in Fig. 4. Inset in (b) is a zoom of the main figure showing the first-order

character of the N-B transition in some pressure interval.

plate-N-B spinodal. The B phase, rich in rods, is again stable inside a island bounded

by the rod-N-B spinodal. No demixing was found in this part of the phase diagram, with

the N-B transition being of second order. The N/B-non-uniform-phase spinodals are now

discontinuous and located above the B phase of rods.

D. Mixtures with κ =20 and 40

The last study concerns the phase behaviour of mixtures with higher aspect ratios, in

particular those with κ = 20 and 40. As shown in Fig. 13 the phase-diagram topologies

are similar, but there is an important difference: now the lower tricritical point is always

located below the spinodal instability to non-uniform phases. Thus there is always a range

of pressures, which increases with κ, for which demixing into a N phase and a B phase rich in

rods is stable. In Figs. 13 (a) and (b) the phase diagrams for κ = 20 and (ǫ1, ǫ−1) = (1.5, 1.5),

panel (a), and (3, 1.5), panel (b), are shown. Note that the former mixture is symmetric

with respect to adsorption. The upper boundary of the rod-N-B spinodal meets the N-B-

plate spinodal at intermediate compositions. The phase behaviour includes: N-B demixing
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between two tricritical points (the lower one departing from the rod-N-B spinodal), and a

strongly first-order N-B transition driven by the desorption of plates, beginning at x = 0

and ending in a tricritical point located at the plate-N-B spinodal. This point and the

upper critical point of the demixing transition are now very close to each other. An island

of N-phase stability exists at high pressure as a consequence of the coalescence between the

right part of the plate-N-B spinodal and the upper part of the rod-N-B spinodal. Finally,

N/B-B demixing of the effective two-dimensional mixture of squares and rectangles at high

pressure is also present. The phase diagram topology for the second mixture studied, that

with (ǫ1, ǫ−1) = (3, 1.5), is very similar to the for κ = 10 described before. Again there is an

important difference, namely the existence of stable N-B demixing in some pressure range.

Also the B phase, rich in rods, is stable in a rather large region of the phase diagram.

We end this section by showing the phase diagram of a mixture with κ = 40 and (ǫ1, ǫ−1) =

(1, 1), in Figs. 13(c) and (d). We concentrate on some details of the phase diagram topology

not found before: (i) The presence of a lower critical point (at low pressures and close to the

lower N-B tricritical point) above which B-B demixing takes place in a rather small range

of pressures [see inset of panel (d)]. (ii) The two distinct tricritical points, located close to

each other in previous cases [e.g. the case κ = 20 and (ǫ1, ǫ−1) = (1.5, 1.5)] now coalesce

into a single azeotropic point [see panel (d)].

IV. CONCLUSIONS

We have systematically studied the phase behaviour of mixtures of rods and plates ad-

sorbed on a monolayer. In our model, the particle centres of mass are taken to freely move

on the surface, while particles can rotate in 3D within the restricted-orientation, Zwanzig

approximation. Adsorption of the particle surfaces on the monolayer is mimicked through an

attractive external potential proportional to the area of the particle surface contact, while

the strengths of this interaction, (ǫ1, ǫ−1), depend on the species type. Rods and plates were

taken to be symmetric, i.e. with the same volume and same aspect ratio κ. A FMT-based

DF, adapted to the present constrained geometry, was minimised, and phase diagrams of

mixtures with κ = 10, 20 and 40 and different values of (ǫ1, ǫ−1) were calculated.

The main results can be summarized as follows. (i) When both adsorption strengths ǫs are

zero or small, rods and plates orient perpendicular and parallel to the surface, respectively.
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FIG. 13: Phase diagrams in the pressure-molar fraction plane of rod-plate binary mixtures for (a)

κ = 20, (ǫ1, ǫ−1) = (1.5, 1.5), (b) κ = 20, (ǫ1, ǫ−1) = (3, 1.5), (c) and (d) κ = 40, (ǫ1, ǫ−1) = (1, 1).

The lines, symbols and labels have the same meaning as in Fig. 4 and 8. In panel (d) we show two

enlarged regions of the phase diagram shown in (c): one close to the N-B azeotropic point (main

figure), and the other close to the lower B-B critical point (inset).

The degree of orientation continuously increases with pressure, and at some value (which

depends on the composition) a second-order N-B transition occurs, at which the plate axes

orient along a director lying on the surface. Although rods also exhibit biaxial ordering, this

transition is governed by the orientational symmetry breaking of plate axes, and consequently

the plate-N-B spinodal is a monotonically increasing function of x. (ii) At some value of ǫ1
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and, starting at the x = 1 vertical axis at low pressures, there appears an island of B phase

stability enclosed by a rod-N-B spinodal which is disconnected from the plate-N-B spinodal.

