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In this paper we present a method for solving a finite inverse eigenvalue problem arising in
the determination of added distributed mass in nanoresonator sensors by measurements of
the first N natural frequencies of the free axial vibration under clamped end conditions.
The method is based on an iterative procedure that produces an approximation of the

unknown mass density as a generalized Fourier partial sum of order N, whose coefficients
are calculated from the first N eigenvalues. To avoid trivial non-uniqueness due to the sym-
metry of the initial configuration of the nanorod, it is assumed that the mass variation has
support contained in half of the axis interval. Moreover, the mass variation is supposed to
be small with respect to the total mass of the initial nanorod.
An extended series of numerical examples shows that the method is efficient and gives

excellent results in case of continuous mass variations. The determination of discontinuous
coefficients exhibits no negligible oscillations near the discontinuity points, and requires
more spectral data to obtain good reconstruction. A proof of local convergence of the iter-
ation algorithm is provided for a family of finite dimensional mass coefficients. Surprisingly
enough, in spite of its local character, the identification method performs well even for not
necessarily small mass changes.
To the authors’ knowledge, this is the first quantitative study on the identification of dis-

tributed mass attached on nanostructures modelled within generalized continuum
mechanics theories by using finite eigenvalue data.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last years, nanosensors based on Nanoelectromechanical systems (NEMS) have gained interest in different physical,
chemical and biological applications [1,2]. Enhanced capabilities have been reached by scaling down the size of the nanosen-
sors [3,4], moving the resolution of mass detection up to the zeptogram range [5]. A kind of nanosensor of great practical
interest is the mechanical nanoresonator, for which the mass sensing principle is based on monitoring the variations of
the resonant frequencies caused by (unknown) additional masses attached on the surface of the initial system.

The identification problem from minimal natural frequency data of a concentrated mass (modelled, for detection pur-
poses, as Dirac-delta point mass) located on structural elements has been addressed by Morassi and Dilena [6] for the case
ez-Sáez),
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of rod or beams, and Rubio et al. [7] for the case of a simply supported, rectangular plate. In the above papers the classical
elasticity theory was used and the added mass was considered small with respect to the total mass of the main structure.
Moreover, Morassi and coworkers [8,9] have presented a procedure to solve the identification problem of a point mass
located on the span of a rod [8] or beam [9], without any a priori assumption on the smallness of the attached mass. The
latest analyses appear as auxiliary problems when a crack in a rod or beam is attempted to be identified.

Bouchaala et al. [10] presented a method to determine the position and intensity of a concentrated mass attached to the
surface of an electrostatically actuated clamped-clamped microbeam used as a mass sensor. Although this last work is
devoted to the study of a microsensor, the laws of classical elasticity are also used.

However, the experimental results of several authors [11–14] pointed out that the consideration of size effects in the
nanoscale components could be relevant to predict their mechanical response. Therefore, since the classical continuum
mechanics is a scale-free theory, other formulations based on generalized continuum mechanics approaches taking into
account this size-dependent behavior, which present advantages in terms of computational cost in comparison to the molec-
ular dynamics formulations, must be explored.

Among the generalized continuum theories, we cite here the strain gradient elasticity family including the couple stress
theory [15], the first and second strain gradient theories of Mindlin [16,17], the modified couple stress theory [18] and the
modified strain gradient theory [12]. The last approach, based on previous formulations of Mindlin [17] and Fleck and
Hutchinson [19], needs new additional equilibrium equations to govern the behavior of higher-order stresses, and contains
only three non-classical constants for isotropic linear elastic materials. This theory has been used by different authors to ana-
lyze the mechanical response of different kind of nanostructures. The interested reader can see the very recent review by
Thai et al. [20].

Using the modified strain gradient theory [12], the authors analyzed for the first time the vibrational behavior of nanor-
ods [21], Euler–Bernoulli nanobeams [22], and rectangular simply-supported Kirchhoff nanoplates [23], carrying a single
point mass. For the case of small intensity of the concentrated mass, and from the properties of the eigenvalue perturbative
theory, a method for the identification of the attached point mass from minimal eigenfrequency data has been also devel-
oped [21–23].

The above cited works consider concentrated masses attached to the base system. However, added distributed mass rep-
resenting the adsorbed analyte seems to be more realistic in practice. In this respect much less effort to identify distributed
mass on nanostructures is given until now. Nevertheless, it is worth to quote the works by Hanay et al. [24] and Bouchaala
[25]. Thus, Hanay et al. [24] proposed an inertial imaging methodology which enables simultaneous identification of position
and shape of distributed masses through real time measurements of frequency shifts of the vibrational modes of the
nanosensor. Bouchaala [25] analysed the effect of a distributed added mass on the natural frequencies of an electrostatically
actuated resonator modelled as a classical clamped-clamped Euler-Bernoulli beam theory with geometrical nonlinearities.

However, to the authors knowledge, a general formulation of the identification problem of distributed added mass
attached on nanostructures described by generalized continuum mechanics theories is not given until now.

This paper deals with the inverse problem of determining the mass distribution of a nanorod from the knowledge of a
finite number of lower natural frequencies of the axial vibration under clamped ends, assuming that the mass coefficient
is a priori known on half of the nanorod and the added mass is a small perturbation of the total mass of the nanosensor.

From a mathematical point of view, this problem falls into the class of mixed finite inverse problems for fourth-order dif-
ferential operator of the Euler–Bernoulli type, since a finite number of eigenvalues belonging to a single spectrum is known,
and partial knowledge of the unknown coefficient to be determined is available. A celebrated uniqueness result for this class
of inverse problems can be traced back to Hochstadt and Lieberman [26]. The result holds for second-order differential oper-
ators of Sturm–Liouville type governing the axial vibration of classical straight elastic rods, i.e., Lv ¼ � 1

q xð Þv
00 xð Þ, for a rod

with unitary axial stiffness and linear mass density q xð Þ. Here, v xð Þ expresses the longitudinal displacement at x of the
cross-section of the rod, x 2 0; L½ �, where L is the rod length. It is shown that if q xð Þ is prescribed over L

2 ; L
� �

, then all the infi-
nite eigenvalues under clamped end conditions v 0ð Þ ¼ 0 ¼ v Lð Þ suffice to determine uniquely q xð Þ on 0; L2

� �
. It should be

remarked that there is another noticeable case in which the linear mass density of the rod can be uniquely determined from
the single spectrum under clamped end conditions, namely when q xð Þ is symmetric about the midpoint of the interval 0; Lð Þ
[27].

In the case of fourth-order operators, such as the one that governs the axial vibration of a nanorod, e.g.,

Lv ¼ 1
q bv IV � av 00
� �

, with a; b constant positive stiffness coefficients and q xð Þ unknown linear mass density function (see

Eq. (15) below), the results of uniqueness for q xð Þ are few and require the knowledge of an even larger infinite set of eigen-
values. For example, a classic result by Barcilon [28] shows that the unique determination of the coefficients p xð Þ; q xð Þ of the
Euler-Bernoulli operator Lv ¼ v IV � p xð Þv 0ð Þ0 þ q xð Þv requires knowledge of three complete spectra associated with three dif-
ferent boundary conditions, see the book of Gladwell [29] for a comprehensive analysis of this problem. We refer also to
Schueller [30] for local uniqueness results related to an Euler-Bernoulli operator for a mixed-type inverse eigenvalue prob-
lem with two even coefficients, and to Caudill et al. [31] for the first systematic study of isospectral coefficient sets for Euler-
Bernoulli operators.

In the study of the fourth-order inverse eigenvalue problem with finite data further difficulties occur, mainly due to the
non-uniqueness of the solution and to the difficulty in obtaining error estimates on the uniform approximation of the
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unknown coefficient. It can be shown that these estimates require the knowledge of infinite eigenvalues or, at least, of an
accurate asymptotic formula and of sufficient spectral data to make good approximation to the infinite data, see, for exam-
ple, [32]. In real cases, neither of this is available. However, despite their importance and dissemination in practical appli-
cations, general studies focused on inverse eigenvalue problems with finite data are relatively few. In this direction, the
contribution by Barnes in [33] is illuminating. Barnes shows that, to deal with this class of inverse problems, it is vital to
determine the weakest topology in which the available set of eigenvalues are continuous (with respect to the unknown coef-
ficient) since, otherwise, one would attempting to extract more information from the spectral data than it contains. In [33],
Barnes gives some refined approximation of the weakest topology.

With a view to these questions, and extending an idea developed in [34] for the identification of structural damage in
classical full-scale rods, in this paper the finite inverse problem is investigated from a different point of view. Under the
assumptions that the mass change is a small perturbation of the reference mass distribution of the axially vibrating nanorod,
the inverse problem is linearized around the referential configuration, and frequency shifts caused by the mass change are
correlated with generalized Fourier coefficients of the unknown mass variation. A numerical procedure based on an iterative
first-order algorithm is proposed and a proof of local convergence of the reconstruction is provided. For the sake of complete-
ness, it should be recalled that the idea of connecting Fourier coefficients of the unknown coefficient with frequency shifts is
old and traces back to the cornerstone contribution in inverse eigenvalue theory given by Borg [35], see Hald [36] and Knobel
and Lowe [37] for numerical applications.

The method has been tested on an extended class of coefficients, including smooth (e.g., continuous) and discontinuous
mass variations, either with connected or disconnected support. Numerical simulations show good accuracy in approximat-
ing smooth coefficients, even in the L1-norm, when the first 9� 12 eigenfrequencies are used. The reconstruction of discon-
tinuous coefficients turns out to be less accurate, especially because of non negligible oscillations of the reconstructed mass
variation near the discontinuity points, and typically requires the first 15� 20 eigenfrequencies to obtain reasonable
accuracy.

The plan of the paper is as follows. The formulation of the mass identification problem is presented in Section 2. Section 3
is devoted to the description of the reconstruction method. This section includes the derivation of the eigenfrequency sen-
sitivity to added masses (Section 3.1), the linearization of the inverse problem (Section 3.2), and its use in defining the iter-
ative procedure (Section 3.3). A proof of local convergence of the iterative method is presented in Section 4. Results of a
selected set of applications of the method are illustrated in Section 5. The use of a posteriori physical filtering and the sta-
bility of identification to noise are considered in Section 5.3.4 and Section 5.3.5, respectively. Finally, for the sake of com-
pleteness, a proof of the continuity of the eigenvalues and eigenfunctions with respect to perturbations of the mass
density (Theorem 3.1) is included in the ‘‘Appendix”.

2. Formulation of the mass identification problem

The basis of the identification method proposed in this paper will be presented for a straight uniform nanorod in longi-
tudinal vibration and under clamped end conditions. The spatial variation of the infinitesimal free longitudinal vibration of
the unperturbed or referential nanorod of length L is governed by the following eigenvalue problem [38,39,21].
bv IV � av 00 ¼ kq0v; x 2 0; Lð Þ; 1ð Þ
v 0ð Þ ¼ 0; v 00 0ð Þ ¼ 0; 2ð Þ
v Lð Þ ¼ 0; v 00 Lð Þ ¼ 0; 3ð Þ

8><>:

k ¼ x2 being the eigenvalue, wherex is the (radian) frequency, and v ¼ v xð Þ being the corresponding eigenfunction. The

coefficient q0 ¼ const., q0 > 0, represents the mass density per unit length. The coefficient a ¼ const., a > 0, represents the
axial stiffness of the nanorod, and it can be expressed as a = EA, with E; E > 0, being the Young’s modulus, and A being a geo-
metrical parameter that may be set to correspond with the cross-sectional area of the nanorod [38]. The coefficient
b ¼ const., b > 0, is determined as
b ¼ GA 2l20 þ
4
5
l21

� �
; ð4Þ
where G ¼ E= 2 1þ mð Þð Þ is the shear modulus defined in terms of E and of Poisson ratio m; m > 0, and l0 > 0; l1 > 0 are length
scale parameters [12,38,21].

