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Abstract
Visual Algorithm Simulation (VAS) exercises are commonly used in Computer Science

education to help learners understand the logic behind the abstractions used in program-
ming. These exercises also present problems common in the daily work of Computer
Science graduates. Aalto University uses the JSAV library to create VAS exercises and
evaluate the solutions submitted by students. The evaluation process counts the amount
of correct steps given by the user during the exercise. However, because more detailed data
is not collected, teachers currently can not recreate and analyse the submitted solutions
more in depth.

This thesis presents the design, development and evaluation of an application prototype,
which can be easily integrated in existing VAS exercises created with the JSAV library.
The prototype is called Player Application, and it is designed as a service that can be easily
integrated into other systems while still remaining independent. The Player Application
consists of two main independent components: the Exercise Recorder and the Exercise
Player. A third important contribution is the new JSON-based Algorithm Animation
Language, which is designed to describe, structure and store the data collected from the
VAS exercises.

The prototype was successfully tested in an online environment by importing the Exer-
cise Recorder into existing exercises and replaying the submitted solutions in the Exercise
Player. The tests showed that its design and architecture were valid. Next, the aim is to
create a mature application, which can be used at Aalto University and other institutions,
in addition the prototype still needs further development to support more VAS exercise
types.

Keywords Algorithm Visualization, Algorithm Animation, Algorithm Simulation, JSAV,
Visual Algorithm Simulation
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1. Introduction

The use of Algorithm Visualization (AV) is widespread in Computer Science

(CS) education, where it is utilized to teach learners about Algorithms

and Data Structures (ADS). Courses of ADS are an integral part of un-

dergraduate CS curricula, since learning ADS concepts is necessary in

order to understand the logic behind the abstractions used in computer

programming. Furthermore, the problems, structures and algorithms

taught in ADS courses recur commonly in the day-to-day work of CS grad-

uates. Algorithm Visualization has therefore been used in various forms

as an important teaching aid to enhance learners understanding of ADS

concepts.

AV has also been a subject of research for more than thirty years, and

its first applications into education date back to the early 1980’s, when

pixel displays started to allow more complex visualizations [47]. During

the years many systems have been created with the scope to produce not

only animations, but also Algorithm Visualization exercises that could be

integrated in ADS courses. These AV software systems were implemented

with different technologies and programming languages, with the aim to

have them running under X or Microsoft Windows. Some examples of such

AV software systems are BALSA [5], Zeus [4], and TANGO [52].

Starting from the late 1990’s Java became the dominating language, and

this made possible the creation of more complex and platform independent

tools. Examples of Java-based AV tools include Matrix [31], JHAVÉ [43],

and ANIMAL [49]. During this time, results from research about the

impact of AV exercises on learning outcomes started to highlight the

importance of enhancing learner engagement [17, 44]. These changes

paved the way for the development of Visual Algorithm Simulation (VAS)

exercises, which were implemented for example in Matrix and ANIMAL,

with the aim of engaging the user into simulating the algorithm’s behaviour.
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Figure 1.1. User doing a Visual Algorithm Simulation on the left, and pure Algorithm
Animation on the right.

This evolution marked also the separation between the concepts of Visual

Algorithm Simulation and Algorithm Animation (AA) within the AV field.

In Section 2.2 we are going to look further into the concept of Algorithm

Visualization, and the difference between Algorithm Animation and Visual

Algorithm Simulation. For the moment, Figure 1.1 is an attempt to show

the difference in practice between these two concepts: on the left VAS,

where a user visualizes and modifies a data structure containing some

values through a Graphical User Interface (GUI); on the right AA, where an

algorithm directly reads and modifies a similar data structure. The effects

of the actions of both the user and the algorithm on the data structure

are visualized, and the sequence of the visualization steps creates an

animation.

Support for Java on the Internet has however been decreasing in the last

ten years, and this has brought to a demand for AV tools better supported

on the web. Examples of such solutions are VisuAlgo [54], AlgoViz [1], and

the JavaScript Algorithm Visualization library (JSAV) [24]. AlgoViz’s aim

is to create and maintain an online community for AV [2], with a collection

of Algorithm Visualizations. VisuAlgo’s goal is to offer a web-based AV

tool, with a wide collection of AVs with integrated questions, and support

2
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for JavaScript (JS) and HTML [15]. As for JSAV, its main difference from

other modern AV software is that it is a JavaScript library. It is not aimed

directly at learners, but rather at teachers and developers who want to

create Algorithm Animations and Visual Algorithm Simulation exercises

using JavaScript and HTML.

JSAV was created with the aim to add support for AVs in HTML5 and

JavaScript, with also the possibility to create AV exercises using techniques

involving learners on a deeper and more active way, such as simulating

how an algorithm works. JSAV is currently used in ADS courses at Aalto

University, University of Turku, Tampere University, and Virginia Tech.

It has also been used to develop the OpenDSA interactive eTextbook [14].

One important feature of JSAV, which to our knowledge is missing from

other JavaScript-based AV software, is the support not only for Algorithm

Animation but also for Visual Algorithm Simulation exercises. In this

type of exercises the learner can directly manipulate the data structure

through the user interface (UI), with the aim of creating the visualization

of the algorithm execution step-by-step, like shown in Figure 1.1. In VAS

exercises JSAV offers various options to compare the learner solution with

the model answer and to grade the submission. However, a standardized

way of saving the steps of the submitted solution, and recreating them

later as an animation, is currently missing. During a VAS exercise, the

library automatically logs information on the user interaction with the

visualization, which can potentially produce a large pool of data. This fea-

ture has been used, for example, in studies about students misconceptions.

To our knowledge, up to now when the data collection and storage have

been used, it has however been implemented at the single exercise level,

with no standardized reusable approach [29, 33].

The focus of our research is at the conjunction of Visual Algorithm Simu-

lation and Algorithm Animation, and more in specific about the recording

of VAS exercise sessions and their transformation into animations. JSAV

is also going to be at the center of our work, the reason being that we

are interested not only in AV software, but in AV systems that offer the

possibility to create both VAS exercises and Algorithm Animations. In this

case JSAV is one of the few, if not only, modern open source solution at

our disposal. Figure 1.2 shows the focus of our research: on the left side

in green is the representation of a JSAV VAS exercise, while the part in

red represents the recording, storing and replaying of the user interaction

during the VAS exercise.
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Figure 1.2. The focus of this thesis project. In green on the left is a JSAV VAS exercise,
where the user interacts with a data structure through a Graphical User
Interface (GUI). The part in red represents a system to record, store and
replay user interaction during the JSAV VAS exercise.

The aim of our research is to design a prototype of a web application,

which can be used in conjunction with JSAV Visual Algorithm Simulation

exercises, to collect, store, and replay user interaction data in a standardized

way. The application is called Player Application (PA), and it will be used

as a tool to recreate the learners solutions as animations, starting from

the collected data. Furthermore, the collected and anonymized data could

also be valuable for researchers interested in learning analytics.

The design of such application is justified primarily by the need to offer

learners the possibility to review their solution, for example in case of

dispute on the received grade. Such feature could even be mandatory if the

VAS exercises would be used in exams. In addition, the application would

offer also other advantages, like the possibility to easily create AVs to be

used as teaching material, and the collection of data for learning analytics.

To design the application we also needed to find an Algorithm Animation

Language (AAL) able to describe in a satisfactory way the interaction

between the user and the JSAV Visual Algorithm Simulation exercise.

Therefore the research questions are:

1. Which solutions existing Algorithm Visualization software have used to

record and replay Visual Algorithm Simulation exercises?

2. Which information should be saved in JSAV Visual Algorithm Simula-

tion exercises submissions, in order to be able to replay them later as
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animations?

3. How can we collect and replay JSAV Visual Algorithm Simulation exer-

cises submissions?

This thesis is structured as follows. In the Chapter 2 we expose the

background for our research, through a presentation of the concept of Algo-

rithm Visualization and its history, and a review over existing solutions

for Algorithm Animation and Algorithm Simulation. Chapter 3 is about

the research methodology, which is based on Design Science. The results

are presented in Chapter 4, which is structured according to the research

methodology into three parts: the problem investigation in Section 4.1, the

application design in Section 4.2, and the design validation in Section 3.4.

Finally we discuss the outcomes of this thesis projects, their limitations,

and the needs for future work in Chapter 5.

5



2. Background of Visual Algorithm
Simulation

In this chapter we present existing knowledge, including research and

solutions, relevant for the design of the Player Application. We start in

Section 2.1 by explaining what Learning Management Systems (LMS) are,

and why they are relevant for our research. After that, in Section 2.2 we

introduce the concept of Algorithm Visualization, and its subdivision into

Algorithm Animation and Visual Algorithm Simulation. In Section 2.3

we look into some existing, and recently developed Algorithm Animation

Languages, which could be helpful to describe the Visual Algorithm Simu-

lation exercises submission in our Player Application. In Section 2.4 we

describe related work on collecting and replaying data from VAS exercises.

In section 2.5 we present the JavaScript Algorithm Visualization library.

2.1 Learning Management Systems

Modern Learning Management Systems (LMS) are web-based informa-

tion systems that are used in IT-supported learning [38], to organize and

manage different tools needed to run a course, all within one integrated en-

vironment. LMS are also referred to as "learning platforms", "learning envi-

ronments", "course management systems", "e-learning systems" [8, 10, 38],

and more. One definition of LMS is that it "is a software application

that automates the administration, tracking, and reporting of training

events" [13]. Examples of tools and materials integrated within a LMS

are course assignments, lecture material, discussion forums, submission

and grading of assignments, chats, wikis and file sharing. Among the most

used LMS world-wide are Moodle, Blackboard, Canvas and Brightspace

D2L [16].

Figure 2.1 shows an example of how an exercise and its grading can

be integrated in a LMS, and how the information is exchanged. This is

6
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Page 1
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Figure 2.1. Example with integration of external content and services within a LMS: (1)
Learner connects and LMS fetches external exercise; (2) learner solves and
submits the exercise; (3) the exercise sends submission to the LMS; (4) LMS
sends submission to external grader; (5) grader sends grading result to LMS;
(6) LMS stores results in DB; (7) results are shown to the learner.
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Figure 2.2. Types of architectures for LMSs. From the classic monolithic architecture to
component oriented, plug-in oriented, and service-oriented. [28]

however just an example solution, since embedding of material and tools,

and exchange of information can be realized in many different ways. One

important aspect which will determine how the services and material

will be embedded and information exchanged, is the architecture of the

LMS. As shown in Figure 2.2, from the architectural point of view on one

side there is the classic monolithic application, where all services and

content are part of one big application, and extending the functionalities

with external services requires a large amount of work. On the opposite

side is the service oriented architecture, where each service works as a

fully independent subsystem, and new functionalities can be added by

integrating new services [28]. In between those two possibilities there are

other architectural choices, where the services and contents can be more

or less independent and integrated with various degrees of complexity.

7
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A critical aspect in the integration of learning material and services, is

how the information is structured and exchanged. For this purpose various

interoperability standards have been defined, such as LTI [18], xAPI [58]

and SCORM [50]. All these different specifications define how and which

information is exchanged between the embedded content and the LMS,

or between LMSs. While standardized solutions improve reusability and

interoperability, they might have limitations when it comes to storing

and interacting with the user profile information and work trace [48]. To

overcome the limitations of standardized approaches, some institutions

and work groups have developed nonstandardized solutions, in order to be

able to handle, store and update the user information as needed.

Knowledge about LMSs is relevant for this thesis project because Aalto

University, like many other universities as well, uses LMSs to embed and

manage course exercises and materials within an integrated environment.

The two main LMSs used for these purposes are Moodle [40] and A+ [28],

with the latter being the one of choice for Algorithm and Data Structure

courses.

2.2 Algorithm Visualization

The use of Algorithm Visualization (AV) is widespread in Computer Sci-

ence education, where it is utilized to teach learners about Algorithms and

Data Structures (ADS). Its use and impact on students learning outcome

have been the subject of many studies since the 1990s, at first with con-

flicting results [6, 51]. Later however research has shown encouraging

outcomes, especially regarding AV exercises demanding higher learner

engagement [17, 45].

In order to understand the concept of Algorithm Visualization, it is

important to first describe the concepts of algorithm and data structure.

An algorithm can be defined broadly as a step-by-step procedure used to

solve some problem or accomplish an end [39]. In the field of mathematics

and computer science it is more strictly described as a "finite series of

well defined, computer-implementable instructions to solve a specific set of

computable problems" [37]. Computable problems are solved by processing

data, which is organized into data structures in order to make the operation

efficient. A data structure can be defined as a "way to store and organize

data in order to facilitate access and modification" [9], and in computer

science more precisely as a "collection of data values, the relationships

8
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among them, and the functions or operations that can be applied to the

data" [56].

With the term Algorithm Visualization (AV), we mean the use of visual-

ization techniques to create a high-level description of an algorithm. The

created description abstracts the data structures and operations without fo-

cusing on the particular implementation, which can be realized in different

ways depending on the chosen technologies and programming language.

AV is seen as falling under the umbrella concept of Software Visualization

(SV), a concept that also includes Program Visualization (PV), which is

distinct from the AV. A way to describe the difference between AV and PV is

that if the visualization describes a general algorithm, then it is considered

Algorithm Visualization, but if it describes the particular implementation

of an algorithm, then it is considered Program Visualization [47].

Many studies in the last three decades have tried to determine the impact

of various forms of AV on students learning outcomes. Multiple studies

have shown that high level of learners engagement in the AV exercises

is correlated to more positive learning outcomes, especially when the

visualization exercises are carried out in groups [32, 35, 41]. Encouraging

results have been reached even when AV exercises were not carried out in

collaboration [30, 45].

The Engagement Taxonomy [44] was developed to define the levels of

learner engagement during AV exercises, and was later extended in the

Extended Engagement Taxonomy (EET) [42]. Table 2.1 shows the levels of

learner engagement in the EET. Using the EET as a reference, we can call

Algorithm Animation (AA) the visualizations that operate only on levels

1-4, and Visual Algorithm Simulation the visualizations that operate also

on levels 5-7. Figure 2.3 shows the subdivision of SV and AV with the help

of a Venn diagram.

Table 2.1. Extended Engagement Taxonomy [42].

