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ABSTRACT The impedance of a battery can be modelled with an elegant fractional-capacitor or “constant
phase element" (CPE) equivalent circuit and a series resistor. In this manuscript, we present new evidence
that suggests that a linear model similar to Randles’ comprised solely of this impedance network is able
to predict both the charge-voltage relationship epitomised by the familiar hysteresis curve of voltage as
a function of charge as a battery charges and discharges through its linear region, and the recovery or
“equilibration” transient that results from a step change in load current. The proposed model is unique in
that it does not contain a source, either voltage or current, nor any purely reactive elements. There are
important potential advantages of a passive battery model.

INDEX TERMS rechargeable battery, lithium-ion battery, state of charge, fractional modelling.

I. INTRODUCTION

THE literature reveals hundreds of papers in recent
decades with the phrase “battery model” in the title,

while thousands can be found on the subject in general in
the IEEE stable alone. A battery model is considered key to
prediction of behaviour, including state-of-charge (SoC) [1]–
[5]. Readers not already familiar with the state of the art are
directed to [1] which provides a broad literature review and
an excellent summary of the various approaches including
open-loop sensing based on open-circuit voltage (OCV) or
Coulomb counting (CC) methods, and closed-loop state esti-
mation using either a “black box” or equivalent-circuit. Fur-
ther, some detail in the case of equivalent-circuit approaches
were presented in [6]. In the preferred case of an equivalent-
circuit model, the circuit is invariably a voltage source with
a network of elements fitted to the apparent impedance of
the cell [2], [6]. We might describe these as “Thévenin-
like RC” models. Figure 1 depicts the popular first- and
second-order examples of this type. More applications of a
second-order “Thévenin-like RC model appeared in [7], [8]
which is preferred by researchers than its predecessor when
characterising cell SoC due to the extra degree of freedom.
We have shown elsewhere that such models are theoretically
unsuitable for modelling the runtime characteristics of a

cell [9], [10].

More models in the last few years have returned to the
use of fractional-derivative elements, mostly fractional ca-
pacitors, also known as Constant-Phase Elements or CPEs.
A fractional element was reported by Randles in 1947 [11]
in a equivalent-circuit model. The paper investigated rapid
electrode reactions with a electrode system shown in figure 2.
In Randles’ model, Cl represents capacitance in the absence
of electrochemical phenomena, and is small enough that it
only comes into play at higher frequencies. It is what might
be called “parasitic capacitance” in the electronic world. Cr,
on the other hand, is a capacitive element with the angle fixed
to 45 degrees. This non-ideal element was later introduced
in [12] as a Warburg element. The basic form of Randles
model for low frequencies is of a resistor in series with a
Warburg element.

More recently, fractional derivatives were used in [13] and
[14], but in a mathematical approach rather than through
an equivalent circuit. Equivalent-circuit models incorporat-
ing fractional capacitors and Warburg elements have also
appeared with varied success in [15]–[18].

This manuscript rests on certain key observations made
in [19]. The impedance of a battery must be examined (and
modelled) across the whole frequency range of signals to
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FIGURE 1.
Thévenin-style first- and second-order RC battery models.

which it is subjected; for a typical battery application with
daily or less frequent recharging, this will run from a period
of at least a day and quite possibly longer, to less than 1
second. This corresponds to a frequency span commencing
no higher than 10µHz. Few authors venture below 1mHz for
practical reasons, and some instrument setups give inaccurate
impedance results in the case of fractional systems at low
frequencies.

Drawing on the impedance results, a “R-CPE" model was
presented in [19] for a Lithium-ion battery which follows
Randles’ model for lower frequencies, following the excep-
tion of a CPE angle which is now approximately 76 degrees.
Although the model does a reasonable job of predicting the
battery impedance, it is not perfect, and no attempt was made
to investigate recovery transients and voltage hysteresis. Re-
cent work described in [20] has shown that critical decay
tails observed on neural implant electrodes are only correctly
reproduced in simulation when the physically distributed
nature of the electrodes is accounted for by “splitting” the
CPE that represents the interface in the equivalent-circuit
model. The splitting accounts for the distributed nature of the
structure; the battery has energy stored in chemical species
whose distance from the conducting plates varies. The split-
CPE model is shown in figure 3, reproduced from [19]. The
whole idea of an equivalent-circuit model is that you can
relate voltage and current as functions of time, and simul-
taneously know about stored charge and energy. The new
model perfectly fits the measured data in frequency domain
as can be seen in figure 4. This manuscript now addresses the
question of whether the split-CPE impedance model of [19]
can predict working current, voltage, charge and energy.

