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Abstract 

 

Groundwater is one of the main resources for society and ecosystems. As part of the total water cycle 

and deeply connected with land use, many difficulties are present in groundwater management, especially 

in coastal areas. Landscape Scale Planning is an emerging approach for land use planning providing a 

framework for management based on evidence, given that landscapes have physical and information flows.  
Landscape Scale Planning embraces three dimensions: i) the spatial dimension centres on the recognition 

of distinct landscape units; ii) the temporal dimension entails the first use of a landscape through to its 

sustainable use by future generations; and iii) the modification dimension involves the anthropogenic 

alterations that affected and will affect the landscape and its features along the spatial and temporal 

dimensions. Through a systematic literature and the application of Landscape Scale Planning analytical 

framework, this paper seeks to analyse if groundwater management can be improved through Landscape 

Scale Planning. Twenty-eight selected publications were analysed focusing on (i) analyse existing evidence 

that can underpin groundwater management approaches that take into account the spatial, temporal and 

modification dimensions; and, (ii) analyse the implications of Landscape Scale Planning for groundwater 

management. The results show Landscape Scale Planning can be applied as an integrative framework for 

groundwater management. Landscape units based in many aspects such as geology, topography, cultural, 

and socio-economics can aid groundwater management that takes into account the different spatial and 

temporal characteristics of the aquifer. Furthermore, through the application of the Landscape Scale 

Planning analytical framework, it was identified that the need for the inclusion of the dynamical aspects of 

land use changes in the processes of groundwater management. Therefore, applying a Landscape Scale 

Planning approach can produce more comprehensive outcomes to improve the process of groundwater 

management. 

 

1. Introduction 

 

Groundwater is the water supply for a large part of the world’s population and has a fundamental 

role in ecosystem health and conservation (Gorelick and Zheng, 2015). Its unrestricted use has led to 

overexploitation, especially when the natural recharge is incompatible with increased anthropogenic 

demands (Molle et al., 2018). Groundwater systems encompass the aquifer, including the flow boundaries, 

sink (discharges and withdrawal) and sources (recharges) (Alley et al., 2002). There is an ongoing debate 

about how thresholds should be determined to guide groundwater extraction (Molle et al., 2018),  whilst 

sustaining a healthy ecological status of surrounding terrestrial ecosystems (Ross, 2016). While the primary 

source of recharge to aquifers is precipitation, groundwater management requires consideration of the total 

water cycle because this is affected by both anthropogenic pressures and landscape characteristics (Minnig 

et al., 2018). Hence, the concepts of groundwater recharge, availability, and sustainability are at the core of 

groundwater management.  Jakeman et al. (2016), taking an Integrated Water Resources Management 



(IWRM) perspective, suggest one of the priorities of groundwater management is balancing groundwater 

exploitation with demand of natural processes, as well as economic and social welfare of society. 

Intrinsically related to IWRM is the concept of groundwater sustainability, defined by Alley and Leake 

(2004 p.13) as the “development and use of groundwater in a manner that can be maintained for an infinite 

time without causing unacceptable environmental, economic, or social consequences”.  

Coastal regions are of paramount importance to the water cycle. These regions comprise many 

water systems such as rivers, wetlands, floodplains and estuaries, often connected by aquifers  (Momtaz 

and Shameem, 2016). More than half of the human population and activities are concentrated in these 

regions (Chatton et al., 2016). Consequently, coastal regions have been strongly influenced by social and 

economic development which affects the sustainability of groundwater systems (Chatton et al., 2016). 

Generally, in highly urbanised areas, anthropogenic pressures may affect the aquifers in many ways, 

namely: altering the recharge due to impermeable surfaces; point source contamination due to leaks; and 

overexploitation due to the uncontrolled increase of extractions (Minnig et al., 2018; Tam and Nga, 2018). 

Other groundwater related issues challenging coastal urbanised regions include saltwater upconing, 

saltwater intrusion and reduction of submarine discharge to ecosystems (Michael et al., 2017; Petelet-

Giraud et al., 2018). These regions are then complex landscapes that require more integrated management 

approaches. 

Changes in the biophysical cover affects the recharge process and available groundwater for 

human consumption and environmental functions (Tam and Nga, 2018). While there is a connection 

between how land use influences and is influenced by groundwater systems, land use is generally planned 

and managed following anthropogenic rather than natural criteria. Thus, to achieve groundwater 

sustainability, groundwater management and land use planning must be integrated (Foster, 2018). 

