
Towards Automatic Advice in Visual
Algorithm Simulation

Artturi Tilanterä

School of Science

Thesis submitted for examination for the degree of
Master of Science in Technology.
Helsinki 26.4.2020

Supervisor

Senior University Lecturer
Ari Korhonen

Advisor

Otto Seppälä, D.Sc. (Tech.)

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Artturi Tilanterä
Title Towards Automatic Advice in Visual Algorithm Simulation
Degree programme Computer, Communication and Information Sciences
Major Computer Science Code of major SCI3042
Supervisor Senior University Lecturer Ari Korhonen
Advisor Otto Seppälä, D.Sc. (Tech.)
Date 26.4.2020 Number of pages 85 Language English
Abstract
Visual Algorithm Simulation (VAS) exercise is an interactive application which
teaches an algorithm or a data structure. The exercise shows the student a visual
representation of a data structure with initial data. The student imitates the execution
of the algorithm by interacting with the visual representation. The student’s solution
is graded automatically. A misconception about the algorithm being learned can
manifest itself as systematic errors which can be modelled as a new algorithm. It is
assumed that a VAS exercise which could detect automatically a misconception and
give corrective feedback would further support learning.

This thesis includes a literature review on algorithm misconceptions and an
empirical study. Four VAS exercises of OpenDSA e-textbook are reviewed by their
program code: Evaluating a postfix expression, Build-heap, Quicksort, and Dijkstra’s
algorithm. A dataset of 1430 Build-heap VAS submissions is analysed manually with
ad-hoc software. The submissions are then automatically classified based on the
misconceptions found.

The main result extends the set of known misconceptions of the Build-heap VAS
exercise. 52% of the submissions were correct, 17% were misconceptions and the rest
31% had a logical explanation. 95% of submissions classified as misconception have
multiple explanations with heap size of 10. The thesis presents a Python software
which can automatically classify the known misconceptions. Theory on how to
generate VAS inputs which support detection of misconceptions is discussed. The
theory is applied by improving the input generation of Dijkstra’s algorithm exercise.

The thesis concludes that studying misconceptions in the VAS exercises of
OpenDSA currently requires exercise-dependent work. Not all OpenDSA VAS
exercises record enough data for later analysis. Moreover, the player and analysis
software must be written separately for each exercise. There is need to develop
the OpenDSA-related software libraries to produce detailed exercise recordings. It
should be studied how the heap size in the Build-heap exercise affects detection of
misconceptions.
Keywords computing education, algorithm visualisation, automatic assessment,

misconception

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Artturi Tilanterä
Työn nimi Kohti automaattisia vihjeitä visuaalisessa algoritmisimulaatiossa
Koulutusohjelma Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma
Pääaine Tietotekniikka Pääaineen koodi SCI3042
Työn valvoja Vanhempi yliopistonlehtori Ari Korhonen
Työn ohjaaja TkT Otto Seppälä
Päivämäärä 26.4.2020 Sivumäärä 85 Kieli Englanti
Tiivistelmä
Visuaalinen algoritmisimulaatiotehtävä (VAS-tehtävä) on vuorovaikutteinen sovellus,
joka opettaa algoritmin tai tietorakenteen. Tehtävä näyttää opiskelijalle kuvan tietora-
kenteesta lähtödatalla. Opiskelija mukailee algoritmin suoritusta vuorovaikuttamalla
kuvaesityksen kanssa. Opiskelijan ratkaisu arvostellaan automaattisesti. Väärinkäsi-
tys VAS-tehtävässä on opiskelijan järjestelmällinen väärinymmärrys, joka voidaan
kuvata algoritmilla. On oletus, että VAS-tehtävä, joka tunnistaisi automaattisesti
väärinkäsityksen ja antaisi korjaavaa palautetta, tukisi oppimista entisestään.

Tämä opinnäytetyö sisältää kirjallisuustutkimuksen algoritmien väärinkäsityk-
sistä sekä empiirisen tutkimuksen. Sähköisen OpenDSA-kirjan neljä VAS-tehtävää
on tutkittu niiden ohjelmakoodiltaan: Postfix-lausekkeen evaluointi, binäärikeon ra-
kentaminen, pikajärjestäminen ja Dijkstran algoritmi. Tietoaineisto, jossa on 1430
tallennetta Binäärikeon rakentaminen -tehtävästä, on analysoitu käsin tätä varten
kehitetyllä ohjelmalla. Tallenteet on sitten automaattisesti luokiteltu löydettyjen
väärinkäsitysten perusteella.

Työn päätulos laajentaa binäärikeon rakentaminen -tehtävän väärinkäsityksien
joukkoa. 52 % tehtäväpalautuksista oli oikein, 17 % väärinkäsityksiä ja loput 31 %
voidaan selittää loogisesti. 95 %:lla niistä palautuksista, jotka luokiteltiin väärinkäsi-
tykseksi, oli useampi yhtä hyvä selitys, kun keon koko oli 10. Työ esittää Python-
ohjelman, joka voi automaattisesti luokitella tunnettuja väärinkäsityksiä. Työ esittää
myös teoriaa, kuinka tuottaa VAS-tehtävien lähtödataa siten, että se tukisi väärin-
käsitysten tunnistamista. Teoriaa on sovellettu parantamalla Dijkstran algoritmi
-tehtävän syötteen tuottamista.

Johtopäätöksenä OpenDSA:n VAS-tehtävien väärinkäsitysten tutkiminen vaatii
nykyisellään tehtäväkohtaista työtä. Kaikki OpenDSA:n VAS-tehtävät eivät tallenna
riittävästi dataa myöhempää analyysiä varten. Lisäksi tehtävätoistin ja analyysiohjel-
ma pitää kirjoittaa erikseen joka tehtävälle. On tarve kehittää OpenDSA:n ohjelma-
kirjastoja tuottamaan yksityiskohtaisia tehtävätallenteita. Binäärikeon rakentaminen
-tehtävässä pitäisi tutkia keon koon vaikutusta väärinkäsitysten tunnistamiseen.
Avainsanat tietotekniikan opetus, algoritmien havainnollistus, automaattinen

arviointi, väärinkäsitys

4

Acknowledgements
I want to thank Senior University Lecturer Ari Korhonen for supervising the thesis.
He first hired me as a Teaching Assistant for the Data Structures and Algorithms Y
course in 2017 and then allowed me to do develop the course software. For this thesis,
Ari provided valuable practical insight, such as the grid-based approach for input
generation for the Dijkstra’s algorithm exercise, and multiple literature references.
His calm guidance ensured that this work eventually converged into a Master’s thesis.

I also want to thank University Lecturer Otto Seppälä for providing practical and
literature advice for the thesis, especially the encouragement to study the problem of
input generation from software testing perspective. Otto’s cornucopia of ideas and
playful thinking provided many inspiring discussions which show paths for future
research far beyond of this thesis.

The Aalto University Department of Computer Science has generously funded
this thesis. I wish the work I have constructed will soon benefit directly other
students. Advancing research in Learning + Technology group has been a privilege
for its relaxed atmosphere, interesting discussions and possibilities to develop new,
cutting-edge technology.

Professor Lauri Malmi was also interested in the progress and provided me with
fruitful material on misconceptions [36]. Thanks to him, the Discussion section has
general-purpose ideas for misconception mining which might help the future work
with other exercises than Build-heap.

Lecturer Lassi Haaranen analysed the software architecture of the VAS exercises
on the Aalto University course ”Data Structures and Algorithms Y”, which helped
the exploration of the OpenDSA program code.

Professor Mario Di Francesco and Daniel Bruzual Balzan for provided the original
code for JSAV downloader. Jaakko Kantojärvi introduced me to the A+ API.
Without you three the data analysis would have been much harder.

I want to thank Viivi and Gabriell for cheering me up and reminding that there is
life outside work: drawing, fiction, music, adventures, non-engineering issues, and you
two. Also Ruoste and Aino provided valuable insight to the importance of catness,
the entertainability estimates of various household objects, and doing nothing.

Finally, I want to thank Merja and Teemu for their continuous support throughout
my life, even when it did not seem to proceed linearly. It has been a privilege to
study computing and energy sciences, and I wish the knowledge I possess benefits
future students. I am also thankful to Miranda for taking me out in the woods once
in a while, to appreciate the complexity of the inartificial realm.

Helsinki, 31.3.2020

Artturi Tilanterä

5

Contents
Abstract 2

Abstract (in Finnish) 3

Acknowledgements 4

Contents 5

Abbreviations and Acronyms 7

1 Introduction 8
1.1 Motivation . 8
1.2 Objectives . 10
1.3 Research questions and methods . 11
1.4 Scope and structure . 11

2 Background 13
2.1 Pedagogics of VAS and misconceptions 13
2.2 Literature study . 15
2.3 Algorithmic detection of known misconceptions 17
2.4 Misconception-aware input in VAS 19
2.5 Software testing perspective . 20

2.5.1 Relevant testing terminology 21
2.5.2 Test data generation by symbolic execution 22

2.6 Software context . 24
2.7 String matching for VAS . 24

3 Methodology 28
3.1 System overview with risk analysis 28
3.2 The essential features of an algorithm 33

3.2.1 Evaluating Postfix expression 34
3.2.2 Quicksort . 34
3.2.3 Build-heap . 35
3.2.4 Dijkstra’s algorithm . 38

3.3 Reproducibility of JSAV exercise recordings 43
3.3.1 Evaluating postfix expression 44
3.3.2 Quicksort . 44
3.3.3 Build-heap . 44
3.3.4 Dijkstra’s algorithm . 45

3.4 Improved graph algorithm exercises 46
3.5 Input generation by random search 50

6

4 Empirical methods and data 52
4.1 Replication as a scientific method . 52
4.2 Direct replication of the Build-heap studies 52
4.3 Forming hypotheses for Build-heap misconceptions 55
4.4 Machine classification of new Build-heap misconceptions 57
4.5 Software tools for misconception study 58

5 Empirical results 61
5.1 Direct replication of the Build-heap studies 61
5.2 Forming hypotheses for Build-heap misconceptions 63
5.3 Machine classification of new Build-heap misconceptions 65

6 Discussion 68
6.1 Contributions . 68
6.2 Evaluation . 68
6.3 Discussion . 69
6.4 Recommendations . 71

6.4.1 Improving the Build-heap VAS exercise 71
6.4.2 Further research questions . 72

A VAS exercises on the Data Structures and Algorithms course 74

B Direct replications of Build-heap study 75

C Details for alternative Build-heap hypothesis 76

D Revised sequence similarity algorithm 79

7

Abbreviations and Acronyms
A+ LMS A+ Learning Management System
AMM Algorithmic Misconception Model
CS Computer Science
CS2 Computer Science 2
CSS Cascading Style Sheets
DFS Depth-First Search
DSA Data Structures and Algorithms
E-learning Electronic Learning
FIFO First In, First Out
GUI Graphical User Interface
HTML5 HyperText Markup Language
IR Input Requirement
JSAV JavaScript Algorithm Visualization Library
JSON JavaScript Object Notation
LMS Learning Management System
LR Left to right
RL Right to left
RR Reproducibility Requirement
RQ Research Question
SV Software Visualisation
TRAKLA2 a VAS software
VAS Visual Algorithm Simulation
VPS Visual Program Simulation

1 Introduction
This section explains briefly the purpose and the subject of study of this thesis. It
refers to the relevant concepts and scientific disciplines. The research objective and
scope are defined in this section.

1.1 Motivation
The purpose of this thesis is to improve computing education at higher education
level. Aalto University has a course on elementary data structures and algorithms.
One of the teaching methods on the course is Visual Algorithm Simulation (VAS),
which is a software consisting the following interaction cycles. First, a computer
displays a student visual representation of a data structure. The student interacts
with the visualisation, typically with a mouse click, to manipulate the state of the
data structure. Finally, the computer shows the updated state. A Visual Algorithm
Simulation Exercise (VAS exercise) allows students to practise an algorithm in this
abstract, graphical environment. The student is given a data structure in its initial
state, and the student tries to simulate the execution steps of an algorithm according
to their mental model. The student can choose different manipulation actions at
each step. However, there is only one sequence of actions which is the correct
solution of the exercise. When the student thinks they have finished their steps,
the student request the exercise software to grade their performance. The student
receives instant, automatic feedback on how closely they followed the steps of the
correct algorithm. [24, p. 8–10, 25, p. 1]

Figure 1 is a screenshot of the graphical user interface of a VAS exercise in progress.
The exercise shows an instruction text, a piece for program code for reference, and
the visualisation of the data structure in its current state. The exercise in the figure
is about inserting random integer keys into a binary search tree. Initially, the tree
was empty, and the student inserted key 22 into it by clicking the empty root node
of the tree. After an insertion, the tree expands by showing two empty children of
the inserted node. The student inserted then other five keys similarly by clicking
their correct locations. The exercise shows a remaining stack of five keys, value 15 at
top, to be inserted to the tree.

VAS exercises studied in this thesis are computerised, but they have analogues.
Historically, students have solved algorithm simulation exercises on pen and paper,
and teaching assistants have graded them manually. The automatic grading software
TRAKLA and graphical, computerised simulation environments (Tred, Matrix) were
developed in 1990s at Helsinki University of Technology. The obvious benefits of VAS
exercises are personally tailored assignments for each student, direct manipulation
of graphical representation, automatic, instant feedback, and a possibility to revise
each’s own solution. [24, p. 14] Another analogue for VAS exercises could be the
puzzle game of Rubik’s cube such that there are certain predefined operations, turns,
which lead from one state to another. Unlike Rubik’s cube, where the only the
end result matters, the correct solution of a VAS exercise must also have correct
intermediate steps.

9

Figure 1: A visual algorithm simulation exercise on insertion into a binary tree.

VAS is part of the larger field of software visualisation (SV) which studies graphical
representations of algorithms and program code [46, p. 140]. The major purpose of SV
is to assist software professionals in software engineering and software development.
The methods of SV include analysing structure of software systems, viewing program
execution behaviour over time, and mapping evolution of software as development
history. [32] However, VAS as SV is used for particularly educational purpose. A
closely related form of VAS is visual program simulation (VPS): another computerised
pedagogic technique, but for introductory programming. VPS shows the execution
of a particular program written in particular programming language and given input
to the student. The student simulates the execution of the program, instruction by
instruction, similar to VAS. VAS is more abstract version of VPS, as it discusses
visually the dynamic behaviour of algorithms and data structures rather than any
specific program, programming language, or hardware. [46, p. 141–185]

The key problem studied in this thesis is that the automatic feedback of the VAS
exercises is very limited. Student only knows by score the relative correctness of
their steps after submitting a solution they consider finished. After that they can
also view a model answer. Some research has already been conducted to simulate
systematic mistakes, algorithm misconceptions, in the students’ solution sequences
[19, 25, 42, 43]. The key idea is that if a student has an incorrect mental model of
the algorithm, they repeat their mistake in their solution. Then an instructor or a

10

researcher might be able to write an algorithm which corresponds to the student’s
mental model. From now on the instructor-written algorithm is referred as algorithm
misconception model (AMM). The AMM can be used to simulate student’s mistake.
It allows to automatically classify a student’s solution as a known misconception.
Furthermore, if a solution is classified as known misconception, the student can be
given automatic feedback which corrects the misconception. This would further
support learning. [19, 43]

There are theoretical problems related to detection of misconceptions. Each time a
student tries to solve a VAS exercise, they receive pseudorandom, personalised initial
state. This is to counteract plagiarism and allow practising the same exercise several
times. The automatic creation of a personalised initial state is called input generation
hereafter. The problem is that the method which is used for input generation affects
on what kind of AMMs can be detected. Some inputs produce the same steps
both with the correct algorithm and an AMM. Another time, when looking at a
student’s solution sequence, two AMMs could have produced the same sequence.
The inputs that are designed to counteract these problems are called misconception
aware inputs. [25]

E-learning, VAS exercises, and studying misconceptions is essentially part of
learning analytics. Generally, learning analytics is a vast and evolving field. which is
typically used on large online courses on to measure, collect and analyse data about
learners. The online course software, a learning management system (LMS), can,
for example, record students’ answers on exercises, submission times, or how the
students interact. The LMS will then generate reports and statistics for the teacher
to support understanding and optimisation of learning. [2, 30] The field of learning
analytics combines computer science and statistics with learning science, sociology,
and psychology. In higher education it aims to detect academically at-risk students,
predict individual learning needs, and reveal critical learning obstacles and success
factors. Learning analytics can even support and guide each learner individually in
addition to peer students and teaching staff. [8, p. 26–27, 15] Learning analytics
in VAS exercises could mean analysing misconceptions to improve instructions in
the learning material, detecting parts of algorithms that are typically difficult to
understand, and giving automatic, corrective feedback to students.

1.2 Objectives
The planned contribution of this thesis is to:

1. Develop a tool to replay students’ solutions to VAS exercises. This would allow
an instructor to study candidates for AMMs.

2. Design a tool which matches AMMs to students’ solutions in VAS exercises.
This allows the teacher to validate their candidate AMM and detect further
misconceptions.

3. Confirm the results of the earlier studies [19, 43] by implementing the AMMs
of the Build-heap algorithm.

11

1.3 Research questions and methods
The research in this thesis consists three substudies: a literature study, a development
of methodology, and an empirical study. The literature study consists of research
questions RQ1 and RQ2. Its purpose is to support an empirical study. Research
questions RQ3-RQ6 arise from background problems which affect the empirical study.
Research question RQ7 is the empirical study. It is also the main research question
of this thesis.

• RQ1: What earlier research is there on misconceptions in VAS?

• RQ2: What known misconceptions are there related to the topics of the
implemented VAS exercises?

• RQ3: How can a VAS exercise input support detection of misconceptions?

• RQ4: How can the communication fail in a VAS system between the student,
the software, and the instructor?

• RQ5: Is the input generation of the current VAS exercises particularly miscon-
ception aware in terms of [25]?

• RQ6: Is it possible to construct a ”player application” for the current submis-
sions of JSAV exercises?

• RQ7: Which AMMs for the VAS exercises have matches in the submission
data?

The submission data is collected during years 2016–2019 from Aalto University
course Data Structures and Algorithms Y.

1.4 Scope and structure
This thesis discusses a number of misconceptions about a selected set of algorithms.
These data structures and algorithms taught on the corresponding Aalto University
course. The course also has programming exercises on the same subjects, but this
thesis concentrates on the VAS exercises listed in in Appendix A. The Build-heap
exercise was the main subject, because it had both reconstructible exercise recordings
from several years and earlier studies which could be replicated [19, 43]. The input
generation of the Build-heap exercise was studied, and then software tools were
developed to analyse students’ misconceptions both manually and automatically.
The input generation and record reproducibility of the Dijkstra’s algorithm exercise
was also studied, but the emphasis was on modifying the program code for improved
input generation. Also the exercises Evaluating postfix expression and Quicksort were
studied for input validness and reproducibility. However, the scope of this thesis was
narrowed only to the data of Build-heap exercise recordings to be able to study it
comprehensively.

12

Although the thesis discusses misconceptions, its discipline is computer science,
not pedagogics. The thesis studies what kinds of misconceptions there seem to
be in a VAS exercises. The thesis summarises an earlier discussion on how the
misconceptions form, and whether the teacher has understood the student’s mental
model correctly. However, no further research of these questions is conducted.

The thesis is balanced between the methodology of misconception detection
and developing a finished software product. The software product, a misconception
detector, is written for the Build-heap exercise for demonstration. The methodological
work addresses problems related to detection of misconceptions. Its purpose is to
notify future researchers about the nontriviality of the software design task.

The rest of this thesis is organised as follows. Section 2 is an overview on the
related research. It contains the results of the literature study. Section 3 provides
theory related to detection of misconceptions. Section 4 describes the methods and
data of the empirical study. Section 5 represents results of the empirical study. Its
substructure follows the previous section. Section 6 discusses the reliability and
meaning of the results and recommends actions for future research.

13

2 Background
This section provides detailed background information which is required to understand
the new research of the thesis. The section begins with an overview on how VAS
exercises help students learn and why misconceptions should be studied. Then it
reviews research on known algorithm misconceptions to support the empirical study
in this thesis. Subsection 2.3 concentrates on technology for detecting misconceptions
that are known to exist. Subsections 2.4 and 2.5 proceed deeper in the theory on
how to design VAS exercises that support automatic detection of misconceptions.
Finally Subsection 2.6 describes the software context in which the empirical study is
conducted.

2.1 Pedagogics of VAS and misconceptions
This part answers to RQ1: What earlier research is there on misconceptions in VAS?

Data structures and algorithms are essential in Computer Science. It is difficult to
teach them by static images in a textbook, because algorithms are dynamic: they
are executed step by step over time, and the execution depends on an initial state
and a set of rules. An algorithm animation software is the next step. It simulates the
execution of an algorithm with given input. However, a student which only views an
animation will not learn much. Therefore a VAS exercise is a further improvement:
the student simulates the execution of an algorithm. This higher level of ”constructive
engagement” is important: the student must use their reasoning to achive the correct
end result. Therefore a VAS exercise aids the student to build a working mental
model. [20, p. 172, 24, pp. 11–15, 96]

”Mental model” is a central term in Cognitive Science. Because the discipline
is vast, there are many definitions of the concept. In the context of this thesis,
the definition comes from Johnson-Laird’s theory. A mental model is a simplified
representation of the real world in a person’s mind. It is an explanation on how some
part of the world works. The person has constructed the model themselves, and
the model allows solving reasoning problems. [12, p. 346, 14, pp. 5–6] Inevitably,
different persons have more or less different mental models. Learning can be explained
as people constructing meaningful mental models [41, p. 86].