0 No viewing There is no visualization of the algorithm. Learners can review the code
1 Viewing The visualization of the algorithm is shown but without interaction
2 Controlled Viewing Learners have the possibility to control the animation, like speed, step sequence.
3 Entering Input It is possible to change the input of the algorithm before execution.
4 Responding Learners respond to questions during the visualization.
5 Changing The visualization can be directly manipulated.
6 Modifying The code can be modified before starting the animation.
7 Constructing The learner constructs the visualization, for example with the help of a user interface.
8 Presenting Learners present and explain the visualization.
9 Reviewing Reviewing of the visualizations to give comments and feedback.

9
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2.2.1 Algorithm Animation

In Algorithm Animation the different states of a data structure manipu-

lated by an algorithm can be visualized, and the sequence of the states and

their changes can be displayed as a visual animation. Furthermore, state

history can be recorded to give users the possibility to step back and forth

through the sequence [34].

In Algorithm Animation, both an event-driven and a data-driven ap-

proach can be used to create the visualization. The event-driven approach

is based on the idea of identifying interesting events performed by the

algorithm, and defining visualization actions to be triggered when the

interesting events take place. The succession of visualization scenes creates

an Algorithm Animation. The data-driven approach is instead based on

the concepts of state mapping and interesting data structures. Here the

assumption is that by observing the state changes happening to the data

structures, it is possible to reconstruct actions taken by the algorithm.

Finally by mapping the state changes to graphical events, the algorithm

can be visualised. Furthermore the AA can be live, if the interesting events

or state mapping result in a visualization at run time, or post-mortem if

the visualization is created from logged data. [11]
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Figure 2.3. Subareas of Software Visualization and Algorithm Visualization.
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2.2.2 Visual Algorithm Simulation

In Visual Algorithm Simulation the user can directly manipulate the

data structure and construct the visualization using the user interface.

Through the graphical tools offered by the UI, it is possible to change the

data structures and therefore the animation [34].

The purpose of VAS exercises is to give the learner the possibility to

explore different possible states of the data structure on which the algo-

rithm is acting. Through the simulation, the learner can decide the state

changes, in this way taking the role of the algorithm itself, with the final

aim of recreating the algorithm execution step-by-step. VAS exercises

enhance learners engagement, giving them the possibility to study the

algorithm’s behavior and its influence on the data structures, both under

correct and incorrect execution. This process challenges them to find the

correct solution. Visual Algorithm Simulation can be used to evaluate

learners understanding of the algorithm, and to create Algorithm Anima-

tions for teaching purposes, which can also be embedded in online learning

materials [14].

2.3 Algorithm Animation Languages

In order to collect, store, and replay the data arising from the user interac-

tion with the Visual Algorithm Simulation exercise, we need a language

able to describe the necessary metadata, data structures, events and vi-

sual elements required for the reconstruction of the VAS exercise as an

Algorithm Animation. The language compatibility with JavaScript is also

relevant, since JS is used to develop the VAS exercises in JSAV. Next we

will explore two existing solutions which we consider potentially useful for

our purposes.

2.3.1 The eXtensible Algorithm Animation Language

The eXtensible Algorithm Animation Language (XAAL) [22] was created to

function as an intermediate language to exchange data among algorithm

animation systems (AAS). XAAL was developed based on a survey of exist-

ing AASs and AALs [21], and the subsequent development of a Taxonomy

of Algorithm Animation Languages [27]. The systems evaluated for the

creation of XAAL were ALVIS, ANIMAL, DsCats, JAWAA, JSAMBA and

11



Background of Visual Algorithm Simulation

MatrixPro, while the AALs evaluated were AnimalScript, DsCats, JAWAA,

Matrix ASCII, SALSA and Samba [22]. The language was designed to

unify two existing different approaches for describing Algorithm Anima-

tions: one using mostly graphical primitives, and the other focusing on

data structures.

The main features of XAAL are graphical primitives, data structures and

animation [22]. A document is constructed using XML-schema modules

and it is composed of four main parts: (i) metadata, (ii) definitions, (iii)

initial state, and (iv) animation. The high level structure of a XAAL

document is shown in Listing 2.1.

1 <xaal xmlns="http://www.cs.hut.fi/Research/SVG/XAAL">

2 <metadata>..</metadata>

3 <defs>..</defs>

4 <initial>..</initial>

5 <animation>..</animation>

6 </xaal>

Listing 2.1. Example of XAAL document structure [23].

XAAL offers the possibility to describe animations both by using only

graphical primitives and by using data structures, in which case it is also

possible to specify how the operation should be visualized using graphical

primitives. In both cases the elements of the animation can be enriched

with style and coordinates for positioning. Animations can be grouped into

a sequence or as simultaneous execution, and timing of each operation

within the animation can be specified.

The animations of graphical primitives can be described with a series

of operations, which among others include show/hide, move, rotate, scale,

group/ungroup, swap-id. In addition, the animations with data structures

support the most common data structure operations which are create,

remove, replace, swap, insert, delete and search. Listing 2.2 shows how an

animation can be described using XAAL.
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1

2 <xaal version="0.1" xmlns="http://www.cs.hut.fi/Research/SVG/XAAL"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.cs.hut.fi/Research/SVG/XAAL xaal.xsd">

5 <initial>

6 <array indexed="true">

7 <index index="0"><key value="E" id="key1"/></index>

8 <index index="1"><key value="X" id="key2"/></index>

9 <index index="2"><key value="A" id="key3"/></index>

10 <index index="3"><key value="M" id="key4"/></index>

11 <index index="4"><key value="P" id="key5"/></index>

12 <index index="5"><key value="L" id="key6"/></index>

13 <index index="6"><key value="E" id="key7"/></index>

14 </array>

15 <tree id="tree" root="node1">

16 <structure-property name="class" value="matrix.structures.CDT.probe.

17 BinSearchTree"/>

18 <node id="node1"><key value="E"/></node>

19 <node id="node2"><key value="X"/></node>

20 <edge from="node1" to="node2"/>

21 </tree>

22 </initial>

23 <animation>

24 <insert source="key3" target="tree"/>

25 <insert source="key4" target="tree"/>

26 <delete key="X" target="tree"/>

27 <swap swap="key1" with="key2"/>

28 </animation>

29 </xaal>

Listing 2.2. Example of describing an animation with XAAL [21].

2.3.2 General Purpose Animation Language

The General Purpose Animation Language (GPAL) [7] was developed as

a tool for crating diagrams and graphs animations through scripting. It

is based on two types of scripting, one to describe the visual element as

Scalable Vector Graphics (SVG), and another one to describe the animation

of the visual elements. The two scrips are converted with the aid of a

parser into JavaScript and then rendered as an animation on the screen.

Listing 2.3 shows an example of SVG scripting, while Listing 2.4 is an

example of animation scripting using the elements defined in Listing 2.3.

1 // square(x,y,width,height,ID)

2 square(100,150,50,50,s1);

3 // circle(x,y,radius,ID)

4 circle(100,150,50,c1);

5 // triangle(x1,y1,x2,y2,x3,y3,ID)

6 triangle(306,292,356,442,256,442,t1);

7 // polygon(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,ID)

8 polygon(605,170,655,200,585,250,605,250,605,170,p1);

Listing 2.3. Example of SVG scripting in GPAL [7].
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Figure 2.4. Architecture of GPAL [7].

1 function_main(){

2 // Draw a new circle c2 on the right side of c1

3 draw(c1,c2,circle,right);

4 drawLeft(c1,c3,circle);

5 // Draw a rectangle s2 on the top-right of s1

6 drawDiagonal(s1,s2,rect,topright);

7 drawArrow(s1,s2);

8 }

Listing 2.4. Example of animation scripting in GPAL [7].

The main elements in the architecture of the GPAL are the SVG and ani-

mation scripting, the SVG and animation scripting parser, the animation

queue, and the rendering, which includes rendering and updating of the

SVG elements. The structure is shown in Figure 2.4

2.4 From Simulation to Animation

In this section we are going to look into related work about the subject of

collecting and replaying data from Visual Algorithm Simulation exercises.

The only existing solution we have found is MatrixPRO [26], which has

also been incorporated in the TRAKLA2 system [36].

MatrixPro is a tool for crating VAS exercises where the submitted solu-

tion can be saved and replayed. In MatrixPro both the data structures

and the visualization itself can be stored. Data structures can be saved

either as serialized Java objects or as ASCII files, and later recreated from

these formats. The visual elements can instead be exported to SVG or to

TEXdraw format.

TRAKLA2 is a system for VAS exercises with automatic assessment,
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which incorporates the MatrixPro tool. As such TRAKLA2 also allows

saving the operations performed by the user during VAS exercises as

serialized Java objects. The object is saved every time a grade operation

occurs, and it includes the learner answer as a sequence of data structure

states. This serialized Java object is then sent to a server via Remote

Method Invocation (RMI) protocol. The data is sent to the server as log

entries when the applet is initialized, the exercise is graded or reset, the

model answer is opened or closed, the user has been idle over 60 seconds,

and when a user operation ends the idle time. These log entries include

a time stamp and identification data on the course, exercise, learner and

performed operation.

2.5 JavaScript Algorithm Visualization Library

The JavaScript Algorithm Visualization Library [24] was developed to add

support for AVs in HTML5 and JavaScript, with the possibility to create

AV exercises using active learning techniques. The key features of JSAV

are: (i) automated layout for traditional data structures like array, linked

list, tree, binary trees and graphs, (ii) support for presentation slideshows,

and (iii) support for VAS exercises on the constructing engagement level.

The other types of exercises supported are on lower engagement level, and

they are static images, animated slideshows and pop-up questions.

In VAS exercises the algorithm simulation is done mainly by clicking

the visualization of the data structure or a button, and the actions can be

assessed automatically by comparing the current state to a model answer.

At the end of the exercise the model answer can be reviewed by the learner

in the form of a slideshow. The feedback can be set in limited mode, in

which case when requested by the user the number of correct steps up to

that point is shown, or in continuous mode, where the feedback is given

after each relevant operation. In continuous feedback mode the exercise

can be set to either undo the incorrect step and allow the learner to try

again, or to automatically correct the wrong step with the model answer,

in which case points for the wrong step are not rewarded.

The author of the VAS exercises is required to generate the necessary

input data and initialize the data structures handled by the algorithm.

Event handlers have to be attached to the data structures in order to apply

the changes when the user interacts with them. The author also has to

write the model answer with annotated the steps to be graded. If during
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the exercise the wrong steps are to be fixed according to the model answer,

the author also has to provide a function which takes the state of the model

answer and fixes with it the learner solution.

Extension and customization of JSAV can be achieved through the many

events triggered when the user interacts with the visualization. Likewise,

the library listens to some events on its container. JSAV objects have

multiple class attributes, from general to more specific, which can be used

to listen for events on the needed exercise elements and customize them.
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3. Methodology

The research was carried out following the design-science research method-

ology [55]. In design-science research the aim is to create an innovative

artefact with a defined purpose, which yields utility for a specified problem

domain. The design process is an iterative and incremental activity, in

which the artefact’s utility, quality and efficacy has to be demonstrated

through a validation process. The feedback from the validation phase is

then used in the investigation and design phase. In our research an itera-

tion had the duration of two weeks and was repeated over a period of six

months. Each iteration was marked by a meeting with the Aalto University

instructor responsible for the Algorithm and Data Structure courses, who

represented the application stakeholders and impersonated different user

roles. The application stakeholders represented by the instructor were

teachers, students, developers and researchers. The aim of the bi-weekly

meetings was to analyze the current situation, better understand the needs

and expectations of the application users, validate the outcome of previous

iterations, and set the goals for the next iteration. Through these series

of iterations we incrementally analysed the context, designed the Player

Application prototype, and validated it. Next we describe into more detail

the design cycle and its phases.

3.1 Design Cycle

Design Science research is carried out according to the design cycle, which

is part of the engineering cycle. The engineering cycle includes: (i) problem

investigation, (ii) artefact design, (iii) design validation, (iv) artefact imple-

mentation, and (v) implementation evaluation. The design cycle represents

the first three steps of the engineering cycle and the process is iterated

until the artefact, in the form of a prototype, is ready for implementation.
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Figure 3.1. The design cycle as part of the engineering cycle.

Problem investigation Artifact design Design Validation

2 Weeks
 6 months 

Figure 3.2. The phases of the design cycle within the cycle iterations. As we repeated the
iterations, focus shifted from the problem investigation, to the artifact design
and later to the design validation.

Figure 3.1 shows the design cycle as part of the engineering cycle. [57]

The goal for our iterations of the design cycle was to design a web ap-

plication prototype, which can be used in conjunction with JSAV Visual

Algorithm Simulation exercises, to collect, store, and replay user interac-

tion data in a standardized way. As shown in Figure 3.2 the duration of

each cycle was of two weeks, and it included the three phases in different

proportions. The first iterations were dominated by the problem investiga-

tion, but later as we repeated them, the focus shifted toward the artifact

design and later the design validation. Next we present the three phases

of our design cycle from a methodological perspective.
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3.2 Problem Investigation

The first step to reach our goal was the problem investigation phase. The

aim of this phase is to investigate the context where the artifact is going

to be used, along with the interaction between the two. In our research

the artefact is represented by the Player Application, and its purpose is to

recreate learners submissions of Visual Algorithm Simulation exercises as

animations. The context can be divided into social context, representing

the users, developers and maintainers of the application, and knowledge

context, containing theories and existing knowledge about our research

filed. This division is shown in Figure 3.3.

We studied the social context during the weekly meetings with the in-

structor representing the application stakeholders, who also impersonated

the different user roles. At first these sessions were conducted in a more

unstructured way, to understand the needs and expectations of different

users. In later iterations to identify the use cases we opted for a more

structured approach. The knowledge context was instead investigated at

first with a broader approach during the background research for this the-

ses, through a review of existing literature and technical solutions. Later

we narrowed down the knowledge context to the JSAV library. The results

of this phase are presented in Section 4.1.

3.3 Artifact Design

In the artifact design phase we designed and created the prototype for

the Player Application. From the methodological point of view this phase

can be divided into four areas: (i) functional requirements, (ii) qualitative

requirements, (iii) architecture, and (iv) code production. These areas with
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Table 3.1. Methodological choices in the artifact design phase.

Artifact Design Areas Methodology

Functional requirements Semi-structured interviews

Qualitative requirements SQuaRE [19]

Architecture Service oriented architecture paradigm

Code production Test driven development

the respective methodological choices are exposed in Table 3.1.