II. INTRODUCTION TO FRACTIONAL CALCULUS
Many scientific and engineering communities remain un-
aware of fractional calculus. The most common reason for
that is the lack of practical application; fractional calculus is
often considered as a conceptual area that is of interest only to
mathematicians. However, applications of fractional calculus

have emerged in the areas of physics, biology and engineer-
ing [21]–[23]. Fractional calculus can provide simpler and
more faithful models of physical systems that depend upon
diffusion or that possess fractal properties. Such a model
tends to provide “more entropy compared to its integer order
counterpart with same number of parameters" [24], which is
to say that it requires fewer parameters.

Fractional calculus was first defined by Liouville, Riemann
and Grunwald in 1834, 1847 and 1867, respectively [25].
The Riemann-Liouville fractional-order derivative, preferred
in engineering for causality reasons, is of the form:

dαv(t)

dtα
=

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αv(τ)dτ (1)

where Γ is the well-known Gamma function and 0 < α < 1
is an arbitrary real value called the order. In the same way that
the Gamma function provides a real interpolation between
the values of the integer factorial function, this definition
provides a continuous transformation that happens to yield
the same result as conventional, integer-order differentiation
for integer arguments. This work lay unused for a long time.

The lack of “any acceptable geometric and physical in-
terpretation” of fractional-order calculus has been lamented
before [27]. There have been attempts to provide geometrical
and physical interpretations of fractional operators, see for
example [26], [27]. In [26] the author claims to develop
’an understandable geometric interpretation’ using a Can-
tor’s fractal set. This may explain the discrete nature of
the impulse response function of a fractional integral. Later,
a fascinating physical interpretation of Riemann-Liouville
and Caputo fractional-order derivatives in relation to the
cosmic time and the individual time was proposed in [27].
We contend that this ’understanding’ is not helpful in circuit
terms. It may help a mathematician grasp the idea, but it
gives no circuit insight. We thus need to rely upon a simple
formulation that fortunately results for a fractional capacitor
in the Laplace domain.

Considering a fractional capacitor to be an element whose
branch current is a fractional derivative of the branch poten-
tial expressed as a function of time, applying the Laplace
transform to (1) with zero initial conditions produces a

FIGURE 2.
Randles’ equivalent-circuit model for rapid electrode reactions reproduced
from [11].
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FIGURE 3.
Equivalent circuit model with n-way split CPE and series resistance. The
model requires four parameters, the order α and value CF of the CPE,
the series Resistance RS and the splitting Resistance RX , provided n is
“sufficiently large”.

FIGURE 4.
Impedance magnitude (left vertical axis, blue traces) and phase (right
axis) of a 14500 Lithium-ion battery for frequencies corresponding to
periods from 1 second to 1 day. Measured data (symbols) are compared
with simulations using the split R-CPE model from [19]. The split-CPE
equivalent circuit is reproduced in figure 3.

fractional-order function which portrays the current-voltage
relationship of fractional capacitors:

I(s) = CsαV (s) (2)

Re-arranging the above equation gives the impedance of a
fractional capacitor (CPE) in a form more familiar to circuit
theorists:

Z(s) =
V (s)

I(s)
=

1

CF sα
(3)

where C is the “capacitance” of the fractional capacitor and
α ranges between 0 and 1. The expression in (3) is perhaps
the most compact and easily grasped representation of a
CPE; it resembles a capacitor, but the slope of the impedance
magnitude in a Bode plot will not quite be right; it will be−α

instead of -1. Referring back to figure 4, it is straightforward
to observe that at the very lowest frequencies a capacitor-like
impedance characteristic appears. One then observes that the
slope of the straight part is more like -0.85 than -1, implying
that the “capacitor” is fractional.