The high level of abstraction in VAS is essential in a pedagogic sense. Compared
to VPS, it hides details specific to hardware or programming language, such as types
of variables and memory layout. The data structure concepts used in JSAV-based
VAS exercises are arrays, nodes, connections between nodes, trees, and graphs; JSAV
supports creating these abstract objects 1. Examples of algorithmic concepts in
JSAV-based exercises are temporary variable, function call stack, and swap of two
elements. Students are supposed to integrate these concepts in their mental models
of data structures and algorithms. Therefore the purpose of high-level abstract
representation in VAS is to reduce the cognitive load of the student.

1http://jsav.io/datastructures/

http://jsav.io/datastructures/

14

When students try to solve visual algorithm simulation exercises, they often
make mistakes. These mistakes are either due to carelessness, trial and error, or a
systematic misunderstanding, a misconception [43]. A student conception is a belief
or theory which explains some scientific phenomenon. The conception becomes a
misconception, or alternative framework, when it is in conflict with the accepted
scientific theories. A misconception can be seen as a mental model which is incomplete
or contradicting compared to the model that is supposed to be learned. Therefore
misconceptions are systematic but erroneous, and they vary based on students’ earlier
knowledge. A particular problem is that student might think they have learned the
case, but their mental model is incorrect or partially correct. It is known that novice
programmers form misconceptions by reasoning about program examples. The user
interface can also be a source of misconceptions. [19, p. 62] To summarise, VAS
exercises help students build viable mental models of data structures and algorithms.
Misconceptions happen in learning. It is assumed that knowledge of misconceptions
helps improve VAS exercises.

As mentioned in Section 2.2, Seppälä, Malmi, and Korhonen [43] have studied
student misconceptions in visual algorithm simulation exercise of build-heap in the
TRAKLA2 environment. They identified seven AMMs which described 60 % of the
students’ incorrect solutions.

There are two pedagogical theories which explain many misconceptions in VAS.
The first is a learning strategy called imitative problem solving. The algorithms
textbooks and the model solutions of the VAS exercises show examples of correct
sequences with some particular algorithm and input. The student might try to look
a model solution and map its surface features into another instance of the same
exercise: they try to perform the same operations on the data structure on given
data that was in the data of the example. [38, 43, p. 252]

According to repair theory, some students have systematic errors. There exists
a procedure for producing the erroneous answers. Typically these procedures are
minor variations of the correct procedure. In addition to the systematic errors,
there are errors called ”slips”. When the student makes a slip, they intended to
do something, but did something else instead. These slips are not systematic. An
interesting case is when the student follows rigorously their own procedure, and
then think they have arrived in a dead end, an impasse. Then the student tries to
”repair” their procedure by inventing a new rule. [5, p. 379–381] Some submissions
to the Build-heap VAS can be explained with the repair theory. The student first
executes a non-recursive algorithm variant and then applies additional, systematic
steps to ensure the heap property. [43, p. 253] If the repair theory applies in some
situations, it is still unknown whether a student has tried to review the learning
material, construct a rule from a model answer, or invent a totally new rule. The
slips are essentially carelessness, like clicking a nearby, similar object in the VAS
exercise, or forgetting to do one step once. The systematic procedure and the slips
can be thought mathematically as a model or function with random noise.

15

2.2 Literature study
The list of algorithms covered in the Aalto University Data Structures and Algorithms
Y course is given in Table 13, Appendix A. This section presents results from a
literature study on misconceptions on these algorithms, RQ2. Algorithm analysis and
recursion are included as they are discussed on the Data Structures and Algorithms
Y course. This set of topics is typically called a Data Structures and Algorithms
course or a CS2 course. [37, 53, p. 169].

The cited literature also discusses the causes behind each misconception, but this
is omitted to only have a brief overview here.

The following searches were done on scientific literature:

• ”algorithm misconception” on the ACM Digital Library 2

• ”algorithm misconception” limiting to Computer Science articles on Scopus 3

Also the concept inventory by Porter [36] had many fruitful references as a starting
point.

There are synonymous, related terminology regarding misconceptions. When a
catalogue of misconceptions is refined and validated, the misconceptions can be used
to form a concept inventory. Concept inventories are used for testing students’ correct
understanding and for improving teaching to better encounter the misunderstandings.
[22, 36] A misconception may also be called a partial understanding, an incorrect
understanding, a student-constructed rule, a mistake, or a bug [46, p. 358].

The results of the literature review are shown in the following tables. Table 1
summarises the algorithm misconception literature reviewed in this thesis. The table
merely categorises discussed misconceptions; it does not evaluate how common or
strongly validated each misconception is.

Table 1: Reported algorithm misconceptions in reviewed literature.

Category Number of References
misconceptions

Binary heap 8 [19, 35, p. 31, 43]
Binary tree 11 [7, p. 23, 53, pp. 172–175]
Efficiency 16 [9, 11, 53, p. 173, 34]
Linked list 5 [53, p. 171]
Recursion 7 [12, 35, p. 32]
Sorting 1 [48]
Total 48 11

Table 2 shows the diversity in the methodology of the reviewed misconception
studies. Most studies have collected data directly from students: either by written

2https://dl.acm.org/
3https://www.scopus.com/

https://dl.acm.org/
https://www.scopus.com/

16

questionnaires having open-ended, multiple-choice or fill-the-black questions. Think-
aloud interviews for students and flash tests in class are similar tools. Other main type
was analysis of student’s productions that already existed: analysis of exam answers
or solutions to visual algorithm simulation exercises. Taherkhani, Korhonen and
Malmi [48] studied machine learning for classification of programming exercises and
detected inefficiency in the implementations, and this is regarded as a misconception
in this thesis. Farghally, Koh, Ernst, and Shaffer [9] used a Delphi process: a panel of
computer science instructors formed an agreement on the most difficult and important
concepts for algorithm analysis topics. The study populations were mostly first-year
university students. Özdener [34] included and Gal-Ezer and Zur [11] exclusively
studied high school students.

Table 2: Research methods in the algorithm misconception studies.

Study Open- Multiple- Fill- Interview Exam VAS Other
ended choice blanks
writing writing

[11] x x
[35] x x x
[53] x x
[34] x x
[7] x x x Flash test

[12] x
[19] x
[43] x
[9] Delphi

[48] Prog.ex.

Recently, the Basic Data Structures Inventory (BDSI) [36] was created as an
inventory of students’ concepts and misconceptions on basic data structures. The
inventory was collected by presenting open-ended and multiple-choice questionnaires
to students. Finally, the concepts are also validated by interviewing students.
The BDSI database has questionnaires which teachers can use to analyse their
students’ understanding and difficulties on the following subjects: linked list, binary
search tree, binary tree, stack, set, and implementing an abstract interface with
several data structures. Specific work has been performed to analyse the validity of
the questionnaire instrument: topics are relevant to instructors; the questions are
meaningful and address key concepts and typical difficulties, and students interpret
the questions correctly. The specific BDSI content is stored on an access-limited web
forum, and therefore the questions and misconceptions are not described in detail in
this thesis.

Danielsiek, Paul, and Vahrenhold [7], and also Zingaro et al. [53] acknowledge
that most work on misconceptions in computer science is related to object-orientation
or basics of programming. Sorva [46, p. 358–368] has listed 162 common novice
programmer misconceptions , thus demonstrating the vastness in which the ”CS1

17

course” has been studied. Therefore the literature study can be concluded as that
data structure and algorithm misconceptions have been studied less than other types
of misconceptions in computer science education.

Misconceptions in VAS seem to have been studied even less than algorithm
misconceptions in general. The misconceptions for the binary heap VAS are unique,
although many of them are related to understanding of recursion and how the program
execution proceeds [19, 43]. The binary heap misconceptions are studied in detail in
later sections of this thesis.

2.3 Algorithmic detection of known misconceptions
This section continues RQ1 and discusses algorithmic methods of detecting miscon-
ceptions in VAS exercises. If summarises earlier work.

The person who studies students’ solutions to a VAS exercise is referred as the
instructor throughout the thesis. The instructor is a role: it means a person which
has knowledge on teaching of algorithms and VAS. The person can be a course
lecturer or a researcher. The instructor studies a dataset of students’ solutions to
find new misconceptions and improve the learning material.

Seppälä, Malmi and Korhonen [43] studied students’ answers to a VAS exercise
on the Build-min-heap algorithm. The exercise features a tree view of a binary heap
with random values, and the student must manipulate the heap by swapping keys in
the heap. Figure 2 shows the user interface of the exercise. The exercise would also
display a pseudocode of the algorithm for reference, but it is omitted in the figure
for compactness.

Figure 2: Graphical user interface of the Build-min-heap exercise implemented with
JSAV.

18

The pseudocode of the correct Build-min-heap algorithm is shown later in Sec-
tion 3.2.3. A correct solution must the same swaps in the same order as the correct
algorithm. Thus each student’s solution sequence, or a trace, is a sequence of states
in the binary heap so that each swap is a transition from one state to another.
Seppälä et al. reviewed these solution sequences manually, step by step, trying to
find systematic errors that could be described as variants of the correct algorithm.
These known algorithm variants are the AMMs: each of them is a hypothesis of an
incorrect mental model described precisely as program code.

The next step towards automatic detection of misconceptions is to have a compar-
ison algorithm which decides whether a given trace follows the correct algorithm or an
AMM. This algorithm has two purposes. First, it strengthens the evidence that some
hypothetical AMM is present in the set of manually studied submissions. Second,
it allows to automatically detect the same misconception later in new submissions.
Seppälä et al. [43] describe how to measure the similarity of a trace to the correct
solution in a VAS exercise. The trace contains the initial state of the heap which is
random integers in random order. Both the correct algorithm and all the AMMs
are given this input, and each of them produces a sequence of states. In the case
of Build-heap algorithm, each state is the contents of the heap array. Then the
comparison algorithm computes the similarity between the state sequence of the
student’s trace and the state sequences of each AMM, including the correct algorithm.

The comparison algorithm iterates over the candidate sequence. On each step
in the candidate sequence, it tries to find a matching state in student’s sequence.
Essentially, the algorithm tries to find maximum number pairs of equal states between
sequences so that the states are in the same order. The algorithm is discussed in
detail later in Section 2.7. The candidate algorithm whose sequence has the highest
number of matching states from the beginning is decided to be the best matching
algorithm. However, to classify a solution sequence as a misconception, the sequence
of an AMM should match at least two steps more than the correct solution. The two-
step threshold has been chosen to separate actual misconceptions from single-step,
slip-type errors, which are due to carelessness. [43, p. 246]

Because student’s solution sequence to a VAS exercise can include both a mis-
conception and a slip, Seppälä [42] further studied modelling the sequence with
code mutation. Initially, for some VAS exercise, there are the correct algorithm and
several AMMs. Then the instructor modifies one of the algorithms for the exercise:
they choose a points in the code that can be mutated, called mutation points. The
result is called the metamutant, an algorithm that can be altered during execution.
Each mutation point can be altered by a mutation operator : integer offset by one,
negation of comparison operator, rounding versus truncating division, and skipping
a subsection of the code. These mutations are not permament, but can happen at
some states of code execution, modelling a carelessness error of a student at some
point of their simulation sequence. [42]

Correspondingly, the mutating misconception classifier tries to map the student’s
solution sequence onto one metamutant at a time. It begins executing the metamutant
and mapping the solution sequence from the beginning. When it encounters a
mutation point, it chooses the option of the mutation operator that matches with

19

the sequence. If the sequence proceeds in a way where the same mutation point
is encountered multiple times, the option of the mutation operator can be chosen
independently each time. The combinations of explored mutations are recorded in
a mutation tree where the each node is linked to a specific step in the algorithm
sequence and a mutation point in the metamutant. The matching is done by a depth
first search (DFS) from the beginning of the sequence with the initial version of
the metamutant. The intention is to match steps of the sequence as far as possible,
backtrack to previous mutation point if necessary, try another variant of the mutation
and continue. This DFS of the mutation tree ends when a perfect match is found.
This a specific path of the tree matches perfectly to the student’s sequence. Another
ending condition is that all combinations of mutations are explored and none of them
fully matches the sequence. [42]

2.4 Misconception-aware input in VAS
This section addresses RQ1 regarding the automatic exercise instance generation in
VAS and its effects on misconceptions. It combines theoretical development of earlier
studies.

Korhonen, Seppälä, and Sorva [25] studied the idea of misconception aware input
sets in VAS exercises. The target is that if an input data for a VAS exercise is random,
it should be validated to ensure that each input reveals all the known misconceptions.
The article describes two approaches to input validation. First, a random input
could be run against AMMs, and only instances where AMMs produce different
steps are accepted. This is called constrained input. Second, a VAS could generate
its seemingly random input by a preconfigured template, which is designed by an
instructor to reveal a misconception. These templates describe a relative order of
the input, and the input can be randomised according to the rules in the template
while always leading to the same simulation steps with the same template. [19, 25]
For comparison sorting algorithms, such as selection sort, mergesort or quicksort,
this is clear: they sort the keys in their relative order, and thus the absolute values
of the keys does not matter.

Table 3 collects requirements of misconception aware input from several VAS
studies. These properties will be referred as input requirements (IR) in this thesis.
The next paragraphs discuss each IR briefly.

IR1 is required to counteract plagiarism. Fulfilling IR1 requires in practise
automatic generation of exercise inputs, as there can be several submission attempts
and hundreds of students. [24, p. 120] Using pseudorandom data is useful for
generating inputs which have high variance.

IR2 rises from the idea of benefits of random, constrained input. Korhonen et al.
[25, p. 4] note that the method of preconfigured templates may hinder the discovery
of new misconceptions, because the templates restrict the input space.

IR3 is for both to make the student think through all essential cases of the
algorithm for learning, and also to ensure that the student will thoroughly understand
all the essential features correctly. For IR3 of Build-heap, [43, p. 253] notes the use
of recursion in the exercise as an example. Practical examples of IR3 are discussed

20

Table 3: Requirements of misconception aware input in VAS exercises.

Requirement Description Reference
IR1 The input should be personalised to vary be-

tween exercise instances and students.
[24, p. 120]

IR2 The input should be as random as possible to
maximise possibilities for detecting new miscon-
ceptions.

[25, p. 4]

IR3 The input should always result in a sequence
which shows all the essential features of the al-
gorithm.

[43, p. 253]

IR4 The correct algorithm and an AMM should pro-
duce different sequences with the same input.

[43, p. 253]

IR5 Each AMM should produce a different sequence
with the same input.

[43, p. 253]

IR6 The input should have optimal length for learn-
ing with reasonable effort.

[19, p. 64]

later in Section 3.2.
IR4 ensures that all the sequences of all AMMs are different from the correct one;

otherwise the student could have a known misconception, but some inputs would
not reveal it. IR5 is similar to IR4, but ensures separation of known misconceptions.
This is important if we want to assign a written, corrective feedback for each AMM
that can be shown automatically to the student when a misconception is detected.
IR3, IR4, and IR5 often require an input long enough to distinguish between the
misconceptions. It is also possible to split the exercise into several subexercises. [19,
p. 68].

IR6 has the assumption that on average, longer input causes higher workload for
the student. The length of an input typically affects the asymptotic time complexity
of an algorithm: a longer input generally means longer execution time. Too high a
workload will likely cause some students to skip the exercise. Therefore IR6 constrains
the length of the input.

As a practical case for the input length, the current JSAV exercise of the Build-
heap algorithm has an input of 10 items, while the older TRAKLA2 implementation
had 15 items. Regardless of this, all the misconceptions detected in the TRAKLA2
submissions were also found from the JSAV data. However, not every single exercise
instance is guaranteed to reveal all of the known misconceptions. [19]

2.5 Software testing perspective
This subsection answers to RQ3: How can a VAS exercise input support detection of
misconceptions? We first study the problem of VAS exercise input generation from
the software testing perspective. We then review existing research which proposes
automatic input generation for programming exercises. Finally, we discuss whether
the input generation method could be applied to VAS exercises. This subsection is a

21

theoretical summary for future work; it is not applied in practise in this thesis.

2.5.1 Relevant testing terminology

From a software testing point of view, A VAS exercise can be seen as a unit test for
the student’s mental model of algorithm: give input, run algorithm, and measure
correctness by examining output. This is essentially a black-box test, as we cannot
see the student’s thoughts. The specification is the correct algorithm. If we know
some AMMs, it is possible to deduce new tests from their program code, which can
be considered as white-box testing. [45, p. 210–216]. IR3–IR5 form the test adequacy
criteria. The criteria are generally error-based testing, as we know what kind of errors
in the output the AMMs may cause. [16, p. 12–13]

Compared to unit testing with actual program code run on computer hardware,
we have the following additional difficulties and requirements, which come from
Table 3:

• One input provides all test cases.

• The execution might malfunction at some random steps (slip errors).

• The software may change between test runs (learning, trial and error).

• The output that is tested is an execution trace (simulation steps).

For the single student case, the challenge is informally: ”Generate one input which
reveals all the known bugs.” The emphasis is on the ”known bugs”, because as
it generally is with software testing, any amount of testing cannot prove that the
program is always working correctly [45, p. 210–216]. Accepting this, the challenge
is related to the method of path testing whose aim is to ensure that all execution
paths in the program have been covered. An execution path is a sequence of program
states from the beginning of the program to the end with some particular input. Two
execution paths diverge in an if-else branch. A while or for loop in the code
causes a loop in an execution path. To ensure that all execution paths are covered,
the program must be run with different inputs. This set of test inputs together
ensure that each program line is executed with some input. [44]

In testing terms, IR3 aims for test adequacy by maximising branch coverage: all
alternative if-else branches of the program should be covered. This also maximises
statement coverage: if all branches are covered, then also all lines of the program are
executed. [52, pp. 367, 369, 374]. However, as the program is executed only once,
we should find a criterion for only one input which produces an execution path that
still maximises the statement and branch coverage. Intuitively, longer input enables
more possibilities for the coverage. Although there is only one input, the input still
contains all the test cases derived from IR3–IR5.

22

2.5.2 Test data generation by symbolic execution

Regarding Java programming exercises, Ihantola [16] studied the possibility to
generate sets of test data which are seemingly random, but together explore all
possible execution paths of a program. Symbolic execution of programs uses symbolic
values and variable substitution instead of concrete values. Figure 3 shows an example:
if the power function is given is given input x = a, y = 3, the symbolically executed
result is a * a * a. More generally, if y = b > 0, the result is a to the power of b.

Figure 3: (a) program for computing an integer power of an integer; (b) the symbolic
execution tree of the same program. Line denotes program counter and path denotes
path condition.

Symbolic execution runs program code with conditional expressions as values of
variables. The state of the program consists of values of variables, a path condition
and a program counter (the line of program code that will be executed next). The
path condition describes constraints of the known variables. At each control statement
(if, else, for, while) it is decided which branch can be taken. Then the execution
of program, making choices at control statements, creates a sequence of states of the
symbolic execution, and this is called an execution path. The diverging execution
paths of a program form together the execution tree of a program. [16, p. 18–19]

Figure 3 (b) shows the execution tree of the power program. The leftmost
execution path ends in the case where the input variable y < 0 and the output is
0 (regardless of x). The next execution path to the right describes the case where
y = 0 and the output is 1. The third path to the right describes case x = X, y = 1

23

with output X. The rightmost path shows how the tree expands recursively as the
for loop on line 5 in Figure 3 (a) proceeds depending on value of y.

The example of symbolic execution in Figure 3 also features lazy initialisation:
values of variables are uninitialised in the beginning, and their constraint expressions
are refined as the program reads or writes these variables [23, p. 557].

A more compact representation of a symbolic execution tree is a control flow
graph. The main idea is to analyse essentially different execution paths and then
derive the corresponding conditions for each (input, path) pair. [16]

Figure 4: Control flow graph of Figure 3 (a).

Symbolic execution with control flow graphs is described in [16, p. 18–20] and [52,
p. 372–374]. Figure 4 shows an example of a control flow graph. Ihantola’s thesis
aims to derive test data from both the student-written program and the correct
model solution together. The correct model solution in VAS exercise context is the
correct algorithm, and the AMMs can be thought as student-written programs.

The main idea of symbolic execution with lazy initialisation and path exploration
is summarised here from [23]. Begin the execution of a program with an undefined
input set, similarly to example in Figure 3. When an if, for, or while statement is

24

encountered, choose one of the branches. This creates a restricting condition on the
input according to the expression of the conditional statement. If some execution
path reaches a contradiction, the search must backtrack until another branch can be
explored. Eventually the program execution reaches its end by some path, resulting
in conditions on the input. Then fixed input values causing that execution path can
be generated from the input conditions of the path. Path exploration in this context
means a depth-first search for the possible input paths. [23] Therefore symbolic
execution for input generation is a depth-first search in the control flow graph.