The functional requirements were defined during the weekly sessions

with the instructor representing the application stakeholders and imper-

sonating the different user roles. The qualitative requirements instead

were defined by applying the qualities exposed in the Systems and soft-

ware Quality Requirements and Evaluation (SQuaRE) standard [19]. For

practical reasons we describe these qualities more in depth in Section 3.4.

The design of the prototype architecture was based on the service oriented

architecture paradigm, whereby the PA would work as an independent

subsystem of a Learning Management System [28]. The core idea of this

paradigm is that new services can be used to extend a system while still

leaving these services fully independent. Following this approach the

services can be created and run without restrictions on the technologies or

environment used to implement them. This type of architectural choice

was followed not only in the relation between the PA and the LMS, but also

within the PA itself. In fact the main components of the PA were designed

in order to work fully independently from each other.

In the code production of the prototype we followed a test driven devel-

opment approach. We used an incremental process where we first wrote

the minimum test necessary to have the existing code failing, and then we

wrote the minimum code necessary to pass the test. This way incrementally

we developed the necessary features.

3.4 Design Validation

The validation was carried out incrementally over the bi-weekly itera-

tions. To establish an evaluation strategy to be used in the validation

phase, we relied on the Framework for Evaluation in Design Science Re-

search [53]. The framework presents a four-step process to guide the

researcher through the choice and design of the evaluation strategy. These

four steps are (i) determine the goals of the evaluation, (ii) choose the eval-
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uation strategy or strategies, (iii) determine the properties to be evaluated,

and (iv) design the individual evaluation episodes. Next we discuss the

first three steps of the process, and we will present the fourth step, the

design of the single evaluation episodes, in Chapter 3.4.

Goals of evaluation

The evaluation of the Player Application prototype was carried out in the

validation phase of the design cycle, as shown in Figure 3.1. Its main goals

were to establish the prototype’s efficacy and effectiveness, and reduce

uncertainty and risks. Projected to our research, efficacy is the extent to

which the application prototype produces the desired results when the

tests written by the developer are run, while effectiveness is the extent

to which the prototype produces positive results when tested in its real

context by real users.

Evaluation strategies

According to the Framework for Evaluation in Design Science Research, in

order to choose the proper evaluation strategy, it is necessary to evaluate

and prioritize the design risks [53]. If these risks are more socially and

user-oriented, then a more human and effectiveness oriented evaluation

approach is better. If instead the risks are more related to whether the

used technology will work, then a technical and efficacy-oriented strategy

is advisable. Technical and human risks are anyway likely to occur in

different phases of the design cycle, with the technical ones being detectable

already in the design-development phase, while the human ones will be

more common when the application will be tested by users. For this reason

in the earlier iterations of the design cycle the evaluation to validate

the prototype was based mostly on unit and integration tests run on the

existing code. Instead in later iterations we moved progressively to a more

human-oriented approach, whereby the product of the design phase was

tested not only by the developer, but also during the bi-weekly meetings by

the instructor representing the application stakeholders. Finally we held

two separate testing sessions during which the prototype was repeatedly

tested by the instructor impersonating each time different user roles.
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Properties to Be Evaluated

The SQuaRE standard [19] presents a series of high level qualities, which

can be used to define software qualitative requirements and for their evalu-

ation. In our thesis we used these qualities to define the Player Application

qualitative requirements, and for the design validation. In this section we

present these qualities as they are exposed in the SQuaRE standard, and

in Section 4.2.1 we will present how we used them to define the qualitative

requirements specific for the Player Application.

Functional suitability

The functional suitability is concerned with the degree to which the soft-

ware meets users needs. This property is divided into: (i) functional

completeness, (ii) functional correctness, and (iii) functional appropriate-

ness.

Performance efficiency

The performance efficiency is about the amount of resources used by the

software during use under the defined conditions. This property is divided

into: (i) time behaviour, (ii) resource utilization, and (iii) capacity.

Compatibility

The compatibility property regards how well the software is capable of shar-

ing information with other systems, and working in a shared environment.

This property is divided into: (i) co-existence, (ii) interoperability.

Usability

The usability describes the degree to which the software can be used to

reach the specified goals with efficacy, efficiency, and satisfaction. This

property is divided into: (i) appropriateness recognizability, (ii) learnability,

(iii) operability, (iv) user error protection, (v) user interface aesthetics, and

(vi) accessibility.

Reliability

The reliability is the level to which the software can perform certain func-

tions under certain conditions for a certain period of time. This property

is divided into: (i) maturity, (ii) availability, (iii) fault tolerance, and (iv)

recoverability.
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Security

The security property defines how well the software protects data and

information, while maintaining the appropriate level of access for the

users and other systems. This property is divided into: (i) confidentiality,

(ii) integrity, (iii) non-repudiation, (iv) accountability, and (v) authenticity.

Maintainability

The maintainability is about the level of effectiveness and efficiency with

which the software can be updated and modified by developers. This

property is divided into: (i) modularity, (ii) reusability, (iii) analyzability,

(iv) modifiability, and (v) testability.

Portability

The portability describes the level of effectiveness and efficiency, with

which the software can be transferred to another hardware or environment.

This property is divided into: (i) adaptability, (ii) installability, and (iii)

replaceability.
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4. Results

4.1 Problem Investigation

In this section we present the outcomes of the first phase of the design

cycle, the problem investigation. In this phase we looked at the context

where the Player Application is going to be applied. As already described

in Section 3.2 and as shown in Figure 3.3, the context can be divided into

social context and knowledge context. We analyzed the social context by

looking at the user roles and use cases, and the results are exposed in

Section 4.1.1 and Section 4.1.2. The analysis of the knowledge context was

instead conducted by performing an in depth analysis of the JSAV library,

and the results are presented in Section 4.1.3. In a broader sense, the

knowledge context was already covered when we carried out the literature

review necessary to retrieve the background information presented in

Chapter 2, so at this stage we focused more on the narrow context in which

the PA is going to be employed.

4.1.1 Roles

To better understand users needs and expectations and have different

point of views, we utilized user roles. The roles were defined during the

bi-weekly meetings with the Aalto university instructor representing the

application stakeholders. The roles we obtained are: learner, instructor,

application developer, exercise developer, and researcher.

Learner

The learners are the persons completing the Visual Algorithm Simulation

exercises. They do not have knowledge of how the exercise has been devel-

oped, and how the submission is recorder, stored, and replayed. The main
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interest of the learner is to complete the exercise successfully, and have

the possibility to later review the submission. Reviewing past submissions

could be used as a way to enhance learning, understand own mistakes,

share the created animation, receive feedback, or clear a dispute over the

grading of the exercise.

Instructor

The instructor is the one giving the ADS course and employing the ready

VAS exercises. The instructor is interested in being able to review learners

submissions from VAS exercises, in order to evaluate their understand-

ing, the exercise difficulty, and to give feedback. For the instructor it is

also important that the Player Application creates a registry of all the

submissions, which can be used in case of disputes over grading results.

Furthermore, the instructor can use the application to create algorithm

animations which can then be embedded in lecture material, or shared as

a link.

Application Developer

The application developer is the one responsible for developing, maintain-

ing and updating the application itself. The developer will use all the

application features for testing purposes, and eventually will also produce

animations to share test results and create documentation.

Exercise Developer

The exercise developer is the person developing new JSAV exercises or

updating existing ones. He will want to be able to integrate the Player

Application into JSAV exercises with as little effort as possible, without

making the integration too invasive within the exercise logic. The main

use of the application will be to test the new or updated exercises, and

eventually produce animations in order to share test results, present new

exercises, or create documentation.

Researcher

The researcher’s main interest is in the data collected from the VAS ex-

ercises. For the researcher it is important that the data is retrievable

from the database through an API, that it is well structured, understand-

able, and contains meaningful information. The researcher will also use

the Player Application front end to browse through submissions, visu-

ally analyze the data, and create material to be used in presentations or

publications.
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Table 4.1. Use cases from roles point of view. Listed according to their importance for
users.

Use Cases Learner Instructor Application
Developer

Exercise
Developer Researcher

Replay VAS as anima-
tion

- Review submitted so-
lutions.
- Use as learning aid
to recall concepts.
- Compare different so-
lutions.
- Receive feedback.
- Present own anima-
tions.

- Use as teaching
aid to show and ex-
plain solutions, and
guide through solu-
tion steps.
- Use as feedback tool.

- Aid in developing,
maintaining and test-
ing the Player applica-
tion.

- Aid to develop and
test VAS exercises.

- Browse through solu-
tions in the database,
select and visualize
them.

Create animations - Create own anima-
tions.

- Create and update
teaching material.

- Create documenta-
tion.

- Create documenta-
tion.

- Create documenta-
tion for publications.

Embed animation in
external HTML

- Create and present
own material

- Share, create and
merge teaching mate-
rial.

- Embed into documen-
tation.

- Embed into documen-
tation.

- Embed into publica-
tions.

Save and load anima-
tion data locally

- Save data for later
use.
- Load previously
saved animations.
- Share the animation.
- Use the as base
to create new anima-
tions.

- Save data for later
use.
- Share the animation.
- Use the as base
to create new anima-
tions.
- Create and test
teaching material.

- Save, modify and
reload the file to test
the application un-
der unexpected condi-
tions.

- Aid to develop and
debug VAS exercises.

N/A

Share animation via
link

- Present own anima-
tions.

- Share teaching mate-
rial.

N/A - Share exercise test-
ing results

N/A

Access submissions
data in DB through
API

N/A
- Collecting data for
learning analytics

- Collecting data for
application develop-
ment

N/A
- Collecting data for re-
search purposes.

Integrate Player Appli-
cation into old exer-
cises

N/A N/A
- Needed for migra-
tions

- Needed for migra-
tions N/A

4.1.2 Use cases

After obtaining the user roles, we organized two extra sessions together

with the Aalto University instructor representing the application stake-

holders, where we defined the use cases for the PA. In these sessions we

utilized the user roles described in the previous section, to look at each use

case from every user role’s point of view. In this process we also defined

the purposes for each role in using the application in each specific case.

The outcome of this process is synthesized in Table 4.1. As can be seen

from the cells marked with N/A in the table, not all roles are involved in

all use cases. For example, somebody acting in the learner role will not

be interested in accessing the submission data through the database, and

it probably would not even be allowed to do it. Next we present the use

cases for the Player Application, which are also exposed with more details

in Table 4.1.

Replay VAS exercises as animation

The application is used to replay the Visual Algorithm Simulation exercises

submissions as animations, either a slide show or an automatic animation.

The played animation can either be from the exercise just submitted, in

which case it can be automatically presented after submission, or it can

be one of the submissions in the database. The person submitting the

VAS exercise can be from any of the possible user roles, and therefore the
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purpose of replaying the VAS exercise as animation can vary.

Create animations

The specificity of this use case, is that the user is submitting the VAS

exercise not with the intent of solving the exercise, but in order to create

an Algorithm Animation. Here the final aim is the animation itself, while

in the previous cases the animation was a "side product" of carrying out

the VAS exercise.

Embed an animation in external HTML

After obtaining an animation, the user might want to be able to embed it

in an external HTML document. The purposes of such use vary depending

on the user role, but for all it is essential that such a feature exists.

Save and load animation data locally

In this use case the user is saving into a local file the data which the

application used to create the animation. The data can also be loaded from

a local file into the application, and visualized as an animation. This case

is especially relevant for learners and instructors, who can in this way save

and load the animations locally, without the need to rely on the database

access. The files can then be loaded when needed into the PA, or shared

with other users. From developers point of view, this use case is relevant

for testing purposes. An exercise developer could use the saved local file to

debug an exercise, while the application developer could use it to debug

the Player Application, or to create files with unexpected data to be loaded

back into the application for testing purposes.

Share animation via link

Also this use case is concerned with sharing the animation produced by

the PA. The sharing should happen via a provided link.

Access the submission data in the DB through API

For this use case the user is only interested in the raw data recorder by

the Player Application, not in the animation itself. Furthermore, the focus

is on being able to easily retrieve large quantity of data from the database

through an API. The technical implementation is responsibility of the

system storing and managing the data. The PA only provides the data.
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Figure 4.1. JSAV visualization with two swap steps called with the setTimeout function.
In the leftmost picture is the visualization before the first swap, in the center
is the visualization after the first swap, and on the right after the second
swap. This visualizations are the result of executing the code presented in
Listing 4.1.

Integrate Player Application into old exercises

This use case is specific for VAS exercise and Player Application developers.

For them it is important that the PA can easily be integrated into already

existing JSAV Visual Algorithm Simulation exercises in cases where they

have to be reused and their submissions recorded.

4.1.3 JavaScript Algorithm Visualization Library

This section exposes the outcomes of the analysis we conducted of the JSAV

library. In the analysis we focused on five main aspects: (i) how to create

visualizations (ii) how to create slideshows, (iii) the data structure APIs,

(iv) how to create Visual Algorithm Simulation exercises, and (v) JSAV

events. Each of these five aspects are going to be presented separately.

1 var avOptions = {

2 title: ’Title of the AV here’,

3 };

4 // Create JSAV visualization object

5 var av = new JSAV($("#jsavcontainer"), avOptions);

6 // Create the data structure

7 var arr = av.ds.array([10, 13, 99, 25], {indexed: true, layout: "bar"});

8 // This the initial state of the visualization

9 av.displayInit();

10 // The animation

11 setTimeout( () => arr.swap(0,1), 1000);

12 setTimeout( () => arr.swap(1,2), 2000);

Listing 4.1. Example of JSAV visualization.

Visualizations

To root element of JSAV is the visualization, which is created by a call to

the JSAV constructor. Through the visualization object it is then possible

to create data structures, UI elements, animations, exercises and event

listeners. An example of how to create a JSAV visualization is shown in

Listing 4.1 on line 5. An animation of swapping array elements can be for

example realized by (i) creating an array, (ii) defining the state where the
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visualization starts, and (iii) calling the swap method with a timeout. The

procedure is shown in Listing 4.1 and the resulting visualizations created

by JSAV are shown in Figure 4.1.

1 var avOptions = {

2 title: ’Title of the slideshow here’,

3 };

4 // Create JSAV visualization object

5 var av = new JSAV($("#jsavcontainer"), avOptions);

6 // Create the data structure

7 var arr = av.ds.array([10, 13, 99, 25], {indexed: true, layout: "bar"});

8 // This the initial state

9 av.displayInit();

10 // Define the steps

11 av.step();

12 arr.swap(0,1);

13 av.step();

14 arr.swap(1,2);

15 // Start the slideshow after the definition

16 av.recorded();

Listing 4.2. Example of JSAV slideshow.