The N-B transition is of second order and is governed by the alignment of rods with axes

on the monolayer. As pressure increases rods prefer to align perpendicular to the surface,

and biaxial ordering disappears. (iii) When rods and plates are symmetrically adsorbed on

the monolayer (ǫ1 = ǫ−1) and the strengths are relatively large, two tricritical points appear

on the rod-N-B spinodal; between these two points N-B demixing takes place, with demixed

phases rich in one of the components. The B and N coexisting phases are mostly populated

by rods and plates, respectively. Also, there is a strongly first-order N-B phase transition

with a large density gap starting at the x = 0 vertical axis. This transition ends in a tricritical

point located on the plate-N-B spinodal, and is driven by the desorption of the largest cross-

section of the plates (corresponding to axes perpendicular to the monolayer). Finally at

very high pressures, when the degree of order is high, the system effectively becomes a two-

dimensional mixture of squares (the smallest projected section of rods) and rectangles (the

smallest projected sections of plates), which demix into a B phase, rich in plates, and a

N phase, rich in rods. This demixing transition ends in a critical point above which there

exists a rather narrow B-B demixing region. (iv) When the adsorption of particles is very

asymmetric and ǫ1 > ǫ−1, the lowest boundary of the rod-N-B spinodal connects with the left

part of the plate-N-B spinodal, forming a monotonically-decreasing spinodal over the whole

range of compositions. The N-B transition is always of second order when the adsorption of

plates is small. Also the upper boundary of the rod-N-B spinodal connects with the right

part of the plate-N-B-plate spinodal, forming an island of N stability. The highest pressure

N/B-B demixing remains invariant. (v) When the adsorption of particles is very asymmetric

and ǫ−1 > ǫ1, the strongly first-order N-B transition governed by desorption of plates and

their B ordering is present up to high molar fractions, while the N-B transition, governed

by orientation of rods, is of second order and the N-B demixing disappear. The region of

stability of the B phase (enclosed by the rod-N-B spinodal) is reduced as ǫ1 becomes smaller.

We also calculated the spinodal instability of uniform phases with respect to density

modulations with different symmetries (smectic, columnar or crystalline). We found that a

B phase rich in rods is stable over a relatively large interval of pressures, while the strong

N-B phase transition is always metastable. For κ = 20 and 40 there exists a range of

pressures for which N-B demixing is stable. Of course N/B-B demixing at high pressure,
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ending in a lower critical point, is also metastable. We note that demixing regions could

be made wider if we chose shape-asymmetric mixtures (different volumes and/or different

aspect ratios), and consequently the regions of N and B phase stability could be modified.

Even the orientational symmetries of the demixed phases could be different for asymmetric

mixtures as shown in theoretical calculations of freely-rotating rod-plate Onsager mixtures

[40].

We are confident that the results presented in this work will be qualitatively similar if we

remove the restricted orientation approximation and consider the free rotation of particle

axes. Computer simulations of binary mixtures adsorbed on a flat monolayer could confirm

this conclusion.

MC simulations of 2D mixtures of rods on a lattice show an interesting phase behavior

[41]. When the aspect ratio of the longer rods is 7 there exist two I-N and N-I transitions as

the density of longer rods is increased while that of the shorter rods is fixed bellow a certain

critical density. This behavior resembles that of the present rod-plate mixture for which two

N-B and B-N transitions take place at fixed composition as the pressure is increased and the

adsorption strengths of rods is high enough. Thus it would be interesting to perform DFT

calculations on mixtures of adsorbed rods to find the differences and similarities between

monolayers and strictly 2D hard rod mixtures.

Also interesting are the similarities that the present system shares with the phase be-

haviour of monolayers of biaxial particles studied in [21]. In that case the phase diagrams,

in the density-biaxial parameter plane, present a N-B spinodal, completely analogous to

that of the present system, if we replace the biaxial parameter by molar fraction. Moreover,

by increasing the aspect ratio of biaxial rods in the previous study, one obtains an island of

B phase stability; a similar effect is found in the present study when adsorption strength is

increased. Above a particular value for the largest aspect ratio of the biaxial particles, this

island coalesces with the N-B spinodal, again a behaviour similar to the one found in the

present study if the adsorption strength is increased beyond some critical value.

Additionally, we may ask ourselves how particle biaxiality would affect the present phase

behaviour. If particles are biaxial, we would expect the N-B spinodal to shift to higher

pressures, favouring the stabilisation of non-uniform phases. On the other hand, biaxiality

would also reduce the island of B stability in the rod-rich part of the phase diagram. Finally

it would also be possible that particle biaxiality reduced demixing gaps, because particle
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projections become similar with biaxiality.