2.6 Software context
The software context of the thesis has several components. The A+ Learning Manage-
ment System [18] provides the Aalto University course ”CS-A1141 Tietorakenteet ja
algoritmit Y” (Data Structures and Algorithms Y), which has several kinds of content:
VAS exercises, multiple-choice exercises, programming exercises, and tutorial text.
The VAS exercises are implemented with the JavaScript Algorithm Visualisation
Library (JSAV), which allows creating both slideshows and interactive exercises
with HTML5, CSS, and JavaScript [21]. In addition to the JSAV library, each VAS
exercise has its own JavaScript code, which creates random input for each exercise
instance, provides simulation functionality, grades student’s answer automatically,
and provides a visualisation of the correct answer. The JSAV-based VAS exercises
are a part of the OpenDSA project, which is an open-source online textbook for
DSA courses [20]. The Aalto University DSA course uses OpenDSA as the textbook,
but the A+ LMS also provides the same VAS exercises and also records students’
solutions to them.

2.7 String matching for VAS
The process of grading a student’s solution for a VAS exercise requires computing a
similarity between the student’s solution sequence and the sequence produced by
the correct algorithm. Also the automatic detection of an AMM requires computing
the similarity between the student’s solution sequence and sequences of each AMM.
These sequences are steps produced by the student or an algorithm, and generally,
comparing them is the task of string matching.

The JSAV library grades a VAS exercise used on the DSA course with its default
grader which is independent of the type of the exercise. The grader is shown in
Algorithm 1 from the JSAV source code4. The student’s sequence is S and the correct
sequence is C.
This grader has two notable properties. First, it gives points only until the first
mismatching state. If the student makes one slip and then continues simulating
the correct algorithm, the position of the slip determines the score. Therefore the
algorithm might give a confusingly low score for a student who made only one
mistake in otherwise correct simulation. This behaviour can be observed easily in the

4https://github.com/vkaravir/JSAV/tree/master/src/exercise.js lines 128–165.
Visited on 09/16/2020.

https://github.com/vkaravir/JSAV/tree/master/src/exercise.js

25

Algorithm 1 Default grader of JSAV
1: procedure JSAV-grade(C, S)
2: i← 0
3: while i < |C| and i < |S| and C[i] = S[i] do
4: i← i + 1
5: end while
6: return i / |C|
7: end procedure

Insertion sort and Build-heap exercises. Swap elements at the same random indices
twice. The state of the array is then the same as the initial state. Then execute
the correct algorithm and click the grade button. The submission will receive zero
points.

Second, if the first |C| steps of the student’s sequence are correct, but the student
continues performing steps after the correct algorithm has stopped, they will still
receive a 100% grade. It could be said that the grading algorithm does not catch
cases where the student does not understand the ending condition of the algorithm.
It must be noted that nearly all students still receive full points from a VAS exercise
after some attempts [19, p. 65–67]. The essential feedback that the default JSAV
grader gives is whether the submission was correct or not.

Seppälä et al. [43, p. 246] have used a more elaborate similarity algorithm when
they have studied the misconceptions in the Build-heap VAS exercise. It is possible
that the same algorithm has also been used in the earlier TRAKLA2 VAS exercise
environment: the TRAKLA2 grader ”reports the number of orrect steps out of total
number of required steps” [27, p. 271]. The grading algorithm is described in the
article [43] as follows.

”The comparison procedure iterates over the candidate sequence, selecting
a single state at a time, and iterating over the student’s states trying to
find that very same state. The comparison then selects the next state in
the candidate sequence and starts its search in the student state located
after the previous match. This is repeated until no more equal states can
be found.
The candidate that finds a match furthest away in the student’s sequence
is the one that best explains the student’s sequence. In most cases, there
exist a number of variants that match the student’s sequence equally well.
In these cases, we have selected the most conservative option available.
Basically, this will be the candidate that best resembles the correct
algorithm or the most general one available.
Sometimes, the sequence created by the correct algorithm matches the
student’s sequence if it is not required that every single state must exist
in the student sequence.” [43, p. 246]

Algorithm 2 is a formal interpretation of the comparison algorithm in [43, p. 246].
Input parameter S is the student’s solution sequence containing states, that is,

26

Algorithm 2 Sequence similarity following Seppälä et al. [43, p. 246]
1: procedure State-Similarity(C, S)
2: i, j ← 0
3: while i < |C| and j < |S| do
4: k ← j
5: while k < |S| and C[i] ̸= S[k] do
6: k ← k + 1
7: end while
8: if k < |S| then
9: j ← k + 1

10: end if
11: i← i + 1
12: end while
13: return j
14: end procedure

contents of the data structure after each modification: array, tree, or graph. S[0]
contains the random input generated by the VAS exercise. C is the candidate
sequence: a sequence similar to S obtained by running an algorithm variant with the
input S[0]. Particularly C[0] = S[0].

The procedure matches explicitly states in the candidate sequence to equal states
in student’s solution sequence. The loop on lines 3–12 in Algorithm 2 iterates over
candidate sequence: i is index of C. The innermost loop on lines 5–7 iterates over
student’s sequence: k is index of S. Variable j stores the index of next currently
unmatched state in student’s sequence. Thus the algorithm tries to map states from
candidate sequence to student’s sequence. The return value is the location of the
furthest state in student’s sequence that had a match in the candidate sequence.

Pairs of states (c, s) tested for equality (c ∈ C, s ∈ S):
(A,A), (B,B), (D,C), (D,D), (E,G), (E,J), (E,K), (F,G), (F,J), (F,K), (G,G), (H,J), (H,K),
(I,J), (I,K).
Return value: 4.

Figure 5: An execution example of Algorithm 2.

27

Formally, each state in C has at most one corresponding state in S, and also
each state in S has at most one corresponding state in C; thus (C[i] = S[m]) ∧
(C[j] = S[m]) ⇔ i = j. The mapped pairs of states have the same relative order:
(C[i] = S[m]) ∧ (C[j] = S[n]) ∧ (i < j) → m < n. Figure 5 clarifies this by an
example: the states are labeled by letters A–K, but they could be the contents of any
data structure. Korhonen, Seppälä and Sorva [25, p. 3] give similar visual description
of what seems to be Algorithm 2. Figure 5 emphasizes that Algorithm 2 can skip
states both in the candidate sequence and the student’s sequence.

28

3 Methodology
This section provides an in-depth study on problems which make detection of
misconceptions harder. Subsection 3.1 provides an overview of the human-computer
system we are studying. It also discusses what situations might rise in such a system
and how serious they are.

Subsection 3.2 determines IR3 for four VAS exercises, i.e. what are the essential
features of each algorithm. It is a demonstration on how IR3 can be defined by
program code analysis. The four VAS exercises are Evaluating Postfix expression,
Quicksort, Heap build, and Dijkstra’s algorithm.

Subsection 3.3 concentrates on a practical issue: do the currect JSAV-based
exercise recordings support study of misconceptions? The exercises are the same as
in the previous subsection.

Subsection 3.4 is a demonstration on JSAV-based exercise software development.
The input generation of Dijkstra’s algorithm JSAV exercise is improved to meet IR3.

Finally, Subsection 3.5 presents an algorithm which tries to generate random
input for a VAS exercise fulfilling as many input requirements as possible. This
algorithm is one solution attempt for the input requirement problem. It is presented
for future research.

3.1 System overview with risk analysis
This section answers RQ4: How can the communication fail in a VAS system
between the student, the software, and the instructor? It performs a simple risk
analysis for a proposed VAS system that gives automatic feedback based on students’
misconceptions. The purpose of the analysis is to identify points of communication
failure in the system, as there are both human and software components.

The methods of the risk analysis used here are the following. First a flowchart
of the system is drafted for fault identification to be able to identify events and
components. Then an event tree is built based on the flowchart. An event tree
depicts chains of events and their consequences. Finally, unwanted consequences,
hazards, are identified. Their probability and severity is briefly discussed to provide
a qualitative risk analysis. [3, pp. 34–35, 49, 72]

The system has three components. The student tries to learn an algorithm
using a VAS exercise. The VAS software generates an instance of a VAS exercise
for the student, grades the student’s answer, and tries to classify the answer as a
misconception and give corrective feedback, respectively. The instructor analyses
students’ answers which the VAS software has graded and classified. The instructor’s
objective is to improve the feedback of the VAS software by finding new misconceptions
in students’ answers, implementing them as AMMs, and writing corrective feedback.

Figure 6 shows a flowchart of the VAS system with the three components. The
flowchart depicts the communication and key decisions in the system, and its purpose
is to facilitate the fault analysis. The process begins when the VAS software generates
an input for an exercise. The input generator tries to fulfill IR3–IR5 as described
before. The student works with the exercise with the given input and submits their

29

Figure 6: Communication flowchart for a VAS exercise system with automatic
misconception detection.

solution. The VAS software grades and classifies student’s answer and tries to give
either confirming feedback on a correct solution or corrective feedback for a detected
misconception.

Figure 7 shows an event tree for student–VAS system interaction. The tree begins
from the left with the initiating event Student submits a solution. The chain of events
proceeds to the right. Each branch has several reactive events and only one of them
is chosen. The path from an initiating event with some choices of reactive events
ends in an outcome, which can be either successful or an unwanted situation. [3, p.
72–74] The outcomes are the rounded shapes on the right. There is only one outcome

30

Figure 7: Event tree for student–VAS system interaction

for each path in the tree.
The event tree has three variables: student’s mental model (correct / known

misconception / unknown misconception / confused), carelessness (no slips / slips
and skips), and the classification result of the VAS software (correct / misconception
/ unknown). It is assumed that some combinations are not possible. For example,
if the student has the correct mental model and performs the algorithm without
slips and skips, it is assumed that the VAS system always classifies the result as
correct. Moreover, if the student has an unknown misconception or are confused, it
is assumed that slips and skips are irrelevant for the answer of the VAS software, as
the VAS software cannot produce corrective feedback for an unknown misconception.

The consequences of the event tree are assessed in Table 4. The assessment

31

Table 4: Risk analysis for the VAS system.

No Consequence Likelihood Risk
1 Positive Likely -
2 Slightly negative Likely Low
3 Slightly negative Unknown Low
4 Positive Likely -
5 Slightly negative Likely Low
6 Negative Unlikely Medium
7 Slightly negative Unknown Low
8 Positive Likely -
9 Slightly negative Unknown Low
10 Negative Unlikely Low
11 Slightly negative Likely Low
12 Negative Unknown Medium–High
13 Positive Unlikely -
14 Negative Likely High
15 Positive Likely -
16 Neutral Likely -
17 Positive Unlikely -
18 Slightly negative Unlikely Low
19 Negative Very unlikely Very low

is qualitative and based on estimates of the thesis author’s knowledge. There are
three types of consequences: student learns (positive), student is confused (slightly
negative), student passes the exercise with a misconception (negative). The likelihood
of each outcome is estimated qualitatively: very unlikely, unlikely, likely, or unknown.
The risk is estimated by multiplying consequence and likelihood such that high risk
involves both highly negative consequence and high likelihood. The risk is reported
only if it has a negative consequence.

The most severe and likely risks relate to Table 4 are Based on the risk assessment,
consequences 6, 10, and 12, where the VAS system classifes the solution as correct
when the student has an incorrect mental model, are the most severe and likely.
Consequence 6 results from failing IR4 and can be counteracted by misconception
aware input generation. Consequence 10 is that a known misconception passes by
random chance due to slips and skips. The misconception classifier described in
Section 4.2 counteracts this by requiring that a a submission is only classified as
correct if it matches exactly to the sequence of the correct algorithm. The probability
of Consequence 10 can be decreased simply by requiring long enough an input.
Consequence 12 results from too short of an input. An example of this is the
detection of Wrong-duplicate misconception in Build-heap exercise [19, p. 63]: the
case of duplicate values for the same children of a parent node is rare, and therefore
in most cases this misconceived algorithm produces the same sequence as the correct
algorithm. Consequence 2 can be counteracted to some extent by requiring IR3
and enough long a random input. This is the best effort to support detecting the

32

unknown.
Consequence 19 is the theoretical possibility that student solves the exercise

without knowing what they have done. This can be made highly improbable by
simply requiring IR2 and IR3. Pattern Swaps-resemble-build-heap in Section 5.3
implies that some students might try to complete the Build-heap exercise with
minimal understanding by copying a model answer. However, this strategy fails due
to random input.

Slips and skips make detection of known misconceptions harder. Consequences 3,
5, 9, 13–14, and 17–18 depict the case where the VAS system gives feedback for a wrong
misconception. The classifier in Section 4.2 counteracts this by requiring that in a case
where the student’s sequence does not match exactly to any misconceived algorithm,
the submission is classified as a misconception only if one misconceived algorithm
explains the sequence two steps further than the correct algorithm. Otherwise the
submission is classified as unknown, which results in Consequences 2, 7, 11, 15, or 16.
Then the student receives a response ”Your solution only X% correct”. This likely
confuses student, but they will probably review the learning material and try again.

Consequence 3 implies careful design of automatic feedback. In this case, the
student has a viable mental model, but due to slips and skips, the VAS system
classifies the student’s solution as a misconception. Although the probability of this
risk can be mitigated as described before, it is still greater than zero. If the student
has a viable mental model and the automatic feedback states that the student has
misunderstood the algorithm, the feedback might guide the student away from their
viable mental model. It is safer to have automatic feedback which always emphasises
a feature of the correct algorithm.

Consequences 13 and 14 are interesting, because then the VAS system masks an
unknown misconception by classifying it as a known misconception. This is possible
if the input is so short that student’s unknown misconception X and the known
misconception Y produce the same sequence with the given input. In this case
the unknown misconception will be left unstudied, if the instructor only analyses
submissions classified as unknown.

Table 5 shows a summary of the risk analysis.
The proposed system has still other issues outside the student–VAS software

interaction cycle. The instructor’s actions in Figure 6 introduce other faults which are
independent of the student and the VAS exercise software. By default, the instructor
retrieves a submission from the database for analysis. The instructor reviews the
solution sequence and by their expert knowledge, tries to write an AMM candidate
P . The hypothetical new algorithm P must pass two tests to be accepted. First, P
must match exactly to the student’s solution with the corresponding input. Second,
P must be practically significant: it must match to many other submissions in the
submission database, especially previously unknown submissions.

Notice that it is irrelevant whether the instructor guesses correctly the mental
model P from the submission of a particular student S. Student S will never receive
the corrective feedback related to P in practise. Students work on one VAS exercise
for one or two days, while the instructor might not be able to analyse students’
submissions and improve feedback during the teaching period of the course.

33

Table 5: Mitigation of negative risks

No Description Risk Mitigation
2 Some learning Low IR3, input length
3 Wrong feedback Low Classifier design
5 Wrong feedback Low Classifier design
6 Failed learning, satisfied student Medium IR4
7 Confused student Low Unavoidable
9 Wrong feedback Low Classifier design
10 Failed learning, satisfied student Low Input length
11 Confused student Low Unavoidable
12 Failed learning Medium–High Input length
14 Undiscovered misconception High Classifier design
18 Confused student Low Classifier design
19 Failed learning, satisfied student Very low IR2, IR3

The instructor’s decision to update the database of Known misconception algo-
rithms and corresponding feedback should be even more careful and conservative.
In practise, when a new algorithm P is added, the misconception classifier might
decide that some submissions already classified as algorithm Q are now algorithm
P . This means that adding a new AMM alters the classification frequencies of the
existing misconceptions. The instructor must carefully examine whether the benefits
of adding P–the improved feedback for some cases–are more significant than the
changing feedback of submissions previously classified as misconceptions.

Finally, the validation of misconceptions is left outside of the system design
in Figure 6, but it is still important. Humans encounter failures even in direct
interpersonal communication, where two persons discuss face-to-face in the same
physical space. One should expect additional difficulties when one of the humans
is trying to learn and then a computer software is between the humans, making
decisions on which instructor-written messages should be given to which student.
The students should be at least asked whether the feedback they receive is relevant.
Therefore Section 6.4.1 discusses validation briefly.

3.2 The essential features of an algorithm
This subsection studies RQ5: Is the input generation of the current VAS exercises
particularly misconception aware in terms of [25]?

The input requirements (IR) for VAS exercises were defined in Section 2.4.
Therefore RQ5 is about studying the VAS exercises against these input requirements.

A complete input requirement validation procedure would test each exercise
against IR1–IR6 in Table 3 in Section 2.4. In practise, IR1 and IR2 are known to
be fulfilled, as each exercise instance has randomly generated initial state. This is
validated when inspecting IR3.

Fulfilling IR3 was already discussed in Section 2.5.1. The ”essential features of
the algorithm” are assumed to be the full branch coverage. The pseudocode of the

34

algorithm in the VAS exercise is inspected manually and conditions for a good input
is decided based on the branch conditions. Moreover, because the input is randomly
generated, the probability at which a random input fulfills IR3 must be studied.
Therefore another part of the research data here is the source code of the JSAV-based
exercises in OpenDSA [20].

Studying IR4 and IR5 requires knowledge of existing misconceptions. In the
scope of this thesis, these requirements are only studied for the input generation of
the Heap build (Build-heap) exercise under RQ7. Studying IR6 is omitted as it is
out of the scope of this thesis; Section 6.2 discusses the related problems briefly.

Four JSAV-based VAS exercises from Appendix A are selected for inspection:
Evaluating Postfix expression, Quicksort, Heap build, and Dijkstra’s algorithm. To-
gether they represent a high variety of algorithm classes: a stack algorithm, a recursive
sorting algorithm, a tree algorithm, and a graph algorithm.

3.2.1 Evaluating Postfix expression

This exercise features a postfix form of an arithmetic expression containing integers,
multiplication, and summation signs. An example of a random input generated by
the exercise is ”7 2 + 5 5 + 7 * * 7 2 + + 9 +”. The student must evaluate the
value of the expression using a stack. The exercise is part of the OpenDSA5. IR3
for the ”Evaluating postfix expression” exercise were defined as: (1) The expression
must always be evaluatable; and (2) The expression must always have both + and
∗ operators. Detailed study of the program code showed that IR3 holds with the
exception that the generated postfix expression may have only one type of operator
at probability of 1/128.

3.2.2 Quicksort

This exercise features the Quicksort algorithm [6, p. 170–190]. It is defined in
the OpenDSA6. The exercise presents an array of ten random integers from range
10–124. The pivot is chosen automatically, and the student must perform the swaps
of Partition function, select a range for a recursive function call, and also indicate
when a function call returns.

The IR3 for this exercise was defined such that the student must perform at least
one swap in the partitioning phase. Therefore the integers in the input should never
be in a monotonically increasing order. Detailed study of the program code showed
that the probability for generating an acceptable input is approximately 0.9999996.

5Instructions: https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/post
fixEvaluationPRO.json Exercise: in https://github.com/OpenDSA/OpenDSA/tree/master/A
V/Development/postfixEvaluationPRO.json. Visited on 09/16/2019.

6Algorithm source code: https://github.com/OpenDSA/OpenDSA/tree/master/SourceCode/
Processing/Sorting/Quicksort.pde Exercise: https://github.com/OpenDSA/OpenDSA/tree/
master/AV/Development/quicksort2PRO.js. Visited on 09/16/2019.

https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/postfixEvaluationPRO.json
https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/postfixEvaluationPRO.json
https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/postfixEvaluationPRO.json
https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/postfixEvaluationPRO.json
https://github.com/OpenDSA/OpenDSA/tree/master/SourceCode/Processing/Sorting/Quicksort.pde
https://github.com/OpenDSA/OpenDSA/tree/master/SourceCode/Processing/Sorting/Quicksort.pde
https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/quicksort2PRO.js
https://github.com/OpenDSA/OpenDSA/tree/master/AV/Development/quicksort2PRO.js

35

3.2.3 Build-heap

The algorithm for this exercise is Algorithm 3. Note that this is a version where the
heap array indexing begins from zero.

Algorithm 3 Build-Min-Heap [43].
1: procedure Build-Min-Heap(A)
2: for i← ⌊heap-size(A) / 2⌋ - 1 downto 0 do
3: Min-Heapify(A, i)
4: end for
5: end procedure

6: procedure Min-Heapify(A, i)
7: l← Left-child-index(i)
8: r ← Right-child-index(i)
9: if l ≤ heap-size(A) and A[l] < A[i] then

10: smallest← l
11: else
12: smallest← i
13: end if
14: if r ≤ heap-size(A) and A[r] < A[smallest] then
15: smallest← r
16: end if
17: if smallest ̸= i then
18: Swap(A[i], A[smallest])
19: Min-heapify(A, smallest)
20: end if
21: end procedure

22: Left-child-index(i) = 2i + 1
23: Right-child-index(i) = 2i + 2

Based on the build-heap algorithm, IR3 for the exercise are:

1. The minheap property must not hold in the beginning.

2. There must be at least one swap with left child.

3. There must be at least one swap with right child.

4. There must be at least one node in the main loop where a swap is not required.

5. Min-Heapify must call itself at least once such that a swap happens in the
recursive call.

6. Min-Heapify must call itself at least once such that a swap does not happen
in the recursive call.

36

Requirement 1 is obvious. Requirements 2–4 ensure the three different swap cases
(left, right, none) are performed. Requirement 5 ensures the recursive nature of the
algorithm. Requirement 6 shows that if a swap has been performed, it does not
always cause a swap in the recursive step.