III. CONSTRUCTING A CPE IN SPICE
As CPE rely on a fractional derivative, they are not rou-
tinely available as branch elements in compact simulators.
Nevertheless, it is possible to generate a compact SPICE
subcircuit that approximates the impedance of a CPE with
arbitrary accuracy. The theory leading to the approximation
is attributed to Morrison [28]. The data from the battery
impedance in figure 4 permits the magnitude and angle of the
CPE to be determined and a SPICE subcircuit generated as
described in [29], with corrections from [30]. Two parameters
are required to specify a CPE, corresponding to CF and α
from equation 3. For the Morrison formulation, these are a
slope parameter, m, and a magnitude parameter found from
a measurement of CPE admittance, Yθ, at some arbitrary
frequency, ω0. Here the slope parameter m is found by
observing that the CPE phase settles to 77.5 degrees or 1.35
radians around 10–20µHz, giving

m =
π

2θCPE
= 1.161 (4)

The CPE impedance is found from the measured
impedance of the cell in the straight-line region at the low-
frequency extreme. This gives values of 1.188Ω at 55.7µHz,
yielding

Yθ = 0.842 (5)

for ω0 = 55.7 × 10−6. An accuracy parameter of k = 1.3
is found to be more than adequate by trial and error.

IV. PREDICTING TRANSIENT RECOVERY
In this section, we will show that our proposed impedance
network predicts more precisely the transient recovery of
a battery. The measured tail of a single 800mAh, 14500
lithium battery is compared with various simulated tails. The
test sequence consists of subjecting the cell to an isolated
current pulse of 60 seconds, and the overall response is
reproduced in the inset within the figure. The measurements
were made with an Agilent E5270 Precision IV Analyzer
and an Agilent 34401A DMM. All measurements were made
with the battery held at a constant environmental temperature
of 25 Celsius using a Contherm Polar 1000. Figure 5 shows
the measured recovery transient of the same battery whose
impedance appears in figure 4.

If we assume that for sufficiently low frequencies, the
battery impedance is dominated by a CPE we can write

I(t) = CF
dαV (t)

dtα
(6)

or in the Laplace domain

Zbatt ≈ ZCPE =
1

CF sα
=

1

CF
s−α (7)
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The battery voltage recovery tail resulting from a square
current pulse of period T and amplitude I0 can be estimated
by considering the current pulse to be the sum of two equal-
sized step functions u, so that

I(t) = I0u(t)− I0u(t− T ) (8)

whose Laplace transform is

I(s) =
I0
s
− I0

s
e−Ts (9)

thence

V (s) =
I0
CF

s−(1+α) − I0
CF

s−(1+α)e−Ts (10)

Noting that the inverse Laplace transform

L−1(s−k) =
tk−1

Γ(k)
(11)

putting k = 1 + α, some algebra leads to an expression for
the pulse voltage tail

vEq(t) =
I0

CFΓ(1 + α)
[tα − (t+ T )α] (12)

It is worth emphasizing that the voltage tail that follows a
current pulse stimulus applied to a CPE, as given by (12),
decays unusually slowly. It is remarkably different from a
first or second-order conventional, exponential decay curve.

Returning to the recovery tail in figure 5, note that the first-
and second-order Thévenin-style RC circuit models cannot
fit the measured data, even when allowed to optimise freely,
but the solid blue line predicted from the fitted split-CPE
model comes much closer and has the correct curvature. The
value of the splitting parameter RX has been numerically
optimised to obtain the best fit. In this case, we chose a value
RX = 29mΩ. A 10-way split, that is n = 10, was chosen,
again by trial and error observing that larger values conferred
little advantage. Figure 6 plots the difference between each of
the three predictions and the measured data. The new split-
CPE model can predict the measured data with less than
3% error whereas, the percentage error of a single-RC and
two-RC models is around 7% and 5.6% respectively. It is
clear that the split-CPE model achieves considerably better
an approximation with no more complexity than a first-order
RC model.