Among the possible non-classical boundary conditions for a clamped end, those selected correspond to a nil value of the
higher order axial resultant, as it has been proposed by different authors, see [38,39]. Moreover, this condition ensures the
self-adjointness of the eigenvalue problem and, then, the reality of the eigenvalues [21].

It is well known that, under our assumptions, the sequence of eigenpairs kn;vn xð Þf g1n¼1 of (1)–(3) is equal to
kn ¼ np
L

� �2 1
q0

aþ b
np
L

� �2� �� 	
; ð5Þ
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vn xð Þ ¼
ffiffiffiffiffiffiffiffi
2
q0L

s
sin

npx
L

� �
; ð6Þ
where the following mass-normalization condition has been used
Z L

0
q0v2

n xð Þ ¼ 1; n P 1: ð7Þ
Note that the sequence knf g1n¼1 of the unperturbed nanorod is uniformly discrete, that is, there exists a separation constant
r > 0, only depending on the parameters of the system, such that
jkn � kmj P r; ð8Þ

for every m; n 2 N, with m– n. In particular, a direct calculation shows that
r ¼ 1
q0

p
L

� �2
aþ 2b

p
L

� �2� 	
: ð9Þ
This property will be useful in proving the continuity of the eigenfunctions of the nanorod with respect to perturbations of
the linear mass density (see the proof of Theorem 3.1 in Appendix).

Let us assume that the mass per unit length of the nanorod changes, and let us denote by
q xð Þ ¼ q0 þ r� xð Þ; x 2 0; L½ �; ð10Þ

the mass density per unit length of the perturbed nanorod. We shall assume the following hypotheses on the perturbation r�:

i) (L2-perturbation and smallness)
1
L

Z L

0
r� xð Þð Þ2dx

� �1
2

¼ �q0; ð11Þ
where the perturbation parameter � is a real number such that 0 < � 6 b�, with b� < 1 a small number to be chosen later on.

ii) (Regularity)
r� xð Þ 2 L1 0; L½ �ð Þ; ð12Þ

where L1 0; L½ �ð Þ is the space of (Lebesgue measurable) functions f : 0; L½ � ! R such that kfk1 ¼ ess supx2 0;L½ �jf xð Þj < 1 almost
everywhere in 0; L½ �.

iii) (Uniform lower and upper bound)
0 < q� 6 q xð Þ 6 qþ; x 2 0; L½ �; ð13Þ

with q�;qþ;qþ P q0 þ kr�k1, given constants independent of �.

Remark 2.1. The smallness of the mass variation r� xð Þ expressed in (11) allows to consider either perturbations of small
amplitude given on large portions of the interval 0; L½ � (e.g., diffuse mass change) or perturbation having large value
concentrated in small parts of 0; L½ �. Moreover, it should be noticed that the mass identification problem in nanorods involves
positive variations of the mass density q0, that is
r� xð Þ P 0; x 2 0; L½ �: ð14Þ

However, it is difficult to include this constraint in our analysis, and condition (14) will be used in Section 5.3.4 to post-
filtering the results of the proposed identification method.

Let us denote by kn qð Þ;vn x;qð Þf g1n¼1 the perturbed eigenpairs of (1)–(3) when the coefficient q0 is replaced by q xð Þ, that is
bv IV � av 00 ¼ kqv ; x 2 0; Lð Þ; 15ð Þ
v 0ð Þ ¼ 0; v 00 0ð Þ ¼ 0; 16ð Þ
v Lð Þ ¼ 0; v 00 Lð Þ ¼ 0: 17ð Þ

8><>:

Under our assumptions i)-iii), for any �;0 < � 6 b�, the eigenvalue problem (15)–(17) still maintains the properties of the
unperturbed eigenvalue problem, with 0 < k1 qð Þ < . . . < kn qð Þ < . . . ; limn!1kn qð Þ ¼ 1. The main goal of this paper is:

Given the unperturbed nanorod, to recover the added mass r� xð Þ from the knowledge of the finite eigenvalue data kn qð Þf gNn¼1.
Recalling that the knowledge of a single full spectrum is not enough to determine uniquely a general coefficient r� xð Þ (see

[30] and, for Sturm-Liouville operators, [26]), here we formulate a mixed inverse problem of Hochstadt-Lieberman’s type
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(with finite data) in which the mass coefficient is known in half of the nanorod, namely the mass variation r� xð Þ has support
contained in 0; L=2ð Þ:
supp r� xð Þð Þ ¼ x 2 0; L½ �j r� xð Þ – 0f g � 0;
L
2

� �
: ð18Þ
3. An iterative first-order reconstruction procedure

In this section we shall present a reconstruction procedure which is inspired to the Generalized Fourier Coefficient
Method introduced in [34] to deal with damage identification in (classical) beams and rods. In its essence, the method is
based on the linearization of the inverse problem in a neighborhood of the referential configuration, and on using the eigen-
value sensitivity to the unknown perturbation (see next two subsections). An iterative version of the procedure will be pre-
sented in the third subsection. A formal study of the convergence is proposed in Section 4.

3.1. Eigenfrequency sensitivity to added mass

Let us introduce some notation. For any integerm P 0 and for any real numbers ‘1; ‘2, with �1 < ‘1 < ‘2 < þ1;Hm ‘1; ‘2ð Þ
denotes the real-valued Hilbert space of the Lebesgue measurable functions f : ‘1; ‘2ð Þ ! R, such thatR ‘2
‘1

f 2 þPm
i¼1

dif
dxi

� �2� �
< þ1, where dif

dxi
is the ith weak derivative of f (see, for example, [40]). We notice that, when m ¼ 0,

H0 ‘1; ‘2ð Þ coincides with the space L2 ‘1; ‘2ð Þ of the square integrable functions in ‘1; ‘2ð Þ, with norm

kfkL2 ‘1 ;‘2ð Þ ¼
R ‘2
‘1
f 2 xð Þdx

� �1
2
. In order to simplify the notation, the L2 norm will be often denoted as kfk2. Finally, let us set

kfk1 ¼ maxx2 0;L½ �jf xð Þj for any bounded function f ; f : 0; L½ � ! R. The characteristic function vI : R ! R of the closed interval
I, I � R, is defined as vI xð Þ ¼ 1 if x 2 I, vI xð Þ ¼ 0 if x 2 R n I.

Let us rewrite the unperturbed eigenvalue problem (1)–(3) in the following form
F v xð Þð Þ ¼ kM v xð Þð Þ; ð19Þ

where the operators F : H2 0; Lð Þ ! H2 0; Lð Þ;M : H2 0; Lð Þ ! H2 0; Lð Þ are defined as
F v xð Þð Þ ¼ bv IV xð Þ � av 00 xð Þ; ð20Þ

M v xð Þð Þ ¼ q0v xð Þ: ð21Þ

The perturbed eigenvalue problem (15)–(17) can be described similarly, that is
F v x;qð Þð Þ ¼ k qð ÞM� v x;qð Þð Þ; ð22Þ

where the operator M� : H

2 0; Lð Þ ! H2 0; Lð Þ is defined as
M� v x;qð Þð Þ ¼ qv x;qð Þ; q ¼ q0 þ r�: ð23Þ

The set H of admissible configurations of the clamped nanorod is given by
H ¼ f : 0; Lð Þ ! R j f 2 H2 0; Lð Þ; f xð Þ ¼ 0 at x ¼ 0 and at x ¼ L
n o

: ð24Þ
We introduce the following operations from H�H to R:
M fð Þ; gh i ¼
Z L

0
q0fg; ð25Þ

F fð Þ; gh i ¼
Z L

0
bf IV � af 00
� �

g: ð26Þ
Integration by parts shows that both the operators M and F are self-adjoint in H0 ¼ f : 0; Lð Þ ! R j f 2 H;f
f 00 xð Þ ¼ 0 at x ¼ 0 and at x ¼ Lg:, that is, M fð Þ; gh i ¼ f ;M gð Þh i and F fð Þ; gh i ¼ R L

0 bf 00g00 þ af 0g0� � ¼ f ; F gð Þh i for every f ; g 2 H0.
In the sequel, we shall use an explicit expression of the first-order perturbation (with respect to the parameter �) of the

eigenvalues. Note that, the nth unperturbed and perturbed eigenpair will be denoted by kn;vn xð Þf g and kn qð Þ;vn x;qð Þf g,
respectively. In order to find the first-order change of the nth eigenvalue, we find convenient to define
Dkn ¼ kn qð Þ � kn; ð27Þ

Dvn ¼ vn x;qð Þ � vn; ð28Þ
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DM ¼ M� �M; ð29Þ

and rewrite the normalization condition (7) as
M vnð Þ; vnh i ¼ 1: ð30Þ

Let us multiply Eq. (19) (written for the nth unperturbed eigenfunction vn xð Þ) and Eq. (22) (written for the nth perturbed
eigenfunction vn x;qð Þ) by vn x;qð Þ and vn xð Þ, respectively. Integrating, subtracting side by side, using the self-adjointness
property and condition (30), we deduce the fundamental identity between the states corresponding to mass coefficients q0

and q:
Dkn ¼ �kn DM vnð Þ;vnh i � kn DM Dvnð Þ;vnh i � Dkn M Dvnð Þ; vnh i � Dkn DM vnð Þ;vnh i � Dkn DM Dvnð Þ; vnh i: ð31Þ

Next, we introduce the following theorem about the continuity of eigenvalues and eigenfunctions of the problem (15)–(17)
with respect to L2-perturbations of the mass coefficient. This result will be also useful in studying the convergence of the
iterative identification method presented in Section 4.

Let us denote as a priori data the set A of quantities defining the unperturbed model (e.g., the coefficients a; b;q0; L), and
the uniform lower and upper bound of the mass density of the perturbed model q xð Þ:
A ¼ a; b;q0; L;q
�;qþf g: ð32Þ
Note that the separation constant r of the unperturbed nanorod depends on the a priori quantities belonging toA, and there-
fore it will not be explicitly included in A.

Theorem 3.1. Under the above notation, let qi xð Þ ¼ q0 þ r�;i xð Þ, where r�;i xð Þ satisfies (11)–(13), i ¼ 1;2. Let
kn qið Þ; vn x;qið Þ �

; n P 1, be the nth eigenpair of (15)–(17) for i ¼ 1;2.

For every n P 1, there exists a constant Ck
n, C

k
n > 0, only depending on the a priori data A and n, such that
jkn q1ð Þ � kn q2ð Þj 6 Ck
nkq1 � q2k2: ð33Þ
Let the eigenfunctions vn x;q1ð Þ;vn x;q2ð Þ be normalized such that
Z L

0
q1v2

n x;q1ð Þ ¼
Z L

0
q1v2

n x;q2ð Þ ¼ 1 ð34Þ
and v 0
n 0;q1ð Þv 0

n 0;q2ð Þ > 0;n P 1. For every n P 1, there exist a number b�, 0 < b� < 1, and a constant Cvn ; C
v
n > 0, both only

depending on the a priori data A and n, such that
jjvn x;q1ð Þ � vn x;q2ð Þjj2 6 Cvnkq1 � q2k2; ð35Þ
for every q1;q2 satisfying kq1 � q2k2 6 L
1
2b�.