Slideshows

JSAV slideshows can be used to present data structures and any successive

changes applied on them by the action of a given algorithm. To create a

slideshow we need (i) a JSAV object, (ii) data structures and UI elements,

(iii) an initial state, (iv) one or more steps, (v) actions that take place in

each step, and (vi) a call to start the slideshow. Listing 4.2 is an example of

code for a slideshow with two swap steps. Figure 4.2 shows the slideshow

created from that same code.

Figure 4.2. JSAV slideshow with a swaps step, resulting from the code presented in
Listing 4.2.

Data Structures

JSAV natively provides support for the following data structures: (i) array,

(ii) graph, (iii) linked list, (iv) matrix, (v) tree and binary tree. Each

data structure type can be created using a specific method on a JSAV

instance, which also takes an options object, like shown in Listing 4.2

on line 7. Each data structure has methods that can be used to interact

with it. Descriptions of the native data structure objects can be found in

Appendix A.1.

The data structures included in an exercise can be accessed through
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the initialStructures element in the exercise object. This is shown in

Appendix A.1.11, which represents the structure of a JSAV VAS exercise

object.

On top of the native data structures, new ones can be created by extend-

ing the JSAV library [25]. For example in the OpenDSA projects [14] the

JSAV native data structures have been extended with new one like stack,

array tree, circular queue, doubly linked list, binary heap, and red-black

tree. Analyzing these new data structures is not however in the scope of

this theses.
1 var initialArray;

2 var barArray;

3

4 function initialize() {

5 // initialize click handler

6 if (typeof clickHandler === "undefined") {

7 clickHandler = new ClickHandler(av, exercise, {

8 selectedClass: "selected",

9 effect: "swap"

10 });

11 }

12 clickHandler.reset();

13

14 // initialize the array

15 initialArray = [];

16 for (var i = 0; i < arraySize; i++) {

17 initialArray[i] = Math.floor(Math.random() * 100) + 10;

18 }

19 if (barArray) {

20 clickHandler.remove(barArray);

21 barArray.clear();

22 }

23 barArray = av.ds.array(initialArray, {indexed: true, layout: "bar"});

24 barArray.layout();

25 clickHandler.addArray(barArray);

26

27 return barArray;

28 }

Listing 4.3. JSAV initialization/rest function for a Visual Algorithm Simulation
exercise.

Visual Algorithm Simulation Exercises

In a Visual Algorithm Simulation exercise the user can directly manipu-

late the data structure and modify the visualization using the UI provided

by JSAV. This type of exercise requires a function describing the model

answer, and a function to initialize and reset the exercise. The initializa-

tion/reset function has to return the data structures necessary for grading

the exercise, and it can be also used to set the necessary click handlers.

Listing 4.3 is an example of initialization/reset function. The model answer

function also has to return the data structures used for grading, and it

has to simulate the correct changes occurring in them, like shown in List-

ing 4.4. Finally the exercise is initialized through the JSAV object instance,

passing the functions and options, like in Listing 4.5. Figure 4.3 shows a
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Figure 4.3. JSAV Visual Algorithm Simulation exercise. The user clicks on the array
index 1 and then on index 2, which causes the values to swap.

JSAV VAS exercise where the learner has to simulate the insertion sort

algorithm. The exercise shows the instructions, the data structure as a bar

array, and the code sample. The learner has to click on the array bars to

cause the values to swap. The images show the learner first clicking on

the second array bar and then on the third array bar, which causes the two

values to swap.

1 function modelSolution(jsav) {

2 var modelArray = jsav.ds.array(initialArray, {indexed: true, layout: "bar"});

3

4 jsav._undo = [];

5

6 for (var i = 1; i < arraySize; i++) {

7 var j = i;

8 while (j > 0 && modelArray.value(j - 1) > modelArray.value(j)) {

9 jsav.umsg(’Shift "’ + modelArray.value(j) + ’" to the left.<br/>&nbsp;&

nbsp;i: ’ + i + ’<br/>&nbsp;&nbsp;j: ’ + j);

10 modelArray.swap(j, j - 1);

11 jsav.stepOption("grade", true);

12 jsav.step();

13 j--;

14 }

15 }

16

17 return modelArray;

18 }

Listing 4.4. JSAV model answer function for an exercise.
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1 var avOptions = {

2 title: ’Title of the AV here’,

3 };

4 // Create JSAV visualization object

5 var av = new JSAV($("#jsavcontainer"), avOptions);

6 var initialArray;

7 var barArray;

8

9 function initialize() {

10 ...

11 }

12

13 function modelSolution(jsav) {

14 ...

15 }

16

17 var exercise = av.exercise(modelSolution, initialize, {feedback: "atend"});

18 exercise.reset();

Listing 4.5. JSAV exercise initialization.

JSAV events

The JSAV library emits many types of log events arising from the user

interaction. Some are triggered automatically while others are triggered

if an event listener is set for that type of event on the data structure. For

example the jsav-init log event is triggered automatically when a JSAV

instance is initialized, while jsav-array-click is triggered upon clicking an

array, but only if a click listener has been set on it. Table 4.2 shows the log

events divided into categories according to how they are triggered, if by

the visualization object, the exercise or by a data structure.

1 (function ($) {

2 "use strict";

3 var avOptions = {

4 title: ’Title of the AV here’,

5 logEvent: ((eventData) => console.log(’Event handler’, eventData)),

6 };

7 // Create JSAV object

8 var av = new JSAV($("#jsavcontainer"), avOptions);

9 var arr = av.ds.array([10, 13, 99, 25], {indexed: true, layout: "bar"});

10 // Attach click listener

11 arr.click((index) => console.log(’Click handler. Array index:’, index));

12 }(jQuery));

Listing 4.6. Example of using JSAV events.

Each event creates an object containing the relevant data. All triggered

events and their data can be caught by defining the logEvent option when

initializing the JSAV instance. In fact we can pass a function to the

logEvent option, and that function will be triggered every time a jsav-log-

event happens. An example of the procedure is presented in Listing 4.6.

Another option to catch all JSAV log events is to set an event listener on

the document object, which listens for events of type jsav-log-event.

Each log event is an object containing the relevant data. By catching

the right log events, we can therefore also reach the data relevant for our

purposes. A more detailed list of JSAV log event objects can be found in
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Table 4.2. Types of jsav-log-event triggered by JSAV.

Visualization Exercise Data Structures
jsav-backward jsav-exercise-init jsav-array-<Event Type>
jsav-begin jsav-exercise-gradeable-step jsav-edge-<Event Type>
jsav-end jsav-exercise-grade jsav-graphical-<Event Type>
jsav-forward jsav-exercise-grade-change jsav-matrix-<Event Type>

jsav-init jsav-exercise-model-backward Event Types
jsav-message jsav-exercise-model-begin click
jsav-object-move jsav-exercise-model-close dbclick
jsav-recorded jsav-exercise-model-end mousedown
jsav-speed jsav-exercise-model-forward mousemove
jsav-speed-change jsav-exercise-model-init mouseup
jsav-updaterelative jsav-exercise-model-open mouseenter
jsav-updatecounter jsav-exercise-model-recorded mouseleave

jsav-exercise-reset
jsav-exercise-step-fixed
jsav-exercise-step-undone
jsav-exercise-undo

Appendix A.1.12.

4.2 Application Design

In this chapter we present the results from the second phase of the design

cycle: the artifact design. We are going to look at the solutions we have

designed to reach our goal of having a web application prototype which can

be used in conjunction with JSAV Visual Algorithm Simulation exercises,

to collect, store, and replay user interaction data in a standardized way. We

will start by presenting the application requirements, after which we go

more into details with the proposed solution which includes: a new JSON-

based Algorithm Animation Language (JAAL) and the Player Application

prototype.

4.2.1 Requirements

In this section we present the functional and qualitative requirements for

the Player Application. The requirements are defined so that the software’s

inherent properties will be developed to meet users needs. These properties

can be classified into functional and quality properties [19]. The functional

properties are domain-specific, and they determine what the software can

do. The quality properties instead define how well that software performs.

Since the functional properties are domain specific, we defined them at
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Table 4.3. Functional requirements for the PA from the user point of view. Each require-
ment is considered according to the responsibilities of the PA main components
and listed in order of importance.

Functional Requirements Player Application
Exercise Recorder

Player Application
Exercise Player

All the actions that can be per-
formed on a data structure are
recorded and replayed in the an-
imation.

- Records all actions from a
JSAV VAS exercise.
- Records the changes happen-
ing to the data structures due
to an action.

- Shows all the actions taken in
the JSAV VAS exercise.
- Shows the changes to the data
structure caused by each ac-
tion.

The animation can be viewed
step-by-step as a slideshow.

- Each action is saved as own
step.

- Functionality to step through
the animation one step at time.

The animation can be viewed
using play/pause/stop buttons.

- Each action is saved as own
step.

- Functionality to start and stop
the animation.

All relevant information shown
in the exercise is shown also in
the animation.

- Save the relevant information
to JAAL object.

- Show the relevant information
from JAAL object.

Clicking the exercise control but-
tons is saved and shown in the
animation.

- Record when the user clicks a
control button.
- Record the changes happening
to the data structures when the
button is clicked.

- Show the button click.
- Show the changes to the data
structure caused by the button
click.

If the model answer is opened
by the user, this is also shown in
the animation.

- Record when the user opens
the model answer.
- Record the steps of the model
answers viewed by the user.

- Show the opening of the model
answer by the user.
- Shows the steps viewed by the
user.

The model answer is shown to-
gether with the animation, so
that the user can compare it to
the own solution.

- Record all the model answer
steps.

- Show the model answer on
side of the animation.
- Functionality to step through
the model answer.

It is possible to share anima-
tions.

N/A - Offer a link that can be
shared.

It is possible to export & import
animations. N/A

- Save animation data locally.
- Load animation from local file.

first during the bi-weekly meetings with the instructor representing the

application stakeholders. After testing the application prototype, the

functional requirements were updated to better cover all the required

functionalities. For the formulation of the qualitative requirements we

used the properties from the SQuaRE standard [19] as reference. These

properties were already presented in Section 3.4, and in this section we are

going to present them again, this time in relation to the Player Application

qualitative requirements.

Functional Requirements

In this section we present the Player Application functional requirements

obtained from the meetings with the Aalto University instructor represent-

ing the domain experts and stakeholders. These requirements were first

defined in January 2020, when the PA prototype design was not yet mature,

and then updated in March and April 2020 after the testing sessions with

the prototype. The functional requirements contain concepts like Exercise

Recorder ER, Exercise Player EP, and JAAL which will be presented later
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Table 4.4. Functional requirements for the PA from the point of view of the JAAL object.
Each requirements is considered according to responsibilities of the PA ER and
the LMS, and listed in order of importance.

Functional Requirements Player Application
Exercise Recorder

Learning Management
System

All relevant GUI actions saved
in JAAL.

- Listen for relevant actions.
- Format the data to JAAL for-
mat.
- Save the formatted data to
JAAL object.

N/A

All relevant exercise data is
recorded in JAAL.

- Save relevant exercise data.
- Format the data to JAAL for-
mat.
- Save the formatted data to
JAAL object.

N/A

All saved submissions are avail-
able in the JAAL format.

- Send the JAAL object to the
LMS.

- Save the received JAAL object
to database.

The application can be con-
nected to a LMS.

- Implements the protocol re-
quired by the LMS.

- Offer a protocol for connecting
the PA.

The JAAL object is sent to the
LMS when the user clicks the
grade and reset buttons, and
reloads or closes the window.

- Follow necessary events.
- Send JAAL object to LMS upon
events happening.

N/A

The model answer is saved in
JAAL.

- Retrieve the model answer
steps.
- Format model answer steps to
JAAL.
- Save the formatted data to
JAAL object.

N/A

The JAAL object contains appli-
cation version.

- Implement versioning system.
- Save version to JAAL object. N/A

JAAL objects are indexed. N/A - Implement and manage index-
ing in database.

Saved JAAL objects are accessi-
ble through API.

N/A - Implement API.

in this Chapter. These requirements are shown in Table 4.3 and in Ta-

ble 4.4, which contain respectively the functional requirements from the

user perspective, and from the JAAL data object perspective. In Table 4.4

we consider the respective responsibilities of the PA main components, and

in Table 4.4 the responsibilities of the PA and the LMS. Even tough in

Table 4.4 we show also the requirements that are fully under responsibility

of the Learning Management System, we are not going to discuss them

any further, since they are not in the scope of this thesis project. Next we

will describe each functional requirement into more details.

All the actions that can be performed on a data structure are recorded
and replayed in the animation

In a JSAV VAS exercise the user can use the UI to perform actions on the

data structures, like swapping, copying, adding or deleting values. The

PA must be able to record all these different actions and then replay them

in the animation.
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The animation can be viewed both step-by-step as a slideshow and using
play/pause/stop buttons

The animation showing the steps from the submitted solution will be

presented to the user after completing the exercise. The PA must offer the

possibility to both control the animation using play, pause and stop buttons,

and also as a slide show, with buttons to step through the animation one

step at the time.

All relevant information shown in the exercise is shown also in the
animation

Apart from the data structures, JASV presents the user with relevant

information throughout the exercise, such as instructions, code samples

and score. This type of information must be saved by the PA and included

in the animation.

Clicking the exercise control buttons is saved and shown in the animation

The JSAV VAS exercises have four control buttons: undo, reset, model

answer, and grade. Clicks on these control buttons and their effects on the

data structures must be recorded by the PA and shown in the animation.

If the model answer is opened by the user, this is also shown in the
animation

Clicking the model answer button in the VAS exercise will open a window

containing the correct solution steps. The content of the model answer

window and the steps viewed by the user must be saved and shown in the

animation.

The model answer is shown together with the animation, so that the user
can compare it to the own solution

The full model answer of the exercise must be recorded and shown at the

same time when showing the animation, so that the user can compare the

submitted solution steps to the model answer steps. The full model answer

must be saved in all cases, even if the user did not click the model answer

button.

It is possible to share animations

The PA must offer a way to share the animation via link, so that the link

can be shared or embedded into any HTML document.
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It is possible to export and import animations

The PA must include a functionality to export the animation to a file in the

JAAL format, and another functionality to import an animation from a file

containing data in the JAAL format.