Landscape Scale Planning is an emerging approach that takes a holistic view of land use planning and 

management. It focuses on landscapes altered by human intervention and is built upon the concepts 

proposed by the European Landscape Convention1 (Council of Europe, 2000). Selman (2006) suggests 

landscapes comprise a multipurpose arena where different disciplines can be combined, moving beyond 

from a static spatial dimension to also include a temporal and a modification dimensions.  

Planning at the landscape scale offers an opportunity for the integration of cross-sectoral policies 

using the landscape as a unit of analysis to achieving sustainable resource management (Selman, 2006). 

This includes making decisions based on information that takes into account competing land use interests 

but also their multiple functions, values and ecosystem services (Antrop and Van Eetvelde, 2017; Plieninger 

and Bieling, 2012; Selman, 2009). Landscape Scale Planning embraces three dimensions: i) the spatial 

dimension centres on the recognition of distinct landscape units, these landscape units can be defined as 

integrative units that have more internal resemblance than with the surrounding regions; ii) the temporal 

dimension entails the first use of a landscape through to its sustainable use by future generations; and iii) 

the modification dimension involves the anthropogenic alterations that affected and will affect the 

landscape and its features along the spatial and temporal dimensions (Selman, 2006). Hence, Landscape 

                                                           
1 Landscape can be defined as “an area, as perceived by people, whose character is the result of the action 
and integration of natural and/or human factors” Council of Europe, 2000. European Landscape 
Convention, Report and Convention Florence, p. 8. 



Scale Planning enables integrated planning for differing systems (natural, forest, agricultural, urban), their 

conflicts and changes that happen within them. 

In addition to land use planning (Hawkins and Selman, 2002), landscape approaches have been 

used in environmental management (Andersen et al., 2019), and in conjunction with other approaches such 

as the ecosystem approach (Morrison et al., 2018). To date, not many applications of landscape approaches 

have been found in groundwater management. This paper investigates if the multiple dimensions involved 

in Landscape Scale Planning (spatial, temporal and modification)  have the potential to provide the much 

needed data and evidence to inform groundwater management decisions (Vadiati et al., 2018) under both a 

total water cycle and IWRM perspectives. To this end, the paper uses a systematic literature and applies a 

Landscape Scale Planning analytical framework to: (i) analyse existing evidence that can underpin 

groundwater management approaches that take into account the spatial, temporal and modification 

dimensions; and, (ii) analyse the implications of Landscape Scale Planning for groundwater management. 

 

2. Methods 

 

Systematic review (SR) is a method for locating, appraising and summarising evidence on a given 

topic. It started in the Health Sciences but its application has extended to other fields due to the wide range 

of published articles available (Haddaway and Bilotta, 2016). While there is a raft of methods to carry out 

systematic reviews of literature (Haddaway and Bilotta, 2016), this paper adopts the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009) which has been applied 

to many investigations concerning environmental management (Baum and Bartram, 2017; Tseng et al., 

2019) and spatial planning (Boulton et al., 2018; Song et al., 2018). Following the PRISMA method, the 

following steps were used to carry out the review: search strategy; screening and eligibility criteria; content 

and result analysis (Moher et al., 2009).  

 

2.1. Search strategy 

 

Searches using the combination of the terms “Groundwater Management” and “Landscape Scale” 

did not return any results. Consequently, the two concepts were further unpacked to derive other search 

terms, including proxies. Relative to “Groundwater management”, proxy was “Groundwater Recharge”. 

Relative to “Landscape Scale Planning” proxies were: “landscape scale”, “land use planning”, and “land 

use change”. These keywords were joined in the query searches using Boolean operators (“AND”, “OR"). 

The protocol for conducting the searches involved queries in the Web of Science (category: “Topic”) and 

Scopus (category: “Title, abstract, and keywords”) databases, in peer-review journals and book chapters, 

published in the English language up to December 2018. This resulted in 480 publications. Afterwards, a 

search among the results was conducted using the keyword “coast*” to narrow down the results to those 

related to coastal areas. This resulted in 55 publications. More information on the delimitation of the 

keywords can be found in the Supplementary Material. 