A proof of Theorem 3.1 is presented in the Appendix.
By using inequalities (33), (35) in identity (31), for 0 < � 6 b�, the first order change with respect to � of the nth eigenvalue

is given by
kn qð Þ ¼ kn � kn

Z L
2

0
r� xð Þv2

n xð Þdx; ð36Þ
for every n P 1 and for r� satisfying (18).
To prove (36), we first start by showing that jvn xð Þj is uniformly bounded in 0; L½ � in terms of the a priori data A and n. By

the definition of the eigenvalue problem for the unperturbed nanorod, by Hölder inequality and by using the normalization
condition (7), for every x 2 0; L½ � and every n P 1, we have
jvn xð Þj ¼
Z x

0
v 0
n sð Þds

���� ���� 6 L
1
2

Z L

0
v 0
n xð Þ� �2dx� �1

2

6 L
a

� �1
2
Z L

0
b v 00

n xð Þ� �2 þ a v 0
n xð Þ� �2� �

dx
� �1

2

6 L
a

� �1
2

k
1
2
n: ð37Þ
Next, we show that all the terms on the right hand side of (31), but the first, are of higher order with respect to �. Let us
consider the second term. By using (37), Hölder inequality and estimate (35) in Theorem 3.1, for 0 < � 6 b�, we have
jkn DM Dvnð Þ;vnh ij 6 kn

Z L
2

0
r� xð Þ vn x;q0 þ r�ð Þ � vn xð Þð Þvn xð Þdx

�����
����� 6 knkvnk1kr�k2kvn x;q0 þ r�ð Þ � vn xð Þk2

6 knkvnk1Cvnkr�k22 6 C�2; ð38Þ

where C > 0 is a constant only depending on the a priori data A and n.

The estimates of the third, fourth and fifth terms can be performed similarly, resulting, for 0 < � 6 b�,

jDkn M Dvnð Þ;vnh ij; jDkn DM vnð Þ; vnh ij 6 C�2; jDkn DM Dvnð Þ;vnh ij 6 C�3; ð39Þ



128 M. Dilena et al. /Mechanical Systems and Signal Processing 130 (2019) 122–151
where C > 0 is a constant only depending on the a priori data A and n. By using (38) and (39) in (31), and neglecting higher
order terms with respect to �, we obtain (36).

Let us comment the expression (36). As expected by the general theory (see, for instance, [41]), expression (36) states that
addition of mass causes decrease in all the eigenvalues. More precisely, the eigenvalue shift kn qð Þ � knð Þ turns out to be pro-
portional to kn. This fact seems to have a certain importance in the inverse problem, since the relative variation of the eigen-
values appears to be significant also for large order n. Finally, it should be noticed that the expression (36) is independent of
the boundary conditions of the eigenvalue problem and, therefore, the analysis could be extended also to other sets of
boundary conditions of the nanorod.

3.2. The linearized inverse problem

In this section we shall use the eigenvalue sensitivity determined in (36) to formulate a linearized version of the inverse
problem and to find an approximate solution.

Using the explicit expression of the unperturbed eigenfunctions (6) in (36), we have
dkn � 1� kn qð Þ
kn

¼
Z L

2

0
r� xð ÞUn xð Þdx; ð40Þ
where
Un xð Þ � vn xð Þð Þ2 ¼ 2
q0L

sin2 npx
L

� �
; n P 1: ð41Þ
Eq. (40) shows that the first-order relative shift of the nth eigenvalue coincides with the scalar product between the
unknown mass variation r� xð Þ and the nth element of the family Um xð Þf g1m¼1.

In order to determine r� xð Þ, a natural choice is to represent r� xð Þ on the family Um xð Þf g1m¼1 as
r� xð Þ ¼
X1
k¼1

bkUk xð Þv 0;L2½ �; ð42Þ
where the convergence of the series should be understood in the mean, that is
lim
K!1

Z L
2

0
r� xð Þ �

XK
k¼1

bkUk xð Þ
 !2

¼ 0: ð43Þ
The coefficients bkð Þ1k¼1 play the role of Generalized Fourier Coefficients of the unknownmass variation r� xð Þ evaluated on the
family Um xð Þf g1m¼1. It should be noted that one cannot a priori exclude that the function r� xð Þ defined in (42) may change sign
in the interval 0; L=2ð Þ; see also the remark after condition (14).

It is at this point that the a priori condition (18) can be mathematically justified. In fact, the family Um xð Þf g1m¼1 is a basis of

the square integrable functions defined on half span of the nanorod, e.g., the set L2 0; L2
� �

. To prove this property, we notice

that the functions Um xð Þf g1m¼1 are linearly independent and form a complete family in L2 0; L2
� �

. This last property is satisfied

if, for any r� xð Þ 2 L2 0; L2
� �

, the conditions
R L

2
0 r� xð ÞUm xð Þdx ¼ 0 for every n P 1 imply r� xð Þ ¼ 0 in 0; L2

� �
. The above conditions

can be rewritten as
0 ¼
Z L

2

0
r� xð Þdx�

Z L
2

0
r� xð Þ cos 2mpx

L

� �
dx; ð44Þ
for everym P 1. Taking the limit in (44) asm ! 1 and using the Riemann-Lebesgue Lemma (see, for instance, [42]), we haveR L
2
0 r� xð Þdx ¼ 0 and, then,

R L
2
0 r� xð Þ cos 2mpx

L

� �
dx ¼ 0 for everym P 1. Since the family cos 2mpx

L

� � �1
m¼1 is a basis for the set of func-

tions belonging to L2 0; L2
� �

and having zero-mean, we have r� xð Þ ¼ 0 in 0; L2
� �

, and the thesis is proved.
Replacing (42) in (40), we obtain the infinite linear system
dkn ¼
X1
k¼1

Ankbk; n ¼ 1;2; . . . ; ð45Þ
where
Ank ¼
Z L

2

0
Un xð ÞUk xð Þdx ¼ 4

q0Lð Þ2
Z L

2

0
sin2 npx

L

� �
sin2 kpx

L

� �
dx; ð46Þ
n; k ¼ 1;2 . . .. The coefficients Ank can be evaluated in closed form, and we have
Ank ¼ 2
4q2

0L
for k – n; Ann ¼ 3

4q2
0L

: ð47Þ
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In real applications only a finite number of eigenvalues is available, typically the first 10� 20. This leads us to consider the

Nth finite dimensional approximation of the added mass, bN
k

� �N
k¼1 of (45), that is the N � N linear system
dkn ¼
XN
k¼1

Ankb
N
k ; n ¼ 1; . . . ;N: ð48Þ
A direct calculation shows that
det Ankð Þ ¼ 2N þ 1ð Þ 1
4q2

0L

� �N

; ð49Þ

Ankð Þ�1 ¼ 4q2
0L

� �2N � 1
2N þ 1

if n ¼ k; Ankð Þ�1 ¼ � 4q2
0L

� � 2
2N þ 1

if n – k; ð50Þ
n; k ¼ 1; . . . ;M. Therefore, the system (48) has the closed-form solution
bN
k ¼ 4q2

0L
2N � 1
2N þ 1

dkk � 2
2N þ 1

XN
j¼1; j–k

dkj

 !
; k ¼ 1; . . . ;N; ð51Þ
and, finally,
r� xð Þ ¼ 8q0

XN
k¼1

2N � 1
2N þ 1

dkk � 2
2N þ 1

XN
j¼1; j–k

dkj

 !
sin2 kpx

L

� �
� v 0;L2½ �: ð52Þ
3.3. The reconstruction procedure

The estimation of r� given in (52) can be improved by iterating the identification procedure illustrated in the previous
section. In order to simplify the notation, here the index � has been omitted and kexpn denotes the measured value of the
nth eigenvalue kn qð Þ of the perturbed nanorod. Moreover, we shall write b instead of bN . The main steps of the reconstruction
procedure and the corresponding numerical algorithm are illustrated in the sequel.

Let q 0ð Þ xð Þ ¼ q0 be the mass per unit length of the referential nanorod. The unknown mass per unit length is determined
on the interval 0; L2

� �
by the iteration
q jþ1ð Þ xð Þ ¼ q jð Þ xð Þ þ r jð Þ xð Þ; j P 0; ð53Þ

where the increment
r jð Þ xð Þ ¼
XN
k¼1

b jð Þ
k U jð Þ

k xð Þv 0;L2½ � ¼ b jð Þ �U jð Þ xð Þv 0;L2½ � ð54Þ
is determined by solving the N � N linear system
dk jð Þ
n � 1� kexpn

kn q jð Þð Þ ¼
XN
k¼1

A jð Þ
nkb

jð Þ
k ; ð55Þ
n ¼ 1; . . . ;N, or, equivalently, in compact form
A jð Þb jð Þ ¼ dk jð Þ; ð56Þ
with b jð Þ ¼ b jð Þ
1 ; . . . ; b jð Þ

N

� �
. Here, kn q jð Þ� �

; vn x;q jð Þ� � �
is the nth (mass normalized) eigenpair of the problem
bv IV � av 00 ¼ kq jð Þv; x 2 0; Lð Þ; 57ð Þ
v 0ð Þ ¼ 0; v 00 0ð Þ ¼ 0; 58ð Þ
v Lð Þ ¼ 0; v 00 Lð Þ ¼ 0: 59ð Þ

8><>:

Moreover, U jð Þ

k xð Þ ¼ v2
k x;q jð Þ� �

and the matrix A jð Þ
nk

� �
is given by
A jð Þ
nk ¼

Z L
2

0
U jð Þ

n xð ÞU jð Þ
k xð Þdx; n; k ¼ 1; . . . ;N: ð60Þ
Assuming the existence of A jð Þ
� ��1

(see Section 4, Step i)), we have
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r jð Þ xð Þ ¼ A jð Þ
� ��1

dk jð Þ �U jð Þ xð Þv 0;L2½ � ð61Þ
and, from (53), we have
q jð Þ xð Þ ¼ q0 þ
Xj�1

i¼0

r ið Þ xð Þ; j P 1: ð62Þ
In our application, the iterations go on until the updated mass coefficient satisfies the criterion
e � 1
N

XN
n¼1

kexpn � kn
q jþ1ð Þ

kexpn

� �2
 !1

2

< c;

0@ ð63Þ
for a small given number c.

4. Convergence of the identification method

In this section we study the convergence of the iterative method shown in Section 3.3. We prove that, under suitable
assumptions, there exists q xð Þ 2 C0 0; L2

� �
such that
q xð Þ ¼ lim
j!1

q jð Þ xð Þ ¼ q0 þ
X1
i¼0

r ið Þ xð Þ; ð64Þ
where the series is uniformly convergent in 0; L2
� �

.
The proof is based on two main steps:

Step i) Existence of the inverse A jð Þ
� ��1

and bound of k A jð Þ
� ��1

k for every j P 1;

Step ii) Bound of jdk jð Þj to control kr ið Þk2 for every j P 1.
In the sequel, we shall denote by C positive constants which may change from line to line. Moreover, for every N � N

matrix B 2 RN�N , we denote by kBk ¼ PN
i;j¼1 Bij
� �2� �1

2
the Frobenius norm.

Step i). Let us consider the set of coefficients q xð Þ given in (10), e.g., q xð Þ ¼ q0 þ r� xð Þ in 0; L½ �, where r� satisfies conditions
(10)–(13) and where � > 0 is a number small enough. We denote by A qð Þ the matrix defined in (60) corresponding to the
coefficient q xð Þ.

We prove that there exists b�q, 0 < b�q < 1, only depending on the a priori data A and N, such that, for every � < b�q, there
exists A qð Þð Þ�1 and we have
k A qð Þð Þ�1k 6 C; ð65Þ

where C > 0 is a constant only depending on the a priori data A and N.