V. CHARGE/VOLTAGE CHARACTERISTIC
The problem with measuring a battery charge-voltage charac-
teristic is that this is a dynamic measurement. When charging
a cell, the terminal voltage will be higher than would be the
steady-state voltage perceived if the battery were completely
at rest. A common response to this is to measure the voltage
of the cell under constant-current charging and then to dis-
charge at the same constant current, relying on the impedance
characteristic to be linear and symmetrical. The steady-state
characteristic is then approximated by averaging the two
data sets point by point to yield the average characteristic.
A very similar, but more informative, variant is used here.

FIGURE 5. The response tails of a split-CPE model (solid line), one RC (◦)
and two RC (×) network models shown with measured data (dashed red line).
Inset shows the full voltage response of the battery to a 60-second, 100mA
pulse of load current and indicates the region where the “tail” appears.

FIGURE 6. Voltage difference between measured data and single-RC (◦),
two-RC (×), and split-CPE (solid blue line) predictions presented in figure 5.
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FIGURE 7. Voltage-charge characteristic of the 14500 Lithium-ion battery. Open-circuit trace voltages are measured after a 60-second rest, closed-circuit ones with
current flowing.

The battery was charged at 100mA for 60 seconds using the
E5270. Then the voltage was measured, the current set to zero
for 60 seconds, and the voltage measured again. Reference
to the measured data trace in figure 5 will indicate that 60
seconds should allow the battery to settle only some of the
way towards its asymptotic value, owing to the exceptionally
slow decay of the fractional tail. This cycle was repeated until
the battery reached full charge. At the end of a sweep the
battery was rested for 12 hours to allow equalisation. Next
the current was set for discharge, and the same minute-off,
minute-on scenario used to discharge the battery. Figure 7
shows four traces, being the charge and discharge character-
istics during current flow (“closed circuit”) and after the 60-
second rest (“open circuit”). The steady-state characteristic
is calculated by averaging the traces point by point. This is
shown in figure 8.

Battery models are most usually sought to relate terminal
voltage to SoC. The reader should note that the split-CPE
model has been fitted to data obtained only from impedance
and short-term dynamic response of the subject cell. The
question arises as to how it will predict the charge-voltage
characteristic of the cell. The simulated voltage trace in
figure 8 was produced using SPICE with suitably-selected
initial conditions. The fit is extraordinary as shown in fig-
ure 9, considering that the model was fitted without reference
to the data of figure 7 except to obtain the dc offset.

VI. OTHER CHEMISTRIES
The model is not restricted to Lithium chemistry. In this sec-
tion the split-CPE model is fitted to a Nickel-Metal Hydride
cell type 55123 with 1850mAh nominal capacity. The present
linear model is of limited use in the case of chemistries that

FIGURE 8. The estimated steady-state cell voltage obtained by averaging the
traces from figure 7 (curved trace) is plotted against the voltage predicted by
the split-CPE model (straight line).

permit float-current charging. This is because the model does
not (yet) consider the “charge-dumping” process that effec-
tively wastes energy as the energy-storing reactants deplete
approaching the full-charge condition. We hope to extend
the model to include the nonlinear “end effects” that shape
the flat and full-charge ends of the characteristics. In the
meantime, we seek to demonstrate that the idea of a passive
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FIGURE 9. Plot of the percentage error between the measured and predicted
traces shown in figure 8. The dotted lines mark the region within which error is
less than 1%.

model is not limited to the Lithium system.
The input data is as usual
1) a measurement of battery impedance versus frequency

from which RS and CPE parameters are obtained
(figure 10);

2) the pulse response voltage recovery curve (figure 11);
and

3) the characteristic of terminal voltage against charge
measured in some particular fashion (figure 12).

The model is optimised to match the measured data, starting
with values obtained from the impedance-frequency data.
Simulated data obtained with SPICE using the method out-
lined in [29] with corrections from [30] and the fitted model
parameters appear in figures 10, 11 and 12. The fit is suffi-
cient for practical applications.