 

 



2.2. Screening and eligibility criteria  

 

The screening of search results followed three steps. Firstly, the duplicate articles or those that did 

not have a full-text available were removed. Secondly, a screening of the title and abstracts was carried out 

to remove publications unrelated to the research aim guiding the paper – that is, if the multiple dimensions 

involved in Landscape Scale Planning (spatial, temporal and modification) have the potential to provide 

data and evidence to inform groundwater management decisions under both a total water cycle and IWRM 

perspectives. The screening evaluated whether: (i) analysis or provision of information to groundwater 

management was one of the objectives of the article; and (ii) land use patterns or changes were analysed. 

Finally, articles that passed this first screening were then analysed for content if: 

• at least one of the three Landscape Scale Planning dimensions was analysed in the paper (i.e. 

spatial, temporal and/or modification dimensions), and/or 

• type(s) of land use covered by the paper had at least one non-natural use (urban, agricultural, 

forest).  

 

2.3. Content and result analysis 

 

In total, 28 publications passed the screening phase. These were analysed to identify the countries 

where the studies were developed and other general aspects such as date of publication. Publications were 

then classified based on: (i) which dimensions of the Landscape Scale Planning approach they were related 

to; (ii) what methods were used to investigate such dimensions, given that this represents the procedure 

used to transform raw data into information for the management process; (iii) and, how the paper can 

contribute to the objectives of this study. An in-depth content analysis was then carried out to investigate 

how spatial, temporal and modification dimensions aspects were addressed, how land use changes were 

considered, and methods used for these (see Table 1). Methods used by the publications were considered 

in the analysis to explore the extent to which they support the investigation of spatial, temporal and/or 

modification dimensions. Analysis results were then constrasted with the existing literature on groundwater 

management and landscape approaches. 

 

Table 1 – Criteria used to classify the publications and analyse content. 

Criteria Description of the classification criteria of the publications 

Country/continent The location where the study was conducted 

Spatial Dimension Study site, catchment or hydrogeological unit 

Temporal Dimension Past, present or future analyses 

Modification Dimension Current land uses or land use changes across time (past and future)  

Methods applied  The methods applied in each publication to address differing 

dimensions 

 

 

 



3. Results 

 

3.1. Overview 

 

Among the 28 selected publications, eight were from the Americas (seven in North and one in 

South America), seven from Asia, six from Africa, six from Europe and three from Oceania (Figure 1). 

Within these, only one publication had case study areas from multiple countries. The timespan of the 

publications ranged from 2001 to 2018. The year with the highest number of publications was 2012. 

However, there was no significant trend in the number of publications per year. The spatial dimension, 

through its different types of boundaries, was identified in all selected papers. The modification dimension 

regarding current land use and land use changes was present in 23 papers and the temporal dimension in 

only 16. A complete list of the selected publications can be found in the Supplementary Material (Table 5). 

With respect to methods, the majority of papers adopted some sort of modelling, followed by an analysis 

of groundwater quality or quantity through chemical methods (see Table 6 at the supplementary material). 

Other methods included conceptual approaches, spatial analysis, multicriteria analysis, physical methods, 

and sensitivity analysis. 21 publications presented potential evidence to inform groundwater management 

based in at least one dimension of Landscape Scale Planning, while 16 showed perspectives that could lead 

to a better understanding of groundwater management issues. The content analysis revealed publications 

predominantly focused on two emerging groundwater management issues: alterations in groundwater 

recharge and groundwater contamination. A general overview of the connection between the Landscape 

Scale Planning dimensions and these issues can be found in Table 2. 

 

 
Figure 1 - Location of the study cases found in the selected publications. 



Table 2 – Connection between the Landscape Scale Planning dimensions and the main groundwater management issues found in the publications 

Dimension Alteration in recharge Contamination of aquifers 

Spatial 

o The recharge happens in different intensities within the aquifer, this 

depends on the topography, location and land use (Calderon and 

Uhlenbrook, 2016; Guinn Garrett et al., 2012).  

o Hydrogeological units have uncertainties, such as spatial boundaries of 

or hydrogeological characteristics, that needs to be taken into account in 

the estimates of recharge. (Gondwe et al., 2011; Priyantha Ranjan et al., 

2006). 

o The contamination mainly depends on the physical aspects such as 

vadose zone depth, hydraulic conductivity or topography (Allouche et al., 

2017; Hu et al., 2018). 

o Groundwater flow direction and precipitation can spread the contaminant 

to rivers through baseflow (Aquilina et al., 2012).  