To prove (65), we shall write
A qð Þ ¼ A q0ð Þ � P; ð66Þ

where the inverse of A q0ð Þ is given explicitly in (50), and P ¼ P qð Þ is a perturbation due to the change of mass r� xð Þ. Denoting
Dvk xð Þ ¼ vk x;qð Þ � vk x;q0ð Þ � vk x;qð Þ � vk xð Þ, for every n; k ¼ 1; . . .N, by (60) we have
�Pnk ¼ 2
Z L

2

0
vkv2

nDvk þ vnv2
kDvn

� �þ Z L
2

0
v2

n Dvkð Þ2 þ v2
k Dvnð Þ2 þ 4vnvkDvnDvk

� �
þ 2

Z L
2

0
vnDvn Dvkð Þ2 þ vkDvk Dvnð Þ2
� �

þ
Z L

2

0
Dvnð Þ2 Dvkð Þ2: ð67Þ
In order to simplify the analysis, we shall control the L1 norm of all the quantities inside the integrals in (67). The norm
kvkk1 (even in the whole interval 0; Lð Þ) can be bound via inequality (37), which holds for unperturbed eigenfunctions with
a constant C > 0 only depending on the a priori data A. In order to bound kDvkk1, we use the Rellich-Kondrachov’s Theo-
rem (see [40], Theorem IX:26) and estimate (157): for every k P 1 we have
kDvkkL1 0;Lð Þ 6 CkDvkkH2 0;Lð Þ 6 Ckq� q0k
1
2

L2 0;Lð Þ 6 C�
1
2; ð68Þ
for every � 6 b� < 1ð Þ, where b� has been introduced in Theorem 3.1, and C > 0 is a constant only depending on the a priori
data A and k. Therefore, for every n; k ¼ 1; . . . ;N and for every � such that � 6 b�, we have
jPnkj 6 C �
1
2 þ �þ �

3
2 þ �2

� �
6 C�

1
2 ð69Þ
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and
kPk 6 CP�
1
2; ð70Þ
where CP > 0 is a constant only depending on the a priori data A and N.
Let us introduce the number
b�q ¼ min b�; 1

2CPk A q0ð Þð Þ�1k

 !2
8<:

9=;: ð71Þ
Note that, possibly increasing CP , the number 1
2CPk A q0ð Þð Þ�1k

� �2
is less than 1. We now prove that if P satisfies (70) for every

� 6 b�q, then A qð Þ is nonsingular, and
k A qð Þð Þ�1k 6 k A q0ð Þð Þ�1k � kIk
1� k A q0ð Þð Þ�1k � kPk

; ð72Þ
where I is the identity matrix in RN�N . Let x 2 RN n 0f g. Then, since A q0ð Þ is nonsingular, it is enough to prove that

I� A q0ð Þð Þ�1P
� �

x– 0 for every x 2 RN n 0f g. We have
k I� A q0ð Þð Þ�1P
� �

xk P 1� k A q0ð Þð Þ�1k � kPk
� �

kxk > 0; ð73Þ
since, by (70) and (71), for every �;0 < � 6 b�q,

1� k A q0ð Þð Þ�1k � kPk P 1� k A q0ð Þð Þ�1kCP�

1
2 P

1
2
> 0: ð74Þ
Hence, if x– 0; I� A q0ð Þð Þ�1P
� �

x– 0 or, equivalently, A q0ð Þ � Pð Þx– 0 and A qð Þ ¼ A q0ð Þ � P is nonsingular.

Now, from the identity A q0ð Þ � Pð Þ A q0ð Þ � Pð Þ�1 ¼ I, it follows that
I� A q0ð Þð Þ�1P
� ��1

¼ Iþ A q0ð Þð Þ�1P I� A q0ð Þð Þ�1P
� ��1

ð75Þ
and, then,
k I� A q0ð Þð Þ�1P
� ��1

k 6 kIk
1� k A q0ð Þð Þ�1k � kPk

: ð76Þ
Inequalities (76) and (72) are equivalent, and imply (65).
Step ii). In order to control jdk ið Þj, we follow the steps of the iterative procedure shown in Section 3.3.
At step ]1, we use the fundamental identity (31) between the unperturbed 0th state (corresponding to q 0ð Þ xð Þ ¼ q0) and

the state to be identified (corresponding to the unknown mass coefficient, say q xð Þ, and target eigenvalues
kexpn

 �
;n ¼ 1; . . . ;N):
kexpn ¼ kn q 0ð Þ� �� kn q 0ð Þ� �
DM 0ð Þvn q 0ð Þ� �

; vn q 0ð Þ� �D E
þ eOn EXP� 0ð Þð Þ; ð77Þ
n ¼ 1; . . . ;N, where DM 0ð Þ ¼ q xð Þ � q 0ð Þ xð Þ and the higher order term eOn EXP� 0ð Þð Þ depends on the initial state q 0ð Þ and on the
variations DM 0ð Þ;Dk 0ð Þ

n ¼ kexpn � kn q 0ð Þ� �
;Dvn xð Þ ¼ vn x;qð Þ � vn x;q 0ð Þ� �

. The mass coefficient q 0ð Þ is updated at step ]1 as
q 1ð Þ xð Þ ¼ q 0ð Þ xð Þ þ r 0ð Þ xð Þ; ð78Þ

where r 0ð Þ xð Þ (given in (54) for j ¼ 0) is determined by neglecting the term eOn EXP� 0ð Þð Þ in (77), e.g., for every n ¼ 1; . . . ;N,
kexpn � kn q 0ð Þ� � ¼ �kn q 0ð Þ� �
r 0ð Þvn q 0ð Þ� �

;vn q 0ð Þ� �� �
: ð79Þ
By using the updated value of the mass coefficient q 1ð Þ xð Þ, we now estimate kn q 1ð Þ� �
;n ¼ 1; . . . ;N. By applying the fundamen-

tal identity (31) between the states q 0ð Þ xð Þ and q 1ð Þ xð Þ, we have
kn q 1ð Þ� �� kn q 0ð Þ� � ¼ �kn q 0ð Þ� �
r 0ð Þvn q 0ð Þ� �

; vn q 0ð Þ� �� �þ eOn 1ð Þ � 0ð Þð Þ: ð80Þ

The first term on the right hand side of (80) can be determined by (79), namely
kn q 1ð Þ� �� kn q 0ð Þ� � ¼ kexpn � kn q 0ð Þ� �þ eOn 1ð Þ � 0ð Þð Þ; ð81Þ

that is
kn q 1ð Þ� �� kexpn ¼ eOn 1ð Þ � 0ð Þð Þ; n ¼ 1; . . . ;N: ð82Þ
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Similarly, at step ]2, the mass coefficient is updated as
q 2ð Þ xð Þ ¼ q 1ð Þ xð Þ þ r 1ð Þ xð Þ; ð83Þ

where r 1ð Þ xð Þ satisfies
kexpn � kn q 1ð Þ� � ¼ �kn q 1ð Þ� �
r 1ð Þvn q 1ð Þ� �

;vn q 1ð Þ� �� �
; ð84Þ
n ¼ 1; . . . ;N. The identity (31) between the states q 1ð Þ xð Þ and q 2ð Þ xð Þ reads as
kn q 2ð Þ� �� kn q 1ð Þ� � ¼ �kn q 1ð Þ� �
r 1ð Þvn q 1ð Þ� �

; vn q 1ð Þ� �� �þ eOn 2ð Þ � 1ð Þð Þ; ð85Þ

and, by (84) and (85), we obtain
kn q 2ð Þ� �� kexpn ¼ eOn 2ð Þ � 1ð Þð Þ; n ¼ 1; . . . ;N: ð86Þ

By iteration, at step ] iþ 1ð Þ we have
kn q iþ1ð Þ� �� kexpn ¼ eOn iþ 1ð Þ � ið Þð Þ; n ¼ 1; . . . ;N: ð87Þ
At this point we need to bound the high order term eOn iþ 1ð Þ � ið Þð Þ appearing in (87).

Let us first estimate eOn 1ð Þ � 0ð Þð Þ. By (31) (written between the unperturbed state q 0ð Þ and the first updated state q 1ð Þ) we
have
jeOn 1ð Þ � 0ð Þð Þj 6 knj DM Dvnð Þ;vnh ij þ jDknj � j M Dvnð Þ; vnh ij þ jDknj � j DM vnð Þ; vnh ij þ jDknj � j DM Dvnð Þ;vnh ij
� An þ Bn þ Cn þ Dn: ð88Þ
Let us consider the term An. By using Hölder inequality, we have
An 6 knjjvnjj1
Z L

0
jDM xð Þj � jvn x;q 1ð Þ� �� vn x;q 0ð Þ� �jdx 6 knjjvnjj1jjDMjj2 � jjvn x;q 1ð Þ� �� vn xð Þjj2: ð89Þ
Recalling that DM ¼ r 0ð Þ xð Þ ¼PN
k¼1b

0ð Þ
k Uk x;q 0ð Þ� �

v 0;L2½ �, with Uk x;q 0ð Þ� � ¼ v2
k x;q 0ð Þ� �

, and noticing that kvnk1 can be estimated

via (37), we have
jjDMjj2 6 L
3
2

a
Kjb 0ð Þj; ð90Þ
where the quantity
K 0ð Þ ¼
XN
k¼1

k2k

 !1
2

ð91Þ
can be calculated in terms of the unperturbed nanorod and, therefore, it depends on the a priori data set A only. By using
(37), (90) and (35) in (89), we have
An 6 knð Þ32L L
a

� �5
2

K 0ð Þ
� �2

Cvn jb 0ð Þj2: ð92Þ
The other terms in (88) can be evaluated similarly, namely
Bn 6 q
1
2
0L

L
a

� �2

K 0ð Þ
� �2

Ck
nC

v
n jb 0ð Þj2; ð93Þ

Cn 6 knL
3
2

L
a

� �3

K 0ð Þ
� �2

Ck
njb 0ð Þj2; ð94Þ

Dn 6 knð Þ12L3
2

L
a

� �7
2

K 0ð Þ
� �3

Ck
nC

v
n jb 0ð Þj3: ð95Þ
Therefore, collecting the estimates (92)–(95), we have
jeOn 1ð Þ � 0ð Þð Þj 6 Cjb 0ð Þj2 1þ Cjb 0ð Þj
� �

; ð96Þ
where C > 0 is a constant only depending on the a priori data A and n;n ¼ 1; . . . ;N. By using (65) in (56) (for j ¼ 0), we have
jb 0ð Þj 6 Cjdk 0ð Þj; ð97Þ
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and (96) becomes
jeOn 1ð Þ � 0ð Þð Þj 6 Cjdk 0ð Þj2 1þ Cjdk 0ð Þj
� �

6 Cjdk 0ð Þj2; ð98Þ
provided that jdk 0ð Þj 6 1, where C > 0 is a constant only depending on the a priori data A and n. Therefore, using (98) in (82),
for every n ¼ 1; . . . ;N, we have
jkn q 1ð Þ� �� kexpn j 6 Cjdk 0ð Þj2; ð99Þ
for jdk 0ð Þj 6 1, where C > 0 is a constant only depending on the a priori data A and n.

We proceed similarly in estimating eOn 2ð Þ � 1ð Þð Þ. By adapting the previous analysis to the states q 2ð Þ and q 1ð Þ, we obtain
jeOn 2ð Þ � 1ð Þð Þj 6 Cjb 1ð Þj2 1þ Cjb 1ð Þj
� �

; ð100Þ
and, recalling (65) and (56),
jeOn 2ð Þ � 1ð Þð Þj 6 Cjdk 1ð Þj2; ð101Þ
that is, by (86),
jkn q 2ð Þ� �� kexpn j 6 Cjdk 1ð Þj2; ð102Þ
for jdk 1ð Þj 6 1, where C > 0 is a constant only depending on the a priori data A and n. Using (99) in (102) (and noticing that
kn q 1ð Þ� �

can be estimated from below by a positive quantity only depending on the a priori data A and n), we have
jkn q 2ð Þ� �� kexpn j 6 Cjdk 0ð Þj2�2: ð103Þ
By iteration, for every i P 1 and n ¼ 1; . . . ;N, we obtain
jkn q ið Þ� �� kexpn j 6 Cjdk 0ð Þj2i ; ð104Þ
where C > 0 is a constant only depending on the a priori data A and n, and jdk 0ð Þj 6 1.
Conclusion of the proof. By using the estimates (65) and (104), the series

P1
i¼0r

ið Þ xð Þ in (64) is L2-uniformly convergent to a
continuous function in 0; L2

� �
, since the ith term can be bounded as
kr ið Þ xð ÞkL2 0;L2½ � 6 Cjdk 0ð Þj2i ; i P 0; ð105Þ
where C > 0 is a constant only depending on the a priori data A, and the numerical series
P1

i¼0jdk 0ð Þj2i is convergent provided
that jdk 0ð Þj 6 b�k < 1 (Weierstrass’s criterion).