VII. DISCUSSION
A. BATTERY OPERATING RANGE
Battery manufacturers choose charge and discharge voltage
points that are as far apart as possible in order to have the
largest possible specified capacity. Thereafter the recommen-
dation is to stay within a range such as 20–90% SoC for
maximum life. For example, a Prius hybrid tries to keep
its battery between 40% and 80% SoC to give long battery
life [31]. The model proposed here is entirely linear; it
makes no attempt to model the nonlinear subtleties of the
voltage characteristic of figure 8. Nevertheless, reference to
figure 9 shows that even without taking the nonlinearity of
the voltage-charge characteristic into account, the model is
accurate to a few percent from about 10% SoC to 90% SoC.
The fuel gauge of a petrol car provides a measure that is only

FIGURE 10. Measured (symbols) and simulated magnitude and phase of cell
impedance for a single 55123 NiMH cell. Phase is the sigmoid curve,
magnitude the hockey-stick curve.

FIGURE 11. Measured (noisy trace) and simulated normalised recovery curve
of the single 55123 NiMH cell following a 100mA current pulse of 90 seconds
duration. The minimum terminal voltage is subtracted to leave only the change
in terminal voltage after cessation of the pulse, i.e., the plot shows only the
slow recovery.

6 VOLUME 4, 2016



Hasan & Scott: Extending Randles’s Battery Model to Predict Impedance, Charge-voltage, and Runtime Characteristics

FIGURE 12. Measured (curves) and simulated (box) characteristic of a single
55123 NiMH cell charged and discharged in 60-second bursts spaced 120
seconds apart. Inner and outer curve pairs are the voltage at the ends of the
60-second periods of loading and the 120 seconds of rest at zero current,
respectively.

accurate to about 5%, and while portable devices read out
battery status to 1% most users notice that they are not that
accurate and prone to sudden large corrections. The authors
submit that the linear model may already be sufficient for
many practical uses.

B. NONLINEAR EXTENSION
Nevertheless, extension to predicting the subtle nonlinear
curves visible in an actual battery characteristic such as
figure 7 is expected to be possible. The approach favoured
by the authors involves modelling the reduction of chemical
species at the electrode interface by way of charge-dependent
capacitances in the CPE subcircuit through the magnitude
parameter of the CPE, Yθ [29]. This approach is easy to
incorporate in nodal simulators, and has a strong physical
basis in the modelling of species concentrations at an elec-
trode interface through the general form of the Butler-Volmer
equation [32]. This extension is considered to be beyond the
scope of this manuscript, but is the logical next step.

C. EFFICIENCY
The model contains no sources, and can thus neither add
nor subtract energy in an arbitrary fashion—just as in the
case of a rechargeable battery. We expect the lossy CPEs
will model the energy difference between that supplied in
charging and that obtained in discharge. Thus a collateral
benefit of this compact model is expected to be the ability to
straightforwardly calculate the efficiency of energy storage
for any scenario, i.e., it will predict how much of the energy
invested in charging is returned in the discharge phase for

an arbitrary dynamic load. An investigation of the model’s
accuracy in predicting the efficiency of energy return is
considered out of the scope of this manuscript, but is being
addressed separately.

VIII. CONCLUSION
This manuscript extends Randles’ model to low frequencies
to characterise behaviour of a Lithium-ion cell. The modified
model is now simple and contains only a series resistor and
a CPE with an angle that varies with cell chemistry. It also
does not require any voltage or current sources. Although,
the work reported here is carried out with single Lithium-ion
and NiMH cells but it is applicable to all cell types. It is clear
that such a model is superior to existing, complex models that
do not seem to add anything for their extra parameters.

To further investigate the model’s ability to predict recov-
ery or hysteresis which most authors do not check, the CPE in
the model is arbitrarily divided into smaller CPEs to account
for the distributed nature of the electrodes. Now with only 4
parameters, it can accurately estimate the battery’s runtime
transient characteristics and the variation of voltage with
state-of-charge in the “linear” range within a few percents.
The new split-CPE model also fits the impedance-frequency
data better.

Such a model is expected to exhibit very powerful proper-
ties. The possibility exists to extend the model in the future
into the end regions where the voltage becomes a strongly
non-linear function of available charge. The absence of a
voltage or current source means that the model can be used
to calculate the efficiency of energy stored in a cell that has
not been proposed previously.
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