Temporal 

o Temporal variability needs to be taken into account in groundwater 

management, because the recharge process does not happen equally 

throughout the year (Calderon and Uhlenbrook, 2016; Daraio, 2017). 

o Climate change can lead to alteration in the recharge process due to 

changes in precipitation pattern and evapotranspiration (Daraio, 2017; 

Ragab et al., 2012). 

o Due to the physical characteristics of groundwater systems, 

contamination from agricultural land uses can take up to 25 years until it 

starts to be detected in the rivers (Aquilina et al., 2012).  

o The time required for mitigation of contaminant depend on the 

hydrogeological setting. Hence, it is necessary constant monitoring to 

understand the behaviour of different parameters (Melloul and Collin, 

2003). 

Modification 

o Changes in land use directly affect the recharge of the aquifer altering 

processes of the water cycle such as evapotranspiration and infiltration 

(Brauman et al., 2012; Tsutsumi et al., 2009). 

o Urban land uses can provide indirect sources of recharge as leakage of  

pipe systems (Callahan et al., 2012), whereas, the increase of impervious 

cover minimises infiltration and can lead to a decrease in the recharge 

(Guinn Garrett et al., 2012). 

o Agricultural land use can cause the degradation of groundwater quality 

due to chemical fertiliser (Koh et al., 2017) and cause alteration in salinity 

levels due to the leaching of irrigation (Kurtzman and Scanlon, 2011). 

o Urbanisation can bring a positive effect to contamination if the change in 

land use was from agricultural (Koh et al., 2017). However, there is also 

the possibility of degradation due to untreated waste disposal, usage of 

landfills and other urban anthropogenic activities (Mattas et al., 2014). 



3.2. Spatial dimension 

 

 All the 28 selected publications covered one or more case study areas. In total, 50 case study areas 

were identified, some papers analysed multiple case studies. Three types of case study areas were found: i) 

study site refers to a point or local sites such as boreholes, wetlands (four publications); ii) catchments are 

defined by the topography of a region (9 publications); and iii) hydrogeological units correspond to 

geological formations capable of storage and transfer water (15 publications). The delimitation of 43 case 

studies was mostly influenced by natural aspects that are visible to society, such as their geomorphology. 

Of the 28 publications, 10 included coastal features or processes as criteria to define the study area. 

The importance of analysing study sites at a local level from a spatial dimension perspective is 

that these are essential starting points to understand changes across larger spatial levels. All four 

publications had evidence of the relationship of the spatial dimension of Landscape Scale Planning with 

groundwater systems and groundwater management (e.g. effects of upstream land use changes can be 

identified in downstream discharge areas). Two studies used wetlands as a representative outlet of 

groundwater flow. Rodríguez-Rodríguez et al. (2011) and Zhu et al. (2017) applied a water balance to 

analyse the dynamics between water bodies and the aquifer. Other two publications analysed study sites 

that had specific characteristics that could be used to define landscape units: Kurtzman and Scanlon (2011) 

studied a typical soil type of the Israeli Coastal Aquifer, and Brauman et al. (2012) studied different land 

cover types in Hawaii. Both publications focused on the physical recharge process.  

Catchments are the spatial unit through which hydrological processes can be analysed and 

modelled, including groundwater systems. Of the nine publications that focused on one or more catchments 

as their study area, two had groundwater as the main objective: Callahan et al. (2012) analysed groundwater 

recharge, and Guinn Garrett et al. (2012) analysed the river-aquifer interaction. The other seven 

publications studied groundwater systems processes as one of their objectives, but they were not the primary 

topic of the publication. Hence, catchments were generally adopted as the spatial boundary when other 

factors were also taken into account such as streamflow (Ragab et al., 2012) or surface runoff (Calderon 

and Uhlenbrook, 2016). Among these seven publications, only Guan et al. (2010) took into account the 

possibility that a subsurface flow between catchments might occur. Groundwater recharge (Calderon and 

Uhlenbrook, 2016; Tsutsumi et al., 2009), assessment of groundwater quality (Aquilina et al., 2012) and 

climate change impacts (Daraio, 2017; Ragab et al., 2012) were analysed to provide information for 

groundwater management. The size of the catchments studied varied between 0.25km² to 10,400km². 