Summarizing, in this section we have proved the following result:
If � 6 b�q, where b�q is given in (71), and jdk 0ð Þj 6 b�k < 1, then the iterative procedure of identification converges uniformly to a

continuous function in 0; L2
� �

.
Our convergence result has local character, since the proof is built on the assumption that the mass variation is a small

perturbation of the total mass of the unperturbed nanorod. It would be interesting, and also useful for practical applications,
to determine or, at least, to find good approximation of the maximum value allowed for b�q. Moreover, the local character is
also reflected on the condition b�k < 1, which means that the first N eigenvalues of the unperturbed nanorod must be close
enough to the corresponding target eigenvalues.
5. Application of the Generalized Fourier Coefficient method

5.1. Specimen

In order to illustrate the application of the identification method, reference is made to the geometrical and material prop-
erties of the nanorod used in [43]. In particular, the diameter D of the circular equivalent cross-section is equal to 100 lm
(¼ 100 � 10�6 m) and the length L is taken equal to 20D; the material length scale parameters are assumed to be equal, and
‘0 ¼ ‘1 ¼ ‘2 ¼ ‘ ¼ 17:6 lm; the Young’s modulus E is equal to 1:44 GPa; the Poisson’s coefficient is m ¼ 0:38; and the volume
mass density is equal to qvol ¼ 1000 kg=m3. The coefficients a; b;q0 corresponding to the above parameters take the value

a ¼ 11:310 N; b ¼ 3:554 � 10�9 Nm2;q0 ¼ qvol � p D2

4 ¼ 7:854 � 10�6 kg=m, respectively.
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5.2. Discrete model and eigenvalue problem

The practical application of the mass identification method requires the development of a specific numerical code. The
weak formulation of the eigenvalue problem (15)–(17) consists in determining a non-trivial function v 2 H (see definition
(24)), and a positive real number k such that
Z L

0
bv 00u00 þ av 0u0� � ¼ k

Z L

0
qvu; ð106Þ
for every u 2 H. To find a finite element model of the weak formulation (106), we work on the finite-dimensional subspace
of H formed by three-degree polynomial spline approximation of the axial displacement of the nanorod in each element.
More precisely, let x0 ¼ 0 < x1 < x2 < . . . < xNe ¼ Lf g be the nodes of a mesh of the interval 0; L½ �, with xiþ1 � xi ¼ Dx ¼ L

Ne
,

for every i ¼ 0;1; . . . ;Ne. Therefore, the discrete version of (106) consists in finding the approximating eigenpair ek; ev� �
,ev 2 R2Ne n 0f g, solution to
eFev ¼ ekfMev ; ð107Þ
where eF;fM is the 2Ne � 2Ne real symmetric matrix of the stiffness and of the inertia of the nanorod, respectively.
The mass coefficient q ¼ q xð Þ is approximated by a continuous piecewise-linear function, that is,eq xð Þ ¼ q xið Þ þ q xiþ1ð Þ � q xið Þð Þ= Dxð Þf gx for x 2 xi; xiþ1½ �. Therefore, the n; kð Þ entry of the local mass, eMnk

i

� �
, and stiffness,eFnk

i

� �
, matrix are given by
eMnk
i ¼

Z xiþ1

xi

eq xð Þun xð Þuk xð Þdx; eFnk
i ¼

Z xiþ1

xi

bu00
n xð Þu00

k xð Þ þ au0
n xð Þu0

k xð Þ� �
dx; ð108Þ
n; k ¼ 1; . . . ;4, and are evaluated in exact form. Numerical integration of the quantities (60) was developed by means of a
standard trapezoidal method. The discrete eigenvalue problem (107) was solved by using the Implicit Restarted Lanczos’s
method [44]. The identification procedure was built in Scilab environment (version 5:5:2) by developing a specific numerical
code. Regarding the computational burden, the time needed to complete a single iteration of the identification algorithm (for
Ne ¼ 200) was about 1 s.

5.3. Results

In this section we present a selection of the results obtained in an extended series of applications of the Generalized Four-
ier Coefficient Method. Among other parameters, the procedure has been tested with respect to the number N of the first
eigenfrequencies used and to the geometry of the mass variation (e.g., position, intensity, regularity). In particular, the effi-
ciency of the method has been evaluated on two main classes of mass variations corresponding to smooth (Section 5.3.1) or
discontinuous (Section 5.3.2) function r�. In both cases, the support of the mass variation coincides with an interval contained
in 0; L2
� �

. We have first considered free-error data, i.e., the measurement errors are null with the exception of the errors
induced by the numerical approximation via the finite element method. The analysis of overlappingmass variations, possibly
having disconnected support, is considered in Section 5.3.3. Section 5.3.4 is devoted to the application of suitable physical
filtering to improve the accuracy of identification. Finally, the stability of the reconstruction in presence of noise is investi-
gated in Section 5.3.5.

5.3.1. Identification of smooth mass densities
In this series of simulations, the mass density of the perturbed nanorod is defined as
q xð Þ ¼ q0 þ q0t cos
2 p x� sð Þ

c

� �
v s�c

2;sþc
2½ �; ð109Þ
where s is the central point of the support of the mass variation, c is the length of the support, q0t is the maximum amplitude

of variation, see Fig. 1(a). Note that q 2 C1 0; L½ �.
The definition (109) allows to consider a wide family of coefficients, including either localized or diffuse mass variations.

In the sequel, reference is made mainly to positions s
L ¼ 0:15; 0:25; 0:35, extensions c

L ¼ 0:10; 0:20; 0:30, and intensities
t ¼ 0:10; 0:20; 0:50; 1:00, for all the possible combinations of the parameters. Therefore, the global mass change ranges
from 0:5 percent to 15 percent of the initial mass q0L, for

c
L ¼ 0:10; t ¼ 0:10
� �

and c
L ¼ 0:30; t ¼ 1:0
� �

, respectively.
In order to select a suitable mesh for the numerical solution of the eigenvalue problem, preliminary tests have been car-

ried out on the uniform nanorod, for which analytical closed form expressions of the eigenpairs are available. The analysis
suggests to assume a mesh with Ne ¼ 200 equally spaced finite elements, which turns out to be a good compromise between
accuracy (maximum error on the first 15 eigenvalues less than 10�4 percent) and computational cost for all the cases studied,



Fig. 1. Mass density per unit length q ¼ q xð Þ to be identified in 0; L2
� �

. (a) Smooth mass changes as in (109); (b) discontinuous mass changes as in (110); (c)
overlapping mass changes as in (111).
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including the reconstruction procedure, see Table 1. Moreover, this set of preliminary tests suggests to choose c ¼ 10�5 in the
stopping criterion (63).

Regarding the influence of the number N of eigenvalue data, here we will focus on the most two challenging cases. The
first one (sL ¼ 0:35; cL ¼ 0:1; t ¼ 0:1), see Fig. 2, corresponds to small mass increase located in a small interval, which allows to
assess the sensitivity of the method to the identification of the mass perturbation just as it occurs in the nanorod. The second
case (sL ¼ 0:35; cL ¼ 0:1; t ¼ 1, see Fig. 3) deals with mass variation having the same support as before, but with an abrupt
increase of mass with large L1 amplitude.

The analysis of Fig. 2 shows that the identified coefficient agrees well with the exact one, and accuracy of reconstruction
rapidly improves as N increases. Similar properties can be deduced from the analysis of Fig. 3, apart from the oscillatory char-
acter of the reconstructed coefficient, which is now more evident for N ¼ 6;9, whereas it becomes almost negligible when
N ¼ 15.

For the sake of completeness, it should be noted that part of our results involve not necessarily small mass variations, see,
for example, Fig. 4. This would suggest that the proposed reconstruction method has some unexpected potential, in spite of
the fact that the proof of convergence presented in Section 4 requires to work in a sufficiently small neighborhood of the
referential nanorod.

Finally, some synthetic numerical information concerning the sequence of iterations is reported in Table 2. Few iterations
are sufficient to satisfy the convergence criterion, e.g., less than five in these cases. The quantity e defined in (63), which can
be considered at each iteration step as the average discrepancy between identified and target eigenvalues, is reduced by at
least 3� 4 orders of magnitude with respect to the initial value. The errors on the mass coefficient, either evaluated on L2 or
L1 norm, are reduced significantly through the iterations, albeit to a lesser extent than e. In particular, the relative error in L1

norm is even more than one order of magnitude less than the initial value, so confirming the accuracy of the reconstruction

of regular mass variations. It should also be noted that the matrix A jð Þ remains well conditioned during the iterations, with



Table 1
First 25 eigenvalues of the clamped–clamped uniform unperturbed nanorod in (1)–(3), with physical parameters as in Section 5.1. Comparison between
analytical (kn , column 2) and numerical (kFEMn ) values obtained with Ne ¼ 100; 200;400 equally spaced finite elements. Percentage errors:
en ¼ 100� kFEMn � kn

� �
=kn for Ne ¼ 100 (column 3), Ne ¼ 200 (column 4), Ne ¼ 400 (column 5).

n kn rad=sð Þ2 Ne ¼ 100 Ne ¼ 200 Ne ¼ 400

1 3:556 � 10þ12 1:4 � 10�6 1:4 � 10�6 1:4 � 10�6

2 1:426 � 10þ13 1:4 � 10�6 1:4 � 10�6 1:4 � 10�6

3 3:220 � 10þ13 1:5 � 10�6 1:5 � 10�6 1:5 � 10�6

4 5:755 � 10þ13 5:0 � 10�7 5:0 � 10�7 5:0 � 10�7

5 9:055 � 10þ13 1:6 � 10�6 5:2 � 10�7 5:2 � 10�7

6 1:315 � 10þ14 8:1 � 10�6 5:2 � 10�7 5:2 � 10�7

7 1:807 � 10þ14 1:3 � 10�5 2:4 � 10�6 2:4 � 10�6

8 2:387 � 10þ14 2:6 � 10�5 1:2 � 10�6 1:2 � 10�6

9 3:059 � 10þ14 5:3 � 10�5 3:9 � 10�6 6:6 � 10�7

10 3:829 � 10þ14 9:9 � 10�5 4:9 � 10�6 �2:8 � 10�7

11 4:703 � 10þ14 1:7 � 10�4 1:1 � 10�5 2:6 � 10�7

12 5:688 � 10þ14 2:9 � 10�4 1:7 � 10�5 1:3 � 10�6

13 6:792 � 10þ14 4:6 � 10�4 2:7 � 10�5 2:5 � 10�6

14 8:022 � 10þ14 7:0 � 10�4 4:4 � 10�5 2:4 � 10�6

15 9:389 � 10þ14 1:0 � 10�3 6:4 � 10�5 3:9 � 10�6

16 1:090 � 10þ15 1:5 � 10�3 9:1 � 10�5 8:2 � 10�6

17 1:257 � 10þ15 2:1 � 10�3 1:3 � 10�4 9:6 � 10�6

18 1:440 � 10þ15 2:9 � 10�3 1:8 � 10�4 1:4 � 10�5

19 1:642 � 10þ15 3:9 � 10�3 2:4 � 10�4 1:5 � 10�5

20 1:862 � 10þ15 5:2 � 10�3 3:2 � 10�4 2:0 � 10�5

21 2:103 � 10þ15 6:8 � 10�3 4:2 � 10�4 2:4 � 10�5

22 2:365 � 10þ15 8:8 � 10�3 5:4 � 10�4 3:2 � 10�5

23 2:651 � 10þ15 1:1 � 10�2 6:9 � 10�4 4:2 � 10�5

24 2:961 � 10þ15 1:4 � 10�2 8:7 � 10�4 5:6 � 10�5

25 3:297 � 10þ15 1:7 � 10�2 1:1 � 10�3 6:7 � 10�5

Fig. 2. Reconstruction of smooth mass changes as in (109), with s
L ¼ 0:35; cL ¼ 0:10, t ¼ 0:10, using the first N ¼ 6;9;12;15 eigenfrequencies.
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Fig. 3. Reconstruction of smooth mass changes as in (109), with s
L ¼ 0:35; cL ¼ 0:10, t ¼ 1:00, using the first N ¼ 6;9;12;15 eigenfrequencies.