The input generation of Build-heap VAS exercise is shown in Listing 1 from
OpenDSA7.

Listing 1: Input generation of the Build-heap VAS exercise
12 function init () {
13 var nodeNum = 10;
14 if (bh) {
15 bh.clear ();
16 }
17 $.fx.off = true;
18 var test = function (data) {
19 bh = av.ds. binheap (data , {size: nodeNum , stats: true ,

tree: false });
20 var stats = bh.stats;
21 bh.clear ();
22 return (stats.swaps > 3 && stats. recursiveswaps > 0 &&

stats. leftswaps > 0 &&
23 stats. rightswaps > 0 &&

stats. partlyrecursiveswaps > 0);
24 };
25 initData = JSAV.utils.rand. numKeys (10, 100, nodeNum ,

{test: test , tries: 50});
26
27 // Log the initial state of the exercise
28 var exInitData = {};
29 exInitData . gen_array = initData ;
30 ODSA.AV. logExerciseInit (exInitData);
31
32 bh = av.ds. binheap (initData , { heapify : false });
33 swapIndex = av. variable (-1);
34 av._undo = [];
35 $.fx.off = false;
36 return bh;
37 }

The length of the input is 10 set on line 13. Line 19 sets other parameters for
the input: random integer keys from range 10–99, validate the input with internal
function test on lines 18–24, and run the generate-validate cycle at most 50 times.
In the generator-validator function, variable bh on line 19 refers to a new a binary
heap object whose class is defined in another file8. This binary heap is given the

7https://github.com/OpenDSA/OpenDSA/blob/master/AV/Binary/heapbuildPRO.js
8https://github.com/OpenDSA/OpenDSA/blob/master/DataStructures/binaryheap.js

Both URLs were visited on 04/25/2020.

https://github.com/OpenDSA/OpenDSA/blob/master/AV/Binary/heapbuildPRO.js
https://github.com/OpenDSA/OpenDSA/blob/master/DataStructures/binaryheap.js

37

random input and it is then heapified storing statistics on the process. Line 22 of
Listing 1 compares straightly to IR3 of minheap described earlier:

• stats.swaps > 3 corresponds requirement 1

• stats.leftswaps > 0 corresponds requirement 2

• stats.rightswaps > 0 corresponds requirement 3

• stats.recursiveswaps > 0 corresponds requirement 5

• stats.partlyrecursiveswaps > 0 corresponds requirement 6

Listing 2 from OpenDSA9 shows how the build-heap statistics are computed. The
condition on line 194 is executed if the recursively called heapify had performed
a swap on one level higher. This means that at two consecutive levels a swap is
performed, and therefore counter recursiveswaps increases. If a swap at the current
level was performed, but another swap at the recursive step is not needed, the counter
partlyrecursiveswap increases instead.

Listing 2: OpenDSA Minheap implementation for input validation
167 bhproto . heapify = function (pos , options) {
168 var size = this. heapsize (),
169 lpos = pos * 2,
170 rpos = pos * 2 + 1,
171 smallest = pos ,
172 comp = this. options .compare ,
173 step = this. options .steps ? this.jsav.step :

function () {};
174 if (lpos <= size && comp(this.value(lpos - 1),

this.value(pos - 1)) < 0) {
175 smallest = lpos;
176 }
177 if (rpos <= size && comp(this.value(rpos - 1),

this.value(smallest - 1)) < 0) {
178 smallest = rpos;
179 }
180 if (smallest !== pos) {
181 if (this. options .stats) {
182 this.stats.swaps ++;
183 if (smallest === lpos) { this.stats. leftswaps ++; }
184 else { this.stats. rightswaps ++; }
185 }
186 if (options && options . noAnimation) {
187 var tmp = this.value(pos - 1);
188 this.value(pos - 1, this.value(smallest - 1));

9Again, this is https://github.com/OpenDSA/OpenDSA/blob/master/DataStructures/bina
ryheap.js

https://github.com/OpenDSA/OpenDSA/blob/master/DataStructures/binaryheap.js
https://github.com/OpenDSA/OpenDSA/blob/master/DataStructures/binaryheap.js

38

189 this.value(smallest - 1, tmp);
190 } else {
191 this.swap(smallest - 1, pos - 1);
192 }
193 step.apply(this.jsav);
194 if (this. heapify (smallest , options) &&

this. options .stats) {
195 this.stats. recursiveswaps ++;
196 } else if (this. options .stats) {
197 this.stats. partlyrecursiveswaps ++;
198 }
199 return true;
200 } else if (this. options .stats) {
201 this.stats. interrupted = true;
202 }
203 return false;
204 };

Requirement 4 for having a no-swap case is not guaranteed. It would be satisfied
by adding condition
stats.swaps - stats.recursiveswaps < Math.floor(nodeNum / 2)
onto line 22 in Listing 1. Here the left side of the inequality is the number of swaps
which are not recursive, meaning that they result from the main loop directly calling
Min-Heapify. The right side of the inequality is the number of iterations in the
main loop.

Another theoretically problematic case is the one where a valid input could not
been generated within 50 random trials. By empirical test, it seems that function
test in Listing 1 rejects the random input at 25% = 1/4 probability based on 1000
repeats. Adding condition stats.swaps < nodeNum does not alter the probability
significantly. The probability that a valid input could not been generated after 50
trials is (︃1

4

)︃50
≈ 10−30,

which is practically never.
Requirement 4 is therefore the only one which is not explicitly satisfied. By

empirical test, the exercise currently presents the student an input which fails
requirement 4 at probability of 0.15. Adding this requirement to the input validation
increases the failure probability of a single generation trial from 25% to 41%. Still,
after maximum 50 trials, the total failure probability would be 0.4150 ≈ 10−20, which
is tolerable. Therefore this exercise does not currently meet IR3, but it could be
corrected very easily.

3.2.4 Dijkstra’s algorithm

The Aalto DSA course has a VAS exercise on Dijkstra’s algoritm for single-source
shortest paths in a graph that has positive edge weights. The graph in the exercise
has integer weights on edges and the edges are not directed.

39

Listing 3: Dijkstra’s algorithm in Java
1 // Find the unvisited vertex with the smalled distance
2 static int minVertex (Graph G, int [] D) {
3 int v = 0; // Initialize v to any unvisited vertex ;
4 for (int i=0; i<G. nodeCount (); i++)
5 if (G. getValue (i) != VISITED) { v = i; break; }
6 for (int i=0; i<G. nodeCount (); i++)

// Now find smallest value
7 if ((G. getValue (i) != VISITED) && (D[i] < D[v]))
8 v = i;
9 return v;
10 }
11 // Compute shortest path distances from s, store them in D
12 static void Dijkstra (Graph G, int s, int [] D) {
13 for (int i=0; i<G. nodeCount (); i++) // Initialize
14 D[i] = INFINITY ;
15 D[s] = 0;
16 for (int i=0; i<G. nodeCount (); i++) {

// Process the vertices
17 int v = minVertex (G, D); // Find next - closest vertex
18 G. setValue (v, VISITED);
19 if (D[v] == INFINITY) return ; // Unreachable
20 int [] nList = G. neighbors (v);
21 for (int j=0; j<nList. length ; j++) {
22 int w = nList[j];
23 if (D[w] > (D[v] + G. weight (v, w)))
24 D[w] = D[v] + G. weight (v, w);
25 }
26 }
27 }

Listing 3 shows an example version of Dijkstra’s algorithm in Java, as presented
in the OpenDSA textbook10. It is the array-based version: it has a boolean array to
indicate which vertices are visited, and an integer array (array D on line 14), to store
distances from the initial vertex s. The algorithm produces a shortest-paths tree:
for each vertex that is reachable from the initial vertex, there is the distance from
the initial vertex and a rooted tree which describes the shortest paths.

The algorithm iterates through all vertices beginning from line 16. For each
vertex, it uses an auxiliary function minVertex and tries to find a vertex that is
not yet visited, but is closest to the current vertex. If such a vertex is found and is
reachable, then edge (i, v) is added to the shortest-paths tree. Adding the edge to
the tree is not mentioned in Listing 3, but it is crucial for producing a useful output;
Cormen, Leiserson, Rivest, and Stein [6, p. 658] state this step explicitly in their
pseudocode.

On lines 20–25, the algorithm iterates the neighbor vertices of the current vertex
10https://github.com/OpenDSA/OpenDSA/blob/master/SourceCode/Java/Graphs/Dijkst

ra.java. Visited on 04/25/2020.

https://github.com/OpenDSA/OpenDSA/blob/master/SourceCode/Java/Graphs/Dijkstra.java
https://github.com/OpenDSA/OpenDSA/blob/master/SourceCode/Java/Graphs/Dijkstra.java

40

i. It updates the distance D[j] of neighbor j if the path from i is shorter than what
is currently in D. The algorithm simply chooses the best neighbor at each vertex and
updates the shortest paths for the neighbors of that neighbor.

IR3 is addressed in Listing 3 on lines 5, 7, 19 and 23, which check different
acceptance criteria.

Line 5 is always executed unless the graph has no edges.
Line 7 has a condition which is true when there are several unvisited vertices, and

the distance of the first one of them (in the vertex indexing order) is not smallest.
In a larger perspective, there are three important cases: (i) minVertex returns the
first vertex; (ii) there is only one valid choice in minVertex; (iii) there are several
valid choices in minVertex. Case (i) happens when all the vertices are visited; this
happens at the last iteration of the main loop on lines 16–26. Note that in the VAS
exercise the student does not need to perform the iterations in minVertex but just
choose a vertex if applicable.

Line 19 implies the graph should have at least one vertex which is unreachable
from the initial vertex.

Line 23 updates the distance of a vertex if the current path explored is shorter
than the previously seen one. This implies that there should be at least two distinct
vertices, v1 and v2, in the graph such that when Dijkstra’s algorithm is begun from
v0, there are two different paths from v0 to v1, and also two different paths from
v0 to v1. In the case of v1 the distance array D is updated, but in the case of v2 the
distance array is not updated. This means that the connected component of the
graph including v0 should have at least x + 1 edges when there are x vertices, thus
at least two loops.

1. At some point of algorithm, there is unique choice for closest unvisited vertex.

2. At some point of algorithm, there are multiple equal choices for closest unvisited
vertex.

3. There is at least one vertex which is unreachable from the initial vertex v0.

4. There is a vertex u such that there are at least two different paths, p1 and p2,
such that both lead from v0 to u, p1 is explored before p2, and p2 has lower
weight than p1.

5. There is a vertex u such that there are at least two different paths, p1 and p2,
such that both lead from v0 to u, p1 is explored before p2, and p2 has equal or
greater weight than p1.

41

Listing 4: Input generation in Dijkstra’s algorithm exercise
18 graph = jsav.ds.graph ({
19 width: 400,
20 height : 400,
21 layout : " automatic ",
22 directed : false
23 });
24 graphUtils . generate (graph , { weighted : true });

Listing 4 from OpenDSA11 shows that the exercise actually calls the graphUtils.js
module of the OpenDSA to generate a graph. The generate function on line 24
maps to function generateGraph in Listing 5 from OpenDSA12. Lines 65–67 show
the default parameters: 7 vertices and 10 edges. On lines 77–79, each vertex is
labeled with letters A, B, C, The function calls another function in the same
file, generateRandomEdges, to generate the edges. This is shown in Listing 6 from
OpenDSA13.

Listing 5: Random graph generation in OpenDSA (1/2)
63 function generateGraph (graph , options) {
64 var defaultOptions = {
65 weighted : false ,
66 nodes: 7, // number of nodes
67 edges: 10 // number of edges
68 };
69 var opts = $. extend (defaultOptions , options),
70 weighted = opts.weighted ,
71 nNodes = opts.nodes ,
72 nEdges = opts.edges ,
73 nodes = new Array(nNodes),
74 edges ,
75 i;
76
77 // Generate the node values
78 for (i = 0; i < nNodes ; i++) {
79 nodes[i] = String . fromCharCode (i + 65);
80 }
81 // Generate edges
82 edges = generateRandomEdges (nNodes , nEdges , weighted);
83 // Add the nodes to the graph
84 for (i = 0; i < nNodes ; i++) {
85 graph. addNode (nodes[i]);
86 }
87 // Add the edges to the graph
88 for (i = 0; i < nEdges ; i++) {

11https://github.com/OpenDSA/OpenDSA/blob/master/AV/Graph/DijkstraPE.js
12https://github.com/OpenDSA/OpenDSA/blob/master/AV/Development/graphUtils.js
13Also from graphUtils.js. Both URLs were visited on 04/25/2020.

https://github.com/OpenDSA/OpenDSA/blob/master/AV/Graph/DijkstraPE.js
https://github.com/OpenDSA/OpenDSA/blob/master/AV/Development/graphUtils.js

42

89 var gNodes = graph.nodes (),
90 start = gNodes [edges[i]. startIndex],
91 end = gNodes [edges[i]. endIndex],
92 eOpts = edges[i]. weight ?

{ weight : edges[i]. weight } : {};
93
94 graph. addEdge (start , end , eOpts);
95 }
96 }

Listing 6: Random graph generation in OpenDSA (2/2)
4 function generateRandomEdges (nNodes , nEdges , weighted) {
5 var edges = new Array(nEdges),
6 adjacencyMatrix ,
7 index1 ,
8 index2 ,
9 i, j;
10
11 // Utility funciton to check whether the edge already

exists
12 function isEligibleEdge (startIndex , endIndex) {
13 if ((startIndex === endIndex) ||
14 (adjacencyMatrix [startIndex][endIndex] === 1) ||
15 (adjacencyMatrix [endIndex][startIndex] === 1)) {
16 return false;
17 }
18 return true;
19 }
20
21 // Create the adjacencyMatrix
22 adjacencyMatrix = new Array(nNodes);
23 for (i = 0; i < nNodes ; i++) {
24 adjacencyMatrix [i] = new Array(nNodes);
25 }
26 // Initialize the adjacency matrix
27 for (i = 0; i < nNodes ; i++) {
28 for (j = 0; j < nNodes ; j++) {
29 adjacencyMatrix [i][j] = 0;
30 }
31 }
32 for (i = 0; i < nEdges ; i++) {
33 do {
34 index1 = Math.floor ((Math. random () * nNodes));
35 index2 = Math.floor ((Math. random () * nNodes));
36 } while (! isEligibleEdge (index1 , index2));
37 edges[i] = {
38 startIndex : index1 ,

43

39 endIndex : index2
40 };
41 if (weighted) {
42 edges[i]. weight = 1 + Math.floor(

(Math. random () * 9));
43 }
44 // add the edge to the matrix
45 adjacencyMatrix [index1][index2] = 1;
46 // adjacencyMatrix [index2][index1] = 1;
47 }
48
49 return edges;
50 }

The loop on line 32 in Listing 6 adds exactly nEdges edges to the graph. Lines
34–35 and function isEligibleEdge on lines 12–19 define the conditions for creating
each edge:

1. Start and end vertices of the edge are chosen randomly and independently.

2. Each vertex has equal probability to be chosen.

3. Start and end vertices must be different.

4. There can be only one edge from vertex u to vertex v.

5. If there is edge from u to v, there cannot be an edge from v to u.

It is known that the spanning tree of a undirected graph with only one connected
component has |V | − 1 edges; it takes that amount of edges to connect |V | vertices.
Then, if Listing 6 has already created |V | − 1 edges and they connect all the |V |
vertices, adding randomly nEdges−(|V |−1) more edges creates [1, nEdges−(|V |−1)]
loops.

Clearly the proposed IR3 requirements for Dijkstra’s algorithm are not guaranteed.
The random graph generation conflicts with the requirements. For example, the
subrequirement ”There is at least one vertex which is unreachable from the initial
vertex v0” is currently fulfilled at probability of 0.03 based on 100 generation of
exercise instances. Therefore this exercise does not meet IR3.

3.3 Reproducibility of JSAV exercise recordings
This subsection studies RQ6: Is it possible to construct a ”player application” for
the current submissions of JSAV exercises?

To be able to construct a player application for the current, JSAV-based VAS
exercise recordings on the Aalto University DSA course, the data of the actual exercise
recordings must be inspected. The exercise recording must meet two requirements
in order to support replaying the student’s actions. These requirements are equal
for manual analysis and automatic detection of misconceptions. The Reproducibility
Requirements (RR) are:

44

• RR1. The input must be included in the recording, or a unique, unambiguous
input can be deduced from the steps in the recording.

• RR2. All the steps in the recording must have a unique, unambiguous inter-
pretation on student’s choices such that it is clear on which step the student’s
steps begin to differ from the execution path of the correct algorithm.

The same subset of JSAV-based VAS exercises is used here than in Section 3.2.

3.3.1 Evaluating postfix expression

The following describes the exercise recordings from years 2016–2019 on the Aalto
University DSA course. The recording of this exercise consists of the states of
the output array. The initial input is not given, therefore the exercise fails RR1.
The exercise also fails RR2, as it is not indicated which particular left and right
parentheses in the input are processed at which steps. Therefore the submissions to
the Evaluating postfix expression exercise are not currently reproducible.

3.3.2 Quicksort

The recording of this exercise consists of the states of the array to be sorted. The initial
input is given as the first state, therefore RR1 is satisfied. The swap operations can
be reconstructed by comparing pairwise states. This alone would be enough to meet
RR2. Moreover, the recording has the same color coding as the GUI of the exercise:
pivot, active area for current recursive call, and inactive areas, both processed and
unprocessed are shown. Therefore all student’s actions can be reproduced, and the
exercise is reproducible.

3.3.3 Build-heap

The Build-heap exercise records the binary heaps as an array, and at each step, the
whole array is recorded. Listing 7 shows an example step. The first step shows the
array before any swaps have been performed, and therefore the first step is the actual
input. Therefore the exercise satisfies RR1.

Listing 7: Example step of a JSON recording of the Build-heap exercise.
{

"ind ": [{"v":43} , {"v":55} , {"v":64} , {"v":65} , {"v":26} ,
{"v":48} , {"v":41} ,{"v":55} ,
{"v":54 ," cls ":[" jsavhighlight "]}, {"v":41}

],
"style" : " height : 60px; width: 301 px;",
" classes " : [" jsavcenter "]

},

Otherwise it seems that the recording presents a single swap in two adjacent
steps. In the first step of a swap, the lower element involving the swap has additional

45

attribute cls having value jsavhighlight. In the second step of the swap, there
is no highlight, but comparing the values of the array to the previous step, the
previously highlighted element and its parent have been swapped. The final state in
the recording shows the output of the algorithm.

The swap operation is at only one location in the Build-heap algorithm (see
Algorithm 3). Furthermore, we know that the subalgorithm Min-Heapify works
recursively in a top-down manner. Every time we see a swap that involves a lower
array index than what was previously encountered, we know that a new round in
the main loop of Build-Min-Heap has begun. Clearly Build-Heap also satisfies
RR2, and therefore it is reproducible.

3.3.4 Dijkstra’s algorithm

Listing 8 shows a step of a recording of the Dijkstra’s algorithm exercise. Field n
defines seven vertices labeled as A . . . G. The subfield n.css contains CSS code
which defines the absolute coordinates of the vertex in the graphical layout of the
graph. Field e defines edges. Each entry has indices of start and end vertices and
then additional information on the edge. The path field defines the start and end
coordinates of the edge in the graphical layout. Field w defines the weight of the
edge, which is a positive integer. Thus every step records both the graph and its
layout entirely. This also confirms that RR1 is satisfied for Dijkstra’s algorithm
JSAV exercise.

Listing 8: An example step of a recording of the Dijkstra’s algorithm exercise.
{

"n": [{
"v": "A",
"cls ": [" marked "],
"css ": " position : absolute ; left: 218.611 px; top: 306 px;"

}, ... {
"v": "G",
"css ": " position : absolute ; left: 0px; top: 0px;"

}],
"e": [

[0, 2, { "a": { "fill ": "none",
" stroke ": "#000" ,
"path ": [["M", 235, 307] , ["L", 193, 163]],
"width ": 400,
" height ": 400,
" opacity ": 1

},
"l": "4",
"w": 4

}],
[1, 4, { ... "w": 9}], [2, 1, { ... "w": 6}],
[2, 4, { ... "w": 7}], [3, 2, { ... "w": 7}],
[4, 3, { ... "w": 3}], [5, 2, { ... "w": 6}],

46

[5, 0, { ... "w": 6}], [5, 3, { ... "w": 1}],
[6, 2, { ... "w": 7}]

]
}

Attribute "cls": ["marked"] is added to some vertices in the further steps of
the recording. Otherwise the steps are identical. The ”marked” attribute indicates
whether the vertex is marked as visited. This is similar to the line 18 in Listing 3.
Therefore the recording lists the order in which the next-closest vertices are added
into the single-source shortest paths spanning tree. Moreover, incorrect submissions
also have edges with the ”marked” attribute if both of the vertices of the edge were
visited or unvisited. Based on this property, the Dijkstra’s algorithm exercise is
reproducible.