As expected, most publications adopted hydrogeological units, or part of it, as their spatial 

boundaries. As these hydrogeological units generally are large formations that can extend across several 

catchments (Dawes et al., 2012; Gondwe et al., 2011), other characteristics were used to define the spatial 

boundary. For example, He et al. (2008), Hu et al. (2018) and Righini et al. (2011) delimited their study 

areas by using the intersection of the hydrogeological unit with the overlying coastal plain, and Collin and 

Melloul (2001) combined the hydrogeological unit with social aspects. Koh et al. (2017) and Mair et al. 

(2013) conducted their studies on an island (i.e. Jeju Island, Korea). Mair et al. (2013) studied the 

occurrence and recharge of groundwater and Koh et al. (2017) the effects of land use change on 



groundwater quality. While both studies described Jeju Island having several catchments in the 

hydrogeological unit, analyses did not consider individual catchments.  

 

3.3. Temporal dimension 

 

Evidence of the temporal dimension was found in 16 publications. Past analyses of land uses was 

done in 13 publications. The identification of which publications carried out past analyses took into account 

not only the timespan of the data set but also if the data were discussed or correlated with the modification 

that had happened in the study area. Future estimates were analysed in 5 publications. Only Dawes et al. 

(2012) and Aquilina et al. (2012) considered both past and future land use changes.  

In the publications that analysed past data, the time length used varied according to the objective 

of the study. While Calderon and Uhlenbrook (2016) used a short period of three years to analyse 

groundwater recharge and climate water balance in a catchment, Aquilina et al. (2012) analysed a nitrate 

concentration series of 38 years to evaluate the alterations due to agricultural land use in Brittany. Both 

analysed groundwater systems and the implication of these processes to groundwater management. Koh et 

al. (2017) analysed 11 years of data using chemical methods to evaluate the effectiveness of groundwater 

management measures to prevent saltwater intrusion. The results started to become visible after six years 

of implementation. When analysing a sparse time series, other publications could go even further back. The 

longest analysis was made by Kurtzman and Scanlon (2011) who compared the changes in chloride levels 

between the years of 1935 and 2007 due to extensive settlements and modern cultivation on an Israeli 

coastal aquifer. These publications analysed aspects or measures of groundwater management under a 

historical perspective based on past data. 

The five publications that analysed future conditions investigated the response of groundwater 

systems to determine changes. Four publications applied scenarios related to climate change and Global 

Climate Models - GCM. Starting from past data analysis, Dawes et al. (2012) analysed future scenarios 

including climate and land use change up to 2030 and Ragab et al. (2012) analysed land use and climate 

change scenarios until 2100. Zhu et al. (2017) and Daraio (2017) applied scenarios of climate change until 

2100. Aquilina et al. (2012) were the only ones to approach the water quality aspect under a future 

perspective. These futures estimates were based on trends detected. The future scenarios analysed did not 

include changes due to other factors such as socio-economic pressures. 

 

3.4. Modification dimension 

 

Aspects of anthropogenic modification of land use were present in 23 of the 28 selected 

publications. For example, three main types of land use changes were shown in the publications: 

agricultural, urban and forestry. While agricultural land use was present in all 23 publications, urban land 

use was in 18 publications, and forestry land use was in 15 publications. These publications connected the 

impacts of these land uses with groundwater quantity (Brauman et al., 2012; Callahan et al., 2012) and 

quality (Hu et al., 2018; Koh et al., 2017). The current land uses within the study area were analysed by ten 

publications, whereas past land use change processes were analysed in 15 publications. Only Collin and 



Melloul (2001) and Dawes et al. (2012) analysed both the current and the impact of land use changes on 

groundwater resources.  