Appendix A: N-B bifurcation analysis

The constrained minimisation of the free-energy density with respect to the variables γsν

gives the following set of equations:

γsν =
e−Ψsν

∑

τ

e−Ψsτ

, (A1)

where

Ψsx =

(

n0

1− n2
+

n1xn1y

(1− n2)2
− ǫs

)

κs/3 +
n1xκ

−s/3 + n1yκ
2s/3

1− n2
, (A2)

Ψsy =

(

n0

1− n2
+

n1xn1y

(1− n2)2
− ǫs

)

κs/3 +
n1xκ

2s/3 + n1yκ
−s/3

1− n2
, (A3)

Ψsz =

(

n0

1− n2

+
n1xn1y

(1− n2)2
− ǫs

)

κ−2s/3 +
(n1x + n1y)

1− n2

κ−s/3. (A4)

Using the definition of biaxial order parameter ∆s from (9), we arrive at

∆s =
s
(

e−Ψsx − e−Ψsy

)

e−Ψsx + e−Ψsy

, s = ±1. (A5)

Expanding (A5) with respect to ∆s (obviously the functions Ψsν depend on {Qs,∆s}) up to

first order gives a system of two equations which has a nontrivial solution only if the number

density is such that

ρ−1 =
1

2

∑

s

xsκ
−2s/3

[(

κ2s + 1
)

+ γsz
(

1− κ2s
)]

, (A6)

where γsz is the solution of (A1) for ν = z, and the functions Ψsν are calculated from

(A2)-(A4), with all the weighted densities depending only on γsz, as n0 = ρ and

n1x = n1y =
ρ

2

∑

s

xs

[

κ2s/3 + κ−s/3 + γsz
(

κ−s/3 − κ2s/3
)]

, (A7)

n2 = η = ρ
∑

s

xs

[

κs/3 + γsz
(

κ−2s/3 − κs/3
)]

(A8)

Thus we need to solve a system of two non-linear equations to find the equilibrium values

of γsz, and consequently the number density ρ at which a bifurcation from the N to the B

phase occurs.
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Appendix B: Spinodal instability to non-uniform phases

We have calculated the spinodal instability of uniform phases with respect to spatial

inhomogeneities through the divergence of the structure factor. The Fourier transform of

the direct correlation functions, calculated through the second functional derivative of the

functional, reads

−ĉsµ,s′ν(q) =
〈ω̂

(0)
sµ (q)ω̂

(2)
s′ν(q) + ω̂

(1x)
sµ (q)ω̂

(1y)
s′ν (q)〉

1− n2

+
〈
(

ω̂
(1x)
sµ (q)n1y + ω̂

(1y)
sµ (q)n1x

)

ω̂
(2)
s′ν(q)〉

(1− n2)2

+

(

n0

(1− n2)2
+

2n1xn1y

(1− n2)3

)

ω̂(2)
sµ (q)ω̂

(2)
s′ν(q), (B1)

where 〈fsµ,s′ν〉 = fsµ,s′ν + fs′ν,sµ implies symmetrisation with respect to the pair of indexes

(sµ, s′ν), and the weighted densities nα correspond to the stable uniform N or B phases,

with orientational order parameters calculated from the minimisation of the corresponding

free energies. The Fourier transforms of the weighting functions are

ω̂(0)
sµ (q) = χ0(qxσ

x
sµ/2)χ0(qyσ

y
sµ/2), ω̂(2)

sµ (q) = σx
sµσ

y
sµχ1(qxσ

x
sµ/2)χ1(qyσ

y
sµ/2), (B2)

ω̂(1x)
sµ (q) = σx

sµχ1(qxσ
x
sµ/2)χ0(qyσ

y
sµ/2), ω̂(1y)

sµ (q) = σy
sµχ0(qxσ

x
sµ/2)χ1(qyσ

y
sµ/2), (B3)

where χ0(x) = cosx and χ1(x) = sin(x)/x. We define the 6× 6 structure factor matrix

S−1
α,β(q) = δss′δµν − ρsµĉsµ,s′ν(q), (B4)

where α = s+µ+1 and β = s′+ν+1 if s = −1, and α = s+µ+2 and β = s′+ν+2 if s = 1

(with the corresponding relabelling µ = 1, 2 and 3 for x, y and z, respectively). Evaluating

the determinant of this matrix S(q; ρ∗) ≡ det
[

S−1
α,β(q)

]

at the wave vectors q = (0, q) or

q = (q, 0) (corresponding to inhomogeneities along or perpendicular to the nematic director,

respectively), we found the corresponding values at the spinodal instabilities, qs and ρ∗s, as

the values for q and ρ∗ where the absolute minimum of S(q; ρ∗) as a function of q becomes

zero for the first time. This is equivalent to solving the pair of equations

S(q; ρ∗) = 0,
∂S

∂q
(q; ρ∗) = 0. (B5)
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