3.4 Improved graph algorithm exercises
This subsection provides a practical demonstration on how to improve the miscon-
ception awareness of a VAS exercise. Therefore it is a continuation of Section 3.2.

The software related to the VAS exercise Dijkstra’s algorithm is further developed
to meet IR3. The original need for this work was to correct a bug in the exercise.
However, as the bug could be corrected by writing a new algorithm which both
generates the input and decides the graph layout, the algorithm was written to
fulfill IR3. Thus the description of this practical software development work was
also included in this thesis. The solution was also directly applicable to the Prim’s
algorithm and Kruskal’s algorithm exercises.

This subsection discusses three types of algorithms: elementary graph algorithms,
input generator algorithms for VAS exercises, and algorithms which create visual
representations of graphs. The first paragraph gives a brief introduction to principles
of visualising graphs. Then the discussion continues on OpenDSA exercises featuring
elementary graph algorithms. It is shown that these exercises often produce low-
quality visualisations. Finally, the subsection proposes an improvement on the
exercises based on principles of graph visualisation.

Graph drawing is methods and algorithms which automatically generate a visual
representation of graph data for human analysis. Thus graph drawing is an inter-
secting field of algorithmics and information visualisation. Typically graph drawing
methods produce a two-dimensional, static diagram of the data where vertices (nodes)
are circles and edges are line segments connecting the nodes. Examples of these graph
visualisations are shown in Figure 8. A graph layout algorithm computes coordinates
for the vertices and routing for the edges. To maximise visual readability for humans,
a layout algorithm tries to meet aesthetic requirements. Typical requirements are:
showing symmetry, avoiding crossing lines, maximising angles in crossings, and
minimising the drawing area. One well-known example is the force-directed layout
algorithm which uses physical simulation: nodes are modelled as repelling, opposite
charges to each other, while the edges are modelled as springs which try to maintain
an optimal length. The locations of the edges will stabilise after sufficient number
of iterations. [4, 10, 47, 50, pp. 7–9] If the graph is relatively small (low number of

47

(a) Dijkstra’s and Prim’s algorithms (b) Kruskal’s algorithm

Figure 8: The graph algorithm VAS exercises with the original input generator and
layout algorithm.

vertices) and is relatively sparse (low edge-vertex ratio), one can expect that the
force-directed layout has no crossing edges.

OpenDSA has three VAS exercises on graph algorithms that have problems with
showing the graph data structure visually: Dijkstra’s algorithm, Prim’s algorithm,
and Kruskal’s algorithm. Dijkstra’s algorithm was already discussed in Section 3.2.4.
For reference, Prim’s and Kruskal’s algorithms are described in Cormen et al. [6, p.
631–636]. The program code implementing these exercises is in the files PrimAVPE.*,
DijkstraPE.*, and KruskalPE.* in the OpenDSA14. Essentially, the VAS exercises
of all these algorithms feature an undirected graph with positive integer weights.

Figure 8 shows examples of initial situations of these exercises. Depending on
the exercise, the student must either click on the nodes or on the edges to simulate
the algorithm. Dijkstra’s and Prim’s algorithm exercises have seven (7) nodes and
ten (10) edges. Kruskal’s algorithm exercise has six (6) nodes and twelve (12) edges.
The graph is generated randomly and then a force-directed layout algorithm is used
to compute the locations of the nodes on the screen. The input generator algorithm
is in the file graphUtils.js15. The graph layout algorithm is in the JSAV library16

under the comment Graph layout algorithm based on Graph Dracula.
The graph layouts tend to have overlapping elements. Edges (B, F) and (D, G)

in Figure 8 (a) are one example. These two edges have overlapping weight labels ”7”
and ”3”. It is hard to determine which label belongs to which edge. Figure 8 (b) hows
how node C overlaps with the weight label ”4” edge (D, E). Also the visual labels
”5” and ’7” of edges (B, C) and (A, D) is confusing. There are also situations where
two nodes have distance of less than two node diameters from each other. Then
it becomes hard to read or interact with the edge between them. The probability
that the layout is ”problematic” is 40% for Prim’s and Dijkstra’s algorithm exercises,

14https://github.com/OpenDSA/OpenDSA/blob/master/AV/Graph/. Visited on 09/25/2020.
15https://github.com/OpenDSA/OpenDSA/blob/master/AV/graphUtils.js.
16https://github.com/vkaravir/JSAV/blob/master/src/graph.js. Both URLs were visited

on 09/25/2020.

https://github.com/OpenDSA/OpenDSA/blob/master/AV/Graph/
https://github.com/OpenDSA/OpenDSA/blob/master/AV/graphUtils.js
https://github.com/vkaravir/JSAV/blob/master/src/graph.js

48

and 50% for Kruskal’s algorithm exercise, based on visual inspection of 100 sample
layouts. Clearly the aesthetic requirements for graph drawing are not often met.

There are several causes of overlap. First, force-directed layout algorithm in JSAV
does only consider overlap of vertices, not edges and edge weight labels. Second,
Kruskal’s algorithm exercise has dense, random graph, which additionally increases
overlap. One solution is to modify the algorithm by adding repulsive forces between
all pairs of edge labels and nodes. Symmetric graph elements can still cause crossing
diagonals. The vertex quartet (B, D, F, G) in Figure 8 (a) is an example of this.

Instead of modifying the force-directed layout algorithm, a new graph gen-
erator with static layout was written. The updated source code for the exer-
cises is published in [49], particularly in the files AV/Development/graphUtils.js,
AV/Graph/DijkstraPE.*, AV/Graph/KruskalPE.*, and AV/Graph/PrimPE.*.

The new input generator produces a planar graph with no crossing edges and
vertices placed on a rectangular grid. The basis of the graph is shown in Figure 9 (a):
there are 15 nodes and the set of candidate edges: each rectangle has four edges and
two diagonal edges. Diagonal edges in the same rectangle are mutually exclusive,
and when the set of candidate edges is created, one of the two diagonals is chosen
randomly for each rectangle. Function candidateEdges() in graphUtils.js creates
the candidate grid.

The generator algorithm continues by assigning vertices into two connected
components; see function verticesToComponents() in graphUtils.js. Component C1
has 12 vertices while C2 has 3 vertices. First all vertices are initialised to C1, then a
random vertex is chosen from the rightmost column in Figure 8 (a), and finally a
random depth-first search is run from it on the candidate edge graph with depth limit
of 2, until total 3 vertices have been visited. After vertices are assigned to components,
the edges in the candidate grid that lead from one component to the other, are
filtered out and the rest of the edges are assigned to either component: E1 for C1
and E2 for C2. For reference, see function edgesToComponents() in graphUtils.js.
Finally, 12 edges from E1 and 2 edges from E2 are chosen randomly, and the weights
for each edge is chosen randomly and independently.

The grid-based approach which creates a planar graph with two components is
already a step forward to meet the input requirements, but the random graph that is
obtained is still validated. File DijkstraPE.js has a validator function testDijkstra()
which checks the IR3 as discussed in Section3.2.4. In practise, the Dijkstra’s algorithm
is run on the input and statistics for each essential feature of the algorithm is counted.
Input generation is repeated until all the requirements are met or 100 repeations
have passed. In the latter case the random graph that met most requirements is
selected.

The result of improved Dijkstra’s VAS exercise is shown in Figure 9 (b). The
colors and line width of the edges in the exercise are altered to have higher contrast
between the edge and its weight label for both explored and unexplored edges. The
visualisation has also been tested for color vision deficiencies with Coblis Color
Blindness Simulator [51].

Kruskal’s algorithm exercise has the same generator algorithm as Dijkstra’s
algorithm exercise, but with one connected component having |V | = 11 vertices

49

(a) Candidate edges. (b) Example graph.

Figure 9: The improved Dijkstra’s algorithm VAS exercise.

and |E| = 14 edges. No specific validator function is used. Regarding IR3, this is
enough to activate all essential features of the algorithm. The number of connected
components does not affect the execution of Kruskal’s algorithm; it is only essential
that the initial graph has more edges than what is required for the minimum spanning
tree (or forest). The edges are given random integer weights from range [1, 9], and
the student is instructed to choose an edge with lowest alphabetic vertex label, when
there are multiple equal choices.

Prim’s algorithm is almost identical to Dijkstra’s algorithm with the exception
that distance of an unvisited vertex is computed from the nearest visited neighbor,
not from the shortest path of the start vertex. Therefore the essential features of
Prim’s algorithm are the same as Dijkstra’s algorithm. The random input in Prim’s
algorithm VAS exercise is generated with the same parameters as in the Dijkstra’s
algorithm VAS exercise. The input is validated with Prim’s algorithm in function
testPrim() in the file PrimPE.js.

50

3.5 Input generation by random search

Algorithm 4 Brute-force misconception aware input generation for VAS
1: procedure Generate-VAS-input-BF(exercise, Algorithms, length, maxT)
2: bestInput← ε
3: bestUniqueness← 0
4: t← 0
5: repeat
6: Sequences← ∅
7: input← Random-Input(exercise, length)
8: for a ∈ Algorithms do
9: Sequences← Sequences ∪ a(input)

10: end for
11: if |Sequences| > bestUniqueness then
12: bestInput← input
13: bestUniqueness← |Sequences|
14: end if
15: t← t + 1
16: until |Sequences| = |Algorithms| or t = maxT
17: return bestInput
18: end procedure

Algorithm 4 shows a proposal for a brute-force approach of misconception aware input
generation. A random input is generated and then validated against the requirements
IR3–IR5. If it does not pass the requirements, a new random input is generated.

Input parameters are the following. Parameter exercise specifies the type of
exercise as in, for example, Table 13 in Appendix A. It is just an identifier value
for the exercise. Parameter length denotes the length of the input. Its semantics
depend on the type of the exercise. It is a length of an array for example, sorting
and binary heap. For graph algorithm exercises the length of an input could be a set
of parameters, like the number of vertices and edges. Parameter Algorithms is a set
containing both the correct algorithm and the known AMMs for the exercise. When
an algorithm from this set is run, its output is the execution sequence (program
trace) of that algorithm with the given input. Parameter maxT > 0 ∈ Z is the
number of iterations in the random search. The generation algorithm tries at most
maxT times to generate a random input with which all the Algorithms produce a
different sequence.

The subprocedure Random-Input generates a random input with the given
parameter length. It tries to fulfill IR3 for the given exercise. By default, it is
assumed that Random-Input always returns an input regardless of whether IR3
could be fulfilled with given length.

The algorithm works as follows. Variable bestInput, initially the empty string,
stores the best random input generated thus far. Its goodness is depicted by vari-
able bestUniqueness ≥ 0 ∈ Z: how many different sequences the current value of

51

bestInput produces when all algorithms in Algorithms are run with that input. One
trial on an input is simple. Generate a random input candidate on line 7. Run this
input on each given algorithm on lines 8–13. If some algorithm generated a different
sequence than what was previously seen, store this sequence into set of Sequences.
Lines 14–17 update bestInput and bestUniqueness if a new record in number of
different sequences was hit.

The algorithm ends successfully when there is an input that produces unique
sequence for all given algorithms. In this case, IR4 and IR5 are fulfilled. Alternatively,
maxT trials was reached, and IR4, IR5, or both have failed. However, the algorithm
always returns the best candidate stored in bestInput.

The algorithm is a randomised algorithm: it makes random choices during
execution, and this also affects the running time and the output. By default, it
is assumed that maxT has a finite value. This is the Monte Carlo version of the
algorithm: the running time is fixed, but the output may be incorrect at some
probability. Correspondingly, the Las Vegas version is the one where maxT →∞:
the output is always correct but the running time varies. [29, p. 9] Incorrectness in
this case means that the input does not fulfill IR3, IR4, or IR5. The optimal value
for maxT , whether being finite or infinite, should be studied empirically. Also note
that the algorithm could be modified to prefer IR4 over IR5, if both of then cannot
be fulfilled.

Input generation by algorithm Generate-VAS-input-BF is easy from pro-
grammer’s view, but it has unclear computational complexity. Hypothetically the
practical running time grows by size of set Algorithms. However, longer input length
offers larger solution space, and therefore finding an longer input which produces
different sequence with each algorithm might require less trials. As this is a random
search of a large input space, a second terminating condition maxT must be set to
ensure that input generation for a single exercise instance does not take too long.

52

4 Empirical methods and data
This section discusses empirical methods and data for the research question RQ7:
Which AMMs for the VAS exercises have matches in the submission data? The scope
is narrowed to the Build-heap VAS exercise. Subsection 4.1 discusses the importance
of replication. Subsections 4.2–4.4 describe methods of several replicated studies.
Subsection 4.5 describes tools that were developed for the empirical study.

4.1 Replication as a scientific method
A replicated study is a scientific experiment where an experimental procedure of a
prior study has been repeated. The purpose of a replicated study is to either confirm
or disconfirm the hypotheses of an earlier study. Therefore replication is a basic
principle of the scientific method. [13, 40]

Replication has several specific functions [13, 40]:

• Control the sample error: if only a subset of subjects (people, other biological
bodies, or inanimate objects) were randomly chosen for the experiment, the
random choice affects the results.

• Control for fraud or artifacts: it is possible that the researchers have had an
effect on the results when doing an experiment, and this might be either on
purpose or by unconsciousness. For example, different researcher or different
laboratory setting might affect the results. Regarding computing education
research, demographics, classroom climate (teachers, students’ mood), and
culture of the school affect results.

• To generalise the results for a larger or different population.

• To confirm the hypothesis of the earlier study using a different method. For
example, the Avogadro number in chemistry has been verified with different
experimental approaches such as X-ray diffraction and electrolysis.

Schmidt [40] defines two categories of replication studies which have widely been
used. A direct replication is a study which uses the same sampling techniques and
experiments than the prior study. A conceptual replication uses different methodology,
but still aims to confirm the same hypothesis.

The current need of replication in computing education research is high. The
amount of replication studies in computing education seems to be only 2–3% on
years 2009–2018, when concerning articles that explicitly discuss replication. [13]
This thesis aims to perform both a direct replication and a conceptual replication.

4.2 Direct replication of the Build-heap studies
The first part of answering RQ7 is the direct replication of studies [19] and [43]. The
purpose of this part is to experiment with a different dataset to confirm the earlier
results. This would support the hypothesis on the existence of specific, misconceived

53

algorithms for Build-heap similar to Karavirta, Korhonen, and Seppälä [19] that
performed a conceptual replication of Seppälä, Malmi, and Korhonen [43].

The data for the current experiment contains the Build-heap submissions from
years 2016–2019 with total of N = 1430 submissions. Both in this experiment and
the earlier study by Karavirta et al. the data consists of exercise recordings from a
JSAV-based Build-Heap VAS exercise on a Data Structures and Algorithms course,
intended to be taken at undergraduate level at Aalto University. Section 3.2.3 shows
the essential Algorithm 3.

Table 6: Differences with Build-heap misconception studies.

Study Data from VAS software Heap Submissions
years size

Seppälä et al. [43] 2005 TRAKLA2 15 884
Karavirta et al. [19] 2012 JSAV 10 373
This thesis 2016–2019 JSAV 10 1430

The differences with the studies are shown in Table 6. There are several variables
changed between [43] and [19]: the VAS software, the heap size, and sample size.
However, the same Java-based implementations of AMMs and the submission classifier
were used in [43] and [19]. The software has been re-implemented in this study. The
sample size is also larger.

AMMs similar to the study of Karavirta et al. [19] are implemented in the
Misconception matcher. The following AMM descriptions are from the article.

Heapify-with-Father This misconceived algorithm does (possibly two) swaps with
the father node, if necessary. This is easy to recognize by the swaps the student
does in case both children are smaller than the father. Typically, first the left
child is swapped and if it is smaller than the right child, a new swap follows.
The correct algorithm does at most only one swap.

Left-to-Right In this misconceived algorithm, the iterative heapify goes through
each level of the binary tree from left to right, and, after reaching the rightmost
node, moves one level up.

No-Recursion The recursive step at the end of the algorithm is missing, resulting
in a violation of the heap-order property in some cases (i.e., in case a swap
occurs, and there should be a new swap somewhere below the node).

Single-Skip In this variant, the student follows the correct solution, but a single
step is missing.

Top-Down This is a misconceived algorithm that applies Min-Heapify for all nodes
starting from the root node.

Delayed-Recursion This is a misconception related to No-Recursion in which the
student later realizes that the heap-order property is not satisfied, and then
returns to fix the property to hold again.

54

Smallest-Instantly-Up This is a misconceived algorithm in which the tree is
traversed in level order, swapping the traversed key with the smallest key found
in the subtree rooted at the node being traversed.

Maximum-Heap The student builds a maximum heap algorithm instead of a
minimum heap.

Wrong-Duplicate This misconception, in order to be revealed, requires that the
input data contains two equal keys in such a way that they appear as left and
right child for a single parent node that needs to be swapped. While the correct
algorithm swaps the the left child in this case, the Wrong-Duplicate version
swaps the right child.

Other This category includes several other misconceived algorithms and combina-
tions of these (i.e., Smallest-Instantly-Up done in Right-to-Left order) that
only catch a couple of student solution instances. [19, p. 63]

In this study, no source code for AMMs was available, and therefore some
interpretation is required. Seppälä et al. [43, p. 249] do not discuss the order of
children in Heapify-with-Father, but mention that this variant results in a valid
heap ”if executed recursively”. Therefore all subvariants of Heapify-with-Father are
considered relevant: both ”left child first” and ”right child first”, and both recursive
and nonrecursive versions. However, the order of comparison for children is assumed
constant.

The Other category was only described to include the ”Smallest-Instantly-Up
done in Right-to-Left order” [19, p. 63], which was interpreted as the Build-heap
main loop variant (0,2,1,4,3). See Section 5.2 for elaborate discussion on the main
loop variants. Seppälä et al. [43, p. 251] included the Left-to-Right AMM in the
Other category, but in Karavirta et al. [19] and this thesis it has its own category.

Table 7: Main submission classes in [43] and [19].

Algorithm Finished Unfinished
Correct A –
Misconceived B C
Unknown – D

The similarity between the student’s sequence and each AMM is computed
following Algorithm 2. The student’s sequence is classified into one of the four main
categories in Table 7 as follows. First, if the student’s sequence matches perfectly
to the correct solution, it is labeled as class A (Correct, Finished). Second, if there
is a perfect match with sequence of an AMM, the submission is labeled as class
B (Misconceived, Finished). Third, if no perfect match with any AMM was found
and the sequence of some AMM matches at least two steps further than the correct
algorithm, choose class C (Misconceived, Unfinished). Finally, if any of the previous
rules do not apply, choose class D (Unknown, Unfinished). If there are equally well
matching AMMs after choosing class B or C, choose the first applicable AMM in the

55

following order: Wrong-Duplicate, Heapify-with-Father, Left-to-Right, No-Recursion,
Single-Skip, Top-Down, Delayed-Recursion, Smallest-Instantly-Up, and Other [43, 19].
Note that the Maximum-Heap AMM was not mentioned in the preference list, which
means this AMM is not chosen if there are multiple equally matching algorithm
AMMs.

The Single-Skip AMM produces several candidate sequences with the same input
[43, p. 250]. Single-Skip is implemented in this thesis such that first the correct Build-
Min-Heap algorithm is run on the input, and the sequence of swaps is stored with
information on which of the swaps are recursive: their cause is in Algorithm 3 when
Min-Heapify calls itself. Then a Single-Skip sequence generator algorithm produces
k sequences: the correct sequence has k swaps, and each Single-Skip sequence has
one of these swaps omitted. Additionally, the recursive swaps immediately following
the omitted swap are omitted, and the sequence continues from the next nonrecursive
swap. All of the resulting Single-Skip sequences are matched against student’s
sequence with Algorithm 2, and the highest score is stored as the similarity value for
Single-Skip.

The Delayed-Recursion AMM also produces several candidate sequences. There
are two variants: the first one executes recursive swaps after each level of the binary
tree representation, and the second one executes all recursive swaps in the end of the
algorithm. However, the research article by Seppälä et al. [43] offers possibility for
interpretation: there is no explicit statement that the relative order between recursive
swaps is constant. Implicitly, the number of subvariants for Delayed-Recursion is
reported to be ”two”, whereas the Single-Skip has ”variants”. [43, p. 250]. Karavirta
et al. [19, p. 63] redescribe Delayed-Recursion as the student ”fixing” the heap
property. To be realistic, these ”fixing” swaps can happen in an arbitrary order.
Allowing variance in the order of recursive swaps requires either creating a candidate
sequence for each permutation of the recursive swaps, or modifying Algorithm 5
such that it has a specific ”recursive mode” for matching consecutive recursive swaps
in arbitrary order. Therefore, in the replicated study executed in this thesis, the
Delayed-Recursion AMM produces exactly two candidate sequences as described
above. The recursive swaps are delayed by storing them into a First In, First Out
(FIFO) queue which is emptied between levels or in the end, depending on the
variant. These two candidate sequences of Delayed-Recursion are then matched
against student’s sequence with the same Algorithm 2 as the other AMMs.