When current land uses were evaluated, the publications studied mostly agricultural or urban land 

uses and their impacts on groundwater systems as well as possible implications for groundwater 

management. The main anthropogenic impact detected was the contamination of aquifers, especially due 

to agricultural activities. This included presence of nitrate (Allouche et al., 2017; Mattas et al., 2014) and 

phosphate (Mattas et al., 2014) above the desired levels for drinking water consumption. Issues directly 

related to coastal areas were not much explored. Only four papers studied directly land use changes and 

saltwater intrusion. For example, Priyantha Ranjan et al. (2006) estimated the correlation between 

deforestation and aridity index losses in fresh groundwater due to saltwater intrusion. Where the impacts 

of urban land uses were investigated, high levels of chloride were detected in groundwater (Melloul and 

Collin, 2003). The main type of land use change observed was from pre-development (natural) conditions 

to agriculture and from agricultural to urban (residential) uses. These land use changes were found to alter 

groundwater recharge (He et al., 2008), water quality (Aquilina et al., 2012) and aquifers dynamics (Guan 

et al., 2010). Saltwater intrusion and overexploitation of groundwater were also related to changes in land 

use (McFarlane et al., 2012; Melloul and Collin, 2003). 

 

3.5. Methods applied by publications 

 

Modelling was the most applied method by the publications to analyse the spatial dimension. At the 

site level, Kurtzman and Scanlon (2011) analysed recharge through physical methods and modelling, and 

Brauman et al. (2012) used water balance to identify the primary components of the recharge. At the 

catchment level, six out of the nine publications applied some modelling technique, with three applying 

scenario analysis. Regarding hydrogeological units, the most common method applied was also modelling. 

Numerical models were applied to analyse alteration in recharge (He et al., 2008),  effects of climate change 

on groundwater resources (Dawes et al., 2012), the uncertainty to define the actual hydrogeological areas 

(Gondwe et al., 2011), and to evaluate alteration in groundwater quality (Priyantha Ranjan et al., 2006). 

Other methods were spatial analysis (Righini et al., 2011), multicriteria analysis (MCA) (Melloul and 

Wollman, 2003), and case study analysis using a conceptual approach (McFarlane et al., 2012).  

Modelling was used by 11 publications to analyse the temporal dimension, including scenario 

analysis (7 publications). Models based on the water balance equation were the mostly used. Modelling 

based on past data was used by Mair et al. (2013) (18 years of data) and Calderon and Uhlenbrook (2016) 

used (3 years of data). Chemical methods were used in eight publications. The shortest period used for the 

application of chemical methods was nine years (Guan et al., 2010). Chloride and nitrate were the most 

used indicators for chemical methods (e.g. Calderon and Uhlenbrook, 2016; Guan et al., 2010). Other 

methods applied were case study analysis through a conceptual approach (Mattas et al., 2014; McFarlane 

et al., 2012), spatial analysis with remote sensing (Righini et al., 2011), and physical methods (Aquilina et 

al., 2012; Hu et al., 2018). Analysing future conditions, five publications applied modelling techniques to 

simulate future scenarios. Aquilina et al. (2012) were the only ones to approach the water quality aspect 

under a future perspective.  



To investigate the modification dimension, thirteen publications applied modelling to analyse land use 

impacts on groundwater resources, including scenario analysis (8 publications). Models based on the water 

balance equation were applied eight times. Models based on the flow equation were applied in four 

publications (Dawes et al., 2012; Kurtzman and Scanlon, 2011). While the water balance based models 

were generally applied to evaluate impacts on groundwater recharge due to changes in land use, flow 

equation models were applied to analyse impacts not only on recharge but also on the behaviour of the 

aquifer. Only Daraio (2017) applied a surface hydrologic model. He analysed the groundwater component 

of the water cycle taking into account the current land uses in the study area. Another frequent method 

applied was the analysis through chemical methods, used in ten publications (e.g. Allouche et al., 2017; 

Rodríguez-Rodríguez et al., 2011). Through this method, alterations in groundwater recharge and evaluate 

contamination of aquifers were estimated. Chloride, nitrates, and electrical conductivity were the indicators 

most often used. Other methods used were spatial analysis (Dawes et al., 2012; Mair et al., 2013), physical 

methods (Callahan et al., 2012; Kurtzman and Scanlon, 2011), conceptual approaches (Mattas et al., 2014; 

McFarlane et al., 2012), MCA (Collin and Melloul, 2001; Hu et al., 2018), sensitivity analysis (Allouche 

et al., 2017)  and statistical methods (Daraio, 2017; Koh et al., 2017). 