All relevant GUI actions are saved in JAAL

The PA must record all relevant GUI actions during the VAS exercise,

convert them to a format compatible with JAAL, and save them in the

JAAL object.

All relevant exercise data is recorded in JAAL

Apart from GUI actions, all relevant exercise data, such as title, instruc-

tions, and score, must be formatted correctly and saved in the JAAL object.

All saved submissions are available in the JAAL format

All exercise submissions must be later available as JAAL objects. The PA is

responsible for creating the JAAL object and sending it to the LMS, who is

in turn responsible for saving it in a database.

The application can be connected to a LMS

It is important that the PA can be integrated in a LMS. For this reason

there must be and agreement on the protocol to be used for exchanging the

necessary data. The LMS is responsible for specifying the protocol, and

the PA on its part must implement it.

The JAAL object is sent to the LMS when the user clicks the grade and
reset buttons, and reloads or closes the window

The PA application must send the JAAL object to the LMS in three cases:

(i) the user clicks the grade button, (ii) the user clicks the reset button, and

(iii) the user closes the exercise window.

The model answer is saved in JAAL

The exercise model answer, its steps, and the state of the data structures

in each step must be saved in the JAAL object.

The JAAL object contains the application version

The VAS exercise submission data must include the version of the PA that

created the JAAL object.
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Table 4.5. Qualitative properties from SQuaRE [19] with corresponding qualitative re-
quirements for the Player Application.

Qualitative properties Qualitative Requirements

Functional Suitability

Functional completeness The functionalities specified by the requirements are present.
Functional correctness The functionalities specified by the requirements work with a satisfactory degree of

precision.
Functional appropriateness The functionalities specified by the requirements are presented in an appropriate and

understandable way, avoiding unnecessary steps.
Performance Efficiency

Time behaviour The recording of the VAS exercise does not slow down the execution of the exercise
steps.
The creation of the animation does not require noticeable loading time.

Resource utilization The resources used by the application have to be reasonable in relation to its function-
alities.
The amount of sessions is not limited.

Capacity For each exercise session is possible to record one exercise.
For each animation session is possible to play one animation at time.

Compatibility

Co-existence The application works in conjunction with JSAV and its required libraries.
The application works when embedded in the Learning Management System.

Interoperability The application is able to exchange the required information with the LMS
Usability

Appropriateness recogniz-
ability

The application users find it useful when used according to the given use cases.

Learnability It is easy to learn how to use the application.
Operability The application is easy to use and control.
User error protection The application protects the user from making errors when recording the exercise or

playing the animation.
User interface aesthetics The user interface enables pleasing and satisfying interaction for the user.
Accessibility The application is usable also by people with diverse abilities.

Reliability

Maturity The application is reliable under normal conditions.
Availability The application is available and accessible when required for use.
Fault tolerance The application works as intended even when an error occurs.
Recoverability The application recovers in case of failure or interruption without losing the data.

Security

Confidentiality The data is accessible only to those who are authorized to have access.
Integrity The application prevents unauthorized access and modification of data.
Non-repudiation The application records relevant user interaction.
Accountability The recorded user interaction is traced to the user.
Authenticity The identity of the user whose interaction has been recorded can be proven.

Maintainability

Modularity The application is designed of modules, such that change to one of them has minimal
impact to other modules.

Reusability The modules composing the application can be easily reused in other software.
Analysability The application is designed and written in a way, that analyzing it is not too difficult.

For example to asses the impact of some changes, or diagnose the cause of a failure.
Modifiability The application can be effectively and efficiently modified without degrading its

quality.
Testability Test criteria are established for the application, and tests can be performed to verify if

the criteria are met.
Portability

Adaptability The application can be adapted for use on different environments. For example
different LMSs.

Installability The application can be deployed in the needed environment efficiently and with
effectiveness.

Replaceability The application can easily be replaced with new versions of the same application or
other similar applications.
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Qualitative Requirements

The procedure followed to define the qualitative requirements is pictured

in Figure 4.4. We used as a reference the qualitative properties from the

SQuaRE standard [19], already presented in Section 3.4. In the process we

then analyzed the Player Application with its context, use cases, and func-

tional requirements, through the filter of these qualitative properties. As a

result we obtained the requirements enforcing the qualitative properties.

All the qualitative requirements are shown and described in Table 4.5.

Use cases

Functional
requirements

Context

Player Application

Qualitative Properties ( SQuaRE) Qualitative
Requirements

Figure 4.4. The process followed to define the qualitative requirements through the
SQuaRE standard [19].

4.2.2 JSON-based Algorithm Animation Language

In this section we present the language we created to describe the inter-

action of the user with the Visual Algorithm Simulation exercise, and the

animation created through it.

The Player Application is meant to primarily be used to record and replay

JSAV Visual Algorithm Simulation exercises, but in theory it could crate

animations based on data originating from any source, provided that the

data respects the specified format. For this reason the language used to

describe the animation had to be based on well supported technologies,

not only in the context of JSAV, but also in a wider context. The most

reasonable choice, when it comes to describing objects and events, is to

base that description on the JavaScript Object Notation (JSON). To define

our AAL we strongly relied on the structure used in XAAL. Because JSON

and XAAL are the main models for our language, we called it JSON-based

Algorithm Animation Language (JAAL).

In JAAL the main document is divided in four parts, the same defined in

XAAL: (i) metadata, (ii) definitions, (iii) initial state and (iv) animation.

The metadata section can include for example the student identification

number and the application version. The definition part is used to specify

certain options concerning the visualization, styling and the animation

in general. The initial state section contains the initial data structures
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and initial HTML of the exercise. The animation section includes the

animation steps. The main structure of JAAL is shown in Listing 4.7

1 {

2 "metadata": {} ,

3 "definitions": {},

4 "initialState": {},

5 "animation": [],

6 }

Listing 4.7. Main structure of a JAAL.

Metadata

The metadata section can be used to include information which is not

arising from the Visual Algorithm Simulation exercise itself, but is passed

by the Learning Management System or the Player Application. Some ex-

amples are user identification number, application version, timestamp, and

keywords. We did not strictly define any elements, since the information in

the metadata section is not used by the Player Application but rather by

the LMS or anybody utilizing the collected raw data.

Definitions

Currently we defined four types of elements which can be used in the

definitions part: (i) options, (ii) style, (iii) score, and (iv) modelSolution.

The options and score elements are composed of key-value pairs; the style

element is a Cascading Style Sheets (CSS) definition in JSON format; the

modelSolution is a string containing the function definition for the model

answer. Listing 4.8 show how the definitions part can be used.

1 "definitions": {

2 "style": {

3 "#jsavcontainer": {

4 "height": "100%",

5 "width": "100%"

6 }

7 }

8 "score": {

9 "total": 19,

10 "correct": 0,

11 "undo": 0,

12 "fix": 0,

13 "student": 1

14 },

15 "options": {

16 "title": "Insertion Sort",

17 "instructions": "Use Insertion Sort to sort the table given below in

ascending order. Click on an item to select it and click again on another one

to swap these bars."

18 },

19 "modelSolution": "function(e){var t=e.ds.array(a,{indexed:!0,layout:\"bar\"});

e._undo=[];for(var n=1;n<10;n++)for(var r=n;r>0&&t.value(r-1)>t.value(r);)e.

umsg(’Shift \"’+t.value(r)+’\" to the left.’),t.swap(r,r-1),e.stepOption(\"

grade\",!0),e.step(),r--;return t}"

20 },

Listing 4.8. Definitions in JAAL.
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Initial State

The data structures can be defined as objects. Each object describing a

data structure contains the common elements type, id, values and options.

The element type can be for example "array", "tree" or "list". The id will be

used to uniquely identify the given data structure within the animation.

The options element can be used for example to define if the visualization

of an array should show the indexes, and to specify the orientation of the

array visualization, as shown in Listing 4.9. On top of these common

elements more can be specified, depending on the type of data structure.

For example a tree or graph will have to specify also the nodes and their

relations, like shown in Listing A.16. The initialState section can also be

used to define the initial HTML data of the exercise. This information

can be used by a web application to easily visualize the initial state of the

exercise.
1 {

2 "metadata": [],

3 "definitions": {},

4 "initialState":

5 {

6 dataStructures:

7 [

8 {

9 "type": array,

10 "id": "0d15981decd54d55aa6f679eb45e5205",

11 "values": [0, 1, 2],

12 "options": { "indexed": true, "orientation": "horizontal" }

13 }

14 ],

15 animationDOM: "...."

16 },

17

18 "animation": [],

19 }

Listing 4.9. Representation of an array in JAAL.

Animation

The animation element is an array containing the animation steps. Each

step is an object containing the type of action performed, a timestamp,

additional information like the clicked index number, datastructureId and

values of the data structure involved in the action. Tree of the most

common action types in JSAV VAS exercises would be "click", "gradeable-

step", and "grade". Each step also contains the animationDOM element,

which defines the inner HTML of the exercise element in the current step.

This HTML data can be used by a web application to easily visualize the

step. An example of the content for the animation element is shown in

Listing A.17.

41



Results

4.2.3 Application Prototype

In this section we describe the outcomes of the design process of the

Player Application. First we expose the higher level design, which is

connected to our theoretical base. After that we present the lower level

technical design, which includes the application architecture. The working

prototype can be tested on the web address https://jsav-player-test-app.

firebaseapp.com/. The code with explanation on how to install an run

it can be found from the git repository https://github.com/MarianiGiacomo/

jsav-player-application.git.

Theoretical Design

The Player Application is at the core a software to create Algorithm An-

imations, therefore as part of the design process we analyzed it through

the categories of the Taxonomy for Software Visualization (TSV) proposed

by Price [47]. The aim of this phase was to give the application a strong

abstract structure, on which to build the lower level architectural design.

Table 4.6 shows how we applied the categories of the TSV to the PA. Next

we describe the outcome of the analysis for each category.

Table 4.6. Categories of the Taxonomy of Software Visualization in the Player Application.

Category How applies to Player Application

Scope What is the range of exercises that can be handled by the PA?

Content What subset of information from the exercise does the PA uses to
construct the visualization?

Form What are the parameters and limitations concerning the output of
the PA?

Method How is the visualization specified and how is the data source con-
nected to the visualization?

Interaction How does the user interact with the PA?
Effectiveness How well does the PA communicate information to the user

Category - Scope

To determine the scope of the PA we answered the question "what is the

range of exercises that can be handled by the PA?". The core of JSAV Visual

Algorithm Simulation exercises is the data structure. Actions such as

swapping or deleting values, on a technical level happen through the data

structures APIs. For this reason to determine the scope of the Player

Application, we have to define which data structures will be supported.

JSAV core data structures are: array, tree, binary tree, linked list, and

matrix. On top of core data structures, developers can also extend JSAV
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and create new ones. As the scope of the Player Application, we define

the core data structures of JSAV. Furthermore, we define that new data

structures, in order to be eligible for support by the PA, will have to be

implemented following the same principles as the core data structures. In

specific, new data structures will have to emit the same types on JSAV

events upon user interaction.

Category - Content

To determine the content of the application, we answered the question

"what subset of information from the exercise does the PA uses to construct

the visualization?". On a higher level, this information can be categorized

into three groups: (i) exercise configuration settings, (ii) user interaction

with the GUI, and (iii) data structures state. Data from category (i) is

gathered from JSAV log events emitted upon exercise initialization and

submission, and from the exercise object. Data from category (ii) is gath-

ered only from those log events that JSAV emits upon interaction of the

user with the visualization. Data from category (iii) is extracted from the

JSAV exercise object. The exercise object structure is shown in Listing A.11.

Table 4.7 shows more in details the content data divided into categories,

and its source.

Category - Form

This category concerns the output of the Player Application, along with

parameters and limitations governing it. The output of the Player Applica-

tion is an animation, both in the form of user controlled slide show, and

automatic animation. These two forms are produced based on the data

gathered from the Visual Algorithm Animation exercise, and the subse-

quent JSON-based Algorithm Animation Language object. Alternatively a

JAAL file can also be uploaded straight into the Player Application.

The parameters governing the animation, are those shown in the Data

column of Table 4.7. On top of those parameters, there is an extra one for

choosing the animation speed, which can be set from the Exercise Player

part of the Player Application. The data structure visualization options

are those present in the JSAV data structure objects in the option element.

The options may vary according to the type of data structure.

Among the limitations of the Player Application, the two most important

to be considered are:

1. The VAS exercise is recorded using the JSAV log events rising from
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Table 4.7. Content data for the Player Application and its source, divided into categories.

Data Source

Exercise object Event: jsav-exercise-init
Configuration Settings

Title Event: jsav-init
Instructions Event: jsav-init
Data structure visualization options Exercise objects
Final score Event: jsav-exercise-grade

User Interaction with the GUI

Click on data structure Event: jsav-<DS>-click
Open model answer Event: jsav-exercise-model-open
Close model answer Event: jsav-exercise-model-close
Click undo button Event: jsav-exercise-undo
Click reset button Event: jsav-exercise-reset
Click grade button Event: jsav-exercise-grade-button
Idle time Time between events

Data Structures State

Indices Exercise object
Values Exercise object
Nodes Exercise object
Edges Exercise object

the user interaction with the visualization, the exercise, and the data

structures. This means that every new data structure type will have to

emit the same JSAV log events as the core data structures upon user

interaction. On top of this, the support for the new data structures will

have to be added to the Player Application.

2. The Player Application is only able to create animations if the input

data is in the form specified by the JSON-based Algorithm Animation

Language.

Category - Method

In the analysis of this category we answered the question "how is the visual-

ization specified and how is the data source connected to the visualization?".

The Player Application consists of two main independent processes: record-

ing the VAS exercise, and replaying the exercise as animation. The first

process transforms the interaction of the user with the VAS exercise into

a JSON-based object, and sends it to the Learning Management System.

The second independent process receives the object from the LMS, and
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based on that creates the animation.

Category - Interaction

In this category the aim was to answer the question "how does the user

interact with the PA?". As described in the previous category, the Player

Application is divided into two major processes. The interaction happens

only in the second process when the user replays the animation, since

the recording is done automatically while the user interacts with the VAS

exercise. The VAS exercise itself is not part of the PA. The user can interact

with the animation by using the play, pause, stop, back and forward buttons.

The other types of interactions are: selecting animation speed, importing a

new animation from file, and exporting the existing animation.