Fig. 4. Reconstruction of smooth mass changes as in (109), with s
L ¼ 0:35; cL ¼ 0:30, t ¼ 1:00, using the first N ¼ 6;9;12;15 eigenfrequencies.
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condition number j A jð Þ
� �

¼ kA jð Þk k A jð Þ
� ��1

k ranging between 30 and 120 in all the cases studied. Here,

kA jð Þk ¼ maxjyj¼1jA jð Þyj, where jyj ¼ ffiffiffiffiffiffiffiffiffi
y � yp

is the Euclidean norm of the vector y 2 RN .
5.3.2. Identification of discontinuous mass densities
The mass density to be determined is assumed equal to
Table 2
Some results of the reconstruction of smooth mass changes as in (109) versus iteration number j (up to convergence), with (a): s

L ¼ 0:35; cL ¼ 0:10; t ¼ 0:10
(Fig. 2); (b): s

L ¼ 0:35; cL ¼ 0:10; t ¼ 1:00 (Fig. 3); (c): s
L ¼ 0:35; cL ¼ 0:30; t ¼ 1:00 (Fig. 4), using the first N ¼ 6 (columns 2� 5), N ¼ 15 (columns 6� 9)

eigenfrequencies. The quantity e is defined in (63); eL2 ¼ kqident�qexactk
L2

kqexactk
L2

, eL1 ¼ kqident�qexactkL1
kqexactkL1 , where qident ¼ qident xð Þ, qexact ¼ qexact xð Þ are the identified and the exact

mass density per unit length, respectively. j A jð Þ
� �

is the condition number of the matrix A jð Þ . The unperturbed nanorod corresponds to j ¼ 0.

j e j A jð Þ
� �

eL2 eL1 e j A jð Þ
� �

eL2 eL1

(a)
0 2:40 � 10�3 1:30 � 10þ1 1:92 � 10�2 9:09 � 10�2 1:44 � 10�3 3:10 � 10þ1 1:92 � 10�2 9:09 � 10�2

1 3:11 � 10�5 1:31 � 10þ1 1:04 � 10�2 3:95 � 10�2 3:84 � 10�5 3:12 � 10þ1 1:58 � 10�3 5:34 � 10�3

2 5:12 � 10�8 1:41 � 10þ1 1:04 � 10�2 3:88 � 10�2 3:35 � 10�7 3:64 � 10þ1 1:31 � 10�3 4:43 � 10�3

(b)
0 2:33 � 10�2 1:30 � 10þ1 1:81 � 10�1 5:00 � 10�1 1:29 � 10�2 3:10 � 10þ1 1:81 � 10�1 5:00 � 10�1

1 2:52 � 10�3 1:31 � 10þ1 1:00 � 10�1 2:43 � 10�1 2:23 � 10�3 3:12 � 10þ1 5:70 � 10�2 1:47 � 10�1

2 9:00 � 10�5 2:36 � 10þ1 9:68 � 10�2 2:02 � 10�1 2:63 � 10�4 8:16 � 10þ1 1:14 � 10�2 2:55 � 10�2

3 3:37 � 10�7 2:60 � 10þ1 9:68 � 10�2 2:02 � 10�1 7:77 � 10�6 1:14 � 10þ2 7:17 � 10�3 1:50 � 10�2

(c)
0 6:42 � 10�2 1:30 � 10þ1 2:82 � 10�1 5:00 � 10�1 3:64 � 10�2 3:10 � 10þ1 2:82 � 10�1 5:00 � 10�1

1 1:24 � 10�2 1:31 � 10þ1 9:46 � 10�2 1:74 � 10�1 7:03 � 10�3 3:12 � 10þ1 9:57 � 10�2 1:84 � 10�1

2 9:08 � 10�4 2:44 � 10þ1 1:53 � 10�2 3:54 � 10�2 6:14 � 10�4 5:89 � 10þ1 1:44 � 10�2 3:08 � 10�2

3 2:20 � 10�5 3:25 � 10þ1 9:97 � 10�3 2:79 � 10�2 1:54 � 10�5 7:92 � 10þ1 4:64 � 10�3 1:78 � 10�2

4 4:89 � 10�8 3:30 � 10þ1 9:96 � 10�3 2:80 � 10�2 9:11 � 10�8 8:11 � 10þ1 4:62 � 10�3 1:75 � 10�2

Fig. 5. Reconstruction of discontinuous mass changes as in (110), with s
L ¼ 0:15; cL ¼ 0:10, t ¼ 0:10, using the first N ¼ 6;9;12;15 eigenfrequencies.



Fig. 6. Reconstruction of discontinuous mass changes as in (110), with s
L ¼ 0:15; cL ¼ 0:10, t ¼ 1:00, using the first N ¼ 6;9;12;15 eigenfrequencies.

Fig. 7. Reconstruction of discontinuous mass changes as in (110), with s
L ¼ 0:35; cL ¼ 0:30, t ¼ 1:00, using the first N ¼ 6;9;12;15 eigenfrequencies.
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q xð Þ ¼ q0 þ q0t � v s�c
2;sþc

2½ �; ð110Þ
where s; c; t have the same meaning as in the previous section, see Fig. 1(b).
Since the mass density q has jump discontinuities at x ¼ s� c

2, whereas the approximating functions Un xð Þ are smooth
functions of the axial coordinate x, it is expected that the reconstruction may fail near these points. Numerical simulations
confirm this undesired behavior. Some representative cases are collected in Figs. 5 and 6.

These cases correspond to perturbations both located near the left end of the nanorod (sL ¼ 0:15) and with small support
(cL ¼ 0:1), but having either small (t ¼ 0:1, case i)) or large (t ¼ 1:0, case ii)) intensity, respectively. In case i) (see Fig. 5), the
results are accurate enough for N ¼ 15, whereas the oscillations of the identified mass coefficient have appreciable ampli-
tude in case ii) (see Fig. 6), and propagate in the remaining part of the interval 0; L2

� �
. The support of the perturbation is

slightly overestimated and, as it was expected, L1 estimates fail near the jumps.
Fig. 7 collects the results for large mass variations, both in L2 and in L1 norm, for s

L ¼ 0:35; cL ¼ 0:3; t ¼ 1:0. The support of
the mass variation still is well estimated, even if oscillations with significant amplitude occur both within the support and in
ig. 8. Reconstruction of discontinuous mass changes as in (110), with s
L ¼ 0:35; cL ¼ 0:30, t ¼ 1:00, using the first N ¼ 20;25 eigenfrequencies.

Reconstruction of overlapping mass changes as in (111), with s
L ¼ 0:25; t ¼ 0:50; s1L ¼ 0:25; t1 ¼ 0:10, using the first N ¼ 6 to 15 eigenfrequencies.
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the remaining part of the interval 0; L2
� �

. The number of iterations needed to satisfy the stopping criterion (63) is slightly big-
ger than the smooth case, being however always less than 10.

Finally, it can be shown that results generally improve by considering larger N, say N ¼ 20;25. In order to reduce the
numerical approximation error on higher order eigenvalues, all these cases have been developed on a numerical model of
the nanorod having Ne ¼ 400 equally spaced finite elements. As it can be seen by comparing Figs. 7 and 8, the increase of
Ne shows beneficial effects, such as more accurate estimate of the actual support of the mass variation and reduction of
the amplitude of the spurious oscillations of the identified coefficient around the exact value. However, the identification
of large mass variations with left (respectively, right) jump position close to the left end (respectively, to the mid point)
of the nanorod still remains problematic to some extent.

5.3.3. Identification of overlapping added masses
The identification method has also been tested on mass distributions having less schematic profile than those considered

in the previous sections. As an example, here we report some representative results related to two overlapping added mass
profiles, one being regular (and belonging to the class of Section 5.3.1) and the other one having triangular shape, with a
jump type discontinuity. More precisely, the mass density to be determined has the expression
Fig. 10
q xð Þ ¼ q0 þ q0 max t cos2
p x� sð Þ

c

� �
v s�c

2;sþc
2½ �;

t1
c1

x� s1 � c1ð Þð Þv s1�c1 ;s1½ �

� �
; ð111Þ
. Reconstruction of overlapping mass changes as in (111), with s
L ¼ 0:15; t ¼ 0:50; s1L ¼ 0:25; t1 ¼ 0:50, using the first N ¼ 6 to 25 eigenfrequencies.
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where s1 � c1; s1½ � � 0; L2
� �

and t1q0; t1 > 0, is the support and the maximum value of the triangular added mass profile,
respectively; see Fig. 1(c). Some of the results are summarized in the sequel. They have been obtained using
Ne ¼ 200;400 equally spaced finite elements, for N ¼ 6;9;12;15 and N ¼ 20;25, respectively. In order to simplify the presen-
tation of the results, the parameters c and c1 have been assumed equal to 0:2L. It should be noted that, depending on the
values of s1 and t1, the coefficient q xð Þ in (111) can be either continuous or discontinuous. The latter case occurs, for example,
when s1 2 s� c

2 ; sþ c
2

� �
and t1 is small enough with respect to t.

The determination of continuous mass coefficient turns out to be very accurate even when only the first 9� 12 eigenfre-
quencies are used in identification, as it was found for the class of smooth variations considered in Section 5.3.1. We refer to
Fig. 9 for a typical result.

In case of discontinuous coefficient, as it was already noticed in Section 5.3.2, spurious oscillations occur near the jump,
with amplitude which turns out to be proportional to the intensity of the jump. As a consequence, identification of the
smooth portion of the mass coefficient may become inaccurate for small values of t. At least 15� 20 first eigenfrequencies
seem to be needed to obtain acceptable accuracy in these cases, see, for example, Fig. 10. The method also shows good ability
in identifying mass variations with disjoint supports, particularly when the values of t1 and t are close, see, for example,
Fig. 11.
Fig. 11. Reconstruction of overlapping mass changes as in (111), with s
L ¼ 0:15; t ¼ 0:50; s1L ¼ 0:45; t1 ¼ 0:50, using the first N ¼ 6 to 25 eigenfrequencies.
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5.3.4. Physical post-filtering
In this section we show that, when the method is combined with additional information about the unknown mass coef-

ficient, such as monotonicity or a priori information on the support of the mass variation, the reconstruction may further
improve, leading to good uniform approximation of the solution. More precisely, we have considered in the sequel the fol-
lowing a priori information:

F1) The mass variation is positive, e.g., the condition (14) holds.
As remarked in Section 2, this information is simply available from the physics of the problem. Actually, our identification
algorithm produces a function q xð Þ which may oscillate near the unperturbed linear mass density q0. Basing on assump-
tion F1, we filter the results of identification by setting the mass density to be q0 whenever the reconstructed value of q xð Þ
is smaller than q0.
F2) There are situations in which it is a priori known that a single localized mass variation occurs in the nanosensor, that
is, the support of the mass variation r� xð Þ is a closed (and possible small) interval compactly contained in 0; L2

� �
.

In this case, under the assumption that the reconstructed coefficient q xð Þ is a good uniform approximation of the actual
mass, one can determine the interval of maximum mass increase and neglect all the other possible regions on which the
mass density increases.
Fig. 12. Filtering effects on identification. Reconstruction of discontinuous mass changes as in (110), with s
L ¼ 0:15; cL ¼ 0:10, t ¼ 1:00, using the first N ¼ 15

eigenfrequencies.