 

4. Discussion 

 

Balancing groundwater exploitation with demands from natural processes and anthropogenic uses 

comprises the key challenge for groundwater management  (Jakeman et al., 2016). Challenge is further 

compounded by ongoing population and urbanisation growth (Tam and Nga, 2018), along with climate 

change impacts (Cuthbert et al., 2019). The search for a framework capable of dealing with such aspects is 

still a challenge that needs to be overcome for groundwater management (Vadiati et al., 2018). Additionally, 

coastal urbanised areas relying on groundwater supplies present a set of issues that are both complex and 

difficult to address without a more holistic perspective to groundwater management (Michael et al., 2017). 

One such holistic perspective is the Landscape Scale Planning approach (Selman, 2006), which not only 

takes into consideration the distinctive features and characteristics of landscape units but also spatial and 

temporal changes in land uses and inherent impacts caused on groundwater resources. The implementation 

of the Landscape Scale Planning approach however, requires groundwater resources related information 

that can adress the complexitity of issues affecting them - especially information that sheds light on the 

spatial, temporal and modification dimensions. Findings from this study proved that there is a long way to 

go for current groundwater science to deliver this much needed information. 

Fisrtly, findings indicated that from the spatial dimension, groundwater systems are usually studied 

and managed at only one level, as the catchment or hydrogeological basin, in an attempt to analyse the 

region into self-contained units. However, according to Sanz et al. (2016), the occurrence of groundwater 

does not always coincide with these units. Part of what forms a landscape are the spatial differences. These 

differences such as topography, geology and land use can influence the aquifer, and as consequence, the 

recharge process or the contaminant path in the aquifer. Although evidence of this relationship was present 

in selected publications (Calderon and Uhlenbrook, 2016; Hu et al., 2018), many times, these differences 

within the study area were disregarded. Recently, other scholars (Fan et al., 2018) have also shown that 



different parts of the hydrological system, including groundwater, have differing spatial characteristics 

which need to be taken into account. This implies that the knowledge required for managing groundwater 

systems needs to be built from the local to the landscape scale. Therefore, the use of landscape units 

underpinned by physical, socioeconomic, cultural and other factors, can aggregate similar spatial 

characteristics which are also important for informing groundwater management. One of the benefits of 

considering the Landscape Scale Planning approach would be the possibility of connecting multiple 

features of coastal landscapes such as shorelines, beaches and estuaries to the whole groundwater 

management. Submarine groundwater discharge, base flow in estuary regions and saltwater intrusion are 

coastal groundwater management issues that affect such features but had little attention in the selected 

publications.  

Secondly, from a temporal dimension, a significant amount of publications focused only on the current 

state of a groundwater system, or on the provision of information for groundwater management for the 

current situation. When analysing the temporal dimension, many publications sought to establish an average 

situation of the system based on past data as a baseline (Mair et al., 2013) and identified additional 

disturbance as external drivers (Mattas et al., 2014). Building on  this information, some publications 

developed future scenario analysis based on detected trends (Zhu et al., 2017) or future drivers (Aquilina 

et al., 2012). Consideration of future changes to groundwater systems however, was not a predominant 

trend in the publications analysed. This presents a considerable gap in knowledge because these systems 

are, and will continue to be, confronted with future uncertain changes in rates of population and urbanisation 

growth, demands from natural processes and climate change impacts.  

Thirdly, from a modification dimension, the publications gathered accounted for many analyses of land 

use changes but without fully considering more dynamic aspects. While some of these dynamics were 

included in analyses of groundwater management issues based on the historical evolution (Mattas et al., 

2014), they were not considered in analyses exploring future situations. The manner by which different 

pressures alter land use patterns and groundwater systems under a longer planning horizon is often 

disregarded, despite its importance. For instance, from Gashaw et al. (2018) and Kundu et al. (2017), it can 

be seen that when the process of change is taken into account throughout the planning horizon, the 

difference can be of up to 20% of the groundwater balance. Teklay et al. (2019) found that management 

approaches considering the dynamic nature of land use change can significantly result in differing 

outcomes, given that it can increase the spatial and temporal accuracy of the hydrological information 

provided. Landscape can be formed through a matrix of different and competing land use patterns. Thus 

the dynamic aspect of changes needs to be acknowledged as well as the relationships between these land 

uses (Mercau et al., 2016) not only regarding their physical aspects but also the socioeconomic or cultural 

ones. Coastal areas have become centres with high levels of urbanisation, agriculture, and seasonal 

population increases due to tourism. These drivers are causing an increase in saltwater intrusion, alterations 

in groundwater levels and its quality.  Including these dynamics in groundwater management can support 

a move towards a more interdisciplinary approach - one of the objectives of the IWRM (Foster and Ait-

Kadi, 2012).    