4.3 Forming hypotheses for Build-heap misconceptions
Misconceptions of the Build-heap exercise, related to RQ7, were studied further
in a conceptual replication of the earlier studies [19, 43]. This section describes
manual analysis of Build-heap submissions. The purpose of manual analysis is
to (i) verify the existence of known misconceptions, (ii) to find hypotheses for
new misconceptions, and (iii) to establish a ground truth for evaluating machine
classification of misconceptions.

This thesis and the previous studies use a different process to form hypotheses
for AMMs. Seppälä et al. [43, p. 245] manually inspected submissions that could

56

not be explained with already known AMMs, wrote new hypothetical AMM for
each unexplained submission, and run the misconception classifier including the new
AMM. This process is iterative: each time a new hypothetical AMM is introduced, it
matches automatically to some submissions, and thus the set of unknown submissions
decreases.

This thesis uses a batch analysis process: first all submissions are analysed manu-
ally, then hypothetical AMMs are written, and finally the existence of hypothetical
AMMs are tested against the same data automatically. This exhaustive noniterative
procedure is used to counteract a hypothesis bias that could arise from building
hypotheses on hypotheses. In other words, this process ensures that even if the
sequence of AMM A matches perfectly to submission s, submission s can still be
analysed manually and there is possibility to form another hypothesis based on it.

The data here is the same as in the direct replication study with total N = 1430
submissions. First all of the year 2016 and 2018 submissions were reviewed. Then
the submissions from 2017 and 2019 which received less than 100% grade were
reviewed. The 2017 and 2019 which were graded automatically as correct were given
the ”correct” manual class based on assumption that they are either exactly correct
or have first the correct sequence and then some extra steps in the end.

Initially each submission was tried to be classified into one of the following seven
classes: either correct, inexplicable, or one of the five known AMMs described in
[43]: No-recursion, Heapify-with-Father, Delayed recursion, Left-to-right, or Smallest-
instantly-up.

Additional information was also recorded for hypothesis building. Some features
were also marked for submissions, meaning independent Boolean valued indicating
some property holding in the submission sequence. These features are: (i) Lesser-
down swaps: an erroneous swap with a parent node and its child node where the
parent is less than the child. (ii) Jump swaps: any swap that is not performed
with a parent node and its child. (iii) Correct but unfinished: correct steps from
the beginning, but the end of the sequence is missing. (iv) Slip or skip: some
swap is skipped or a single swap with wrong child was performed. Moreover, some
submissions were given a written description, such as ”indices of main loop could be
(3,4,1,2,0) with delayed recursion, but there are several skips or slips”, or ”Either
correct with a slip or Heapify-with-Father”.

The variance in AMMs seemed larger than what could be described with the
aforementioned categorisation. The correct Build-heap algorithm contains two parts:
the main loop iteration and the Heapify subprocedure. Therefore a hypothetical,
two-dimensional categorisation was formed where one variable is the main loop
variant and another variable is the Heapify variant. The results of this categorisation
is shown in section 5.2.

When there were several equally matching algorithm variant candidates for a
submission, the principle of Occam’s razor was used: choose the simplest possible
explanation. First, if a sequence contained single pair of steps where both of the
children were swapped with their parent node, it was interpreted as the correct
performance with a slip; a Heapify-with-Father decision was done only if there was
several Heapify-with-Father swap pairs. Second, there might be several traversal

57

orders for the main loop, if some nodes did not require swaps in the Heapify procedure.
The order of preference was Correct, Zigzag RL, Level RL, and other. This order was
decided by the frequency of main loop variants in the manual analysis of year 2018
submissions; this required two examination passes . Third, a No-Recursion variant
was chosen only if there were several recursive steps missing; otherwise the submission
was decided to be a correct submission with a skip. Fourth, if a submission could be
interpreted either as an AMM with several slips and skips, or as an unrecognised
submission where the student had just played with the exercise without further
understanding, it was labeled as the latter.

4.4 Machine classification of new Build-heap misconceptions
This subsection is the second part of the conceptual replication of Build-heap study,
and it still relates to RQ7.

The existence of hypothetical AMMs described in Section 5.2 is tested by imple-
menting them in the Misconception matcher. Also the fallback features are examined
in the following order: No-Swaps, Extra-Steps-After-Correct, Swaps-Resemble-Build-
heap, Nonsystematic-Build-heap, Legal-swaps, and Legal-swap-indices. The first
applying feature decides the correspondingly named fallback class for the submission.
If none of the features apply, the submission is classified as Unrecognised.

Testing properties No-Swaps, Extra-Steps-After-Correct and Nonsystematic-Build-
heap is trivial. The rules for properties Legal-swap-indices and Legal-swap can be
easily constructed from Algorithm 3.

Algorithm 5 Build-min-heap explainability of a swap sequence
1: procedure Swaps-Resemble-Build-Heap(swaps, heapSize)
2: if |swaps| < 2 then return False
3: swapIndex← 0
4: mainLoopIndex← ⌊heapSize/2⌋
5: previousChild← −1
6: for i = 0 . . . |swaps| − 1 do
7: swap← swaps[i]
8: if ⌊(swap.child− 1)/2⌋ ≠ swap.parent then return False
9: if previousChild ̸= swap.parent then

10: if parent ≥ mainLoopIndex then return False
11: mainLoopIndex← swap.parent
12: end if
13: previousChild← swap.child
14: end for
15: return True
16: end procedure

Algorithm 5 tests property Swaps-Resemble-Build-heap. Input heapSize ∈ Z+ is
the size of the heap array. Input swaps is a sequence of pairs (ai, bi), 0 ≤ i < |swaps|
such that each pair is a pair of indices in the heap array where the first index is less

58

than the second index: 0 ≤ ai < bi < heapSize. Line 8 tests the Legal-swap-indices
property. Line 9 tests whether the parent index of the current swap is the same
than the child index of the previous swap; if so, it is assumed that this is a recursive
swap in the Min-Heapify subprocedure. Otherwise it is assumed that the main
loop index in the Build-Min-Heap has decreased, and thus the parent index of the
current swap should be the new main loop index.

Finally, some statistics of the machine classification are studied: number of
recognised AMMs, frequencies of fallback classes, and the failure rates of IR4 and
IR5. This is done both for the Default classifier (conceptual replication study) and
the Test classifier (direct replication study). Because both of the classifiers have
conceptually similar classes, the mapping in Table 8 is used to facilitate comparison.

Table 8: Class mapping from Test classifier to Default classifier.

Main loop variant

Heapify variant C
or

re
ct

Zi
gz

ag
up

/R
L

Zi
gz

ag
up

/L
R

Le
ve

lL
R

To
p-

do
w

n

Zi
gz

ag
do

w
n/

LR

Zi
gz

ag
do

w
n/

R
L

In
or

de
r

Correct Correct Other Left-to-Right Top-down Other
No-recursion No-recursion
Delayed recursion Delayed-recursion
Heapify-with-father Heapify-with-father
(LR, LR recursive, Heapify-with-father
RL, RL recursive) Heapify-with-father

Heapify-with-father
Heapify-up Other
Max-heapify Maximum-heap
Wrong-duplicate Wrong-duplicate
Path-Bubblesort Other
Smallest-instantly-up Smallest-instantly-up

4.5 Software tools for misconception study
Several software applications were developed as tools for the empirical study. The
source code for these tools are available at the author’s GitHub account17.

JSAV downloader retrieves JSAV exercise submissions from the A+ LMS. It is
based on a similar Python script, which originally downloaded programming exercise
submissions from the A+ LMS. Each exercise instance is specified manually. The
exercise instance is a tuple (x, y), where x is the type of the exercise, such as Build-

17https://github.com/atilante/JSAV-tools/releases/tag/masterthesis

https://github.com/atilante/JSAV-tools/releases/tag/masterthesis

59

heap, y is the course instance, such as ”2016” for the respective year. Submissions
from each exercise instance are downloaded into their own JSON file.

JSAV inspector creates slideshows of exercise submissions. It runs in a web
browser as single, static web page, meaning that no server setup is needed. The
application is implemented in HTML5, CSS and JavaScript and it utilises the JSAV
library. Another choice of technologies could have been Python with PyQt for GUI18.
Choosing Python would mean that all software would be developed in Python, but
also that GUI with PyQt and algorithm slideshows with a vector graphics library
had to be developed. JSAV already support creating algorithm animations from
exercise recording, and therefore JavaScript was chosen. The JSAV inspector tool
can open a JSON file produced with the JSAV downloader and display students’
solutions to the Build-heap exercise.

Figure 10: A screenshot of the JSAV inspector

Figure 10 shows the graphical user interface of the JSAV inspector. The rectangle
at top displays information on the exercise recording file, here 2018.json: name of
the course, yearly instance, and exercise type. The submission selector below it
allows the user to choose a submission for further inspection. The selector shows the
submission identifier given by the A+ LMS and the relative, automatic score given
by the JSAV library; both of these are included in the recording and not computed

18https://wiki.python.org/moin/PyQt

60

by the JSAV inspector.
The rectangle at bottom in Figure 10 displays a slideshow of the exercise recording,

reconstructed by JSAV inspector and implemented with the JSAV library. The
slideshow features both the array and tree views similar to the student’s exercise
interface. JSAV inspector shows state 1 as the initial state with random input, and
for the Build-heap exercise, two steps for each swap: first a highlight step, where
elements which are swapped next are colored orange, and then the result step, which
shows the state of the heap after the swap.

The third tool is the JSAV matcher which compares the students’ solution
sequences against sequences produced by AMMs. The matcher software was imple-
mented in Python. A+ LMS already supports Python-based graders: a server-side
software that receives an exercise submission, assess it automatically and generates
feedback for students19. JSAV matcher is discussed in detail in Section 5.3.

19https://github.com/apluslms/grade-python. Visited on 04/26/2020.

https://github.com/apluslms/grade-python

61

5 Empirical results
This section describes the results for the research question RQ7: Which AMMs for
the VAS exercises have matches in the submission data? The structure of this section
corresponds to the structure of the previous section.

5.1 Direct replication of the Build-heap studies
This section discusses the replicated Build-heap misconception study following meth-
ods described in Section 4.2. The essential results are shown in Figure 11. The
corresponding numerical data can be found in Appendix B. The three main categories
of submissions are: 743 Correct (52.0%), 311 Misconceived (21.7%, both finished and
unfinished), and 376 Unknown (26.3%).

Figure 11: Replicated misconception study for Build-heap VAS exercise submissions.

The misconception categories have been changed between the studies [43] and

62

[19], using data from years 2005 and 2012, respectively. Left-to-Right is included in
”Other” category in 2005. AMMs Wrong-Duplicate, Top-Down and Maximum-Heap
were discovered in 2012, and the Missing State category was omitted at the same
time.

Generally, the same misconceptions still exist based on the statistics. The
frequency of the Correct category according to JSAV-matcher is 52.0%, while the
Build-Heap JSAV exercise give 100% automatic score to 53.7% of submissions. Of
finished variants, Heapify-with-Father seems to be the most steady misconception; its
frequency has lowest variance over the years. No-Recursion has lower frequency than
before. No Single-Skip sequences could be detected, although they have been one of
the most frequent variants. The yearly differences in the Other category suggest that
there have been several undescribed variants in the earlier studies. The frequency of
”Unknown” category is similar to earlier studies.

Detailed analysis of the classification provided some explanations. Section 2.7
discussed how the JSAV library and the JSAV-matcher have different similarity
algorithms. This causes minor differences in how the two algorithms recognise a
”correct” submission. All Finished Correct submissions received 100% automatic
score from the Build-Heap JSAV exercise, as it requires exact state-by-state match.
Meanwhile, JSAV gives 100% grade even if the student’s sequence as extra states
after otherwise correct performance, and this explains the additional 1.7% of 100%
exercise scores. JSAV-matcher labels 21 of 25 of these submissions as Unknown, two
as Heapify-with-Father and two as Left-to-Right.

A Single-Skip variant actually matches perfectly to 50 (3.5%) submissions from
years 2016–2019. However, 24 of them are labeled as Finished No-Recursion and 26
as Finished Heapify-with-Father. This means that for these submissions, the random
input have caused identical sequence for student’s sequence, No-Recursion, Heapify-
with-Father, and Single-Skip. Because Single-Skip has the lowest preference of them,
it will never be chosen. This is an example of failing IR5 related to Section 2.4.

Generally, input requirements IR4 and IR5 fail often. A misconception could
pass as the correct solution for 722 submissions (97.1% of correct ones). When the
solution is not correct (1430 − 743 = 687 cases), there are 101 cases for multiple,
equal misconceptions (7.06% of all submissions and 14.7% of incorrect ones).

Consecutive submission attempts eventually lead to success. First note that the
exercise had 2.01 submission attempts per student on average, and that the average
best score per student for 2016–2019 is 99.56 %. Figure 12 shows submission types
by each student’s consecutive submission attempt. The Main categories plot groups
submissions as follows. Correct denotes the exactly correct answer, Misconceptions
denote both finished and unfinished misconceived algorithms, and Unknown is the
same fallback category as before. Ten (10) submission attempts is the maximum to
receive points from the exercise.

The frequencies of specific misconceptions follow the same decay trend, and
due to this trend, only the overall most frequent misconceptions (Left-to-Right,
Heapify-with-Father, No-Recursion, Delayed Recursion) exist at submission attempts
4–12.

63

Figure 12: Build-heap submissions by student’s attempt for 2016–2019 data.

5.2 Forming hypotheses for Build-heap misconceptions
Table 9 shows new categories of misconceptions. This set of AMMs is called the
main loop variant hypothesis.

The proposed main loop variants are the following. The Correct main loop is the
decreasing for loop in Algorithm 3. In practise, when the size of the heap array in
the exercise is 10 and the corresponding indices are 0 . . . 9, the array index sequence
for the correct main loop is (4, 3, 2, 1, 0). Level LR and Top-down both iterate each
level from left to right, but in bottom-up and top-down order, respectively. The
Zigzag variants are especially new, and they represent iteration where even levels
are traversed from left to right and odd levels right to left, resulting in a ”zigzag”
pattern. The Inorder loop variant iterates the heap from left to right regardless of
the height of each node, which is the same as the inorder traversal of a binary tree.
See Appendix C for visual description of the variants.

64

Table 9: Manual classification of year 2016–2019 Build-heap submissions.

Main loop variant

Heapify variant C
or

re
ct

Zi
gz

ag
up

/R
L

Zi
gz

ag
up

/L
R

Le
ve

lL
R

To
p-

do
w

n

Zi
gz

ag
do

w
n/

LR

Zi
gz

ag
do

w
n/

R
L

In
or

de
r

Correct 927 68 14 26 4 – – 14
No-recursion 51 12 4 2 2 – – 3
Delayed recursion 24 3 1 3 – – – 1
Heapify-with-father LR 0 1 – – – – – –
Heapify-with-father LR recursive 1 3 – – – – – –
Heapify-with-father RL 5 1 – – – – – –
Heapify-with-father RL recursive 22 1 – 1 – – – –
Heapify-up 5 – – – – 1 1 –
Max-heapify 4 – – 1 – – – –
Wrong-duplicate 11 1 – – 1 – – 1
Path-Bubblesort 1 – – – – – – –
Smallest-instantly-up – – – – 1 – – –

Miscellaneous categories
Unrecognised 208

The Path-Bubblesort Heapify variant runs the Bubblesort sorting algorithm on
the path of nodes between the root node and a leaf node. However, the first step
is equal to the first step of Min-Heapify: only the lesser child is swapped with the
parent node, if necessary.

Some submissions that are neither correct or an AMM seem to have phenomena
which are called here as the fallback features. Each of the feature is binary: a
submission either has the feature or it does not have it. These features not included
in Table 9, but in the list below. Their existence is studied later in Sections 4.4 and
5.3.

No-Swaps A submission that does not have any swaps.

Extra-Steps-After-Correct The submission contains first the correct Build-min-
heap sequence, but there are extra swaps in the end. Typically the last Heapify
operation continues its swaps sequence until a leaf is encountered regardless of
whether this is correct.

Swaps-Resemble-Build-Heap The submission has parent-child swaps that repre-
sent a correct execution of the Build-heap algorithm, but not with the given
input. This kind of submissions are characterised by swaps where a lower pri-
ority element is swapped upwards, or several times the wrong child is swapped

65

with its parent. The student might have tried to imitate a model solution
which has a different input.

Nonsystematic-Build-heap The submission produces a valid minimum heap with
parent-child swaps, but the sequence itself is not systematic.

Legal-swap-indices All swaps of the sequence have pair of indices (i, j) such that
j is child of i.

Legal-swaps All swaps of the sequence have pair of indices (i, j) such that j is child
of i. When the heap array is A, also A[j] < A[i], i.e. lower values are swapped
upwards.

5.3 Machine classification of new Build-heap misconceptions
The three main categories of submissions with the main loop hypothesis are: 743
Correct (52.0%), 242 Misconceived (16.9%, both finished and unfinished), and 445
Fallback, (31.1%, including Unknown). The details are shown in Table 10. It seems
that in general, both the main loop variants and the fallback features exist. The
misconceived submissions have two subcategories: 851 − 743 = 108 variants with
correct main loop, and 242− 108 = 134 variants with altered main loop. The amount
of algorithmically explained submissions (correct or misconception) is 845 (59.0%),
and the fallback features explain almost all other cases (445 − 2). Quantitatively,
the classifier is able to give some explanation for 99.9% of submissions.

Examination of Table 10 shows that the Delayed recursion Heapify variant and
the Zigzag top-down LR main loop variant seem absent. The main loop variants
exist mostly for Correct and No-recursion Heapify variants (total 109 submissions),
where as the main loop variants are rare (25 submissions) for other Heapify variants.

Detailed examination of the Delayed recursion variant shows that there were 93
cases where Delayed recursion was among best candidates, but the submission was
classified as other misconception. In these cases the final classes were main loop
variants of the correct algorithm: 48 Zigzag RL, 24 Level LR, 10 Inorder, 8 Zigzag
LR, and 3 Top-down. The 14 submissions which the previous classifier labeled as
Delayed recursion were classified mostly as Unrecognised.

Table 11 compares the classifiers: the current Test classifier and the Default
classifier of the direct replication study. The number of submissions classified as
misconceptions has decreased from 311 (16.9%) to 242 (21.7%). The Default classifier
recognises additional 124 submissions as misconception where the Test classifier
has given a fallback class. In the reverse situation, the Test classifier explains 55
submissions that were unknown to the Default classifier. Thus the both classifiers
agreed that a submission is an AMM in 187 cases.

Figure 13 shows misconception category differences with the machine classifiers
after the classification result of the Test classifier has been mapped to the classes that
the Default classifier uses, following Table 8. AMMs Heapify-with-Father, Left-to-
Right, and No-Recursion have highest frequentices with both classifiers still after the
mapping. The increase in No-Recursion and Other categories support the explanation

66

Table 10: Machine classification of Build-heap submissions with the main loop variant
hypothesis.

Main loop variant

Heapify variant C
or

re
ct

Zi
gz

ag
up

/R
L

Zi
gz

ag
up

/L
R

Le
ve

lL
R

To
p-

do
w

n

Zi
gz

ag
do

w
n/

LR

Zi
gz

ag
do

w
n/

R
L

In
or

de
r

sum
Correct 743 48 8 24 3 – – 10 836
No-recursion 51 9 2 3 1 – – 1 67
Delayed recursion – – – – – – – – –
Heapify-with-father LR 2 2 – – – – – 3 7
Heapify-with-father LR recursive 5 1 – – – – – 1 7
Heapify-with-father RL 3 1 – – – – 1 – 5
Heapify-with-father RL recursive 25 1 – – 1 – – – 27
Heapify-up 4 1 – 2 2 – 2 1 12
Max-heapify 4 – – 1 – – – – 5
Wrong-duplicate 7 – – – – – – – 7
Path-Bubblesort 7 – – 1 – – 1 2 11
Smallest-instantly-up – – – – 1 – – – 1
sum 851 63 10 31 8 0 4 18 985

Fallback categories
No-swaps 21
Extra-steps-after-correct 17
Swaps-Resemble-Build-heap 150
Nonsystematic-Build-heap 153
Legal-swaps 32
Legal-swap-indices 70
Unknown 2
sum 445

that the main loop variants of the Correct and No-Recursion Heapify variant have
boosted these categories.

Table 12 compares the human and test classifiers. As stated in the end of Section 9,
the manual classification did not include the fallback features. The classification
correctness, where the human and the test classifiers gave the exactly same class, is
899/1430 submissions (62.9%). Of these, the submissions labeled as correct (743)
received 100% agreement as expected. Interesingly, the rest of the 156 agreed
submissions are the AMMs. This means that if the test classifier recognises the
submission as an AMM, it agrees with the human on the exact variant at 156 of 189
cases (82.5%).

Regarding performance, the machine classification of 1430 submissions took 2.4

67

Table 11: Comparison of the default and the test classifiers.