Category - Effectiveness

To determine the effectiveness we had to answer the question "how well

does the PA communicate information to the user?". At this point we could

only analyse possible issues affecting the application effectiveness of which

we were aware already in the design phase. These issues are:

• Integration with LMS: the Player Application is dependent on the LMS

in regards to the saving, storing, and loading of the VAS exercise sub-

missions data. For this reason the integration of the PA with the LMS is

extremely important to guarantee effectiveness. Faulty integration can

cause loss of effectiveness, even if the Player Application itself records

and replays the VAS exercises correctly.

• New data structures: the JSAV library can be extended with new data

structures, but these new data structures are not automatically sup-

ported by the Player Application. Therefore new data structures cause

loss of effectiveness, at least until the support is added in the PA.

• JAAL: the Player Application creates the animations starting from a

JAAL file. As long as the JAAL file is created by the PA itself during

the recording process, we have control over its content and format. The

JAAL file can also be imported from a local device, in which case there

might arise problems which we can not yet foresee.
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Architecture

On a higher architectural level the Player Application is divided into

two main independent components: the Exercise Recorder (ER) and the

Exercise Player (EP). As shown in Figure 4.5, both components act within

their own process and do not need to be in contact or be in synchronization

with the each other. The LMS loads the JSAV exercise, which then loads

the ER. The ER records the interaction of the user with the exercise and

sends the data to the LMS. In the other process the LMS loads the Exercise

Player and passes the URL for fetching the animation data. The EP then

fetches the animation data from the given URL and creates the animation.

Page 1

1 - LMS loads animation iframe

Learning Management System

iframe for animation with JAAL file URL

Page 1

Exercise iframe

1 - LMS loads exercise iframe

Learning Management System

Exercise Recorder Process Exercise Player Process

3 -Exercise loads ER Exercise Recorder

2 - Iframe loads exercise

VAS Exercise

4 - POST JAAL file

2 - iframe loads EP

Exercise Player 3 - EP loads JAAL JAAL file

Figure 4.5. The two Player Application components within their own processes.

Exercise Recorder

The Exercise Recorder component is written in JavaScript and created

using the Node Package Manager [46] (NPM). The whole component is

divided into modules as shown in Figure 4.6. The different modules can be

exported into a single bundle file to be imported into static pages using the

<script> tag like shown in Figue 4.7.

The ER initializes automatically when imported into an HTML document,

exerciseRecorder.js

metadata.js

definitions.js

initialState.js

animation.js

submission.js

npm run build

exerciseRecorderBundle.js

services.js

validate.js

helpers.js

Figure 4.6. The Exercise Recorder component modules.
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Exercise Recorder Process

<iframe src="http://exercise.html?post_url="http://lms.com">

exerciseRecorderBundle.js

http://www.lms.com

POST(JAAL-object) to post_url

<head>        
  <script src="./PATH/TO/jquery.min.js"></script>
  <script src="./PATH/TO/jquery-ui.min.js"></script>
  <script src="./PATH/TO/jquery.transit.js"></script>
  <script src="./PATH/TO/raphael.js"></script>
  <script src="./PATH/TO/JSAV-min.js"></script>
  <script src="./PATH/TO/exerciseRecorderBundle.js"></script>
</head>

exercise.html

Figure 4.7. The Exercise Recorder bundle integrated into a JSAV exercise.

JSAV Exercise
function

passEvent

metadata

Event Listener

definitions

initialState

animation

submission JAAL { ... }

Exercise Recorder

Exercise Data Flow

Figure 4.8. Handling and flow of JSAV event data and exercise data in the Exercise
Recorder.

and it starts listening for all JSAV log events. For this reason it is im-

portant that the ER is imported in the head part of the HTML document,

before the JSAV exercise is loaded. Upon initialization the ER will look

for the post_url URL parameter, which should contain the URL where the

recorded animation data has to be posted in the form of a JAAL object. This

is shown in Figure 4.7. Instead of a URL, the post_url can also contain

the string "window", in which case the recorded data will be posted to the

window where the ER has been loaded.

Listing A.18 shows the content of the passEvent() function, which is the

most important part of the ER. This function handles all the jsav-events

and delivers them to the correct ER sub-modules, like shown in Figure 4.8.

The most relevant data collected through the JSAV log events concerns the

state of the exercise, which is recorded both by saving the data structures

states, as well as coping the innerHTML of the exercise HTML element.

The data is then formatted and stored in the JAAL object.
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player.js

player.html

dataStructures.js

initialState.js

animation.js

rest.js

npm run build

exercisePlayerBundle.js

player.css

Figure 4.9. Architecture of the Exercise Player component.

Exercise Player

The Exercise Player component is written in JavaScript and created using

NPM. The whole component is divided into modules, but it can be exported

into a single bundle file, like shown in Figure 4.9. The bundle file has to be

imported into the Exercise Player HTML document using a <script> tag

like shown in Figure 4.10. This HTML document is what the LMS loads in

order to use the EP. Figure 4.10 shows how the EP can be integrated into a

LMS.

Since the EP bundle file uses certain HTML elements to construct the

animation, it is important that it is imported in the EP HTML document

after the body element. The content of the player.html file is shown in

Listing A.19.

http://www.lms.com

<iframe src="http://player.html?submission="http://someaddress.com?id=123">

JAAL object with animation data

<link rel="stylesheet" href="./PATH/TO/JSAV.css" type="text/css" />
<link rel="stylesheet" href="./PATH/TO/player.css" type="text/css" />        
<script src="./PATH/TO/jquery.min.js"></script>
<script src="./PATH/TO/jquery-ui.min.js"></script>
<script src="./PATH/TO/jquery.transit.js"></script>
</head>
<body>
.... Exercise Player HTML elements here ....
</body>
<script src="./PATH/TO/exercisePlayerBundle.js"></script>

exercisePlayerBundle.js player.css

player.html

GET http://someaddress.com?id=123

Exercise Player Process

Figure 4.10. The Exercise Player component integrated into the LMS to replay the ani-
mation.

When the EP bundle file is loaded into the HTML document, it auto-

matically looks for the URL parameter named sumbission, which should

contain the URL to be used by the EP to fetch the JAAL object containing

the animation data, like shown in Figure 4.10. For this reason the LMS

has to provide this URL when loading the EP.
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4.3 Prototype Validation

The design validation is the third step in the design cycle. In our six months

long design process the importance of this step grew incrementally as we

progressed through the iterations of the design cycle. The first validations

of the Player Application prototype were done through unit and integration

tests on the code of the prototype in November 2019. Later, in January

and February 2020, as the prototype gained structure and usability, some

features were tested in the bi-weekly meetings together with the instructor

representing the Player Application stakeholders and users. Finally in

March 2020 we produced a test application to simulate the use of the

prototype in a real Learning Management System environment. After

testing the prototype with the test application we evaluated how well it

satisfied the requirements.

1 describe("jsav-exercise-grade", () => {

2 afterEach(() => {

3 submission.reset();

4 helpers.resetAllData();

5 });

6

7 test("Saves grade to submission definitions", () => {

8 const exerciseGradeEvent = helpers.exerciseGradeEvent;

9 recorder.passEvent(exerciseGradeEvent);

10 const expectedScore = { ...exerciseGradeEvent.score };

11 const receivedScore = submission.state().definitions.score;

12 expect(receivedScore).toMatchObject(expectedScore);

13 })

14 })

Listing 4.10. Jest integration test to check that the final grade is saved when the
jsav-exercise-grade event is detected.

4.3.1 Code Testing

To test the code we used the Jest [20] testing framework. At the beginning

we wrote unit tests for single functions, then as the functions started

to interact to create functionalities and the application grew, we begun

writing integration tests. When implementing a new functionality, we

first wrote the test with minimum amount checks to have the code failing

it. Then we implemented the functionality with just enough code to pass

the tests. We repeated this iterations for each functionality, until the

test included all the required checks and the code passed all the test.

Figure 4.10 is the example of an integration test to check that the final

grade is saved when the jsav-exercise-grade event is detected.
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Exercise <iframe>

exercise-recorder-
bundle.js

exercise1.html

JSAV-lib.js raphael.js

jQuery.js JSAV.css

2

Test LMS Test Exercise Server

exercise-player.html

index.js

exercise-player-
bundle.js

POST 4
DB

5

Grade

Animation

1

<iframe>

POST

3

<iframe>

LMS component receivig the submission

<iframe>

6

7 8

1) The iframe in the LMS fetches the exercise from the exercise server with a GET request, passing as query
parameter the URL for posting the exercise submission. 
2) The LMS loads the exercise into the iframe.
3) When the exercise grade button is clicked, the Exercise Recorder sends a POST request to the URL given by
the LMS and the LMS forwards the POST request to the exercise server.
4) The exercise server stores the submission data in the database.
5) The exercise server responds to the POST request by sending an iframe with pre-filled src attribute for
loading the Exercise Player. The URL in the src attribute also contains the query parameter submission, which
has the URL for loading the animation data. 
6) The iframe sent by the exercise server is loaded in the LMS.
7) The loaded iframe fetches the Exercise Player.
8) The Exercise PLayer fetches the animation data from the URL given in the submission query parameter and
creates the animation.

Figure 4.11. Architecture of the test application.

4.3.2 Test Application

To validate the Player Application prototype we created a test applica-

tion containing one Visual Algorithm Simulation exercise. With this

application we simulated a real Learning Management System environ-

ment, and integrated the prototype into it. Figure 4.11 shows the ar-

chitecture of the test application and how the prototype, represented

by the exercise-recorder-bundle.js, exercise-player-bundle.js and exercise-

player.html files integrates into it. The application can be used at the

address https://jsav-player-test-app.firebaseapp.com/, and the code can

be found from the Player Application git repository https://github.com/

MarianiGiacomo/jsav-player-application.git. Figure 4.13 is a screenshot of

the test application showing the VAS exercise in the background and the

EP in the foreground window.

We organized two testing sessions to evaluate the Player Application

prototype with the test application. In each testing session the Aalto
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Table 4.8. Evaluation of the PA prototype for functional requirements satisfaction.

Functional Requirements M
is

si
ng

P
ar

ti
al

R
ea

dy

User Point of View

All the actions that can be performed on a data structure are recorder and
replayed in the animation.

X

The animation can be viewed step-by-step as a slideshow. X
The animation can be viewed using play/pause/stop buttons. X
All relevant information shown in the exercise is shown also in the animation. X
Clicking the exercise control buttons is saved and shown in the animation. X
If the model answer is opened by the user, this is also shown in the animation. X
The model answer is shown together with the animation, so that the user can
compare it to the own solution.

X

It is possible to share animations. X
It is possible to export & import animations. X

JAAL point of view

All relevant GUI actions saved in JAAL. X
All relevant exercise data is recorded in JAAL. X
All saved submissions are available in the JAAL format. X
The application can be connected to a LMS. X
The JAAL object is sent to the LMS when the user clicks the grade and reset
buttons, and reloads or closes the window.

X

The model answer is saved in JAAL. X
The JAAL object contains application version. X

University instructor representing the stakeholders impersonated the dif-

ferent application users, and used the application accordingly. After the

first testing session, based on the feedback received we did some improve-

ments to the prototype. The second testing session was also recorded, in

order to analyze it later to better evaluate the prototype.

4.3.3 Satisfaction of Requirements

The results of the final evaluation of the Player Application prototype

are shown in Table 4.8 for the functional requirements, and in Table 4.9

for the qualitative requirements. To establish how well the PA prototype

satisfies the functional and qualitative requirements, after the two testing

sessions we evaluated the degree to which each requirement was satisfied

on a scale of missing, partial and ready. The evaluation of all the func-

tional requirements and most of the qualitative requirements was done by

the Aalto University instructor representing the application stakeholders.

The evaluation of the qualitative requirements in the areas of application

maintainability and portability was instead done by this master thesis

supervisor.

As can be seen in the Tables 4.8 and 4.9, some of the requirements

are not yet satisfied. The reason is that the prototype is not a mature
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Figure 4.12. Screenshot of the test application showing the exercise before submitting it
for grading.

Figure 4.13. Screenshot of the test application showing the animation after submitting
the exercise for grading.

application, but rather a proof of concept that the current design is valid,

and it can be used to develop a complete Player Application to be used

at Aalto University and other institutions. A more in depth analysis

about the unsatisfied requirements and how to fulfill them in the future

development of the Player Application is discussed in Section 5.2, along

with the limitations of the current prototype.
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Table 4.9. Evaluation of the Player Application prototype for qualitative requirements
satisfaction.

Qualitative Requirements M
is

si
ng

P
ar

ti
al

R
ea

dy

Functional Suitability

The functionalities specified by the requirements are present. X

The functionalities specified by the requirements work with a satisfactory degree of precision. X

The functionalities specified by the requirements are presented in an appropriate and
understandable way, avoiding unnecessary steps.

X

Performance Efficiency

The recording of the VAS exercise does not slow down the execution of the exercise steps. X

The creation of the animation does not require noticeable loading time. X

The resources used by the application have to be reasonable in relation to its functionalities. X

The amount of sessions is not limited. X

For each exercise session is possible to record one exercise. X

For each animation session is possible to play one animation at time. X

Compatibility

The application works in conjunction with JSAV and its required libraries. X

The application works when embedded in the Learning Management System. X

The application is able to exchange the required information with the LMS. X

Usability

The application users find it useful when used according to the given use cases. X

It is easy to learn how to use the application. X

The application is easy to use and control. X

The application protects the user from making errors when recording the exercise or playing the animation. X

The user interface enables pleasing and satisfying interaction for the user. X

The application is usable also by people with diverse abilities. X

Reliability

The application is reliable under normal conditions. X

The application is available and accessible when required for use. X

The application works as intended even when an error occurs. X

The application recovers in case of failure or interruption without losing he data. N/A

Security

The data is accessible only to those who are authorized to have access.

LMS
The application prevents unauthorized access and modification of data.

The application records relevant user interaction.

The recorded user interaction is traced to the user.

The identity of the user whose interaction has been recorded can be proven.

Maintainability

The application is designed of modules, such that change to one of them has minimal impact to other modules. X

The modules composing the application can be easily reused in other software. X

The application is designed and written in a way, that analyzing it is not too difficult.
For example to asses the impact of some changes, or diagnose the cause of a failure.