Fig. 13. Noise effects on identification of smooth mass changes. Upper row: mass changes as in (109), with s
L ¼ 0:35; cL ¼ 0:10, t ¼ 0:10. Lower row: mass

changes as in (109), with s
L ¼ 0:35; cL ¼ 0:30; t ¼ 1:00.

Fig. 14. Noise effects on identification of discontinuous mass changes. Upper row: mass changes as in (110), with s
L ¼ 0:15; cL ¼ 0:10, t ¼ 0:10. Lower row:

mass changes as in (110), with s
L ¼ 0:35; cL ¼ 0:30; t ¼ 1:00.
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In order to check how the identification results improve by adding the above hypotheses F1 and F2, we tested the method
in an extended series of simulations with error free data. As an example, Fig. 12 reports the results obtained by applying filter
F1 and by combining in cascade F1 þ F2. The cases considered correspond to discontinuous mass changes as in (110), with
large mass variation (t ¼ 1:0) localized either on a small or a large subinterval of 0; L2

� �
. The comparison with the correspond-

ing unfiltered results clearly shows an improvement of accuracy of the reconstruction.
5.3.5. Application to noisy data
An important aspect for applications is stability against noise in the given spectral data. In order to test the robustness of

the method, the identification was carried out by perturbing the target noise-free eigenvalue kexpn ;n ¼ 1; . . . ;N as follows
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kexp�err
n

q
¼

ffiffiffiffiffiffiffiffi
kexpn

q
þ sn: ð112Þ
Here, sn is a random Gaussian variable with vanishing mean and standard deviation r̂ such that 3r̂ ¼ 2pP, where P is the
maximum admitted error. The effect of errors was evaluated both for smooth and discontinuous mass distributions, by con-
sidering different profile of the coefficient and by varying the number N of the first eigenfrequencies used in identification,
for increasing values of P ranging from 100 Hz to 5000 Hz. A selected, though representative, set of results are presented in
Figs. 13 and 14, for smooth and discontinuous mass coefficients, respectively. For each position along the nanorod axis, and
besides the exact mass profile, every subfigure contains three curves: the curve of the mean value and the two curves
obtained by adding �3r̂ to the mean value. One thousand of simulations was performed for each case. It turns out that
the three curves are almost indistinguishable for P ¼ 100 Hz. Appreciable discrepancy occurs for P ¼ 1000 Hz, and for P
greater than 3000 Hz the accuracy of the reconstruction is seriously compromised. In particular, for P less than 2000 Hz,
the effect of errors makes it possible to discriminate the presence of even minor variations of mass, either regular or discon-
tinuous, and for which the influence of errors on data is expected to be more significant. It should be noted thatP ¼ 2000 Hz
corresponds to percentage errors ranging from 0:05 (high frequency) to 0:65 (low frequency) per cent of the unperturbed
first fifteen resonant frequencies. Finally, the convergence speed of the iterative method is not significantly affected by
the random noise, and the number of iterations needed to get convergence is slightly bigger than in the error-free case.
The condition number j Að Þ takes values of the same order of those found in the analysis of the corresponding cases in
absence of errors on the data.
6. Conclusions

The mass sensing principle for nanoresonators sensors is based on monitoring the variations of the resonant frequencies
caused by unknown additional masses attached on the surface of a referential system. In spite of important applications in
physical, chemical and biological fields, to the authors knowledge, a general formulation of the inverse problem of identify-
ing distributed added mass attached on nanostructures, within the framework of generalized continuummechanics theories,
it has not been developed until now. The present work is a first contribution on this topic.

We have investigated the inverse problem of determining additional distributed mass on a nanorod from finite number of
natural frequencies of the free axial vibration and partial knowledge of the unknownmass coefficient. Under the assumption
that the nanorod is clamped at the ends and the mass is given on half of the nanosensor, a reconstruction method has been
proposed. The method consists of a sequence of linearizations of the inverse problem, and results in the construction of an
approximating mass density that has the given (measured) first N eigenvalues.

When the method is applied near the unperturbed uniform nanorod, the reconstructed mass coefficient resembles a gen-
eralized Fourier partial sum of order N expressed on a suitable class of functions, each of which is the gradient of the nth
eigenvalue with respect to the mass variation. Therefore, the quantity of data required by the method to obtain good approx-
imation of the mass coefficient depends on the smoothness of the coefficient. The results of an extensive series of simulations
indicate that for smooth (e.g., at least continuous) coefficients the high order Fourier contributions are less important and
few eigenvalues, N less then 10, provide sufficient data for a good uniform approximation. When the mass variation is rough
(e.g., discontinuous), then some of the higher order Fourier coefficients are significant and eigenvalues corresponding to the
higher modes will needed to capture the actual behavior, i.e., N ¼ 15� 20. In general, the smoother the coefficient, the more
rapidly the method converges with small error in L1-norm. Often, the first few iterates exhibit a good deal of oscillation. The
rougher the coefficient, the more pronounced was this behavior and the amplitude of the oscillations around the exact coef-
ficient. This seems in agreement with the behavior observed in previous studies on second order Sturm-Liouville operators,
see, among other contributions, [37,45–47].

We have also provided a convergence theorem to the solution of the inverse problem for a particular family of finite
dimensional coefficients. The result holds under the assumption that the eigenvalues of the unperturbed and perturbed
nanorod are close enough, and the mass variation is sufficiently small in norm. Presumably, the basic idea of the proof
can be extended also to some other cases, such as those in which two spectra are used to reconstruct a general mass variation
on the whole interval axis, but is seems unlikely that the two above mentioned assumptions can be removed.
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In spite of the mathematical difficulties typical for this class of finite inverse eigenvalue problems, numerical simulations
show accurate approximation using L2 or even L1 norms, which, in principle, is possible when using an infinite amount of
data only. In particular, our experience shows that the accuracy of the method increases when spectral data are used in con-
junction with additional information about the unknown coefficient, such as the positivity of the function expressing the
increase of mass, which is available simply from the physics of the problem. Finally, it is interesting to notice that the method
shows unexpected ability to reconstruct not necessarily small (smooth) mass variations, without the need of introducing fur-
ther information on the unknown coefficient, such as the average of the unknown coefficient that, generally, needs knowl-
edge of asymptotic expression of eigenvalues. It would be interesting to investigate on general properties on this issue.
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Appendix A

In this Appendix we prove Theorem 3.1.
Let n be a fixed integer, n P 1.
Proof of estimate (33).
We adapt the arguments shown in [33]. The Rayleigh quotient for the eigenvalue problem (15)–(17) is
R u;q½ � ¼
R L
0 b u00ð Þ2 þ a u0ð Þ2R L

0 qu2
; ð113Þ
for every function u 2 H n 0f g, that is, u 2 H2 0; Lð Þ satisfying the end conditions u 0ð Þ ¼ u Lð Þ ¼ 0.
Let us recall the following variational characterization of the eigenvalues of (15)–(17). Let vn x;qð Þ denote the eigenfunc-

tion corresponding to kn qð Þ and let Un qð Þ be the subspace of H spanned by the first n eigenfunctions v1 x;qð Þ; . . . ;vn x;qð Þf g.
Let Vn be any other n-dimensional subspace of H. We have
kn qð Þ 6 max
u2Vnn 0f g

R u;q½ �; kn qð Þ ¼ max
u2Un qð Þn 0f g

R u;q½ �: ð114Þ
For every function u 2 H n 0f g we have
R u;q2½ � ¼ R u;q1½ � 1þ
R L
0 Dqð Þu2R L
0 q2u2

 !
; ð115Þ
with Dq ¼ q1 � q2.
Our main goal is to show that the numerator of the fraction appearing on the right hand side of (115) can be bounded

from above by const:kDqk2
R L
0 u

2 for every u 2 Un q1ð Þ n 0f g, where const. is a positive constant depending only on the a priori
data and n. In fact, on assuming this bound available, and using the uniform lower bound (13), from (115) we have
R u;q2½ � 6 R u;q1½ � 1þ CkDqk2ð Þ; ð116Þ

where the constant C > 0 only depends on the a priori data and n. Next, taking the maximum in (116) over the functions
u 2 Un q1ð Þ n 0f g and using the variational characterization (114), we obtain
kn q2ð Þ 6 kn q1ð Þ 1þ CkDqk2ð Þ: ð117Þ

Reversing the indexes 1 and 2, we also have
kn q1ð Þ 6 kn q2ð Þ 1þ CkDqk2ð Þ: ð118Þ

From (117) and (118) we can derive the inequality
jkn q2ð Þ � kn q1ð Þj 6 Cmax kn q1ð Þ; kn q2ð Þf gkDqk2: ð119Þ

Recalling that, by definition of q� in (13) and by monotonicity results (see, for example, [41]), we have kn q1ð Þ 6 kn q�ð Þ and
kn q2ð Þ 6 kn q�ð Þ for every n P 1, the wished estimate (33) follows from (120).

To complete the proof, it remains to control the numerator in the fraction on the right hand side of (115).
Let u 2 Un q1ð Þ n 0f g, that is u xð Þ ¼Pn

i¼1civ i x;q1ð Þ with
Pn

i¼1c
2
i > 0, where v i x;q1ð Þ is normalized so thatR L

0 q1v2
1 x;q1ð Þ ¼ 1; i ¼ 1; . . . ;n. By integrating by parts, we have:
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Z L

0
Dq xð Þu2 xð Þdx ¼ u2 xð Þ

Z x

0
Dq x1ð Þdx1jx¼L

x¼0 �
Z L

0

Z x

0
Dq x1ð Þdx1

� �
u2 xð Þ� �0

dx

¼ �2
Z L

0

Z x

0
Dq x1ð Þdx1

� �
u xð Þu0 xð Þdx: ð120Þ
Using Hölder inequality, we obtain j R x
0 Dq x1ð Þdx1j 6 L

1
2kDqk2, and then, inserting this estimate in (120), we get
j
Z L

0
Dq xð Þu2 xð Þdxj 6 2L

1
2kDqk2

Z L

0
ju xð Þu0 xð Þjdx 6 2L

1
2kDqk2 kuk2 ku0k2: ð121Þ
In order to estimate kv 0
ik2, by the weak formulation of the eigenvalue problem for ki q1ð Þ;v i x;q1ð Þf g, and recalling thatR L

0 q1v2
i x;q1ð Þ ¼ 1, we have
Z L

0
v 0

i x;q1ð Þ� �2 6 ki q1ð Þ
a

; ð122Þ
for every i P 1. Then, by Schwarz inequality and (122), we have
Z L

0
u0 xð Þð Þ2 6

Xn
i¼1

c2i �
Xn
i¼1

Z L

0
v 0
i x;q1ð Þ� �2 6 1

a
�
Xn
i¼1

ki q1ð Þ �
Xn
i¼1

c2i : ð123Þ
By the orthogonality of the eigenfunctions v i x;q1ð Þ we also have
Z L

0
q1u

2 xð Þ ¼
Z L

0
q1

Xn
i¼1

civ i x;q1ð Þ
 !2

¼
Xn
i¼1

c2i ; ð124Þ
and (123) becomes
Z L

0
u0 xð Þð Þ2 6 qþ

a
�
Xn
i¼1

ki q1ð Þ
Z L

0
u2 xð Þ: ð125Þ
Finally, using (125) in (121), we obtain
Z L

0
Dq xð Þu2 xð Þdx

���� ���� 6 2L
1
2kDqk2

qþ

a
�
Xn
i¼1

ki q1ð Þ
 !1

2

kuk22: ð126Þ
By monotonicity results, we have ki q1ð Þ 6 ki q�ð Þ 6 kn q�ð Þ, for every i ¼ 1; . . . ;n. It follows that estimate (116) can be
obtained from inequality (115), and the proof is complete.