Parameter Default Test Common
Hypothetical misconceptions 10 95 9
Fallback features 0 6 0
Result
Submission as correct 743 743 743
Submission as misconception 311 242 187
Submission as fallback feature 0 443 0
Submission as unknown 376 2 2
IR4 failures 722 (97%) 743 (100%) –
IR5 failures 101 (32%) 230 (95%) –
Submissions explained 1119 (78.3%) 1428 (99.9%) –

Figure 13: Differences in misconception recognition with the Default and Test
classifiers.

Table 12: Comparison of the human and the test classifiers.

Test classifier
Human Correct Misconception Fallback Unknown sum
Correct 743 29 155 0 927
Misconception 0 189 106 0 295
Unknown 0 24 182 2 208
sum 743 242 443 2 1430

seconds with single-threaded Python 3.5.2, Intel Core i5-7300U 2.60GHz CPU, and
16 GB of RAM. The classification time is thus 2 ms per submission, which looks
promising for using JSAV-matcher as a grader software in production environment.

68

6 Discussion
This section concludes the thesis. Section 6.1 lists the key contributions of the thesis.
Section 6.2 provides a reliability analysis of the methods and the results. Section 6.3
summarises the answers the research questions and provides explanations for the
results. Section 6.4 provides recommendations for future research.

6.1 Contributions
The research objectives defined in Section 1.2 were met for the Build-heap VAS
exercise. A web application was developed to replay students’ solutions to VAS
exercises. A Python application was developed to match AMMs to students’ solutions.
The empirical study confirmed results of the earlier studies [19, 43]. Moreover, the
main loop variant hypothesis and fallback features seem to explain 99% of the
Build-heap submissions.

The thesis also provided methodology on how to design VAS exercises that support
detection of misconceptions. Six input requirements were compiled from earlier
studies. Essential features of four algorithms were defined to improve corresponding
VAS exercises: Evaluating postfix expression, Quicksort, Build-heap, and Dijkstra’s
algorithm. There is a proposal for a randomised algorithm that generates high-quality
inputs for any VAS exercise.

Three JSAV-based exercises were improved: Dijkstra’s algorithm, Prim’s algo-
rithm, and Kruskal’s algorithm. Now these exercises force the student to apply all
the essential features of the corresponding algorithm. The graph layout in these
exercises is guaranteed to be easily visually readable according to aesthetic principles
of graph drawing.

A risk analysis showed that the most significant problems in a misconception
detecting VAS system are related to the input requirements. The risks can be
mitigated by input requirements, input length, and classifier design.

6.2 Evaluation
One source of error in the direct replication study of Build-heap in Section 4.2 are the
AMMs and the classifier which are written based on natural-language descriptions.
Some interpretation was required, and it is not sure whether the resulting software
is functionally exact to the one in the earlier studies.

Particularly the Algorithm 2 in Section 2.7 for sequence matching is a likely
cause for the inexistence of the Single-Skip Build-heap AMM in Section 5.1. As
discussed in that section, students’ sequences which could be classified as Single-Skip
are classified as No-Recursion or Heapify-with-Father instead. This happens because
Algorithm 2 continues to match a candidate sequence to student’s sequence even
when one state is missing. Appendix D discusses an alternative interpretation of the
original description: Algorithm 6.

Section 4.3 compares iterative and batch analysis processes for constructing
hypotheses for AMMs. Although hypotheses for new Build-heap misconceptions were

69

found in Section 5.2, it is not enough to claim that the batch analysis process is
always superior. Moreover, the known AMMs affect the hypothesis formulation for
new Build-heap misconceptions. The hypotheses would be different if several human
raters analysed the data independently and formed their own AMMs without prior
knowledge of misconceptions in the earlier studies.

The manual assignment of class codes in Section 5.2 has more conservative
interpretation of algorithm variants than the automatic classifier. One example is
a recording where only one Heapify-with-Father double-swap happened. This is
manually interpreted as the correct algorithm with a slip. However, in this case the
manual classifier may give higher match with the Heapify-with-father AMM than
the correct algorithm. This is one reason for classification errors. Another reason for
classification errors is that IR4 and IR5 fail, as was already shown in the replicated
study.

Moreover, manual classification in Section 5.2 cannot be reliably performed with
single person, as the person might have an unconscious tendency to prefer one
algorithm variant over another. In this thesis each submission was classified as the
first applying variant that was recognised; it was not considered which of the many
variants could apply. Due to failing input requirements and nearly 100 hypothetical
algorithm variants, refining the 2016–2019 Build-heap submissions into a reliable
test dataset using multiple human raters is a very laborious task.

One unknown factor in the Build-heap misconception hypothesis forming is the
graphical user interface of the exercise. Even when there is evidence for certain
solution patterns, some of them might be caused by difficulties using the VAS exercise
and not that the student had a faulty mental model. The Level LR main loop, which
is a mirror case of the correct main loop, could be a user difficulty with the GUI.

6.3 Discussion
Regarding RQ1, the only research on VAS exercise misconception are the articles
[19, 25, 42, 43].

Regarding RQ2, eleven (11) articles consider misconceptions in data structures
and algorithms. When VAS is excluded, these articles are [7, 9, 11, 12, 34, 35, 48,
53].

Regarding RQ3, VAS exercises can support detection of misconceptions by six
input requirements defined in Section 2.4. According to risk analysis in Section 3.1, the
length of input and classifier design also affect detection of misconceptions. Classifier
design was discussed in Section 4.2. Section 3.2 studied one input requirement for four
VAS exercises. Section 3.5 proposed a random search algorithm for input generation.
Section 2.5 discussed another input generation method based on symbolic execution.

RQ4 was answered in Section 3.1. The analysis showed that the student–VAS soft-
ware interaction risks can be mitigated. When an instructor forms a hypothesis
for a new AMM, the new AMM should explain submissions that are previously
unexplained. Moreover, there is need to validate AMMs by discussing with students.

Regarding RQ5, it was shown that input generation of the current VAS exercises
is not misconception aware compared to input requirements. This area needs large

70

amount of further research.
Regarding RQ6, constructing a player application for a JSAV-based exercise

currently requires separate work for each type of exercise. Moreover, not all exercises
produce recordings that support playback and analysis, and therefore not all exercise
recordings from years 2016–2019 are useful. Studying misconceptions in a JSAV
exercise requires both modifying the exercise recording code and writing a visual
player code at the worst case. Therefore, there is a need to develop the JSAV library,
and the related OpenDSA libraries, such that all JSAV exercises would automatically
record sufficient data for replay. This work includes deciding a general-purpose record
format, an algorithm animation language, such as Xaal [17]. The language must
support both manual and automatic analysis. The corresponding general-purpose
analysis software must also be developed. Giacomo Mariani’s Master’s Thesis will
contribute to this task [28].

Only AMMs of the Build-heap exercises were studied regarding RQ7. Already
known AMMs seem to still exist based on submission data from year 2016–2019
course instances. New AMMs were proposed in the Build-heap main loop variant
hypothesis. However, this extended set of AMMs explain the data to less extent
than the original set.

A higher number of hypothetical AMMs seems to decrease misconception de-
tectability. The direct replication study had 10 AMMs which matched to 311
submissions. The conceptual replication study had 95 AMMs which matched to
242 submissions. This is 22% less than with the original hypothesis. The alterna-
tive hypothesis includes all the algorithm variants in the original hypothesis except
Single-skips, as shown in Appendix C. Therefore it is more likely that the cause of
the phenomenon is the number of hypothetical algorithm variants rather than the
alternative hypothesis itself. Moreover, the failure rates for IR4 and IR5 are also
higher when there are more algorithm variants. This is understandable, as then it
is less probable that some AMM explains the student’s sequence two steps further
than the correct algorithm.

The existence of fallback features also seems strong, as only the No-swaps and
Unrecognised categories, total 1.6% of all submissions, do not have any logic that
would resemble the Build-heap algorithm. No-swaps has two explanations: the
student have clicked the Grade button when they have meant the Model Answer
button on its left side, or the student has tried their chance to get some points
without any effort. The Extra-steps-after-correct feature is either a slip or a sign of
misconception that each call of Heapify always continues to the leaf node.

The seemingly 150 cases of Swaps-Resemble-Build-Heap can be explained with
the imitative problem solving strategy discussed in Section 2.1. The student tries to
perform the exactly same swaps that are in an example somewhere in the learning
material (or the Internet), or then they have opened a model answer of the VAS
exercise in a separate web browser and tried to blindly copy it. The equally popular
153 cases of Nonsystematic-Build-heap indicate that the student has understood
the heap property but not the algorithm. The Legal-swaps and Legal-swap-indices
indicate that the student has understood, to some extent, how a single swap is
performed.

71

The question about which hypothesis, the original or the one with main loop
variants, is the truth about Build-heap AMMs still remains unanswered. Several
factors cause unreliability: there is only one human rater, the input generation is
not misconception aware, and the misconceptions have not been validated with the
students.

The replicated Build-heap studies imply that misconceptions still exist for the
exercise. The heap size of 10 elements is clearly too small, as misconceptions can
pass as correct (IR4), many misconceptions explain one sequence equally well (IR5),
and it is possible to form different hypotheses based on the data.

6.4 Recommendations
6.4.1 Improving the Build-heap VAS exercise

This subsection gives the most important recommendations that are required to
refine the current Build-heap misconception classifier into a working product.

1. A set of feedbacks for Build-heap AMMs should be written and assigned to the
algorithm variants. It is likely that not every class in the main loop hypothesis
requires a different feedback text. If the submission is a main loop variant
misconception, one could first instruct the student on following the correct
main loop, maybe with the No-Recursion variant. Then, after the student
performs a sequence matching an AMM with the Correct main loop variant,
another feedback would guide them towards the correct, recursive Min-heapify.
Thus the number of feedback categories might be limited to 10 or 20, which
might improve classification correctness.

2. The heap size should be extended to 20 to improve detectability of misconcep-
tions. This should still fulfill IR6.

3. Algorithm 4 should be used to find random inputs which fulfill IR3–IR5. IR3
is currently implemented in the Build-heap JSAV exercise code and it can be
imported into JSAV-matcher with some work. First it should be studied how
hard it is to fulfill IR4 with heap size of 20. If this succeeds, IR5 should be
added to the requirements. If finding good inputs is computationally intensive,
these inputs could be pregenerated.

4. The JSAV Matcher should be integrated into the A+ LMS. This requires:

(a) Packaging the JSAV Matcher into a Python-based grader container;
(b) Modifying the current web server code which receives a JSAV exercise

submission to run the grader container and then send the results back to
the JSAV exercise;

(c) Modifying the Build-heap JSAV exercise show the feedback.

72

5. There should be a mechanism to validate the feedback with the students. For
example, the Build-heap exercise could ask whether the given feedback was
useful, and this bit of information would be recorded into the A+ LMS along
with the exercise input, student’s solution, grade, and feedback. More elaborate
choices for student’s feedback for automatic feedback could be a How do you
feel? question with answers such as ”confused”, ”new information”, ”already
knew this”. If the submission is classified as unknown, the exercise could request
the student to write about what they were thinking.

Alternatively, steps 2 and 3 can be postponed if we want to have the heap size fixed
and only study how students’ behaviour changes when the exercise gives written
feedback. Overall, not all improvements cannot be done at the same time if we want
to study the effectiveness of each improvement.

6.4.2 Further research questions

This subsection discusses less urgent research questions which are related to the topic
of this thesis.

It should be studied how the modified graph algorithm exercises in Section 3.4
affect students’ workload and learning. Did the submission statistics change? Are
there any new issues in feedback from students?

The problem of misconception aware input against the input requirements in
Section 2.4 should be studied further. It should be verified that increasing number of
algorithm variants decreases the amount of submissions classified as misconceptions
and increases input requirement failures. This could be verified with the existing
Build-heap submission dataset by choosing 1, 2, . . . , 95 algorithm variants of the main
loop hypothesis and classifying the dataset each time.

Misconception-aware input generation by symbolic execution Section 2.5.2 in
could be studied if random search in Section 3.5 seems computationally expensive.

The earlier VAS misconception research articles raised several questions and
proposals which still require further study [19, p. 68, 43, p. 254]. Thus far the
automatic part of misconception recognition has been done for classification of given
submissions as predefined algorithm variants. This has required large amount of
manual work: students’ solutions reviewed in detail to be able to form hypotheses
for algorithm variants. Then the hypothetical algorithm variants must be written in
a programming language to, which is also laborious.

Data mining could provide automatic support for generation of hypotheses. Pre-
cisely, it might be possible to create a hierarchical clustering of the submissions for one
exercise using unsupervised machine learning methods [1, pp. 143–161]. Although
the algorithm simulation sequences are strings of states by definition, the actions
leading from a state to another resemble steps in a time series: swaps from one array
index to another array index, or direction of lower value in the swap. In this case the
Dynamic Time Warping [39] or other elastic similarity measures [33] could be used
with together Kruskal’s algorithm to obtain a similarity hierarchy of submissions.
This requires defining a distance function for two data structure operations: how
similar are two swaps in a binary heap, or two a visits node of a tree? The resulting

73

similarity hierarchy is a tree whose root is all the submissions and each of the branch
is a subset of submissions which have some degree of computed similarity. The
further a branch extends from the root, the less it contains submissions, but the
more similar are the submissions. Finally, a human could explore this hierarchy of
submissions and decide where to cut each branches so that it represents a single
misconception. If one or more human raters agree that the similarity tree represents
category of misconceptions, there is no need to write program code for AMMs: it is
possible to classify new submissions as misconceptions based on how they relate to
the tree.

An extended literature review of misconceptions related to data structures and
algorithms could support teaching. The already mentioned misconceptions in Sec-
tion 2.2 could be extended into a catalogue Similar to Sorva’s doctoral thesis [46, p.
358–368]. The search scope should be extended to related keywords such as partial
understanding, incorrect understanding, student difficulties, CS2, student-constructed
rules, mistakes, and bugs. Also the The Cambridge Handbook of Computing Educa-
tion Research might provide essential background [26].

74

A VAS exercises on the Data Structures and Al-
gorithms course

This appendix lists the JSAV-based VAS exercises that were used on Aalto University
course CS-A1141 Data structures and algorithms Y on the year 2018. The list of
exercises is shown in Table 13. All of these exercises are a subset of JSAV-based
exercises in the OpenDSA [20, 31]

Table 13: List of visual algorithm simulation exercises on the DSA course. The
numbers refer to the weekly chapters in the electronic learning material.

2. Linear structures 8. Search structures 10. Hashing
Evaluating postfix expression Binary search Open hashing
Infix to postfix Interpolation search Linear probing

5. Sorting Binary search tree search Quadratic probing
Insertion Sort Binary search tree insert Double hashing
Selection Sort Binary search tree remove Rehashing
Mergesort 9. Balanced search trees 11. Graphs
Quicksort Rotation Depth first search
Radix exchange sort Double rotation Breadh first search

6. Tree traversals AVL tree insertion Prim’s algorithm
Pre-order traversal Red-black tree coloring Dijkstra’s algorithm
In-order traversal Red-black tree insertion Kruskal’s algorithm
Post-order traversal Digital search tree 12. Bonus
Level-order traversal Radix trie B+ tree insertion

7. Priority queues Common trie Modified B+ tree insertion
Heap insert
Heap remove
Heap build
Heapsort

75

B Direct replications of Build-heap study

Table 14: Replicated misconception study for Build-heap VAS exercise submissions.
F denotes a finished, U an unfinished category.

2016–2019 2012 2005
Variant F U F U F U F U
Correct 743 – 52.0% – 29.2% – 34.3% –
Wrong-Duplicate 9 3 0.6% 0.2% 1.1% – – –
Heapify-with-Father 60 81 4.2% 5.7% 4.6% 1.9% 6.2% 7.4%
Left-to-Right 64 5 4.5% 0.3% 2.1% 2.4% – –
No-Recursion 24 1 1.7% 0.1% 6.2% – 6.1% 2.8%
Single-Skip 0 0 0.0% 0.0% 7.0% 2.9% 3.7% 1.6%
Top-Down 3 12 0.2% 0.8% 0.8% 1.9% – –
Delayed-Recursion 14 0 1.0% 0.0% 0.3% – 1.2% 3.3%
Smallest-Instantly-Up 1 24 0.1% 1.7% 0.8% 0.3% 0.2% 3.6%
Maximum-Heap 4 3 0.3% 0.2% 1.1% 0.3% – –
Missing State – – – – – – 1.9% 1.4%
Other 0 3 0.0% 0.2% 2.7% 0.8% 1.2% 0.8%
Unknown – 376 – 26.3% – 33.8% – 24.2%
Total 1430 100% 100% 100%

Table 14 shows the numerical results of the replicated Build-heap study. Data
from years 2016–2019 is analysed in this thesis, data from year 2012 is from [19], and
data from year 2005 is from [43].

76

C Details for alternative Build-heap hypothesis

Figure 14: Main loop variants of the Build-heap AMMs.

Figure 14 shows visualisation of the Build-heap main loop variants. There are
eight variants, and in each of them the order in which the main loop traverses the
binary tree representation is shown as arrow. The figures have heap size of 10, but
the patterns are not limited by the size of the heap. Each of then can be generated

77

with an algorithm.

Table 15: Order of preference for algorithm variants in the Build-heap main loop
hypothesis.

Main loop variant

Heapify variant C
or

re
ct

Zi
gz

ag
up

/R
L

Zi
gz

ag
up

/L
R

Le
ve

lL
R

To
p-

do
w

n

Zi
gz

ag
do

w
n/

LR

Zi
gz

ag
do

w
n/

R
L

In
or

de
r

Correct 0 1 6 3 14 23 22 7
No-recursion 2 8 13 20 32 59 58 18
Delayed recursion 4 15 30 17 41 67 66 29
Heapify-with-father LR 26 55 76 65 83 95 92 73
Heapify-with-father LR recursive 19 37 57 47 68 89 88 56
Heapify-with-father RL 10 31 49 42 61 85 84 48
Heapify-with-father RL recursive 5 16 35 27 43 70 69 34
Heapify-up 11 28 46 40 60 80 79 45
Max-heapify 12 36 52 44 62 87 86 51
Wrong-duplicate 9 21 39 33 50 78 77 38
Path-Bubblesort 25 54 75 64 82 94 91 72
Smallest-instantly-up 24 53 74 63 81 93 90 71

Table 15 shows the order of preference in the Build-heap Test classifier when
there are multiple algorithm variants which explain a submission equally well. Lower
value means higher priority. Thus the three most preferred heapify–main loop variant
pairs are Correct–Correct, Correct–Zigzag up/RL, and No-recursion–Correct.

Table 16 compares the mapping of algorithm variants between [19], the direct
replication in thesis, and the conceptual replication in this thesis. Column Alt.hypot.
indicates whether the algorithm variant has been included in the conceptual replication
(the main loop hypothesis).

78

Table 16: Build-heap variant mapping between Karavirta et al. [19] and this thesis.

Algorithm in [19] Direct replication In alternative
Main loop Heapify hypothesis

Correct 4,3,2,1,0 Correct yes
Wrong-Duplicate 4,3,2,1,0 Wrong-Duplicate yes
Heapify-with-Father 4,3,2,1,0 Heapify-with-Father yes

LR recursive
Heapify-with-Father 4,3,2,1,0 Heapify-with-Father yes

LR recursive
Left-to-Right 3,4,1,2,0 Correct yes
No-Recursion 4,3,2,1,0 No-Recursion yes
Single-Skip 4,3,2,1,0 Correct –
Top-Down 0,1,2,3,4 Correct yes
Delayed-Recursion 4,3,2,1,0 Delayed-Recursion yes
Smallest-Instantly-Up 0,1,2,3,4 Smallest-Instantly-Up yes
Maximum-Heap 4,3,2,1,0 Max-Heapify yes
Other 0,2,1,4,3 Smallest-Instantly-Up yes

79

D Revised sequence similarity algorithm
Algorithm 6 is another interpretation of the grading algorithm in [43, p. 246]. It
is similar to Algorithm 6 in Section 2.7, but does not allow skips in the candidate
sequence. Input C is the candidate sequence produced by an AMM. Input S is the
student’s sequence.

Algorithm 6 Sequence similarity without skips in the candidate sequence.
1: procedure State-Similarity(C, S)
2: i, j ← 0
3: while i < |C| and j < |S| do
4: if C[i] = S[j] then
5: i← i + 1
6: end if
7: j ← j + 1
8: end while
9: return j

10: end procedure

Figure 15 shows an execution example corresponding to Figure 5 in Section 2.7. It is
similar to Figure 2 in [25, p. 3].

Pairs of states (c, s) tested for equality (c ∈ C, s ∈ S):
(A,A), (B,B), (D,C), (D,D), (E,G), (E,J), (E,K).
Return value: 3.

Figure 15: An execution example of Algorithm 6.

80

References
[1] Ethem Alpaydin. Introduction to machine learning. 2nd ed. Cambridge,

Massachusetts, USA: The MIT Press, 2010. isbn: 978-0-262-01243-0.
[2] Ari-Matti Auvinen. “Mistä oppimisanalytiikassa keskustellaan?” In: SeOPPI

1.1 (2017), pp. 6–7. issn: 1795-3251.
[3] Bilal M. Ayuub. Risk analysis in engineering and economics. Boca Raton,

Florida, USA: Chapman & Hall/CRC, 2003. isbn: 1-58488-395-2.
[4] Ulrik Brandes. “Drawing on physical analogies”. In: Drawing Graphs : Methods

and models. Ed. by Michael Kaufmann and Dorothea Wagner. Lecture Notes
in Computer Science, vol. 2025. Berlin, Germany: Springer-Verlag, 2001,
pp. 71–86. isbn: 978-3-540-44969-0. doi: 10.1007/3-540-44969-8.