X

The application can be effectively and efficiently modified without degrading its quality. X

Test criteria are established for the application, and tests can be performed to verify if the criteria are met. X

Portability

The application can be adapted for use on different environments. For example different LMSs. X

The application can be deployed in the needed environment efficiently and with effectiveness. X

The application can easily be replaced with new versions of the same application or other similar applications. X
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In Figure 4.12 we can see the test application with the VAS exercise

before submission, and Figure 4.13 shows the Exercise Player open in the

foreground after the submission. As can be seen from the images, the same

data structure which was in the exercise is also presented in the EP. The

play and stop buttons can be used to play the animation automatically,

while the arrow buttons are used to view the animation as a slide show and

to step through it. Figure 4.13 shows two functionalities which were not

yet implemented when we conducted the evaluation tests: the JAAL button,

which can be used to view the content of JAAL object, and the export button,

which opens a modal window containing an HTML iframe element as a

string. The iframe can be directly added to any HTML document to embed

the animation into it.
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5. Discussion and Conclusions

In this Chapter we analyse the outcomes of the thesis project. We start

in Section 5.1 by answering the research questions we proposed at the

beginning of this thesis, as well by looking at the aim of the thesis project

and how well we have achieved it. In Section 5.2 we analyse the limitations

of this thesis project and of its main outcome the PA prototype, and we

present the plans for future work. Finally, in Section 5.3 we discuss the

contributions of this thesis project.

5.1 Discussion

The first research question we proposed at the beginning of this thesis

was "which solutions existing Algorithm Visualization software have used

to record and replay Visual Algorithm Simulation exercises?". To answer

this question we looked at existing software, and the MatrixPro [26] tool

incorporated in the TRAKLA2 [36] system is the only one we found that

has VAS exercises and also offers the possibility to record and replay them.

In MatrixPro the data structures are saved as serialized Java objects or

ASCII files, and the visual elements can be exported to SVG or TEXdraw

format. The object is saved every time a grade operation occurs, and it

includes the learner answer as a sequence of data structures states. The

data is sent to the server when the applet is initialized, the exercise is

graded or reset, the model answer is opened or closed, the user has been

idle over 60 seconds, and when a user operation ends the idle time. These

log entries include a time stamp and identification data on the course,

exercise, learner and perform operation.

The second question was "which information should be saved in JSAV

Visual Algorithm Simulation exercises submissions, in order to be able to

replay them later as animations?". To answer this question we analyzed
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two languages used to describe Algorithm Animations: the eXtensible

Algorithm Animation Language (XAAL) [22], and the General Purpose

Animation Language (GPAL) [7]. From the analyses we saw that the data

structures state, as well as graphical elements, should be saved in each

step of the exercise submission, along with visualization options. Based

on this information we designed the JSON-based Algorithm Animation

Language, a new language to describe and share Algorithm Animations

created from VAS exercises, which can easily be utilized by modern web

applications.

The last question was "how can we collect and replay JSAV Visual Algo-

rithm Simulation exercises submissions?". To find an answer we analyzed

in depth the JSAV library, along with the visualizations and exercises

which can be created with it. We understood that in order to save the

relevant data, the PA has to listen for the events emitted by JSAV, and use

the objects exposed through them to reach and save the relevant informa-

tion. The outcome was the design of the Player Application with its two

components: the Exercise Recorder and the Exercise Player.

Finally, we discuss the aim of this thesis project, which was to design

the prototype for a web application, that can be used in conjunction with

JSAV Visual Algorithm Simulation exercises, to collect, store, and replay

user interaction data in a standardized way. We reached such an aim by

(i) defining the JSON-based Algorithm Animation language, (ii) designing

and developing the Player Application prototype, and (iii) evaluating the

prototype in a test application which resembles a Learning Management

System environment. The PA prototype currently has the following working

features:

• Records and replays all actions performed on arrays in a JSAV Visual

Algorithm Simulation exercise.

• Lets the learner review the submitted solution step-by-step or using the

play/pause and stop buttons.

• Shows in the animation all the information presented to the learner

during the exercise.

• Records and shows also when the model answer is opened by the learner

during the exercise.
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• Saves all submissions into a JAAL object which is posted to the URL

specified by the Learning Management System upon grading the exercise.

• Shows the content of the JAAL object with the data collected from the

VAS exercise submission.

• Offers the application user an iframe which can be used to embed the

animation in an HTML document.

The prototype we created was useful to test the design, but has limi-

tations which are presented into more details in the next section. The

outcomes of this thesis project will be used to developed a fully working

application, which will be integrated in the Visual Algorithm Simulation

exercises of the Algorithm and Data Structures course at Aalto Unviersity

in the autumn 2020.

5.2 Limitations and Future Work

There are limitations concerning the methodology we have used to carry

out this thesis project. Perhaps the most relevant is the fact that one

instructor represented all the Player Application stakeholders. This path

was chosen due to time restrictions, but it limited the amount and quality of

information used to define the use cases and the application requirements.

The limitation also concerns the evaluation of the prototype, since it was

done only by the instructor and the application developer, and not through

testing by real users. Because of this, there is a risk that the designed

prototype does not fully respond to needs and expectations of end users,

that the evaluation process considered features that are not relevant, and

that the outcomes would be different if the evaluation was to be done by

real users.

A second limitation regards the methodologies we have used for this

projects: Design Science for the PA design, and test driven development

for PA development. Perhaps other methodologies such as Agile Software

Development [3] or Development and Operations (DevOps) [12] should

have been considered as well. In fact, with their focus on continuous

delivery and integration during development, they might have helped to

produce a prototype fully integrated in the Learning Management System.

One of this two methodologies could still be used in the development of the
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complete PA.

Next we look at the limitations of the main outcome of this thesis: the

PA prototype. As shown in Table 4.8, some of the functional requirements

are still missing. At the moment not all relevant GUI actions are recorded,

and not all saved submissions are available as animations. The reason for

this, is that the ER currently does not have support for data structures

other than arrays. The Exercise Player is also still missing a complete

import and export functionality, since it does not offer download or import

of the JAAL object. Another important feature missing from the PA is the

recording and replaying of the model answer.

The testing sessions highlighted the need for a number of improvements

over the existing design:

• Possibility to look simultaneously at the exercise model answer and the

animation in the Exercise Player. If possible, the wrong steps in the

given solution should be highlighted.

• Higher default, minimum and maximum speed for the animation in the

Exercise Player.

• Improving the user interface for the play, pause and stop buttons. These

buttons could be shown when the user is not in the learner role.

• Removing the import button from the Exercise Player. It could instead

be included when the EP is used as stand alone.

• Removing from the animation the steps of the learner looking at the

model answer when solving the exercise. These steps could be shown

when the user is other than a learner.

• Reduce the duration of the micro animations, like the one simulating a

click over a data structure element. Even better would be to make the

duration of the micro animations proportional to the chosen animation

speed.

• Exercise result should be shown more clearly in the EP.

• Generally there is a need to customise the Exercise Player depending on
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the user role. This could be achieved either by developing this feature

according to the LMS protocol, or by implementing certain features only

on the standalone version of the EP.

The prototype which is deployed in the test application is still being

developed, and some of the issues presented above were already addressed

after the testing and evaluation. For example, as can be seen in Figure 4.13,

the import button is no longer shown by default, and neither are the model

answer steps viewed by the user during the exercise.

Some limitations are present also in the satisfaction of the qualitative

requirements. The lacks present in the functional suitability are due to

the fact that not all functional requirements are yet fulfilled, and this has

been addressed above. The other qualitative requirements areas which still

need improvement are the usability, reliability, security, and portability.

We will analyse this limitations one category at the time:

• Usability: the possibility of the Player Application protecting the user

from making errors are very limited, since its role is barely recording the

GUI actions. One feature which can be added is asking for confirmation

when the user closes the current window. A more pleasant UI will instead

be developed in the final version of the application. As for the usability

for people with diverse abilities, this is something which requires special

attention and will be addressed in the future development.

• Reliability: Currently, if the VAS exercise includes JSAV data structures

or actions not yet supported, the prototype would easily end up in an

error state, and would not be able to record all necessary data. These

conditions will gradually decrease as the application is developed further.

• Security: The Player Application security is highly dependent on the

LMS where it is embedded, and on the exercise server. The data received

by the LMS is not exposed in global variables, and it is posted to the URL

given by the LMS. Since the PA is designed to be used within a LMSs, it

does not have any access control.

• Maintainability: The PA maintainability will have to be increased by

adding more documentation and end-to-end testing on top of the existing

integration tests.
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• Portability: Since many different LMS exist and with different protocols,

the amount of work required to adapt the PA to a new LMS will depend

also on the LMS itself. As long as the LMS can load the Exercise Recorder

and Exercise Player into an iframe, and pass them the necessary query

parameters, no change will be required on the PA itself.

On top of the limitations just presented, there are two more which arose

already in Section 4.2.3 where discussed the architecture of the PA:

• New data structure types not included in the JSAV core data structures

will have to emit the same JSAV log events as the core data structures,

and the support for the new data structures will have to be added to the

PA.

• The Player Application is only able to create animations, if the input

data is in the form specified by the JSON-based Algorithm Animation

Language.

In this thesis project we followed the Design Cycle, which represents

the first three of the five phases of the Engineering Cycle. Future work

will be focused on the implementation and evaluation of the ready Player

Application, which are two phases of the Engineering Cycle that were not

covered in this work, like shown in Figure 5.1. Future work will therefore

focus at first on developing a fully working Player Application, integrating

it in the A+ Learning Management System, evaluating it through testing

with real users, and later on analyzing the data collected by the Exercise

Recorder and stored in JAAL format in the database.

5.3 Conclusions

The main contribution of this thesis project is the creation of a prototype

application to record and replay Visual Algorithm Simulation exercises

created with the JavaScript Algorithm Animation library. The applica-

tion prototype is a proof of concept that such an application can be cre-

ated following the proposed design. The code for the Player Application

prototype with instruction on how to use it is available as a repository

at https://github.com/MarianiGiacomo/jsav-player-application.git. The same

repository also contains the code for the test application front-end (the test
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Studying & defining the
context

Requirements.
Exisintg solutions?

Design new solutions.

Evaluate Prototype.
Prototype satisfies

requirements? 

Develop ready product.
Apply in real context.

Evaluate ready product.
Test in real environment.

Test with final users. Problem Investigation

Artifact Design
Design Validation

Evaluation

Implementation

Figure 5.1. The engineering cycle. In future work we will implement the last two phases
of the engineering cycle.

LMS) and back-end (the test exercise server). The Player Application main

components are the Exercise Recorder and the Exercise Player, and they

can also be used independently to only record and store a VAS exercise

animation into a JAAL object, or to create an animation from a JAAL object.

A second contribution of this thesis is the creation of the JSON-based

Algorithm Animation Language, which can be used to describe Algorithm

Animations. A JAAL file can also be created by any application or by other

means, without the use of the Exercise Recorder, and the Exercise Player

can be used to visualize it.

A third contribution is the documentation we have created about JSAV,

which we have presented in Sections 2.5 and 4.1.3, and can be found in

the Appendix. This documentation can be used by anybody who wishes to

learn how to create algorithm visualizations and exercises with JSAV, or

who wants to develop an application based on it.

A last contribution is the testing application, which simulates an exercise

server and a simple Learning Management System using a protocol similar

to the A+ grader service. This application can be used as a testing ground

for services and exercises that need to be integrated into the A+ LMS, or

as a tool for teaching about LMSs. The exercise server could be further

developed to work as a service offering JSAV VAS exercises with the

Exercise Recorder integrated in them, the Exercise Recorder itself, and

the Exercise Player also as a standalone application.
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A. Appendix

A.1 JSAV Objects

A.1.1 Array

1 {

2 _indices: [...

3 { container: {...} ,

4 element: {

5 // JSAV index DOM element object

6 0: { ...className: "jsavnode jsavindex" }

7 },

8 // JSAV visualization object

9 jsav: {...}

10 options: {

11 autoresize: Boolean,

12 center: Boolean,

13 indexed: Boolean,

14 layout: String,

15 template: String,

16 visible: Boolean

17 },

18 },

19 ],

20 _values: [ Number ],

21 element: {

22 // JSAV array DOM element object

23 0: {...className: "jsavautoresize jsavcenter jsavindexed jsavarray

jsavbararray"}

24 },

25 // JSAV visualization object

26 jsav: {...},

27 options: {

28 autoresize: Boolean,

29 center: Boolean,

30 indexed: Boolean,

31 layout: String,

32 template: String,

33 visible: Boolean,

34 }

35 }

Listing A.1. JSAV array object.
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A.1.2 Binary Tree

1 {

2 _layoutDone: Boolean

3 constructors: {...},

4 element: {

5 // JSAV binary tree DOM element object

6 0: {...className: "jsavtree jsavcommontree jsavautoresize jsavbinarytree" }

7 },

8 // JSAV visuaization object

9 jsav: { },

10 options:

11 {

12 autoresize: Boolean,

13 center: Boolean,

14 constructors: {...},

15 left: Number,

16 nodegap: Number,

17 visible: Boolean,

18 },

19 // JSAV node object

20 rootnode:

21 {

22 _edgetoparent: undefined,

23 _layoutDone: Boolean,

24 childnodes: [ {...}, {...} ],

25 constructors: {...},

26 container: {...},

27 element: { 0: {...} },

28 options:

29 {

30 visible: Boolean

31 },

32 parentnode: undefined

33 },

34 // SVG Object

35 svg: {...},

36 }

Listing A.2. JSAV binary tree object.
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A.1.3 Common Tree

1 {

2 _layoutDone: Boolean

3 constructors: {...},

4 element: {

5 // JSAV common tree DOM element object

6 0: {...className: "jsavtree jsavcommontree jsavautoresize" }

7 },

8 // JSAV visualization object

9 jsav: { },

10 options:

11 {

12 autoresize: Boolean,

13 center: Boolean,

14 constructors: {...},

15 left: Number,

16 nodegap: Number,

17 visible: Boolean,

18 },

19 // JSAV node object

20 rootnode:

21 {

22 _edgetoparent: undefined,

23 _layoutDone: Boolean,

24 childnodes: [ {...}, {...} ],

25 constructors: {...},

26 container: {...},

27 element: { 0: {...} },

28 options:

29 {

30 visible: Boolean

31 },

32 parentnode: undefined

33 },

34 // SVG Object

35 svg: {...},

36 }

Listing A.3. JSAV common tree object.