Proof of estimate (35).
We now consider the continuity of the nth eigenfunction with respect to the mass coefficient.
Let us represent the nth eigenfunction vn x;q2ð Þ on the Hilbertian basis of H formed by the eigenfunctions vk x;q1ð Þf g1k¼1:
vn x;q2ð Þ ¼
X1
k¼1

cknvk x;q1ð Þ; ð127Þ
where the series is uniformly convergent in H up to the second order derivatives.
Coefficients ckn

 �1
k¼1 depend on q1;q2, e.g., c

k
n ¼ ckn q1;q2ð Þ. In view of the condition v 0

n 0;q1ð Þv 0
n 0;q2ð Þ > 0 assumed in The-

orem 3.1, we require that, for i ¼ 1;2, cnn qi;qið Þ ¼ 1 and ckn qi;qið Þ ¼ 0 if k– n.
Let us notice that, by (127), we have
vn x;q2ð Þ � vn x;q1ð Þ ¼
X1

k¼1;k–n

cknvk x;q1ð Þ þ cnn � 1
� �

vn x;q1ð Þ: ð128Þ
Therefore, in order to estimate kvn x;q2ð Þ � vn x;q1ð Þk2, we need to control the sequence ckn
 �1

k¼1;k–n and the term jcnn � 1j.
Let us recall the weak formulation of the eigenvalue problem (15)–(17) for kn q2ð Þ;vn x;q2ð Þf g:
Z L

0
bv 00

n x;q2ð Þu00 þ av 0
n x;q2ð Þu0� � ¼ kn q2ð Þ

Z L

0
q2vn x;q2ð Þu; ð129Þ
for every u 2 H. By inserting (127) in (129), choosing u ¼ v j x;q1ð Þ; j P 1, and using the orthogonality conditions
Z L

0
q1vk x;q1ð Þv j x;q1ð Þ ¼ dkj; k; j P 1; ð130Þ
we have
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c j
n kn q2ð Þ � kj q1ð Þ� � ¼ �kn q2ð Þ

Z L

0
q2 � q1ð Þvn x;q2ð Þv j x;q1ð Þ; ð131Þ
for every j P 1.
In order to simplify the notation, in the sequel we shall denote by C a positive constant that depends on the a priori data

only and n, and that may change from line to line.
It should be noted that if j ¼ n in (131), then the left and the right hand side can be made very small for q1 	 q2, and in the

limit q2 ¼ q1 Eq. (131) degenerates into a trivial identity. Therefore, we first assume j– n and we estimate from below the
quantity kn q2ð Þ � kj q1ð Þ� �

. The case j ¼ n shall be discussed later on.
We notice that, by asymptotic eigenvalue estimates, there exists J
0 2 N and there exists a positive constant C such that
C
2
j4 6 kj q1ð Þ 6 Cj4; for j > J
0: ð132Þ
Let us distinguish two cases.
First, let j > J
0. By (132), one can show that there exists a number J0 2 N; J0 possibly bigger than J
0 and J0 > n, such that
jkn q2ð Þ � kj q1ð Þj P Cj4; for j > J0; ð133Þ

and, therefore,
kn q2ð Þ
kn q2ð Þ � kj q1ð Þ
���� ���� 6 C

j4
; for j > J0: ð134Þ
In the other case, e.g., j 6 J0 and j– n, we notice that there exists b�; b�, 0 < b� < 1 only depending on the a priori data and n,
such that the sequences kn q1ð Þf g1n¼1, kn q2ð Þf g1n¼1 are uniformly discrete with separation constant r=2, provided that
kqi � q0k2 6 � for 0 < � 6 b�; i ¼ 1;2. This property follows from the fact that the sequence knf g1n¼1 is uniformly discrete (with

separation constant r) and by using the continuity of the eigenvalues with respect to small L2-perturbations of the referen-
tial linear mass density q0 (e.g., for b� small enough).

Therefore, we can estimate from below as follows:
jkn q2ð Þ � kj q1ð Þj P min jkn q2ð Þ � kn�1 q1ð Þj; jkn q2ð Þ � knþ1 q1ð Þjf g; ð135Þ

where we have assumed k0 q1ð Þ ¼ 0. Let us consider the first term on the right hand side, the analysis of the second being
similar. Since the sequence kn q2ð Þf g1n¼1 is uniformly discrete with separation constant r=2, using estimate (33), and reducing
the value of b� (where b� only depends on the a priori data and n), we have
jkn q2ð Þ � kn�1 q1ð Þj P jkn q2ð Þ � kn�1 q2ð Þj � jkn�1 q2ð Þ � kn�1 q1ð Þj P r
2
� Ck

n�1kq2 � q1k2 P
r
4
: ð136Þ
Therefore, for every j 6 J0 and j – n, we have
kn q2ð Þ
kn q2ð Þ � kj q1ð Þ
���� ���� 6 C: ð137Þ
By (134) and (137), we can compute c j
n for j – n:
c j
n ¼ � kn q2ð Þ

kn q2ð Þ � kj q1ð Þ
Z L

0
q2 � q1ð Þvn x;q2ð Þv j x;q1ð Þ: ð138Þ
By adapting the arguments used to prove (37), vn x;q2ð Þ is uniformly bounded in 0; L½ �, i.e.,

max
x2 0;L½ �

jvn x;q2ð Þj 6 C: ð139Þ
Then, by applying Hölder inequality to (138) and using (139), we have
jc j
nj 6 C

kn q2ð Þ
kn q2ð Þ � kj q1ð Þ
���� ���� kq2 � q1k2; ð140Þ
that is, by (134) and (137),
jc j
nj 6 Ckq2 � q1k2; j 6 J0; j – n; ð141Þ

jc j
nj 6

C

j4
kq2 � q1k2; j > J0: ð142Þ
We are now in position to estimate the L2 norm (squared) of the first term appearing on the right hand side of (128):
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Z L

0

X1
k¼1;k–n

cknvk x;q1ð Þ
 !2

6
Z L

0

XJ0
k¼1;k–n

cknvk x;q1ð Þ
 !2

þ 2
Z L

0

X1
k¼J0þ1

cknvk x;q1ð Þ
0@ 1A2

� 2 IJ0 þ I1
� �

: ð143Þ
Let us first consider IJ0 . By Schwarz’s inequality and (141), we have
IJ0 6
Z L

0

XJ0
k¼1;k–n

ckn
� �2 !

�
XJ0

k¼1;k–n

vk x;q1ð Þð Þ2
 !

6 Ckq2 � q1k22: ð144Þ
Concerning the term I1, we use the asymptotic estimate (142) and Schwarz inequality, obtaining
I1 6
Z L

0

X1
k¼J0þ1

cknvk x;q1ð Þ
0@ 1A2

6
Z L

0

X1
k¼J0þ1

k2 ckn
� �20@ 1A �

X1
k¼J0þ1

1

k2
vk x;q1ð Þð Þ2

0@ 1A
6
X1

k¼J0þ1

k2
C2kq2 � q1k22

k8
�
X1

k¼J0þ1

1

k2

Z L

0
vk x;q1ð Þð Þ2 6 Ckq2 � q1k22

X1
k¼1

1

k6
�
X1
k¼1

1

k2
6 Ckq2 � q1k22: ð145Þ
Inserting (144) and (145) in (143), we obtain
k
X1

k¼1;k–n

cknvk x;q1ð Þk2 6 Ckq2 � q1k2: ð146Þ
Finally, let us evaluate cnn. Recalling the normalization conditions (34), and using the representation (127), we have
cnn
� �2 Z L

0
q1v2

n x;q1ð Þ þ
X1

j¼1;j–n

cnnc
j
n

Z L

0
q1vn x;q1ð Þv j x;q1ð Þ þ

X1
k¼1;k–n

cnnc
k
n

Z L

0
q1vn x;q1ð Þvk x;q1ð Þ

þ
X1

k;j¼1; k;jð Þ– n;nð Þ
cknc

j
n

Z L

0
q1vk x;q1ð Þv j x;q1ð Þ ¼

Z L

0
q1v2

n x;q1ð Þ: ð147Þ
By the orthogonality conditions (130), the above equation reduces to
cnn
� �2 � 1 ¼ �

X1
j¼1;j–n

c j
n

� �2
; ð148Þ
where the right hand side can be estimated, as before, by using (141) and (142), that is
cnn
� �2 6 1þ Ckq2 � q1k22: ð149Þ
By choosing b� > 0 small enough, and recalling that cnn is expected to belong to a neighborhood of 1 (e.g.,
cnn qi;qið Þ ¼ 1; i ¼ 1;2), the above equality implies
jcnn � 1j 6 Ckq2 � q1k22; ð150Þ

that is the second term in (128) is an higher order term with respect to kq2 � q1k2, and the thesis (35) follows.

Remark 6.1. We conclude this Appendix by proving that, under the assumptions of Theorem 3.1, the eigenfunctions are
continuous in the H2 norm with respect to mass perturbation. To show this, let us start with the following identity, which
involves the energy norm jjj � jjj of the difference vn x;q1ð Þ � vn x;q2ð Þð Þ:
jjjvn x;q2ð Þ � vn x;q1ð Þjjj2 �
Z L

0
b v 00

n x;q2ð Þ � v 00
n x;q1ð Þ� �2 þ a v 0

n x;q2ð Þ � v 0
n x;q1ð Þ� �2

¼
Z L

0
b v 00

n x;q1ð Þ� �2 þ a v 0
n x;q1ð Þ� �2 � Z L

0
bv 00

n x;q1ð Þv 00
n x;q2ð Þ þ av 0

n x;q1ð Þv 0
n x;q2ð Þ� �

þ
Z L

0
bv 00

n x;q2ð Þ v 00
n x;q2ð Þ � v 00

n x;q1ð Þ� �þ av 0
n x;q2ð Þ v 0

n x;q2ð Þ � v 0
n x;q1ð Þ� �� �

� I1 þ I2 þ I3; ð151Þ

for every n P 1. By the weak formulation of the eigenvalue problem (see, for example, (129)), we have
I1 ¼ kn q1ð Þ
Z L

0
q1v2

n x;q1ð Þ; ð152Þ
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I2 ¼ �kn q1ð Þ
Z L

0
q1vn x;q1ð Þvn x;q2ð Þ; ð153Þ

I3 ¼ kn q2ð Þ
Z L

0
q2vn x;q2ð Þ vn x;q2ð Þ � vn x;q1ð Þð Þ; ð154Þ
where the functions vn x;q2ð Þ and vn x;q2ð Þ � vn x;q1ð Þð Þ have been chosen as test functions to obtain (153) and (154), respec-
tively. Therefore, by inserting (152)–(154) in (151), we have
jjjvn x;q2ð Þ � vn x;q1ð Þjjj2 ¼ kn q1ð Þ
Z L

0
q1vn x;q1ð Þ vn x;q1ð Þ � vn x;q2ð Þð Þ þ kn q2ð Þ

Z L

0
q2vn x;q2ð Þ vn x;q2ð Þ � vn x;q1ð Þð Þ:

ð155Þ

By using Hölder inequality, the normalization conditions (34) and estimate (35), we have
jjjvn x;q2ð Þ � vn x;q1ð Þjjj2 6 Ckvn x;q2ð Þ � vn x;q1ð Þk2 6 Ckq1 � q2k2; ð156Þ

where C > 0 is a constant only depending on the a priori data and n. It should be noted that, if q1 ¼ q0 (unperturbed
nanorod) and q2 ¼ q0 þ r� xð Þ (see (11)), for � > 0 small enough, then the energy norm jjjvn x;q0ð Þ � vn x;q0 þ r� xð Þð Þjjj is of
order �1=2 instead of order �, as for the norm kvn x;q0ð Þ � vn x;q0 þ r� xð Þð Þk2. Finally, using (35) and (156), one can obtain
the wished H2 estimate:
jjvn x;q2ð Þ � vn x;q1ð Þjj2H2 0;Lð Þ 6 Ckq1 � q2k2; ð157Þ
where the constant C > 0 only depends on the a priori data and n.
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