[5] John Seely Brown and Kurt VanLehn. “Repair Theory: A Generative Theory
of Bugs in Procedural Skills”. In: Cognitive Science 4.4 (1980), pp. 379–426.
issn: 0364-0213. doi: https://doi.org/10.1207/s15516709cog0404_3.
url: https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709co
g0404%5C_3.

[6] Thomas H. Cormen et al. Introduction to Algorithms. 3rd. ed. Cambridge,
Massachusetts, USA: The MIT Press, 2009. isbn: 978-0-262-53305-8.

[7] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. “Detecting and Under-
standing Students’ Misconceptions Related to Algorithms and Data Structures”.
In: Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education. SIGCSE ’12. Raleigh, North Carolina, USA: ACM, 2012, pp. 21–26.
isbn: 978-1-4503-1098-7. doi: 10.1145/2157136.2157148. url: http://do
i.acm.org/10.1145/2157136.2157148.

[8] Shahira El Alfy, Jorge Marx Gómez, and Anita Dani. “Exploring the benefits
and challenges of learning analytics in higher education institutions: a system-
atic literature review”. In: Information Discovery and Delivery 47.1 (2019),
pp. 25–34. issn: 2398-6247. doi: 10.1108/IDD-06-2018-0018.

[9] Mohammed F. Farghally et al. “Towards a Concept Inventory for Algorithm
Analysis Topics”. In: Proceedings of the 2017 ACM SIGCSE Technical Sym-
posium on Computer Science Education. SIGCSE ’17. Seattle, Washington,
USA: ACM, 2017, pp. 207–212. isbn: 978-1-4503-4698-6. doi: 10.1145/3017
680.3017756. url: http://doi.acm.org/10.1145/3017680.3017756.

[10] Rudolf Fleischer and Colin Hirsch. “Graph drawing and its applications”.
In: Drawing Graphs : Methods and models. Ed. by Michael Kaufmann and
Dorothea Wagner. Lecture Notes in Computer Science, vol. 2025. Berlin,
Germany: Springer-Verlag, 2001, pp. 1–22. isbn: 978-3-540-44969-0. doi:
10.1007/3-540-44969-8.

[11] Judith Gal-Ezer and Ela Zur. “The efficiency of algorithms—misconceptions”.
In: Computers & Education 42.3 (2004), pp. 215–226. issn: 0360-1315. doi:
10.1016/j.compedu.2003.07.004.

https://doi.org/10.1007/3-540-44969-8
https://doi.org/https://doi.org/10.1207/s15516709cog0404_3
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0404%5C_3
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0404%5C_3
https://doi.org/10.1145/2157136.2157148
http://doi.acm.org/10.1145/2157136.2157148
http://doi.acm.org/10.1145/2157136.2157148
https://doi.org/10.1108/IDD-06-2018-0018
https://doi.org/10.1145/3017680.3017756
https://doi.org/10.1145/3017680.3017756
http://doi.acm.org/10.1145/3017680.3017756
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1016/j.compedu.2003.07.004

81

[12] Tina Götschi, Ian Sanders, and Vashti Galpin. “Mental Models of Recursion”.
In: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science
Education. SIGCSE ’03. Reno, Navada, USA: ACM, 2003, pp. 346–350. isbn:
1-58113-648-X. doi: 10.1145/611892.612004.

[13] Qiang Hao et al. “A Systematic Investigation of Replications in Computing
Education Research”. In: ACM Transactions on Computing Education 19.4
(Aug. 2019). doi: 10.1145/3345328. url: https://doi.org/10.1145/334
5328.

[14] Carsten Held, Markus Knauff, and Gottfried Vosgerau. “General Introduction”.
In: Mental models and the mind: current developments in cognitive psychology,
neuroscience, and philosophy of mind. Ed. by Carsten Held, Markus Knauff,
and Gottfried Vosgerau. Advances in Psychology, 138. Elsevier Science &
Technology, 2006, pp. 5–22. isbn: 978-0-444-52079-1.

[15] Kaisa Honkonen and Leena Vainio. “Times of day, submission dates, learning
statistics, interaction charts – it this what is meant by ”learning analytics”?”
In: SeOPPI 1.2 (2008). issn: 1795-3251.

[16] Petri Ihantola. Automatic test data generation for programming exercises with
symbolic execution and Java PathFinder. Master’s Thesis. Espoo, Finland,
2006.

[17] Ville Karavirta. Xaal - Extensible Algorithm Animation Language. Master’s
Thesis. Espoo, Finland, 2005. url: http://www.cs.hut.fi/Research
/SVG/publications/karavirta-masters.pdf (visited on 02/21/2020).

[18] Ville Karavirta, Petri Ihantola, and Teemu Koskinen. “Service-Oriented Ap-
proach to Improve Interoperability of E-Learning Systems”. In: 2013 IEEE
13th International Conference on Advanced Learning Technologies. IEEE, July
2013, pp. 341–345. doi: 10.1109/ICALT.2013.105.

[19] Ville Karavirta, Ari Korhonen, and Otto Seppälä. “Misconceptions in Visual
Algorithm Simulation Revisited: On UI’s Effect on Student Performance,
Attitudes, and Misconceptions”. In: 2013 Learning and Teaching in Computing
and Engineering. IEEE, Mar. 2013, pp. 62–69. doi: 10.1109/LaTiCE.2013.3
5.

[20] Ville Karavirta and Clifford A. Shaffer. “Creating Engaging Online Learning
Material with the JSAV JavaScript Algorithm Visualization Library”. In:
IEEE Transactions on Learning Technologies 9.2 (Apr. 2016), pp. 171–183.
issn: 1939-1382. doi: 10.1109/TLT.2015.2490673.

[21] Ville Karavirta and Clifford A. Shaffer. “JSAV: The JavaScript Algorithm Visu-
alization Library”. In: Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education. ITiCSE ’13. Canterbury, Eng-
land, UK: ACM, 2013, pp. 159–164. isbn: 978-1-4503-2078-8. doi: 10.1145/2
462476.2462487. url: http://doi.acm.org/10.1145/2462476.2462487.

https://doi.org/10.1145/611892.612004
https://doi.org/10.1145/3345328
https://doi.org/10.1145/3345328
https://doi.org/10.1145/3345328
http://www.cs.hut.fi/Research/SVG/publications/karavirta-masters.pdf
http://www.cs.hut.fi/Research/SVG/publications/karavirta-masters.pdf
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1109/LaTiCE.2013.35
https://doi.org/10.1109/LaTiCE.2013.35
https://doi.org/10.1109/TLT.2015.2490673
https://doi.org/10.1145/2462476.2462487
https://doi.org/10.1145/2462476.2462487
http://doi.acm.org/10.1145/2462476.2462487

82

[22] Kuba Karpierz and Steven A. Wolfman. “Misconceptions and Concept Inven-
tory Questions for Binary Search Trees and Hash Tables”. In: Proceedings of
the 45th ACM Technical Symposium on Computer Science Education. SIGCSE
’14. Atlanta, Georgia, USA: ACM, 2014, pp. 109–114. isbn: 978-1-4503-2605-6.
doi: 10.1145/2538862.2538902. url: http://doi.acm.org/10.1145/253
8862.2538902.

[23] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. “Generalized
Symbolic Execution for Model Checking and Testing”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by Hubert Garavel and
John Hatcliff. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 2003,
pp. 553–568. isbn: 978-3-540-36577-8.

[24] Ari Korhonen. “Visual Algorithm Simulation”. PhD thesis. Espoo, Fin-
land: Helsinki University of Technology, Department of Computer Science and
Engineering, 2003. isbn: 951-22-6788-8.

[25] Ari Korhonen, Otto Seppälä, and Juha Sorva. “Automatic recognition of
misconceptions in visual algorithm simulation exercises”. In: 2015 IEEE
Frontiers in Education Conference (FIE). IEEE, Aug. 2015. doi: 10.1109
/FIE.2015.7344046.

[26] Colleen M. Lewis, Michael J. Clancy, and Jan Vahrenhold. “Student Knowledge
and Misconceptions”. In: The Cambridge Handbook of Computing Education
Research. Ed. by Sally A. Fincher and Anthony V. Robins. Cambridge
Handbooks in Psychology. Cambridge University Press, 2019, pp. 773–800.
doi: 10.1017/9781108654555.028.

[27] Lauri Malmi et al. “Visual Algorithm Simulation Exercise System with Au-
tomatic Assessment: TRAKLA2”. In: Informatics in Education 3.2 (2004),
pp. 267–288. issn: 2335-8971. url: https://www.mii.lt/informatics_in
_education/pdf/INFE048.pdf.

[28] Giacomo Mariani. Design of an application to collect data and create anima-
tions from Visual Algorithm Simulation exercises. Master’s Thesis, planned
publication on 2020. The Title is from the thesis presentation. Espoo, Finland,
2020.

[29] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge,
UK: Cambridge University Press, 1995. isbn: 0-521-47465-5.

[30] n.d. Learning Analytics & Knowledge Conference 2019 | General Call. 2019.
url: https : / / lak19 . solaresearch . org / general - call/ (visited on
07/29/2019).

[31] n.d. OpenDSA/AV/Development at master · OpenDSA/OpenDSA · GitHub.
2019. url: https://github.com/OpenDSA/OpenDSA/tree/master/ (visited
on 09/16/2019).

[32] n.d. VISSOFT2019 - seventh IEEE Working Conference on Software Vi-
sualization. 2019. url: http://vissoft19.dcc.uchile.cl/ (visited on
07/31/2019).

https://doi.org/10.1145/2538862.2538902
http://doi.acm.org/10.1145/2538862.2538902
http://doi.acm.org/10.1145/2538862.2538902
https://doi.org/10.1109/FIE.2015.7344046
https://doi.org/10.1109/FIE.2015.7344046
https://doi.org/10.1017/9781108654555.028
https://www.mii.lt/informatics_in_education/pdf/INFE048.pdf
https://www.mii.lt/informatics_in_education/pdf/INFE048.pdf
https://lak19.solaresearch.org/general-call/
https://github.com/OpenDSA/OpenDSA/tree/master/
http://vissoft19.dcc.uchile.cl/

83

[33] Izaskun Oregi et al. “On-line Elastic Similarity Measures for time series”. In:
Pattern Recognition 88 (2019), pp. 506–517. issn: 0031-3203. doi: https://d
oi.org/10.1016/j.patcog.2018.12.007. url: http://www.sciencedirec
t.com/science/article/pii/S003132031830428X.

[34] Nesrin Özdener. “A comparison of the misconceptions about the time-efficiency
of algorithms by various profiles of computer-programming students”. In:
Computers & Education 51.3 (2008), pp. 1094–1102. issn: 0360-1315. doi:
10.1016/j.compedu.2007.10.008.

[35] Wolfgang Paul and Jan Vahrenhold. “Hunting High and Low: Instruments
to Detect Misconceptions Related to Algorithms and Data Structures”. In:
Proceeding of the 44th ACM Technical Symposium on Computer Science Edu-
cation. SIGCSE ’13. Denver, Colorado, USA: ACM, 2013, pp. 29–34. isbn:
978-1-4503-1868-6. doi: 10.1145/2445196.2445212. url: http://doi.acm
.org/10.1145/2445196.2445212.

[36] Leo Porter et al. “BDSI: A Validated Concept Inventory for Basic Data
Structures”. In: Proceedings of the 2019 ACM Conference on International
Computing Education Research. ICER ’19. Toronto ON, Canada: ACM, 2019,
pp. 111–119. isbn: 978-1-4503-6185-9. doi: 10.1145/3291279.3339404. url:
http://doi.acm.org/10.1145/3291279.3339404.

[37] Leo Porter et al. “Developing Course-Level Learning Goals for Basic Data
Structures in CS2”. In: Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. SIGCSE ’18. Baltimore, Maryland, USA: ACM,
2018, pp. 858–863. isbn: 978-1-4503-5103-4. doi: 10.1145/3159450.3159457.
url: http://doi.acm.org/10.1145/3159450.3159457.

[38] S. Ian Robertson. Is analogical problem solving always analogical?: the case for
imitation. Tech. rep. HCRL Technical Report 97. HCRL, The Open University,
1993. url: https://www.researchgate.net/publication/2248507 (visited
on 07/31/2019).

[39] Hiroaki Sakoe and Seibi Chiba. “Dynamic programming algorithm optimization
for spoken word recognition”. In: IEEE Transactions on Acoustics, Speech,
and Signal Processing 26.1 (Feb. 1978), pp. 43–49. issn: 0096-3518. doi:
10.1109/TASSP.1978.1163055.

[40] Stefan Schmidt. “Shall we Really do it Again? The Powerful Concept of Repli-
cation is Neglected in the Social Sciences”. In: Review of General Psychology
13.2 (2009), pp. 90–100. doi: 10.1037/a0015108. url: https://doi.org/1
0.1037/a0015108.

[41] Norbert M. Seel. “Mental Models in Learning Situations”. In: Mental models
and the mind : current developments in cognitive psychology, neuroscience, and
philosophy of mind. Ed. by Gottfried Vosgerau Carsten Held Markus Knauff.
Advances in Psychology, 138. Elsevier Science & Technology, 2006, pp. 85–107.
isbn: 978-0-444-52079-1.

https://doi.org/https://doi.org/10.1016/j.patcog.2018.12.007
https://doi.org/https://doi.org/10.1016/j.patcog.2018.12.007
http://www.sciencedirect.com/science/article/pii/S003132031830428X
http://www.sciencedirect.com/science/article/pii/S003132031830428X
https://doi.org/10.1016/j.compedu.2007.10.008
https://doi.org/10.1145/2445196.2445212
http://doi.acm.org/10.1145/2445196.2445212
http://doi.acm.org/10.1145/2445196.2445212
https://doi.org/10.1145/3291279.3339404
http://doi.acm.org/10.1145/3291279.3339404
https://doi.org/10.1145/3159450.3159457
http://doi.acm.org/10.1145/3159450.3159457
https://www.researchgate.net/publication/2248507
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1037/a0015108
https://doi.org/10.1037/a0015108
https://doi.org/10.1037/a0015108

84

[42] Otto Seppälä. “Modelling Student Behavior in Algorithm Simulation Exercises
with Code Mutation”. In: Proceedings of the 6th Baltic Sea Conference on
Computing Education Research: Koli Calling 2006. Baltic Sea ’06. Uppsala,
Sweden: ACM, 2006, pp. 109–114. doi: 10.1145/1315803.1315822. url:
http://doi.acm.org/10.1145/1315803.1315822.

[43] Otto Seppälä, Lauri Malmi, and Ari Korhonen. “Observations on Student
Misconceptions—A Case Study of the Build – Heap Algorithm”. In: Computer
Science Education 16.3 (2006), pp. 241–255. doi: 10.1080/089934006009135
23.

[44] Ian Sommerville. Path Testing. 2008. url: https://ifs.host.cs.st-andre
ws.ac.uk/Books/SE9/Web/Testing/PathTest.html (visited on 09/02/2019).

[45] Ian Sommerville. Software Engineering. 9th. Boston, Massachusetts, USA:
Pearson Education, 2011. isbn: 978-0-13-705346-9.

[46] Juha Sorva. “Visual Program Simulation in Introductory Programming Educa-
tion”. PhD thesis. Espoo, Finland: Aalto University, School of Science, 2012,
p. 428. isbn: 978-952-60-4625-9. url: https://aaltodoc.aalto.fi/handle
/123456789/3534.

[47] Kozo Sugiyama. Graph drawing and applications for software and knowledge
engineers. River Edge, New Jersey, USA: World scientific, 2002. isbn: 978-
981-4489-24-9. doi: 10.1142/9789812777898.

[48] Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. “Automatic Recognition
of Students’ Sorting Algorithm Implementations in a Data Structures and
Algorithms Course”. In: Proceedings of the 12th Koli Calling International
Conference on Computing Education Research. Koli Calling ’12. Koli, Finland:
ACM, 2012, pp. 83–92. isbn: 978-1-4503-1795-5. doi: 10.1145/2401796.240
1806. url: http://doi.acm.org/10.1145/2401796.2401806.

[49] Artturi Tilanterä. Improved Dijkstra’s, Kruskal’s and Prim’s algorithm practise
exercises · atilante/OpenDSA@280cdbc. Retrieved 27.1.2020. 2020. url: htt
ps://github.com/atilante/OpenDSA/commit/280cdbc10327bea9d7df9427
00db4c7d87508daa.

[50] Artturi Tilanterä. Verkkojen piirtäminen hierarkkisella ryhmittelyllä. Bache-
lor’s Thesis. Aalto University. Espoo, Finland, 2014. url: https://aaltodo
c.aalto.fi/handle/123456789/13233.

[51] Matthew Wickline and Human-Computer Interaction Resource Network. Coblis
– Color Blindness Simulator. Retrieved 29.1.2020. 2018. url: https://www.c
olor-blindness.com/coblis-color-blindness-simulator/.

[52] Hong Zhu, Patrick A. V. Hall, and John H. R. May. “Software Unit Test
Coverage and Adequacy”. In: ACM Computing Surveys 29.4 (Dec. 1997),
pp. 366–427. issn: 0360-0300. doi: 10.1145/267580.267590.

https://doi.org/10.1145/1315803.1315822
http://doi.acm.org/10.1145/1315803.1315822
https://doi.org/10.1080/08993400600913523
https://doi.org/10.1080/08993400600913523
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Testing/PathTest.html
https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/Testing/PathTest.html
https://aaltodoc.aalto.fi/handle/123456789/3534
https://aaltodoc.aalto.fi/handle/123456789/3534
https://doi.org/10.1142/9789812777898
https://doi.org/10.1145/2401796.2401806
https://doi.org/10.1145/2401796.2401806
http://doi.acm.org/10.1145/2401796.2401806
https://github.com/atilante/OpenDSA/commit/280cdbc10327bea9d7df942700db4c7d87508daa
https://github.com/atilante/OpenDSA/commit/280cdbc10327bea9d7df942700db4c7d87508daa
https://github.com/atilante/OpenDSA/commit/280cdbc10327bea9d7df942700db4c7d87508daa
https://aaltodoc.aalto.fi/handle/123456789/13233
https://aaltodoc.aalto.fi/handle/123456789/13233
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://doi.org/10.1145/267580.267590

85

[53] Daniel Zingaro et al. “Identifying Student Difficulties with Basic Data Struc-
tures”. In: Proceedings of the 2018 ACM Conference on International Comput-
ing Education Research. ICER ’18. Espoo, Finland: ACM, 2018, pp. 169–177.
isbn: 978-1-4503-5628-2. doi: 10.1145/3230977.3231005. url: http://do
i.acm.org/10.1145/3230977.3231005.

https://doi.org/10.1145/3230977.3231005
http://doi.acm.org/10.1145/3230977.3231005
http://doi.acm.org/10.1145/3230977.3231005

	Abstract
	Abstract (in Finnish)
	Acknowledgements
	Contents
	Abbreviations and Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research questions and methods
	1.4 Scope and structure

	2 Background
	2.1 Pedagogics of VAS and misconceptions
	2.2 Literature study
	2.3 Algorithmic detection of known misconceptions
	2.4 Misconception-aware input in VAS
	2.5 Software testing perspective
	2.5.1 Relevant testing terminology
	2.5.2 Test data generation by symbolic execution

	2.6 Software context
	2.7 String matching for VAS

	3 Methodology
	3.1 System overview with risk analysis
	3.2 The essential features of an algorithm
	3.2.1 Evaluating Postfix expression
	3.2.2 Quicksort
	3.2.3 Build-heap
	3.2.4 Dijkstra's algorithm

	3.3 Reproducibility of JSAV exercise recordings
	3.3.1 Evaluating postfix expression
	3.3.2 Quicksort
	3.3.3 Build-heap
	3.3.4 Dijkstra's algorithm

	3.4 Improved graph algorithm exercises
	3.5 Input generation by random search

	4 Empirical methods and data
	4.1 Replication as a scientific method
	4.2 Direct replication of the Build-heap studies
	4.3 Forming hypotheses for Build-heap misconceptions
	4.4 Machine classification of new Build-heap misconceptions
	4.5 Software tools for misconception study

	5 Empirical results
	5.1 Direct replication of the Build-heap studies
	5.2 Forming hypotheses for Build-heap misconceptions
	5.3 Machine classification of new Build-heap misconceptions

	6 Discussion
	6.1 Contributions
	6.2 Evaluation
	6.3 Discussion
	6.4 Recommendations
	6.4.1 Improving the Build-heap VAS exercise
	6.4.2 Further research questions

	A VAS exercises on the Data Structures and Algorithms course
	B Direct replications of Build-heap study
	C Details for alternative Build-heap hypothesis
	D Revised sequence similarity algorithm