A.1.4 Tree Node

1 {

2 // JSAV edge object

3 _edgetoparent: {...},

4 _layoutDone: Boolean,

5 // JSAV node objects

6 childnodes: [ {...}, {...} ],

7 constructors: {...},

8 container: {...},

9 element: {

10 // JSAV node DOM element object

11 0: { ...className: "jsavnode jsavtreenode jsavbinarynode" }

12 },

13 jsav: {...}, // JSAV Object

14 options: { visible: Boolean },

15 parentnode: undefined

16 }

Listing A.4. JSAV tree node object.
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A.1.5 Edge

1 {

2 container: {...},

3 element: {

4 // JSAV edge DOM element object

5 0: { ...className { baseVal: "jsavedge", animVal: "jsavedge" } }

6 },

7 // JSAV node Object

8 endnode: {...},

9 g: {...},

10 // JSAV Object

11 jsav: {...},

12 options: { display: Boolean },

13 // JSAV node object

14 startnode: {...},

15 _layoutDone: Boolean

16 }

Listing A.5. JSAV edge object.

A.1.6 Graph

1 {

2 // JSAV edges objects

3 _alledges: [ ... {...}, {...} ],

4 _edges: [ ...[{...}], [{...}] ],

5 // JSAV node objects

6 _nodes: [ ... {...}, {...} ],

7 element: {

8 // JSAV graph DOM element object

9 0: {...className: "jsavgraph jsavautoresize jsavcenter"}

10 },

11 // JSAV visualization object

12 jsav: {...},

13 options:

14 {

15 autoresize: Boolean,

16 center: Boolean,

17 directed: false,

18 height: Number,

19 layout: automatic,

20 nodegap: Number,

21 visible: Boolean,

22 width: Number

23 },

24 // SVG object

25 svg: {...}

26 }

Listing A.6. JSAV graph object.
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A.1.7 Graph Node

1 {

2 container: {...},

3 element: {

4 // JSAV node DOM element object

5 0: { ...className: "jsavnode.jsavgraphnode" }

6 },

7 // JSAV Object

8 jsav: {...},

9 options: {

10 center: Boolean,

11 left: 0,

12 top: 0,

13 visible: Boolean,

14 },

15 }

Listing A.7. JSAV graph node object.

A.1.8 Linked List

1 {

2 // JSAV list node object

3 _first: {...},

4 element: {

5 // JSAV list DOM Element Object

6 0: { ...className: "jsavlist jsavautoresize jsavhorizontallist" }

7 },

8 options:

9 {

10 autoresize: Boolean,

11 nodegap: Number,

12 visible: Boolean,

13 },

14 // SVG Object

15 svg: {...},

16 }

Listing A.8. JSAV linked list object.

A.1.9 Linked List Node

1 {

2 // JSAV edge object

3 _edgetonext: {...},

4 // JSAV list node object

5 _next: { },

6 _value: Number | String,

7 container: {...},

8 element: {

9 // JSAV list node DOM element object

10 0: {...className "jsavnode jsavlistnode" }

11 },

12 // JSAV visualization object

13 jsav: {...},

14 options:

15 {

16 autoresize: Boolean,

17 first: Boolean,

18 nodegap: Number,

19 visible: Boolean,

20 },

21 }

Listing A.9. JSAV linked list node object.

70



Appendix

A.1.10 Matrix

1 {

2 // JSAV array objects

3 _arrays: [ ... {...}, {...}],

4 element: {

5 // JSAV matrix DOM elment object

6 0: { ...className: "jsavmatrix jsavmatrixtable jsavcenter"}

7 },

8 // JSAV object

9 jsav: {...},

10 options:

11 {

12 autoresize: Boolean,

13 center: Boolean,

14 style: table,

15 visible: Boolean,

16 }

17 }

Listing A.10. JSAV matrix object.

A.1.11 Exercise

1 {

2 _undoneSteps: [...],

3 // if 1 ds object -> {}; else []

4 initialStructures: {} | [],

5 // JSAV visualization object

6 jsav: {...},

7 options:

8 {

9 controls: {...},

10 feedback: String,

11 feedbackSelectable: Boolean,

12 fixmode: String,

13 fixmodeSelectable: Boolean,

14 gradeButtonTitle: String,

15 grader: String,

16 model: function modelSolution(),

17 modelButtonTitle: String,

18 reset: function initialize(),

19 resetButtonTitle: String,

20 undoButtonTitle: String

21 },

22 score:

23 {

24 correct: Number,

25 fix: Number,

26 student: Number,

27 total: Number,

28 undo: Number

29 }

30 }

Listing A.11. JSAV exercise object.
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A.1.12 Events

1 {

2 av: String, // JSAV canvas className or id

3 currentStep: Number,

4 initialHTML: String, // Contains exercise instructions

5 tstamp: TimeStamp,

6 type: "jsav-init"

7 }

8 {

9 av: String, // JSAV canvas className or id

10 currentStep: Number,

11 tstamp: TimeStamp,

12 type: "jsav-recorded"

13 }

Listing A.12. JSAV log events from JSAV visualization object.

1 {

2 av: String, // JSAV canvas className or id

3 currentStep: Number,

4 exercise: {...}, // Exercise object

5 tstamp: TimeStamp,

6 type: "jsav-exercise-init"

7 }

8 {

9 av: String, // JSAV canvas className or id

10 currentStep: Number,

11 tstamp: TimeStamp,

12 type: "jsav-exercise-undo"

13 }

14 {

15 av: String, // JSAV canvas className or id

16 currentStep: Number,

17 tstamp: TimeStamp,

18 type: "jsav-exercise-reset"

19 }

20 {

21 av: String, // JSAV canvas className or id

22 currentStep: Number,

23 tstamp: TimeStamp,

24 type: "jsav-exercise-model-open"

25 }

26 {

27 av: String, // JSAV canvas className or id

28 currentStep: Number,

29 tstamp: TimeStamp,

30 type: "jsav-exercise-model-close"

31 }

32 {

33 av: String, // JSAV canvas className or id

34 currentStep: Number,

35 tstamp: TimeStamp,

36 type: "jsav-exercise-gradeable-step"

37 }

38 {

39 av: String, // JSAV canvas className or id

40 currentStep: Number,

41 score: { ... }, // JSAV score object

42 tstamp: TimeStamp,

43 type: "jsav-exercise-grade-button"

44 }

45 {

46 av: String, // JSAV canvas className or id

47 currentStep: Number,

48 score: { ... }, // JSAV score object

49 tstamp: TimeStamp,

50 type: "jsav-exercise-grade"

51 }

Listing A.13. JSAV log events from JSAV exercise object.
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1 {

2 arrayid: String,

3 av: String, // JSAV canvas className or id

4 currentStep: Number,

5 index: Number,

6 tstamp: TimeStamp,

7 type: "jsav-array-click"

8 }

9 {

10 av: "jsavcontainer",

11 currentStep: Number,

12 objid: String, // JSAV node DOM element id

13 objvalue: Number,

14 tstamp: TimeStamp,

15 type: "jsav-node-click"

16 }

17 {

18 av: "jsavcontainer",

19 column: Number,

20 currentStep: Number,

21 matrixid: String, // JSAV matrix DOM element id

22 row: Number,

23 tstamp: TimeStamp,

24 type: "jsav-matrix-click"

25 }

Listing A.14. JSAV log events from JSAV data structure objects.

A.2 JAAL file

1 {

2 "metadata": [],

3 "definitions": {},

4 "initialState":

5 {

6 dataStructures:

7 [

8 {

9 "type": array,

10 "id": "0d15981decd54d55aa6f679eb45e5205",

11 "values": [0, 1, 2],

12 "options": { "indexed": true, "orientation": "horizontal" }

13 }

14 ],

15 animationDOM: "..."

16 },

17 "animation": [],

18 }

Listing A.15. Representation of an array in JAAL.
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1 {

2 "metadata": [],

3 "definitions": {},

4 "initialState":

5 {

6 dataStructures:

7 [

8 {

9 "type": binaryTree,

10 "id": "e0103a38b6ce417f8eddc232475d3344",

11 "values": [0, 1, 2],

12 "options": { },

13 "nodes":

14 [

15 {

16 "id": "617987d4d3b344be8ed2cc59bdacb92c"

17 "value": 0,

18 "childNodes":

19 {

20 "leftChild": "cdaf6a3b92f14ea78cbbab64ceee6089",

21 "rightChild": "b1907770876c4a7fbfcb9b46cb0188bf"

22 }

23 },

24 {

25 "id": "cdaf6a3b92f14ea78cbbab64ceee6089",

26 "value": 1,

27 "parentNode": "617987d4d3b344be8ed2cc59bdacb92c"

28 },

29 {

30 "id": "b1907770876c4a7fbfcb9b46cb0188bf",

31 "value": 2,

32 "parentNode": "617987d4d3b344be8ed2cc59bdacb92c"

33 }

34 ]

35 }

36 ]

37 animationDOM: "..."

38 },

39 "animation": [],

40 }

Listing A.16. Representation of a tree in JAAL.
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1 {

2 "metadata": [],

3 "definitions": { ... },

4 "initialState": { ... },

5 "animation": [

6 {

7 "type": "click",

8 "tstamp": "2020-04-26T12:25:28.527Z",

9 "currentStep": 0,

10 "dataStructure": {

11 "id": "exerArray",

12 "values": [

13 "102",

14 "77",

15 "35",

16 ]

17 },

18 "index": 0,

19 "animationDOM": "..."

20 },

21 {

22 "type": "click",

23 "tstamp": "2020-04-26T12:25:29.275Z",

24 "currentStep": 1,

25 "dataStructure": {

26 "id": "exerArray",

27 "values": [

28 "102",

29 "77",

30 "35",

31 ]

32 },

33 "index": 1,

34 "animationDOM": "..."

35 },

36 {

37 "type": "gradeable-step",

38 "tstamp": "2020-04-26T12:25:29.748Z",

39 "currentStep": 2,

40 "dataStructuresState": [

41 {

42 "id": "exerArray",

43 "values": [

44 "77",

45 "102",

46 "35",

47 ]

48 }

49 ],

50 "animationDOM": "..."

51 },

52 {

53 "type": "grade",

54 "tstamp": "2020-04-26T12:25:31.673Z",

55 "currentStep": 2,

56 "score": {

57 "total": 23,

58 "correct": 1,

59 "undo": 0,

60 "fix": 0,

61 "student": 1

62 }

63 }

64 ],

65 }

Listing A.17. Animation steps in JAAL.
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A.3 Exercise Recorder

1 function passEvent(eventData) {

2 console.log(’EXERCISE’, exercise);

3 console.log(’EVENT DATA’, eventData);

4 switch(eventData.type){

5 case ’jsav-init’:

6 def_func.setExerciseOptions(eventData);

7 metad_func.setExerciseMetadata(eventData);

8 break;

9 case ’jsav-exercise-init’:

10 exercise = eventData.exercise;

11 jsav = exercise.jsav;

12 def_func.setDefinitions(exercise);

13 init_state_func.setInitialDataStructures(exercise);

14 init_state_func.setAnimationDOM(exercise);

15 break;

16 // Here we handle all array related events

17 case String(eventData.type.match(/^jsav-array-.*/)):

18 exerciseDOM = helpers.getExerciseDOM(exercise)

19 anim_func.handleArrayEvents(exercise, eventData, exerciseDOM);

20 break;

21 // This is fired by the initialState.js because JSAV sets array ID only on

first click

22 case ’recorder-set-id’:

23 init_state_func.setNewId(eventData);

24 break;

25 case ’jsav-exercise-undo’:

26 setTimeout(() => anim_func.handleGradableStep(exercise, eventData), 100);

27 break;

28 case ’jsav-exercise-gradeable-step’:

29 exerciseDOM = helpers.getExerciseDOM(exercise)

30 anim_func.handleGradableStep(exercise, eventData, exerciseDOM);

31 break;

32 case ’jsav-exercise-grade-button’:

33 break;

34 case ’jsav-exercise-grade’:

35 // JSAV emits the model answer event when grade is clicked

36 // We remove the last animation step caused by the model answer event

37 submission.checkAndFixLastAnimationStep();

38 anim_func.handleGradeButtonClick(eventData);

39 def_func.setFinalGrade(eventData) && services.sendSubmission(submission.

state(), post_url);

40 submission.reset();

41 $(document).off("jsav-log-event");

42 break;

43 case String(eventData.type.match(/^jsav-exercise-model-.*/)):

44 anim_func.handleModelAnswer(exercise, eventData);

45 break;

46 case ’jsav-recorded’:

47 break;

48 default:

49 console.warn(’UNKNOWN EVENT’, eventData);

50 }

51 }

Listing A.18. The passEvent() function in the Exercise Recorder, which handles
JSAV log events.
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A.4 Exercise Player

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta content="text/html;charset=utf-8" http-equiv="Content-Type">

5 <meta content="utf-8" http-equiv="encoding">

6 <meta name="viewport" content="width=device-width, initial-scale=1.0">

7 <meta http-equiv="X-UA-Compatible" content="ie=edge">

8 <title>Visual Algorithm Simulatin Player</title>

9 <link rel="stylesheet" href="../css/JSAV.css" type="text/css" />

10 <link rel="stylesheet" href="../css/player.css" type="text/css" />

11 <link rel="stylesheet" href="../css/odsaStyle-min.css" type="text/css" />

12 <script src="../lib/jquery.min.js"></script>

13 <script src="../lib/jquery-ui.min.js"></script>

14 <script src="../lib/jquery.transit.js"></script>

15 </head>

16 <body>

17 <div class="player-content">

18 <div class="auto-animation">

19 <button class="animation-button" id="play-pause-button"></button>

20 <button class="animation-button" id="stop-button"></button>

21 </div>

22 <div class="slide-show">

23 <button id="to-beginning">&lt;&lt;</button>

24 <button id="step-backward">&lt;</button>

25 <button id="step-forward">&gt;</button>

26 <button id="to-end">&gt;&gt;</button>

27 </div>

28 <div class="import-export">

29 <button id="jaal">JAAL</button>

30 <button id="export">Export</button>

31 </div>

32 <div class="animation-instructions">

33 </div>

34 </div>

35 <div id="animation-container">

36 </div>

37 <div class="model-answer">

38 <div id="model-answer"></div>

39 </div>

40 <div id="myModal" class="modal">

41 <div class="modal-content">

42 <div>

43 <span class="close">&times;</span>

44 </div>

45 <div>

46 <code><pre id="modal-content"></pre></code>

47 </div>

48 </div>

49 </div>

50 </body>

51 <script src="./jsav-exercise-player-bundle.js"></script>

52 </html>

Listing A.19. Content of the player.html file.
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