Finally, findings from this study indicate that most of the limitations associated with providing 

information for managing groundwater under a Landscape Scale Planning approach appear to be related to 



existing methods of analysis. However, different methods have the potential to overcome some of these 

limitations. For example, to address the spatial dimension, water table fluctuation can be spatialized to a 

broader scale (Healy, 2010), while groundwater flow models can be applied to understand the behaviour of 

the whole aquifer (Anderson et al., 2015). Chemical or physical methods have both been applied to increase 

the understanding of the study area characteristics and problems. Although these methods are point-based, 

they can serve as part of a monitoring effort to provide information through the detection of alteration in 

groundwater quality and quantity serving as a basis for management (Rohde et al., 2017; Thomas, 2018). 

For this, their outputs need to be scaled up from a point-based to the whole landscape. Similarly, they can 

deal with different spatial levels and provide information and support to management processes (Pezij et 

al., 2019). From a temporal perspective, these methods cannot simulate future conditions. In order to do 

that, the application of models is necessary and they can be underpinned by chemical or physical methods. 

However, the uncertainty inherent to all these methods cannot be removed and this needs to be 

acknowledged by management processes (Neuendorf et al., 2018). Regarding the modification dimension, 

there have been proposed methods capable of encompassing the dynamics of change in land use for future 

scenarios (Dang and Kawasaki, 2017; Guan et al., 2011; Han et al., 2015). However, these methods have 

not been widely used, especially to inform groundwater management.  

 

5. Conclusion 

 

Using a systematic literature review, this paper sought to analyse how the current state of groundwater 

management in coastal areas could be improved through the application of a Landscape Scale Planning 

approach. From the selected publications, it could be noted that the spatial, temporal, and modification 

dimensions have an intrinsic connection with groundwater management. This connection is confirmed from 

the evidence supporting that each dimension can be connected with characteristics of groundwater systems, 

such as the different spatial and temporal distribution of recharge as well as the strong influence that land 

use modification causes on the aquifer. Furthermore, through the application of the Landscape Scale 

Planning analytical framework, it was possible to identify gaps between the relationship of land use with 

the applied approaches for groundwater management, such as the lack of consideration regarding the 

dynamical aspects of land use change in the current management measures. This consideration is important 

because it can provide more accurate information to the management process. Applying a Landscape Scale 

Planning approach to frame this connection can produce more comprehensive outcomes therefore 

improving the process of groundwater management. 

Landscape Scale Planning can be applied as an integrative framework because it connects different 

sectors and perspectives. Bottom-up management can be promoted using Landscape Scale Planning 

through landscape units based on many aspects such as geology, topography, cultural, and socio-economics. 

This can aid groundwater management that takes into account the different spatial and temporal 

characteristics of the aquifer. Two main issues that emerged from the review were alterations in recharge 

and contamination of the aquifer. These issues happen in a heterogeneous way within the aquifer and are 

influenced by the several aspects such as topography, geology and land use. Landscape units can bring 

together these distinct aspects and characteristics of the aquifer into different zones to improve groundwater 



management. While this could aid the identification of their complementarities, it could also facilitate the 

provision of information for decision making. Additionally, the modification dimension could be more 

easily considered if the dynamics of land use change were evaluated over more uniform regions, such as 

landscape units, instead of the highly complex landscape such as coastal catchment with different land uses. 

Using landscapes as an integrative platform for planning can improve the connection of land use change 

and groundwater management with other topics, especially in coastal regions. Issues such as saltwater 

intrusion and submarine groundwater discharge had little attention in the publications gathered. These 

issues could be better addressed under a Landscape Scale Planning approach because it enables the 

integration with other sectors, such as estuarine planning.  

Suggestions for further research include the evaluation of groundwater management strategies 

underpinned by all the three dimensions of Landscape Scale Planning. Other studies could analyse the 

effects of the dynamics aspects included in the modification dimension on typical coastal groundwater 

management issues such as saltwater intrusion. 
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